The Diagnostic Utility of a Myeloid Mutational Panel for Myelodysplastic Syndromes and Myelodysplastic/Myeloproliferative Neoplasms

Warda Ibrar et al.

Follow this and additional works at: https://digitalcommons.unmc.edu/gmerj

Part of the Higher Education Commons, and the Medicine and Health Sciences Commons

Recommended Citation
https://digitalcommons.unmc.edu/gmerj/vol2/iss1/57

This Conference Proceeding is brought to you for free and open access by DigitalCommons@UNMC. It has been accepted for inclusion in Graduate Medical Education Research Journal by an authorized editor of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.
The Diagnostic Utility of a Myeloid Mutational Panel for Myelodysplastic Syndromes and Myelodysplastic/Myeloproliferative Neoplasms

Creative Commons License

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

This conference proceeding is available in Graduate Medical Education Research Journal:
https://digitalcommons.unmc.edu/gmerj/vol2/iss1/57
The Diagnostic Utility of a Myeloid Mutational Panel for Myelodysplastic Syndromes and Myelodysplastic/Myeloproliferative Neoplasms

Wardia Ibrar1, Jesse Cox1, Catalina Amador1, Hina N. Qureishi1, Kai Fu1, Timothy C. Greiner1, Allison Vokoun1, Weiwei Zhang1, Yuan Ji1

1University of Nebraska Medical Center, Department of Internal Medicine, Division of Cardiovascular Disease

Mentor: Yuan Ji

Program: Pathology, Division of Hematopathology

Type: Original Research

Background: The diagnosis of myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) is based on morphology and cytogenetics/FISH findings per 2017 WHO classification. With rare exceptions (e.g. SF3B1 mutations), somatic mutations have not been incorporated as diagnostic criteria. In this study we analyzed the utility of mutational analysis with a targeted 54-gene or 40-gene next generation sequencing (NGS) panel in diagnosis of MDS and MDS/MPN.

Methods: The clinicopathologic data and NGS results of patients with unexplained cytopenia with or without cytosis who underwent a bone marrow (BM) biopsy and had sequencing with either a 54 gene Trusight Myeloid or a 40 gene Oncomine Myeloid NGS Assay performed at our institution from 2017 to 2019. Morphologic diagnosis of BM biopsy based on 2017 WHO classification was considered gold standard.

Results: A total 74 patients were identified, including 25 low-grade MDS (peripheral blood blasts <1% and BM blasts <5%), 16 high-grade MDS (peripheral blood blasts 2-19% and BM blasts 5-19%), 5 therapy-related MDS, 14 MDS/MPN, and 14 morphological negative ones. Of 74 patients, 158 somatic mutations involving 37 genes were detected and had variant allele frequency (VAF) ranging from 3% to 99%. 62% (23/37) genes showed recurrent mutations and 38% (14/37) genes had one mutation each. The most common mutated genes were TET2, ASXL1, RUNX1, SF3B1 and TP53. Morphological negative, low-grade MDS, high-grade MDS, therapy-related MDS and MDS/MPN showed an average number of somatic mutations with a mean VAF: 1.5/20%, 2/37%, 3.1/38%, 2/33% and 4.8/41%, respectively. Mutations in TP53, RUNX1, or ASXL1 were associated with high-grade and therapy-related MDS (p=0.004), while SF3B1 mutations were associated with low-grade MDS (p=0.001). In 60 of 74 patients with a diagnosis of MDS or MDS/MPN, 32 showed abnormal cytogenetics and 28 showed normal cytogenetics. One or more mutations were detected in 25 of 28 (89%) MDS or MDS/MPN patients with normal cytogenetics. The sensitivity, specificity, and positive predictive value (PPV) and negative predictive value (NPV) of mutations for MDS and MDS/MPN with different cutoffs are summarized in Table 1.

Conclusion: A myeloid mutational panel provides additional evidence of clonality besides cytogenetics/FISH studies in diagnosis of cytopenia with or without cytosis, and ≥ 2 mutations with ≥ 10% VAF highly predicts MDS and MDS/MPN with a PPV of 100%.

Table 1.

<table>
<thead>
<tr>
<th>Mutation Cutoff</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any mutations (VAF≥1%)</td>
<td>87%</td>
<td>75%</td>
<td>58%</td>
<td>58%</td>
</tr>
<tr>
<td>VAF≥20%</td>
<td>93%</td>
<td>93%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>≥2 mutations</td>
<td>98%</td>
<td>98%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>VAF≥10% and ≥2 mutations</td>
<td>93%</td>
<td>100%</td>
<td>100%</td>
<td>96%</td>
</tr>
<tr>
<td>VAF≥10% and ≥2 mutations, or abnormal cytogenetics/FISH</td>
<td>83%</td>
<td>96%</td>
<td>96%</td>
<td>96%</td>
</tr>
</tbody>
</table>

https://doi.org/10.32873/unmc.dc.gmerj.2.1.055

Coronary Artery Bypass Grafting Versus Percutaneous Coronary Intervention for Left Main Disease in Chronic Kidney Disease Patients

Aravdeep Jhand1, Raahat Bansal1, Rahul Dhwan1, J. Dawn Brown1, Thomas Porter1, James Tcheng1, Yiannis Chatzizisis1, Andrew Goldsweig1

1University of Nebraska Medical Center, Department of Internal Medicine, Division of Cardiovascular Disease

2Creighton University, Department of Internal Medicine

3Brown University, Department of Internal Medicine, Division of Cardiovascular Disease

4Duke University, Department of Internal Medicine, Division of Cardiovascular Disease

Mentor: Andrew Goldsweig

Program: Internal Medicine, Division of Cardiovascular Disease

Type: Review/Meta-analysis

Background: Limited data exists on the optimal revascularization strategy for patients with left main coronary artery disease (LMCAD) and chronic kidney disease (CKD). We conducted this updated meta-analysis to compare the outcomes of coronary artery bypass graft (CABG) versus percutaneous coronary intervention (PCI) in this population.

Methods: Multiple electronic databases were searched for studies comparing CABG and PCI in CKD patients undergoing revascularization of LMCAD (> 50% diameter stenosis). CKD was defined as estimated glomerular filtration rate of < 60 ml/min/1.73 m2. Primary outcome of interest was long term major adverse cardiovascular and cerebral events (MACCE) which was a composite of cardiovascular death, myocardial infarction (MI), stroke and repeat revascularization. Other outcomes of interest

https://doi.org/10.32873/unmc.dc.gmerj.2.1.056