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Gut microbiome dysbiosis in antibiotic-
treated COVID-19 patients is associated with
microbial translocation and bacteremia

Lucie Bernard-Raichon1,20, Mericien Venzon1,2,20, Jon Klein 3,20,

Jordan E. Axelrad 4,20, Chenzhen Zhang5,20, Alexis P. Sullivan 5,

Grant A. Hussey5, Arnau Casanovas-Massana 6, Maria G. Noval7,

Ana M. Valero-Jimenez7, Juan Gago2,8, Gregory Putzel7,9, Alejandro Pironti 7,9,

EvanWilder4, Yale IMPACTResearchTeam*, LornaE. Thorpe8,9, DanR. Littman1,10,

Meike Dittmann7, Kenneth A. Stapleford7, Bo Shopsin7,9,11, Victor J. Torres 7,9,

Albert I. Ko 6, Akiko Iwasaki 3,10, KenCadwell1,4,7,9 &JonasSchluter 5,7,9

Although microbial populations in the gut microbiome are associated with

COVID-19 severity, a causal impact on patient health has not been established.

Here we provide evidence that gut microbiome dysbiosis is associated with

translocation of bacteria into the blood during COVID-19, causing life-

threatening secondary infections. We first demonstrate SARS-CoV-2 infection

induces gutmicrobiomedysbiosis inmice,which correlatedwith alterations to

Paneth cells and goblet cells, and markers of barrier permeability. Samples

collected from96COVID-19 patients at twodifferent clinical sites also revealed

substantial gut microbiome dysbiosis, including blooms of opportunistic

pathogenic bacterial genera known to include antimicrobial-resistant species.

Analysis of blood culture results testing for secondary microbial bloodstream

infectionswithpairedmicrobiomedata indicates that bacteriamay translocate

from the gut into the systemic circulation of COVID-19 patients. These results

are consistent with a direct role for gut microbiome dysbiosis in enabling

dangerous secondary infections during COVID-19.

A better understanding of factors contributing to the pathology of

coronavirus disease 2019 (COVID-19) is an urgent global priority. Pre-

vious reports have demonstrated that severe COVID-19 is frequently

associated with specific inflammatory immune phenotypes, lympho-

penia, and a generally disproportionate immune response leading to

systemic organ failure1,2. Even inmild cases, gastrointestinal symptoms

are reported frequently, and recent studies reported that COVID-19

patients lose commensal taxa of the gut microbiome during

hospitalization3–5, and persistent microbiome alterations are found in

patients with long-term complications from COVID-196–8. Differences

in gut bacterial populations relative to healthy controls were observed

in all COVID-19 patients, but most strongly in patients who were trea-

ted with antibiotics during their hospitalization4. Most recently,

COVID-19 patients treated with broad-spectrum antibiotics at admis-

sion were shown to have increased susceptibility to multi-drug resis-

tant infections and nearly double the mortality rate from septic

shock9,10. Furthermore, although initially estimated to be low (6.5%)11,

more recent studies have detected bacterial secondary infections in as

much as 12–14% of COVID-19 patients12–14. However, the causal direc-

tion of the relationship between disease symptoms and gut bacterial

populations is not yet clear.

Complex gut microbiota ecosystems can prevent the invasion

of potentially pathogenic bacteria15,16. Conversely, when the gut
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microbiota incurs damage, such as through antibiotics treatment,

competitive exclusion of pathogens is weakened17–19 and potentially

dangerous blooms of antibiotic-resistant bacterial strains can

occur20,21. In immunocompromised cancer patients, blooms of Enter-

ococcaceae and Gram-negative proteobacteria can lead to gut dom-

inations by few or single species22–25. Such gut domination events are

dangerous to these patients because they are associated with

increased risk of translocation of antibiotic-resistant bacteria from the

gut into the blood stream22,26,27. Bacterial co-infection can also cause

life-threatening complications in patients with severe viral

infections10,11,28; therefore, antibacterial agents were administered

empirically to nearly all critically ill suspected COVID-19 patients since

the incidence of bacterial superinfection was unknown early during

the pandemic4,29. However, it is now known that nosocomial infection

during prolonged hospitalization is the primary threat to patients with

COVID-1930, rather than bacterial co-infection upon hospital

admission12,31–33. Evidence from immunocompromised cancer patients

suggests that indiscriminate administration of broad-spectrum anti-

biotics may, counter-intuitively, increase nosocomial bloodstream

infection (nBSI) rates by causing gut dominations of resistantmicrobes

that can translocate into the blood22,34. Indeed, we recently showed

that Enterococcus, a common gut microbial genus comprised of

intrinsically antibiotic-resistant strains, accounts for a large proportion

of nBSIs during longer hospitalizations, suggesting gut translocation35.

Thus, empiric antimicrobial use, i.e., without direct evidence for a

bacterial infection, in patients with severe COVID-19 may be especially

pernicious because it can select for antimicrobial resistance and pro-

mote gut translocation-associated nBSI.

The role of the gut microbiome in respiratory viral infections in

general36–39, and in COVID-19 patients, in particular, is only beginning

to be understood. Animal models of influenza virus infection have

uncovered mechanisms by which the microbiome influences antiviral

immunity40–42, and in turn, the viral infection was shown to disrupt the

intestinal barrier ofmice by damaging the gutmicrobiota43,44. Here, we

show that infection by SARS-CoV-2 alone causes gut microbiome

dysbiosis and gut epithelial cell alterations in a mouse model. We

analyze stool samples obtained from two independent cohorts of

patients atNYULangoneHealth andYaleNewHavenHospital, and find

that COVID-19 is associated with severe microbiome injury character-

ized by loss of diversity and anaerobe taxa, resembling observations

made in themousemodel. Analysis of sequencing reads obtained from

stool samples together with results from blood cultures, we find that

gut dysbiosis in COVID-19 patients is associated with secondary

bloodstream infections by gut bacteria.

Results
Gut microbiome dysbiosis in SARS-CoV-2-infected mice
We first determined whether SARS-CoV-2 infection could directly

cause gut dysbiosis independently of hospitalization and treatment.

K18-hACE2 mice (K18-ACE2tg mice), express human ACE2 driven by

the cytokeratin-18 promoter (K18-ACE2tg mice). Although the over-

expression of ACE2 prevents investigation of long-term con-

sequences of infection due to potential non-specific disease, which

is a major limitation of the model, an advantage of these mice is that

they develop severe respiratory disease in a virus dose-dependent

manner, partially mirroring what is observed in COVID-19

patients45–48. Daily changes in fecal bacterial populations were

monitored following intranasal inoculation of mice with a range of

doses (10, 100, 1000, and 104 PFU) of SARS-CoV-2 or mock-

treatment (Fig. 1a, Supplementary Fig. 1). Although we detected

viral RNA in the lungs but not in the intestine or stool as previously

observed49 of mice infected with doses as low as 100 PFU (Supple-

mentary Fig. 1c), mice inoculated with doses lower than 104 PFU

displayed minimal or no signs of disease (Supplementary Fig. 1a, b).

As expected, based on this outcome, shifts in their microbiomewere

inconsistent (Supplementary Fig. 2a–d). Thus, we focused on find-

ings from the 104 PFU inoculum.

Mice infected with 104 PFU displayed weight loss and other signs

of disease around day 4 (Supplementary Figs. 1a, b, 2h, i), alongside

microbiome changes characterized by a significant loss of alpha

diversity (inverse Simpson index, Fig. 1b) corresponding to shifts in the

bacterial community composition (Fig. 1c, d). We performed time

series analyses on bacterial family abundances, contrasting their tra-

jectories in infected (104 PFU) and uninfected mice. This revealed that

the strongest shift over time in infected mice was characterized by

significant increases of Akkermansiaceae (p <0.0002, Fig. 1d). Ranking

all bacterial family trajectories by their estimated changes over time in

infected mice showed that this increase in Akkermansiaceae was

accompanied by significant losses of Clostridiaceae 1, a family of

obligate anaerobe bacteria, and of Erysipelotrichiaceae (Fig. 1e). We

also performed a trajectory analysis on the abundance of Proteo-

bacteria, a phylum that comprises many pathogenic taxa that are a

major cause of nBSIs22; we observed a significant increase of Proteo-

bacteria over time in infectedmice (Fig. 1e), but not in uninfectedmice

(Supplementary Fig. 2e). This increase of Proteobacteria in infected

mice was driven by increase in several proteobacterial genera, with the

steepest increase observed in Escherichia/Shigella (Supplementary

Fig. 2f, g). These results demonstrated that SARS-CoV-2 infection leads

to gut microbiome dysbiosis over time in a mouse model.

We then determined if this dysbiosis was also associated with

intestinal defects that could enable translocation of bacteria into the

blood. In mice infected with 1000 PFU, bacterial translocation in

spleen and liver was observed inmore of the infectedmice compared

to uninfected controls (Supplementary Fig. 3a). However, while

several of the mice infected with 104 PFU displayed signs of barrier

dysfunction, the observed differences in plasma concentrations of

fluorescein isothiocyanate (FITC)-dextran following its administra-

tion by gavage, or other markers of intestinal barrier permeability,

fatty acid-binding protein, lipopolysaccharide-binding protein, and

citrulline did not reach significance (Supplementary Fig. 3b, c). The

reduced colon lengths, as well as reductions in the villus lengths in

the duodenum or ileum, i.e., markers of overt inflammation, that we

observed, were also non-significant compared with control mice

(Supplementary Fig. 3d, e). Interestingly, infected mice that had

incurred the most severe microbiome injury in the form of diversity

loss also showed the most evidence of gut permeability—the highest

FITC-dextran concentrations in the blood of mice detected across all

samples came from the mice with the most extreme dysbiosis and

highest levels of Akkermansiaceae, a family of mucin-degrading

bacterial species (Supplementary Fig. 4).

SARS-CoV-2 infection alters gut epithelium in mice
Interestingly, we also detected a significant increase in the number of

mucus-producing goblet cells and a decrease in the number of Paneth

cells in the ileum (but not in the duodenum) of infectedmice (Fig. 2a, c

and Supplementary Fig. 3f). The decrease in Paneth cells was accom-

panied by structural abnormalities, most notably deformed or mis-

placed granules (Fig. 2b), and reduced gene expression of several

antimicrobial factors such as lysozyme, defensins, Reg3γ and serum

amyloid A in the ileum (Supplementary Fig. 3g). These morphological

abnormalities in Paneth cells were reminiscent of observations in the

ileum of patients with inflammatory bowel disease (IBD) as well as in a

virally-triggered animal model of IBD, where such structures were

indicative of defects in packaging and secretion of the granule protein

lysozyme50–52. Thus, to quantify the Paneth cell granule defect, we

performed lysozyme immunofluorescence and found a significant

increase in the proportion of Paneth cells displaying abnormal staining

patterns compared with the controls (Fig. 2b, c). We then investigated

if these physiological defects were associated with dysbiosis in the

microbiome.
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The most severely sick mice also had the most striking shifts in

their microbiome composition and the lowest microbiota diversity at

the end of the experiment (Supplementary Fig. 4a, b). To associate the

observed physiological defects withmicrobiome dysbiosis, we plotted

the numbers of goblet cells per crypt-villus unit and Paneth cells per

crypt, as well as the percentage of abnormal Paneth cells against bac-

terial alpha diversity and the log10-relative abundance of Akkerman-

siaceae (Fig. 2d, e). Goblet cell counts per crypt-villus unit were

negatively correlated with alpha diversity, and, conversely, positively

correlated with Akkermansiaceae. No statistically significant associa-

tion was found between diversity, Akkermansiaceae abundance, and

Paneth cell counts per crypt. However, we observed a striking sig-

nificant positive correlation between the percentage of abnormal

Paneth cells and Akkermansiaceae, and a corresponding negative

correlation with diversity. Altogether, these results show that the gut

microbiome dysbiosis observed in K18-hACE2 mice infected with a

high dose of SARS-CoV-2 is associated with alterations in key epithelial

cells, and signs of barrier permeability in the mice displaying the

greatest disruption in microbiome diversity.

Dysbiotic microbiomes and BSIs in COVID-19 patients
To investigate the microbiome in COVID-19 patients, we profiled the

bacterial composition of the fecal microbiome in 130 samples (Fig. 3a)

obtained from SARS-CoV-2 infected patients treated at NYU Langone

Health (NYU, 67 samples from 60 patients) and Yale New Haven Hos-

pital (YALE, 63 samples from 36 patients, Supplementary Table 1).

Analysis of metagenomic data obtained from sequencing of the 16S

rRNA genes revealed a wide range of bacterial community diversities,

as measured by the inverse Simpson index, in samples from both

centers (NYU: [1.0, 32.3], YALE: [1.5, 29.3], Fig. 3b); on average, samples

from NYU were less diverse (−4, p < 0.01, two-tailedT test, Fig. 3c), and

as reported previously, samples frompatients admitted to the ICU had

reduced diversity (−3.9, p <0.05, two-tailedT test, Supplementary

Fig. 5a). However, the composition in samples between the twocenters

did not show systematic compositional differences (Fig. 3d–f). On

average, in both centers, members of the phyla Firmicutes and Bac-

teroidetes represented the most abundant bacteria, followed by Pro-

teobacteria (Fig. 3d). The wide range of bacterial diversities was

reflected in the high variability of bacterial compositions across sam-

ples (Fig. 3e, f). In samples from both centers, microbiome domina-

tions, defined as a community where a single genus reachedmore than

50% of the population, were observed frequently (NYU: 21 samples,

YALE: 12 samples), representing states of severe microbiome injury in

COVID-19 patients (Fig. 3g, Supplementary Fig. 5). Strikingly, samples

associated with a BSI, defined here as a positive clinical blood culture

test result, had strongly reduced bacterial α-diversities (mean differ-

ence: −5.2, CIBEST[−8.2, −2.2], Fig. 3h).

The lower diversity associated with samples from 25 patients with

BSIs (26% of the patients, 15 NYU, 10 Yale, Supplementary Table 2) led

us to investigate their bacterial taxon compositions and the potential

that gut dysbiosis was associated with BSI events. Importantly, BSI

patients had received antibiotic treatments during hospitalization

(Supplementary Fig. 6, Supplementary Table 2), which could exacer-

bate COVID-19-induced shifts inmicrobiota populations20,21,24, andmay

indeed be administered in response to a suspected or confirmed BSI.

We noted thatmost BSI patients received antibiotics prior to their BSI,

Fig. 1 | SARS-CoV-2 infection causes gut microbiome alterations in mice. K18-

hACE2 mice were infected intranasally with 0 or 104 PFU of SARS-CoV-2. Fecal

samples formicrobiomeanalyseswere collecteddaily fromday0 (before infection)

until sacrifice; mice were sacrificed on days 5–7. Results show pooled data from

three independent experiments with n = 3–5 mice per group. a Timelines of fecal

microbiota composition measured by 16S rRNA gene sequencing. Bars represent

the compositionof the 15most abundant bacterial families per sample for eachday,

blocks of samples correspond to an individual mouse’s time course from day 0 to

day 6, as exemplified for the first mouse. b α-diversity (inverse Simpson index) per

infection group in the beginning (tstart, n = 13 each for control and infected) and at

the end (tend, n = 13 each for control and infected) of the experiment (n.s.: non-

significant, **: p <0.01, one-tailed, paired t-test; boxplots showmedian and quartile

ranges). Comparison between infected and non-infected mouse microbiomes at

the end of the experiment. c Principal coordinate plot of bacterial compositions in

samples collected prior to infection (tstart, top) and at sacrifice (tend, bottom) of the

experiment (Bray Curtis dissimilarity). d log10-relative family abundances at the

final time point; boxplots show median and quartile ranges, whiskers extend to 1.5

times max- and min- quartile values, n.s.: not significant; *: p value < 0.05; **: p

value < 0.01; ***:p value < 0.001; two-sidedWilcoxon rank-sum tests (n = 13 each for

control and infected). e Analysis of microbiome composition trajectories in infec-

ted mice. Regression coefficients of the estimated changes in family abundances

per day in mice infected with 104 PFU were obtained from linear mixed effects

models with varying effects per mouse and per cage (only significant coefficient

results shown, abbreviations and colors as per the bacterial family legend; Red:

separate, analogous analysis for phylum Proteobacteria trajectories).
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with 6 out of 25 patients receiving antibiotics only after the detection

of BSI. Principal coordinate analysis of all stool samples indicated that

the BSI-associated samples spanned a broad range of compositions

(Fig. 3h). To identify bacterial abundance patterns that consistently

distinguished BSI from non-BSI-associated samples, we performed a

Bayesian logistic regression. The model estimated the association of

the tenmost abundant bacterial generawith BSI cases, i.e., it identified

enrichment or depletion of bacterial genera in BSI associated samples

(Fig. 3i). This analysis revealed that the genus Faecalibacterium was

negatively associated with BSI (OR: −0.5, CI:[−0.86, −0.15]), which was

also observed when we included microbiome domination as an

additional factor in the model (Supplementary Fig. 7a). However, our

analysis also included stool samples that were taken only after a

positive blood culture was obtained, calling into question the plausi-

bility of gut translocation; a complementary analysis only using stool

samples obtained prior or on the same day of a positive blood culture

also identified Faecalibacterium asmost negatively associatedwith BSI

(Supplementary Fig. 7b). Furthermore, a higher-resolution analysis

using amplicon sequencing variant (ASV) relative abundances as pre-

dictors of BSI (Supplementary Fig. 7c, d), identified an ASV of the

Faecalibacterium genus as most negatively associated with BSI, in

agreement with our main analysis. Faecalibacterium is an

Article https://doi.org/10.1038/s41467-022-33395-6
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immunosupportive, short-chain fatty acid-producing genus that is a

prominent member of the human gut microbiome53–55, and its reduc-

tion is associated with disruption to intestinal barrier function56,57,

perhaps via ecological network effects57.

To evaluate the effect size of the association between Faecali-

bacterium and BSIs, we performed a counterfactual posterior pre-

dictive check. Using the average genus composition found across all

samples, we first computed the distribution of predicted BSI risks

(Fig. 3j), and compared this risk distribution with a hypothetical

bacterial composition which increased Faecalibacterium by 10%

points. The predicted risk distributions associated with these two

compositions differed strongly (mean difference 15%, CI: [1%, 32%],

Fig. 3j). Domination states of themicrobiome increase the risk for BSIs

in immunocompromised cancer patients22; such dominations imply

high relative abundances of single taxa, and therefore a low diversity.

Consistent with this, Faecalibacterium abundance was positively cor-

related with diversity (R: 0.55, p < 10−10, Supplementary Fig. 8) in our

data set and as reported previously53.

Fig. 2 | SARS-CoV-2 infection causes abnormalities in the gut epithelium of

mice. K18-hACE2 were inoculated intranasally with 104 PFU SARS-CoV-2 or mock

treatment. a Representative H&E-stained section of the ileum depicting crypt-villus

axes from mice at the end of the experiment. Green arrows indicate goblet cells,

scale bars correspond to 25μm. Bottom panels show high magnification images of

the indicated crypt with black arrowheads pointing at Paneth cells, scale bars

correspond to 10μm. b Representative anti-lysozyme immunofluorescence images

of the ileal crypt (two images per group).White and orangedotted circles delineate

normal and abnormal Paneth cells, respectively. Abnormality is characterized by

distorted, depleted, or diffuse lysozyme distribution patterns in Paneth cells.

Lysozyme = red, DAPI = blue, scale bars correspond to 10μm. c Quantification of

goblet cell number per villus (left), Paneth cells per crypt (middle left) and ratio of

goblet cell number / Paneth cell number (middle right) based on H&E staining, and

frequency of normal versus abnormal Paneth cell lysozyme distribution pattern

based on the immunofluorescence staining as depicted in b (right). Dots represent

the mean cell number per crypt-villus unit in each mouse, 50 units were counted

per mouse. Results were pooled from three independent experiments with n = 3–5

mice per group for each experiment (n = 8–14 control mice, 12–14 infected mice).

Somemicewereexcluded from the analysiswhenquality of the slideswas toopoor.

Boxplots indicatemedian and interquartile ranges (ns = non-significant, p <0.05; **,

p <0.01; ***, p <0.001; ****, p <0.0001 two-sided Mann-Whitney U test).

d Correlation of Goblet cell number per villus (left, two-sided Pearson correlation

r = −0.48, p =0.015), Paneth cells per crypt (middle, r =0.14, p value = 0.483) and

frequency of abnormalPaneth cell lysozymedistributionpattern (right, r = −0.5528,

p =0.014) for the mice shown in c with α-diversity (inverse Simpson) of the gut

microbiome measured at the last day before sacrifice. e Correlation of Goblet cell

number per villus (left, r =0.63, p <0.001), Paneth cells per crypt (middle, r = −0.29,

p =0.149) and frequency of abnormal Paneth cell lysozyme distribution pattern

(right, r =0.65, p value = 0.003) for the mice shown in c with log10-relative abun-

dances of Akkermansia in fecal samples from the last day before sacrifice; lines:

univariate linear regression, shaded region: 95% CI.

Fig. 3 | The dysbiotic gut microbiome in COVID-19 in patients from NYU Lan-

gone Health (n =60) and Yale New Haven Hospital (n = 36) is associated with

secondary bloodstream infections. a Bacterial family composition in stool sam-

ples (Yale, n = 63 samples; NYU, n = 67) identified by 16S rRNA gene sequencing;

bars represent the relative abundances of bacterial families; red circles indicate

samples with single taxa >50%. Samples are sorted by center and bacterial α-

diversity (inverse Simpson index, b). c α-diversity in samples from NYU Langone

Health and Yale New Haven Hospital; p =0.0065, two-sided T-test. d Average

phylum level composition per center. Principal coordinate plots of all samples

shown ina, labeledby center (e),most abundant bacterial family (f) anddomination

status of the sample (g), and BSI status; inset: boxplot of inverse Simpson index

diversity by BSI (h). i Coefficients from a Bayesian logistic regression with most

abundant bacterial genera as predictors of BSI status (circle: posterior mean, lines:

95% HDI). j Counterfactual posterior predictions of BSI risk based on bacterial

composition contrasting the predicted risk of the average composition across all

samples (red) with the risk predicted from a composition where Faecalibacterium

was increased by 10% (blue). k Shotgun metagenomic reads matched the species

identified in clinical blood cultures in 70% of all investigated cases; the histogram

shows the distribution of log10-ratios of relative abundances of matched species in

corresponding stool samples to their corresponding mean abundances across all

samples.
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We therefore next investigated a direct association between the

bacteria populating the gut microbiome and the organisms identified

in the blood of patients. Visualizing the bacterial composition in stool

samples from patients alongside the BSI microorganisms (Supple-

mentary Fig. 9a) suggested a correspondence with the respective taxa

identified in the blood: high abundances of the BSI-causing microbes

were found in corresponding stool samples. A rank abundance analysis

matching the organisms identified in clinical blood cultures to the

composition of bacteria in corresponding stool samples indicated

enrichment of taxa belonging to the same bacterial orders as BSI-

causing organisms (Supplementary Fig. 9b), suggesting translocation

of bacteria from the gut into the bloodstream.

To further investigate evidence for translocation of gut bacteria

into the blood, we next performed shotgun metagenomic sequencing

on a subset of BSI-associated samples with sufficient remaining

material; this allowed us to match the organism identified in clinical

blood cultures at the species level with reads obtained from stool

samples (Fig. 3k, Supplementary Table 3). In four cases of positive

blood cultures of Staphylococcus species, no reads matching the

clinically identified species were detected (Supplementary Table 3).

This may explain why the rank analysis suggested that Staphylo-

coccales were not generally enriched in BSIs by Staphylococcus (Sup-

plementary Fig. 9a, b). Consistent with this, in one case of a S. aureus

BSI where corresponding stool relative abundances of Staphylococcus

were low, reads from shotgun sequencing did not match the genomes

of isolates obtained from the same patient better than S. aureus gen-

omes from other isolates (Supplementary Fig. 9d). On the other hand,

several reference genomes of S. aureus have almost identical sequen-

ces, allowing reads from the stool sample to align almost the same

extent to all of them. Strikingly, shotgun metagenomic reads matched

the genome of isolates well in another case where relative abundances

of Staphylococcus were enriched in the stool (Supplementary Fig. 9c),

providing evidence that here, the same strains were found in stool and

blood of the same patient. In all investigated cases of positive blood

cultures by organisms other than Staphylococcus, the species identi-

fied in clinical blood cultures had corresponding reads in the stool

samples. Strikingly, the relative abundances of matched species ten-

ded to be larger than the average abundances of matched species

across all samples (Supplementary Table 3).

Discussion
Collectively, these results reveal an unappreciated link between SARS-

CoV-2 infection, gut microbiome dysbiosis, and a severe complication

of COVID-19, BSIs. The loss of diversity and immunosupportive Fae-

calibacterium in patientswithBSIsmirrored a similar loss of diversity in

themost severely sickmicedeliberately infectedwith SARS-CoV-2, and

as observed by other labs and other model systems58–60. Notably, a

recent study reproduced these changes in the microbiome in an

antibiotics-naïve cohort7, suggesting that the viral infection causes gut

dysbiosis, either through gastrointestinal infection61–65 or through a

systemic inflammatory response2,4. Furthermore, the pronounced

increase in Akkermansiaceae in mice was also observed in our patient

samples and has been reported previously in patients and in K18-

hACE2 mice58,66. However, the dysbiosis in patients with COVID-19

exceeded the microbiota shifts observed in the mouse experiments,

including microbiome dominations by single taxa, which was not seen

in the mouse experiments. It is possible that in our experiment, mice

were sacrificed before perturbations to the gut microbial populations

reached a maximum. hACE2 knock-in mice, which display reduced

disease45, were not tested in the scope of this study but could provide

additional insights in the future. However, it is also plausible that the

frequently administered antibiotic treatments that hospitalized

COVID-19 patients receive exacerbated SARS-CoV-2-induced micro-

biome perturbations. Additionally, unlike the controlled environment

experienced by laboratory mice, hospitalized patients are uniquely

exposed to antimicrobial-resistant infectious agents present on sur-

faces and shed by other patients.

Despite these limitations of the mouse model, we observed that

SARS-CoV-2 infection led to alteration of intestinal epithelial cells with

established roles in intestinal homeostasis and gastrointestinal

disease67,68. Microbiome ecosystem shifts are likely both cause and

consequence of these epithelial cell alterations since epithelial secre-

tions are predicted to affect overall community structure dis-

proportionately strongly69,70. For example, disruption of Paneth cell-

derived antimicrobials including lysozyme are sufficient to impact

microbiome composition71–73, and, conversely, Akkermansia, which

was increased in infected mice, can have epithelium remodeling

properties74. Akkermansia has emerged as a genus of major interest,

but its contributions to health or disease are still under research:

beneficial health effects53,75, as well as detrimental associations, have

been reported76–78.

Our observation that the type of bacteria that entered the

bloodstream was enriched in the associated stool samples is a well-

characterized phenomenon in cancer patients22,26,27, especially

during chemotherapy-induced leukocytopenia when patients are

severely immunocompromised20,53. COVID-19 patients are also

immunocompromised and frequently incur lymphopenia, render-

ing them susceptible to secondary infections79. Our data suggest

dynamics in COVID-19 patients may be similar to those observed in

cancer patients: BSI-causing organisms may translocate from the

gut into the blood, potentially due to loss of gut barrier integrity,

through tissue damage downstreamof antiviral immunity instead of

chemotherapy. Consistent with this possibility, soluble immune

mediators such as TNFα and interferons produced during viral

infections, including SARS-CoV-2, damage the intestinal epithelium

to disrupt the gut barrier, especially when the inflammatory

response is sustained as observed in patients with severe COVID-

1952,80,81. Indeed, blood plasma in severely sick COVID-19 patients is

enriched formarkers of disrupted barrier integrity and higher levels

of inflammation markers82, and nBSIs in these patients are often

caused by gut microbial taxa35, suggesting microbial translocation.

Our data support this model with direct evidence because we were

able to match sequencing reads from stool samples to genomes of

species detected in the blood of patients.

We presented evidence that microorganisms from the dysbiotic

gut microbiome translocate into the blood of COVID-19 patients,

plausibly due to a combination of the immunocompromising effects of

the viral infection and antibiotic-driven depletion of commensal gut

microbes. However, COVID-19 patients are also uniquely exposed to

other potential factors predisposing them to bacteremia, including

immunosuppressive drugs, long hospital stays, and catheters and our

study is limited in its ability to investigate their individual effects.Other

limitations of our data include the few available whole genome

sequences of blood isolates due to discarded blood cultures asso-

ciated with several BSIs, and the temporal ordering of samples.

Occasionally stool sampleswere collected after observation of BSI, and

this mismatch in temporal ordering is counterintuitive for gut-to-

blood translocation and a causal interpretation of our associations.

However, the reverse direction, that blood infection populates and

changes the gut community, is unlikely for the organisms identified in

the blood, and if our associations were not causal, we would expect no

match between BSI organisms and stool compositions.

Taken together, our findings support a scenario in which gut-to-

blood translocation of microorganisms following microbiome dys-

biosis leads to dangerous BSIs duringCOVID-19, a complication seen in

other immunocompromised patients, including patients with

cancer22,26,27,83, acute respiratory distress syndrome84, and in ICU

patients receiving probiotics85. We suggest that investigating the

underlying mechanism behind our observations will inform the judi-

cious application of antibiotics and immunosuppressives in patients
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with respiratory viral infections and increase our resilience to

pandemics.

Methods
Statistics and reproducibility
No statistical method was used to predetermine sample size. The

experiments were not randomized; the investigators were not blinded

to allocation during experiments and outcome assessment.

Mouse experiments
Cells andvirus. VeroE6 (CRL-1586; AmericanTypeCultureCollection)

were cultured in Dulbecco’s Modified Eagle’s Medium (Corning) sup-

plemented with 10% fetal bovine serum (Atlanta Biologics) and 1%

nonessential amino acids (Corning). SARS-CoV-2, isolate USA-WA1/

2020 19 (BEI resources #NR52281), a gift fromDr.MarkMulligan at the

NYU Langone Vaccine Center was amplified once in Vero E6 cells. All

experiments with SARS-CoV-2 were conducted in the NYU Grossman

School of Medicine ABSL3 facility in accordance with its Biosafety

Manual and Standard Operating Procedures, by personnel equipped

with powered air-purifying respirators.

Mice. Heterozygous K18-hACE2 C57BL/6J mice (strain: 2B6.Cg-Tg(K18-

ACE2)2Prlmn/J) were obtained from The Jackson Laboratory. Several

were paired with C57BL/6J mice to generate additional heterozygous

mice for subsequent experiments and the remaining were used to

perform initial experiments. Animals from the same breeder pool (i.e.,

littermates)were randomly assigned and housed in cages according to

the experimental groups in ventilated racks and provided autoclaved

water and standard chow ad libitum (dark/light cycle: 12/12 hours,

ambient temperature: 69–72 °F, humidity: 30–70%). Cage beddingwas

mixed prior to infection in a subset of experiments to further reduce

possible cage effect. All animal studies were performed according to

protocols approved by the NYU School of Medicine Institutional Ani-

malCare andUseCommittee (IACUCn°170209 and 180802) and in the

ABSL3 facility of NYUGrossman School ofMedicine (New York, NY), in

accordance with its Biosafety Manual and Standard Operating Proce-

dures. 12-week-old or 24-week-old K18-hACE2 males were adminis-

tered either 10-10000 PFU SARS-CoV-2 diluted in 50 µL PBS (Corning)

or 50 µL PBS (non-infected, 0) via intranasal administration under

xylazine-ketamine anesthesia (AnaSedR AKORN Animal Health, Keta-

thesiaTM Henry Schein Inc). Viral titer in the inoculum was verified by

plaque assay in Vero E6 cells. Following infection, mice were mon-

itored daily for weight loss, temperature loss and signs of disease. A

disease score was calculated as the sum of scores obtained for each of

the following criteria: ruffled fur (no = 0, yes = 1), hunched back (no =

0, slightly = 1, exacerbated = 2), heavy breathing (no =0, yes = 1),

altered mobility (no = 1, reduced activity = 1, no mobility = 2). Stool

samples were collected and stored at −80 °C.

Quantitative real-time PCR to assess viral titer and antimicrobial

products. Whole lungs and 1 cm of proximal duodenum, terminal

ileum and proximal colon were collected 5 to 7 days after infection.

Intestinal pieces were wash with PBS and all organs were transferred in

Eppendorf tubes containing 500μl of PBS and a 5mm stainless steel

bead (Qiagen) and homogenized using the Qiagen TissueLyser II.

Homogenates were cleared for 5min at 5000× g, and the viral super-

natant or nasal wash was diluted 4× in TRIzol reagent (Invitrogen) and

frozen at −80 °C for titration by qRT-PCR. RNA was extracted from the

TRIzol homogenates using chloroform separation and isopropanol

precipitation, followed by additional purification using RNeasy spin

columns with DNase treatment according to the manufacturer’s

instructions (Rneasy Mini Kit; RNAse-Free DNase Set; QIAGEN). RNA

was reverse-transcribed using the High-Capacity cDNA Reverse Tran-

scription Kit (Applied Biosystems). To assess viral titer, qPCR was

performed using Applied Biosystems TaqMan RNA-to-CT One-Step Kit

(Fisher-Scientific), 500nM of the primers (Fwd 5′-ATGCTG-

CAATCGTGCTACAA-3′, Rev 5′-GACTGCCGCCTCTGCTC-3′) and

100nM of the N probe (5′-/56-FAM/TCAAGGAAC/ZEN/AACATTGC-

CAA/3IABkFQ/−3′). qPCR reaction conditions were 48 °C for 15min

followed by 95 °C for 2min, and by 50 cycles of: 95 °C for 15 s, and

60 °C for 1min. Serial dilutions of in vitro transcribedRNAof the SARS-

CoV-2 Nucleoprotein (generated as previously described86) were used

to generate a standard curve and calculate copy numbers per μg of

RNA in the samples.

To assess antimicrobial factors, qPCR was performed using

SybrGreen (Roche) on a Roche480II Lightcycler using 500 nM of the

primers listed in Supplementary Table 4. PCR reaction conditions were

95 °C for 5min, followed by 45 cycles of: denaturation at 95 °C for 10 s,

annealing at 60 °C for 20 s, and extension at 72 °C for 30 s.

Microscopy. 5 cm of proximal duodenum, distal ileum, and entire

colon were flushed with 10% acetate buffered formalin (Fisher scien-

tific), cut open along the length, pinned on black wax and fixed with

formalin for 72 h at RT. 2 cmstrips of intestinal tissues were embedded

in low melting point agarose (Promega) to enrich for well-oriented

crypt-villus units. Paraffin embedding, sectioning, and staining were

performed by the NYU Experimental Pathology Research Laboratory.

5μm sections were stained with hematoxylin and eosin and imaged

using brightfield wholeslide scanning. Lysozyme staining was per-

formed using anti-lysozyme (ab108508, Abcam) and DAPI immunos-

taining and analyzed using a Zeiss AxioObserver.Z1 with Axiocam 503

Mono operated with Zen Blue software. 50 small intestinal villi per

mouse were measured for villi length. Goblets cell were quantified

from 50 villus-crypt units (one villus + half of the 2 surrounding crypts)

per mouse. Paneth cells numbers and lysozyme staining patterns were

quantified from 50 crypts per mouse. Previously defined criteria were

used to quantify the proportion of Paneth cells displaying abnormal

lysozyme staining52. Mean values were calculated for each mouse and

used as individual data points.

Measurement of intestinal permeability. Mice were fasted for 4 h

before oral gavage with 200μL of FITC-dextran (3-5 kDa, Sigma-

Aldrich) dissolved in sterile PBS (60mg/ml). After 4 h, mice were

euthanized and bloodwas collected by cardiac puncture. FITC-dextran

in plasma was quantified using a plate reader (excitation, 485 nm;

emission, 530 nm). Citrulline, intestinal fatty acid-binding protein, and

lipopolysaccharide-binding protein were quantified in the plasma by

enzyme-linked immunosorbent assay according to the manufacturer’s

instructions (MyBioSource, CA). For bacterial translocation assay:

spleen and liver were homogenized using the Qiagen TissueLyser II

and plated on BBL™ Enterococcosel™Agar, (BBL,modified esculin bile

agar, Becton Dickinson). This medium enriches for enterococci which

are often detected following a breach in barrier and will inhibit the

growthofmost othermicroorganismsnon-specificallypresent in these

organs. Plates were incubated at 37 °C. All colonies were enumerated.

Time series analyses of bacterial family abundances. We log10-

transformed bacterial relative abundances adding a pseudo count to

fill zeros (2*10−6). We then analyzed the time series with the following

model that included fixed effects for the intercepts and slopes of the

treatment (i.e., indicator variables for uninfected (0 PFU), and infected

(104 PFU), and random effects per cage and per mouse to account for

cage effects and repeated measurements from the same individuals,

respectively. The model was implemented in the R programming lan-

guage using the lmerTest v3.1-3.

Time series analysis of proteobacterial genus abundances. We

altered the model for family abundances to account for sparser genus

level abundances by partial pooling data between genera. The genus

level model includes a varying intercept and varying slope for each
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genus, thereby estimating a trajectory for each genus. We only inclu-

ded genera that had non-zero relative abundances in at least five

samples; the other proteobacterial genera were under-powered.

Human study
Study population and data collection. This study involved 96

patients with laboratory-confirmed SARS-CoV-2 infection. SARS-CoV-2

infection was confirmed by a positive result of real-time reverse

transcriptase-polymerase chain reaction assay on a nasopharyngeal

swab. 60 patients were seen at NYU Langone Health, New York,

between January 29, 2020–July 2, 2020. In order to be eligible for

inclusion in the study, stool specimens needed to be from indivi-

duals > 18 years of age. Data including demographic information,

clinical outcomes, and laboratory results were extracted from the

electronic medical records in the NYU Langone Health clinical man-

agement system. Blood and stool samples were collected by hospital

staff. OmnigeneGut kits were used on collected stool. In parallel, 36

patients were admitted to YNHH with COVID-19 between 18 March

2020 and 27May 2020 as part of the YALE IMPACT cohort described at

length elsewhere2. Briefly, participants were enrolled after providing

informed consent and paired blood and stool samples were collected

longitudinally where feasible for duration of hospital admission. No

statistical methods were used to predetermine sample size for this

cohort. Demographic information of patients was aggregated through

a systematic and retrospective review of the EHR and was used to

construct Supplementary Table 1. Symptom onset and etiology were

recorded through standardized interviews with patients or patient

surrogates upon enrollment in our study, or alternatively through

manual EHR review if no interviewwas possible owing to clinical status

at enrollment. The clinical data were collected using EPIC EHR and

REDCap 9.3.6 software. At the time of sample acquisition and pro-

cessing, investigators were blinded to patient clinical status.

DNA extraction and bacterial 16S rRNA gene sequencing. For bac-

terial DNA extraction 700 µL of SL1 lysis buffer (NucleoSpin Soil kit,

Macherey-Nagel) was added to the stool samples and tubes were

heated at 95 °C for 2 h to inactivate SARS-CoV-2. Samples were then

homogenized using the FastPrep-24TM instrument (MP Biomedicals)

and extraction was pursued using the NucleoSpin Soil kit according to

the manufacturer’s instructions. DNA concentration was assessed

using a NanoDrop spectrophotometer. Samples with too low DNA

concentration were excluded. DNA from human samples was extrac-

ted with PowerSoil Pro (Qiagen) on the QiaCube HT (Qiagen), using

Powerbead Pro (Qiagen) plates with 0.5mm and 0.1mm ceramic

beads. For mouse samples, the variable region 4 (V4) of the 16S rRNA

gene was amplified by PCR using primers containing adapters for

MiSeq sequencing and single-index barcodes. All PCR products were

analyzed with the Agilent TapeStation for quality control and then

pooled equimolar and sequenced directly in the Illumina MiSeq plat-

form using the 2 × 250bp protocol. Human samples were prepared

with a protocol derived from87, using KAPA HiFi Polymerase to amplify

the V4 region of the 16 S rRNA gene. Libraries were sequenced on an

Illumina MiSeq using paired-end 2 × 250 reads and the MiSeq

Reagent Kitv2.

Bioinformatic processing and taxonomic assignment. Amplicon

sequence variants (ASVs) were generated via dada2 v1.16.0 using post-

QC FASTQ files. Within the workflow, the paired FASTQ reads were

trimmed, and then filtered to remove reads containing Ns, or with

maximum expected errors ≥ 2. The dada2 learn error rate model was

used to estimate the error profile prior to using the core dada2 algo-

rithm for inferring the sample composition. Forward and reverse reads

were merged by overlapping sequence, and chimeras were removed

before taxonomic assignment. ASV taxonomy was assigned up to

genus level using the SILVAv.138 database with the method described

in ref. 88 and a minimum boostrapping support of 50%. Species-level

taxonomy was assigned to ASVs only with 100% identity and unam-

biguous matching to the reference.

Shotgun metagenomic sequencing. DNA was quantified with Qiant-

iT Picogreen dsDNA Assay (Invitrogen). Libraries were prepared with a

procedure adapted from the Nextera Library Prep kit (Illumina), and

sequenced on an Illumina NovaSeq using paired-end 2 × 150 reads

(Illumina) aiming for 100M read depth. DNA sequences were filtered

for lowquality (Q-Score < 30) and length (<50), and adapter sequences

were trimmed using cutadapt. Fastq files were converted a single fasta

using shi7. Sequences were trimmed to a maximum length of 100 bp

prior to alignment. DNA sequenceswere taxonomically classified using

theMetaPhlAn2 v3 analysis tool (http://huttenhower.sph.harvard.edu/

metaphlan2). MetaPhlAn2 maps reads to clade-specific marker genes

identified from ~17,000 reference genomes and estimates clade

abundance within a sample from these mappings.

Mapping shotgun reads to whole genome sequences of clinical

isolates. Quality-controlled reads were re-classified using Kraken2

(Minikraken2 v2 database, available on https://ccb.jhu.edu/software/

kraken2/index.shtml). Reads that were classified by Kraken2 as Sta-

phylococcus aureus (or a strain thereof) were further mapped using

Bowtie2 separately to each of a collection of Staphylococcus aureus

isolates. The collectionwas composed of all NCBI RefSeq assemblies as

of 11/17/2021, in addition to Staphylococcus aureus isolates that were

isolated from our subjects. Bowtie2 mapped reads were then further

filtered, keeping only reads that mapped without mismatches. A

neighbor-joining tree was produced from this collection of genomes

using Snippy (https://github.com/tseemann/snippy).

Compositional analyses
α-Diversity. We calculated the inverse Simpson index from relative

ASV abundances (p) with N ASVs in a given sample, Eq. (1):

IVS=
1

PN
i p

2
i

ð1Þ

Principal coordinate analyses. Bray–Curtis distances were calculated

from the filtered ASV table using QIIME v1.9.1 and principal compo-

nents of the resulting distance matrix were calculated using the scikit-

learn v1.0.2 package for the Python programming language, used to

embed sample compositions in the first two principal coordinates.

Average compositions and manipulation of compositions. To

describe the average composition of a set of sampleswe calculated the

central tendency of a compositional sample89. For counter factual

statistical analyses that require changes to a composition, e.g., an

increase in a specific taxon, we deployed the perturbation operation

(⊕), which is the compositional analog to addition in Euclidean

space89. A sample x containing the original relative taxon abundances

is perturbed by a vector y, Eq. (2):

y : x# y=
x1y1

PD
i= 1xiyi

,
x2y2

PD
i = 1xiyi

,. . .,
xDyD

PD
i = 1xiyi

" #

8x, y 2 SD ð2Þ

where SD represents the D-part simplex.

Bayesian t-test. To compare diversity measurements between differ-

ent sample groups, e.g., different clinical status, we performed a

Bayesian estimation of group differences (BEST90), implemented using

the pymc3 v3.11 package for the Python programming language; with

priors (∼) and deterministic calculations (=) to assess differences in
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estimated group means as follows:

g1 ~Normal μ= 15, σ = 15ð Þ

g2 ~Normalðμ= 15, σ = 15Þ

σg1 ~ Uniformðlow= 1e& 4, high = 30Þ

σg2 ~Uniformðlow= 1e& 4, high= 30Þ

ν ~ Exponentialð1=15Þ+ 1

λ1 = σg1
&2

λ2 = σg2
&2

G1 ~ StudentTðnu= ν, mu= g1, lam= λ1Þ

G2 ~ StudentTðnu= ν, mu=g2, lam= λ2Þ

4=G1& G2

Bayesian inference was performed using “No U-turn sampling”91.

Highest density intervals (HDI) of the posterior estimation of group

differences (∆) were used to determine statistical certainty (***: 99%

HDI > 0 or < 0, **: 95%HDI, *:90% HDI). The BEST code was imple-

mented following the pymc3 documentation.

Cross-validated logistic regression to associate BSI caseswith ASV

composition. We first removed ASVs with low prevalence (present in

fewer than 5% of all samples), and low abundances (maximum

observed relative abundance <0.01) leaving 269 ASVs. We then scaled

the ASV relative abundances between 0 and 1 (min–max scaling) and

performed logistic regressions, relating ASV abundances to BSI status

(1: BSI, 0: non-BSI) using the scikit-learn v1.1 linear_model.LogisticRe-

gressionCV module for the Python programming language with an L1

(lasso) penalty, iterating over a range of regularization strengths

([0.01, 0.1, 1, 10, 100, 1000]) using the “liblinear” solver. We retained

the inferred ASV association coefficients with non-zero values for each

tested regularization strength to visualize the cross-validation path.

Bayesian logistic regression. We performed a Bayesian logistic

regression todistinguishcompositional differences between infection-

associated samples and samples from patients without secondary

infections.Wemodeled the infection state of patient sample i, yiwith a

Binomial likelihood:

yi ~ Binomialðn= 1, p = pÞ

p= inverse logisticðα +X iβÞ

α ~ Normalðμ=0, σ = 1Þ

β ~ Normalðμ=0, σ = 1Þ

Where prior distributions are indicated by ∼; α is the inter-

cept of the generalized linear model, β is the coefficient vector

for the log10-relative taxon abundances Xi in sample i or, in

some cases, the binary indicator variable for gut microbiome

domination.

Reporting summary
Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The raw sequencing data have been deposited on the Sequencing

Reads Archive (SRA), and SRA accession numbers are available for two

bioprojects corresponding to the mouse sequencing data

PRJNA745367 (Supplementary Data 1, https://www.ncbi.nlm.nih.gov/

bioproject/PRJNA745367) and the human stool samples PRJNA746322

(Supplementary Data 2, https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA746322). Databases/sets used in this study include SILVAv.138

(https://www.arb-silva.de/documentation/release-138/), Minikraken2

v2 (https://ccb.jhu.edu/software/kraken2/index.shtml), and all of the

NCBI RefSeq assemblies as of 11/17/2021.

Code availability
The relevant analyses were implemented in the R programming lan-

guage, v4, freely available for download on https://www.r-project.org/,

as well as in the Python programming language version 3.10, available

for download on https://www.python.org/downloads/. The relevant

packages used for analyses are listed in the corresponding methods

sections.
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