
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Summer 8-18-2017 

Development of C5AR-Targeted Nanoparticles for Delivery of Development of C5AR-Targeted Nanoparticles for Delivery of 

Vaccines Vaccines 

Shailendra Bharadwaj Tallapaka Venkata Sesha 
University of Nebraska Medical Center 

Tell us how you used this information in this short survey. 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Immunity Commons, Immunoprophylaxis and Therapy Commons, Nanomedicine 

Commons, and the Pharmaceutics and Drug Design Commons 

Recommended Citation Recommended Citation 
Tallapaka Venkata Sesha, Shailendra Bharadwaj, "Development of C5AR-Targeted Nanoparticles for 
Delivery of Vaccines" (2017). Theses & Dissertations. 211. 
https://digitalcommons.unmc.edu/etd/211 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://unmc.libwizard.com/f/DCFeedback/
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/34?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/37?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1252?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1252?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/733?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/211?utm_source=digitalcommons.unmc.edu%2Fetd%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


DEVELOPMENT OF C5AR-TARGETED NANOPARTICLES FOR 

DELIVERY OF VACCINES 

 

 

 

by 

 

 

 

Shailendra Bharadwaj Tallapaka 

 

A DISSERTATION  

 

Presented to the Faculty of  

the University of Nebraska Graduate College 

in Partial Fulfillment of the Requirements  

for the Degree of Doctor of Philosophy 

 

 

 

Pharmaceutical Sciences Graduate Program 

Under the Supervision of Professor Joseph A. Vetro 

 

 

University of Nebraska Medical Center  

Omaha, Nebraska 

 

 

May 2017 

 

Supervisory Committee: 

 

Joseph A. Vetro, Ph.D.    Sam D. Sanderson, Ph.D. 

 

     Rakesh K. Singh, Ph.D.        Joyce Solheim, Ph.D. 



i 
 

ACKNOWLEDGEMENTS 

 

The successful completion of my PhD would not be possible without the many 

people in my life who have constantly supported me in this endeavor, it is an honor to 

thank them all in my humble acknowledgement. First, I would like to give special 

thanks to my advisor Dr. Joseph Vetro for agreeing to be my mentor, the 6 years I 

have spent in his lab helped me grow both as a scientist and as a person. Dr. Vetro 

has been very supportive throughout my presence in his lab, he helped me improve 

my ideas by teaching me how to think and come up with ways to improve upon the 

basic design. He has also been a great friend and has helped me through the difficult 

times. It has truly been an amazing experience working with him and I am confident 

that what I learned here would help me throughout my life. Next, I would like to thank 

my committee member Dr. Sam Sanderson, whose help has been instrumental in this 

work. Dr. Sanderson has always been forthcoming with great advice, he encouraged 

me to keep trying and stay positive, when many of my projects were failing to produce 

the right results. I would also like to sincerely thank my committee members, Drs. 

Rakesh Singh and Joyce Solheim for their valuable inputs, suggestions and guidance.  

My stay in UNMC was enriched by the brilliant people I had a chance to work 

with, especially all the members, past and present, of Vetro lab. First, I would like to 

thank Steve Curran for his help in troubleshooting any issues I had, more importantly 

all the wonderful anecdotes and life lessons. Second, I would like to thank Vamsi and 

Pravin for all of their help in running the experiments, this work would not be possible 

without them. Third, a big thanks to Rajesh, Vishaka and Jennifer – for all the support 



ii 
 

and friendship. Finally, I am grateful to all Pharmaceutical Sciences department 

administrative staff (Katina, Elaine, Michelle, April, Erin, Anna, Jackie, and Ashley) for 

all the administrative help during my studies here at UNMC and a special thanks to 

NIH and UNMC Graduate Studies for funding my project.  

Over the last few years Omaha has become my home away from home, this is 

thanks to my wonderful friends Praneeth, Vijay, Radhika, Venkat, Usha, Bajju, Bannu, 

Nagsen, Preethi, Deepa, Aditya, Pavan, Sai Srinivas, Praveen and Yeshwant. I am 

also thankful to all my buddies from the world of Dota2 – Meego, Capri, xception, sam, 

and cycks, for their friendship, flaming and saltiness.  

Most of all I would like to thank my family, particularly my mom, dad, uncle, 

aunt, brother, sister-in-law and my lovely niece for their unconditional love and support 

throughout my education. Also, a huge thanks to my best friends Fundu and Visa for 

always being there through the ups and downs in the both the real and virtual world, I 

could not have done any of this without them. Finally, I would like to thank Aishwarya 

for her unwavering belief in me and her patience over the last six years.  



iii 
 

DEVELOPMENT OF C5AR-TARGETED NANOPARTICLES FOR 

DELIVERY OF VACCINES 

Shailendra Bharadwaj Tallapaka, Ph.D. 

University of Nebraska Medical Center, 2017 

 

Since the early attempts of Benjamin Jesty at inducing immunity against 

smallpox and the pioneering work of Edward Jenner, vaccination has been, and 

continues to remain, the principal method of protection from diseases. However, most 

of the successful vaccines have been against pathogens that do not have major 

mechanisms to evade the immune system. So far, many life-threatening diseases like 

hepatitis C, HIV infection, malaria etc., have been resistant to existing vaccination 

strategies. Thus, there is an urgent need to develop new vaccination strategies that 

can generate long-lived protective immunity against such pathogens. 

The purpose of this thesis is to investigate the effect of targeting PLGA 

nanoparticles to antigen-presenting cells using a novel immunostimulatory peptide 

EP67 as the targeting moiety on the immune responses generated against the 

encapsulating model antigen. In this study, we have shown that surface modification 

of PLGA nanoparticles with EP67 simultaneously targets and activates BMDCs, which 

results in enhanced antigen presentation to T-cells. Furthermore, we demonstrated 

that respiratory immunization with EP67 surface-modified OVA-encapsulated PLGA 

nanoparticles (i) increased protection against respiratory infection with LM-OVA by 

significantly reducing bacteria (ii) increased magnitudes of OVA-specific CD4+/CD8+ 

T-cells in lungs and spleen, (iii) increased proportions of short-lived effector cells 
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(SLECs), double positive effector cells (DPECs), and memory precursor effector cells 

(MPECs) in lungs, (iv) increased effector memory MPECs and central memory 

MPECs without affecting SLECs in spleen, and (v) affected the cytokine secretion 

profile of splenocytes responsive to MHC-II epitope of OVA. Overall, this work 

demonstrates the proof-of-concept that surface modification of PLGA nanoparticles 

with EP67 can increase the efficacy of immune responses generated against the 

encapsulated antigen.  
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1.1 Introduction 

Vaccination is arguably the greatest achievement of medical science, in terms 

of the effect it had on improving human life expectancy. So far, mass immunization 

programs have led to the complete eradication of smallpox and reduced the number 

of reported cases of many diseases, including diphtheria, polio, measles, mumps, 

rubella, CRS, and Haemophilus influenza, by more than 99% [1, 2]. Apart from 

reducing morbidity and suffering in humans, vaccination also has a significant impact 

on the global economy. In 2009, the routine childhood immunization program in the 

United States (which includes diphtheria and tetanus toxoids and acellular pertussis, 

Haemophilus influenzae type b conjugate, inactivated poliovirus, 

measles/mumps/rubella, hepatitis V, varicella, 7-valent pneumococcal conjugate, 

hepatitis A and rotavirus vaccines) has been expected to have prevented ~42,000 

early deaths, 20 million cases of disease, with savings of $13.5 billion in direct costs 

and $68.8 billion in societal costs [3].  

1.2 Conventional vaccines 

Vaccination is majorly a prophylactic pharmacotherapy that is aimed at 

generating long-lived immune responses that can protect against infection by the 

corresponding microbe. Conventional vaccines utilize either a live-attenuated strain 

of a pathogen with low virulence or a killed pathogen to generate strong immune 

responses. Although both of these vaccines are effective at generating protective 

responses, primarily due to their resemblance to natural infection, they have many 

disadvantages like (i) risk of reversion to virulence, (ii) safety concerns when used in 
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immunocompromised patients, (iii) adverse side-effects in patients, (iv) and also a 

need for refrigeration to maintain efficacy, which is an issue in developing countries 

that may not have required facilities [4-6]. 

1.3 Subunit vaccines 

To overcome the disadvantages of conventional vaccines, recent studies have 

focused on developing vaccines that contain only specific pathogenic components 

(subunits) that are recognized by the immune system. As these subunit vaccines do 

not contain any harmful microbial components they are much safer to use in humans. 

Subunit vaccines contain either whole protein antigens, which are purified directly 

from the pathogen or synthesized using recombinant DNA technology, or antigenic 

peptides that are chemically synthesized. However, subunit vaccines have low 

immunogenicity and are not capable of generating effective immune responses; this 

requires the addition of components known as adjuvants that can stimulate the 

immune system. Currently, there are not many adjuvants that are approved for 

human use and those approved adjuvants have limited capacity to generate cell-

mediated immune responses. Therefore, there remains a great need for developing 

novel adjuvants and delivery systems that can improve the efficacy of vaccines [7-

10]. 

1.4 Vaccine-induced immunity 

The goal of vaccination is to generate long-lived antigen-specific immunological 

memory that can quickly respond to pathogenic invasion and protect against the 

development of disease [11]. Immunological memory is a hallmark of the adaptive 
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immune system which consists of two major components – humoral and cellular 

immunity. The success of a vaccine depends on whether it can generate the type of 

immune response required to protect against the corresponding pathogen. However, 

the type of immune response generated by a vaccine depends on its contents.  For 

example, vaccines containing live-attenuated pathogens are very potent at 

generating both humoral and cellular responses.  On the other hand, vaccines 

containing killed inactivated pathogens or antigenic proteins are weakly immunogenic 

and are unable to generate strong cellular responses[12]. Furthermore, chronic 

infectious diseases such as AIDS, tuberculosis, and herpes have multiple immune 

evasive strategies, and so development of vaccines against such diseases requires 

a thorough understanding of the immunological correlates of protection and the 

virulence strategies of the pathogen [13]. 

1.4.1 Humoral immune responses  

Protection of the host from infection by humoral immune responses involves 

the production of antibodies by activated B-cells, which destroy extracellular 

pathogens and prevent the spread of intracellular pathogens. Activation of B-cells 

requires the binding of cognate antigen to B-cell receptors and interaction with 

antigen-specific CD4+ helper T-cells that recognize the peptide-MHC-II complexes 

derived from the antigen internalized by the B-cell. Some B-cells become plasma 

cells and the rest will migrate to the germinal center, where they undergo somatic 

hypermutation and B-cells that produce antibodies with the highest avidity are 

selected. Helper T-cells promote the survival of germinal center B-cells through 
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CD40-CD40L interactions and release various cytokines like IL-4, IL-5, IFN-γ and 

TGF-β which regulate the production of different antibody classes. B-cells that survive 

in the germinal center either differentiate into plasma cells which produce large 

amounts of an antibody or become memory B-cells which produce small amounts of 

antibodies (if any) [14]. 

Antibodies contribute to resistance by either directly neutralizing the pathogen, 

or by coating the surface of a pathogen, which increases its phagocytosis 

(opsonization) and activates the proteins of complement system via the classical 

pathway. Until the early 21st century, it was largely accepted that antibody-mediated 

responses provide immunity to extracellular pathogens while the immunity to 

intracellular pathogens rely on cell-mediated immune responses. However, persisting 

antibody production after immunization is considered as a sign of successful 

vaccination, due to the fact that antibody-mediated immunity induced by many viral 

vaccines confers protection against infection. This is because most pathogens are 

susceptible to antibody-mediated mechanisms during some part of the pathogenesis 

such as during replication in extracellular spaces or when spreading through 

extracellular fluids. The majoritymajority of the licensed vaccines produce serum 

antibody titers that correlate with the level of protection induced by the vaccine [15]. 

1.4.2 Cellular immune responses 

Although intracellular pathogens are susceptible to humoral responses during 

the brief time they spend in the extracellular spaces, once they have entered into 

cells the only way to resolve infection is by destroying the infected cells. The 
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elimination of infected cells without affecting the healthy cells requires cell-mediated 

immune responses. A cell-mediated immune response is generated when naïve 

CD8+/CD4+ T-cells come into contact with mature, activated antigen-presenting cells 

(APCs) in the lymphoid organs. T-cells are activated only when the APC is presenting 

an antigen specific to the T-cell receptor (TCR) in the context of major 

histocompatibility complex (MHC) molecules and a co-stimulatory molecule. Once 

activated, naïve T-cells expand rapidly and differentiate into effector T-cells that can 

resolve the infection. Effector cytotoxic CD8+ T cells (CTLs) recognize infected cells 

and kill them by releasing several cytolytic molecules. Effector Th1 type CD4 T-cells 

activate other antigen-presenting cells (APCs) and B-cells, Th17 type effector cells 

recruit neutrophils to the site of infection, and Th2 type effector cells recruit 

eosinophils, basophils and mast cells against pathogens such as helminths. Upon 

resolution of infection, most of the effector T cells undergo apoptosis, while a small 

population differentiates into long lived memory cells that can protect from reinfection. 

Currently, almost all of the licensed vaccines utilize humoral responses as a 

correlate of protection. However, it has become well known that humoral responses 

are a poor correlate for many intracellular infections, and so many studies have been 

conducted to better characterize cell-mediated immune responses. As of now, 

measurements of antigen specificity of T-cells and T-cell functional responses to ex 

vivo restimulation with antigen remain as the best correlates of protection. 

1.5 Dendritic cells 
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Antigen processing and presentation to naïve T-cells in the context of MHC I 

and MHC II molecules is necessary for the generation of adaptive immune 

responses. This is a job that can only be carried out by APCs – dendritic cells (DCs), 

macrophages and B-cells.  Of these, only DCs are specialized APCs while the other 

two cell types participate in other functions of the immune system. DCs, often referred 

to as the most professional APCs, can bind 30-200 times more antigen and are also 

up to 1000-fold more efficient at activating T-cells than macrophages and B-cells [16]. 

Given that DCs are the most potent APCs, the type of immune response (pro-

inflammatory or tolerant) generated after an infection or immunization depends on 

the type of antigen, DC and the microenvironment during antigen uptake and 

presentation.  

1.5.1 DC subsets 

DCs are a heterogeneous population of cells with a distinct shape consisting of 

stellate cytoplasmic projections, which give them with a large surface area for antigen 

capture and presentation [17]. In mice and humans, all steady state DCs originate 

from hematopoietic precursors of myeloid or lymphoid pathways. Based on the origin, 

phenotype and function, DCs can be classified into five subsets: conventional DCs 

(cDCs 1 and 2), plasmacytoid DCs (pDCs), Langerhans cells (LCs), and monocyte-

derived DCs (moDCs). 

Both murine and human cDCs are CD11c+ MHC II+ cells that can be further 

differentiated into CD8α+ (cDC1) or CD4+ (cDC2) cells in mice and CD1c+ (cDC1) 

or CD141+ (cDC2) cells in humans. Both murine and human cDC1 cells express high 
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level proteins required for cross-presentation and have the capacity to produce type-

I IFN and IL-12 (p70), which gives them the ability to activate CD8+ T cells and prime 

Th1 helper T-cells [18, 19]. In contrast, cDC2 cells in humans and mice polarize CD4+ 

T cells to Th2 and Th17 types.  

The pDCs in humans and mice are broadly distributed throughout the body and 

express CD11c, B220, SiglecH, and BST2 in mice versus CD123, BDCA-2 and 

BDCA-4 in humans. pDCs have a high capacity to produce type-I IFN in response to 

viral stimuli and play an important role in controlling the progress of viral infections. 

Murine LCs express langerin (DC207) whereas human LCs are identified as 

langerin+ DEC205+ CD1ahi CD11clo cells. The role of LCs in mice seems to be 

adaptable and is dictated by the microenvironment. In steady state, murine epidermal 

LCs continuously internalize and process antigens to induce tolerance, whereas 

during inflammation they produce IL-23, IL-6 and IL-1β, which drive Th17 

polarization. In humans, LCs are known to be efficient at cross-presentation to naïve 

CD8 T-cells and secrete IL-15 which promotes differentiation of 

granzymeB+/perforin+ CTLs [20]. MoDCs are a special type of DCs that are 

produced from monocytes during inflammation. MoDCs predominantly drive Th1 and 

Th17 type immune responses by producing IL-12 or IL-23. 

1.5.2 Antigen uptake 

DCs are abundantly located throughout the body at strategic locations like body 

barriers (under the epithelium at mucosal surfaces) and organ entry ports [21, 22]. 

DCs continuously sample the surrounding environment for both self and non-self 
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antigens using their dendritic appendages and induce immune tolerance or protective 

responses, depending on the nature of antigen (self or non-self). Immature DCs are 

very efficient at internalizing antigens from the environment using various endocytic 

pathways, like macropinocytosis for the uptake of solutes and nutrients and 

phagocytosis for the uptake of pathogens, apoptotic or dead cells, and large 

particulate antigens. DCs also have highly specialized receptors like C-type lectin 

receptors (CLRs), scavenger receptors (SRs) and Fc receptors (FcRs) on the cell 

surface to capture and internalize antigens via receptor-mediated endocytosis. Upon 

internalization, the antigen is then processed and presented to T-cells in the context 

of MHC molecules. 

1.5.3 DC Maturation and migration 

The nature of the immune response generated towards an antigen depends 

upon the maturation status of the presenting DC. On the one hand, antigen 

presentation by immature DCs leads to T-cell anergy and immune tolerance [23, 24]. 

On the other hand, presentation by mature, activated DCs leads to T-cell activation 

and an inflammatory response. DCs express several pattern recognition receptors 

(PRRs), like Toll-like receptors (TLRs), NOD-like receptors (NLRs), RIG-1-like 

receptors (RLRs) and CLRs, that can recognize pathogen-associated molecular 

patterns (PAMPs) and damage associated molecular patterns (DAMPs), and 

triggering of these receptors leads to the activation of DCs. Activation of DCs can 

also be caused by triggering of FcR by immune complexes or CD40 by CD40L on 
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CD4+ T-cells or by inflammatory cytokines like TNFα, IL-1 and PGE2, secreted as a 

response to pathogenic infection.  

Activation induces several changes in the expression of genes in DCs, leading 

to secretion of chemokines and cytokines that can recruit other immune cells [25]. It 

also leads to cytoskeletal rearrangement, downregulation of CCR1, CCR5 and 

CCR6, and upregulation of CCR7, which allows their migration to lymph nodes [26]. 

Importantly, activation leads to redistribution of MHC and co-stimulatory molecules 

(CD80, CD86 and CD40) to the surface of DCs which results in improved T-cell 

activation [27].   

1.5.4 Antigen processing and presentation 

Typically, peptides derived from the degradation of cytosolic proteins by 

proteases are transported into the endoplasmic reticulum by transporters associated 

with antigen processing (TAP), where they are further processed by the ER 

aminopeptidase associated with antigen processing (ERAAP) [28], then loaded onto 

MHC I molecules and presented on the DC cell surface to CD8+ T-cells. Exogenous 

antigens upon internalization are translocated from the phagosomes into the cytosol, 

ubiquitinated and degraded into peptides by the proteasome. These peptides are 

then transported into the ER or back into the same phagosomes, which have acquired 

TAP and MHC I loading machinery by fusing with the ER, where they are loaded onto 

MHC I molecules, transported to the cell surface and presented to CD8+ T-cells in a 

process known as cross-presentation [29, 30]. 
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In contrast to peptide loading of MHC I molecules, loading of MHC II molecules 

occurs only in the late stage phagolysosomes. Phagosomes containing exogenous 

antigens or endogenous antigens (taken up during autophagy) fuse with lysosomes 

containing proteases that degrade the antigens into peptides. These 

phagolysosomes then fuse with ER vesicles containing the MHC II loading machinery 

where they load the peptide onto MHC II molecules and transport them to the cell 

surface to be presented to CD4+ T-cells. 

1.6 Targeting antigen to dendritic cells for improving vaccine efficacy 

 Given the important role DCs play in coordinating adaptive immune responses, 

targeting the antigen to DCs would potentially improve the immune responses 

generated. So far, researchers have tried to target antigen to DCs in two ways: (i) by 

administering vaccines in a way that they accumulate in DC-rich areas and (ii) by 

targeting the receptors on DCs to mediate internalization and increase immune 

responses.  

1.6.1 Administration-based targeting 

 Simplest way of getting a vaccine to DC-rich areas is to directly inject the 

vaccine into lymph nodes. Intranodal immunization with lentiviral vectors encoding 

tumor-associated antigens or mRNA resulted in a strong CD8+ T-cell response when 

compared to subcutaneous delivery [31, 32]. Another way of reaching lymph nodes is 

to administer the vaccine near a lymph node so that the vaccine drains into the lymph 

node. Intradermal delivery of antigens conjugated to nanoparticles (NPs) has been 

shown to allow the antigens to drain efficiently into lymph nodes, resulting in an 
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increase in antigen-specific immune responses [33, 34]. However, care must be taken 

while formulating the vaccine so that the vaccine does not form a depot at the injection 

site, which might lead to exhausted T-cell responses and reduce vaccine efficacy [35-

37].  

1.6.2 Targeting DC receptors 

 DCs express several endocytic cell surface receptors that can be used as 

targets for vaccine delivery (Table 1.2). So far, numerous DC-targeting vaccines have 

been evaluated in pre-clinical and clinical stages (Table 1.3). Mostly, five receptor 

families have been evaluated for DC targeting: CLRs, integrins, Fcγ receptors, MHC 

II molecules and stimulatory receptors. Of these, CLRs are the most extensively 

studied receptors. CLRs contain carbohydrate recognition domains (CRDs) that bind 

to sugars in calcium-dependent manner. CLRs have the ability to internalize 

glycosylated antigens, resulting in antigen processing and presenting in the context of 

MHC molecules and making them an attractive target for vaccine delivery. Amongst 

CLRs, macrophage mannose receptor (CD206), DEC-205, and DC-SIGN are the 

most examined candidates for DC targeting. 

1.6.2.1 Macrophage mannose receptor 

CD206 is a type I CLR, which upon ligand binding is internalized through 

clathrin-coated vesicles and recycled through the early endosomes. CD206-mediated 

endocytosis of antigens has been shown to result in antigen presentation in the 

context of both MHC I and II molecules. It has been demonstrated that immunization 
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with mannan-conjugated MUC1 induces both Th1 and Th2 type immune responses 

based on the type of mannan. MUC-1 conjugated to oxidized mannan was shown to 

be 1000 times more efficient at generating antigen-specific CTL and Th1 responses 

when compared to MUC1 conjugated to reduced mannan, which generated Th2 type 

responses [38]. Coating of cationic liposomes containing HIV-1 DNA with mannan was 

also shown to induce HIV-specific CTL responses and significantly enhanced Th1 type 

immune responses as seen by antibody isotyping and cytokine secretions [39]. It has 

also been demonstrated that targeting CD206 using a fusion protein of human anti-

CD206 mAb and melanoma-associated antigen pmel17 or model antigen ovalbumin 

(OVA) generates potent antigen-specific CTLs [40, 41]. 

1.6.2.2 DEC205 

Unlike CD206, DEC205 (CD205) is recycled through late endosomes that are 

rich in MHC II molecules; because of this, antigens internalized through DEC205 

mediated endocytosis are efficiently presented through MHC II molecules [42]. 

However, the DEC205 endocytic pathway is non-stimulatory and does not activate 

DCs, which results in the induction of T-cell tolerance [43, 44]. Therefore, in order to 

generate antigen-specific immunity, immunostimulatory adjuvants have to be 

included in DEC205-targeting vaccines. Thus far, DEC205-targeted vaccines have 

used HB290 single chain antibody (scFv) as a targeting moiety. Immunization with 

scFv-coated liposomes containing OVA or OVA peptide antigens were found to 

generate potent OVA-specific CTL responses that reduced growth of B16-OVA 

tumors in mice. Protection was depended on the concurrent delivery of OVA and an 
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adjuvant (IFN-γ or LPS) [44]. Also, immunization of mice with OVA conjugated to anti-

DEC205 mAb and anti-CD40 mAb protected against mucosal challenge[45]. 

1.6.2.3 Dendritic cell-specific ICAM-grabbing non-integrin (DC-SIGN) 

 DC-SIGN is a type II CLR that is primarily expressed on immature DCs; it 

recognizes various pathogens such as EbolaEbola, herpes and HIV viruses. Like 

DEC205, DC-SIGN-mediated endocytosis is routed through late endosomes where 

the antigen is loaded onto MHC II molecules and presented to CD4+ T-cells [46]. 

Targeting antigen to DC-SIGN using anti-DC-SIGN mAb was shown to induce 

proliferation in antigen-specific T-cells at a 100-fold lower concentration than non-

targeted antigen [47]. Additionally, glycoliposomes modified with the glycan Lewis 

(Le)(X), which is highly specific for DC-SIGN, were preferentially internalized by 

human monocyte-derived DCs and also induced antigen-specific CD8+ T-cell 

responses when the glycoliposomes were loaded with gp100 tumor antigen and the 

adjuvant MPLA [48].       

  1.7 Immunomodulatory properties of C5a 

The complement system is an important part of innate immunity, which plays 

an integral role in the defense against invading pathogens. Activation of complement 

system in response to pathogens, immune complexes, or injured tissue results in a 

series of events that includes release of several biologically active peptide fragments 

called anaphylatoxins, C3a, C4a and C5a, that have diverse biological functions [49]. 

Of the three anaphylatoxins, C5a is the most potent and binds to at least two seven-
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transmembrane receptors, C5aR and C5L2 that are expressed on multiple cell types 

especially immune cells like DCs, macrophages, neutrophils and T-cells. C5a has 

several immunological functions including recruitment of inflammatory cells, increase 

vascular permeability and induce smooth muscle contraction, mast cell and neutrophil 

degranulation and various cytokines (Fig 1.2)[50-56]. Apart from its immunological 

functions C5a has also been implicated in developmental biology, CNS development 

and neurodegeneration, tissue regeneration and haematopoiesis[57]. C5a has also 

been shown to enhance antigen-specific antibody responses, antigen-induced T-cell 

proliferation[58, 59], provide costimulatory and survival signals to naïve CD4+ T-cells. 

C5a also stimulates murine and human DCs resulting in the upregulation of MHC II, 

CD80, CD86, CD40 and CD54, and secretion of Th1 polarizing cytokines [60-62]. In 

contrast, hindering of C5aR signaling promoted Th2 type and regulatory T cell 

responses[63], and impaired memory CD4+ T cell generation [64].  

1.8 Development of EP54 and EP67 

Given the immunostimulatory properties of C5a, its use as a vaccine adjuvant 

has tremendous promise. However, its use in clinic is limited by the potential side 

effects that arise due to its pleotropic properties.  Therefore, it became necessary to 

identify the effector fragment of C5a that has immunostimulatory properties but not 

inflammatory properties for clinical use[65, 66].  

Human C5a is a 74-amino acid peptide that consists of two domains, first, the 

N-terminal core (C5a1-63) domain that is responsible C5aR recognition and binding 

and second, the functional C-terminal domain (C5a64-74) which is necessary for 
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inducing biological functions (fig 1.3) [67]. Peptide analogs of C-terminal region (C5a65-

74) were demonstrated to induce several C5a-like biological effects which depended 

on the peptide conformation[68]. This led to the hypothesis that conformationally 

restricted C5a65-74 analogs would induce specific C5aR-mediated activities. 

Examination of a large panel of analogs based on C5a65-74 Y65,F67 (YSKKDMQLGR) 

in which the backbone of MQLGR was restricted resulted in the discovery of EP54 

(YSFKPMPLaR), which demonstrated significantly more potent ability to induce 

smooth muscle contraction of human umbilical artery [66, 69-71], however, EP54 also 

triggered the C5aR on PMNs inducing β-glucuronidase release. Further analoging of 

EP54 by introducing N-methylation generated EP67, which demonstrated ~3000 fold 

higher selectivity towards C5aR expressed on antigen presenting cells compared to 

PMNs, in contrast, EP54 was only 34 fold more selective[66]. Furthermore, these 

conformational features protect EP54 and EP67 from proteolytic degradation by 

serum carboxy-peptidases. 

1.8.1 Vaccine adjuvant properties of EP54 and EP67 

Because of the potent immunostimulatory properties of EP54 and EP67, 

several studies have investigated their ability as a vaccine adjuvant (Table 1.4) to 

improve antigen-specific humoral and cellular immune responses. Immunization of 

mice and rabbits with a B-cell epitope form MUC1 conjugated to N-terminal of EP54 

generated high MUC1-specific antibody titers, with an isotype characteristic to Th1 

type response in mice[67]. Also, EP54 conjugated to a T-cell epitope from hepatitis B 

surface antigen was shown to generate CD8+ CTL responses in mice. In the same 
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study, it was also shown that it necessary to conjugate the T-cell epitope to the N-

terminus of EP54 using a protease labile linker to generate CTL responses[72]. 

Similarly, EP67-conjugated protein vaccines were also shown to generate Th1-type 

humoral immune responses, furthermore, EP67 was demonstrated to generate higher 

antibody responses and Th1-type isotype switching in aged mice which were not 

observed when CpG or alum were used as adjuvants [73]. Recently, we have also 

shown preliminary evidence that EP67 can be used as a mucosal adjuvant in mice[74].  

It is important to note that EP54 and EP67 have been shown to increase uptake, 

processing and presentation of the conjugated antigen by interacting with the C5aRs 

present on APCs, while simultaneously inducing the release of Th1 type cytokines 

making them effective dual purpose vaccine adjuvants[75]. 

 
1.9 Summary 

 In summary, targeting of antigen presenting cells, especially dendritic cells, 

appears to be a promising strategy to improve the efficacy of vaccines against many 

life-threatening diseases. Despite the tremendous progress, we have made in APC 

targeted vaccines a successful human vaccine is yet to be developed. Therefore, 

there is a need to research more ways to target antigen to APCs. Unlike, most vaccine 

adjuvants EP67 is a host-derived dual purpose immunostimulant with the capacity to 

simultaneously, target and activate APCs and has shown great potential as an 

adjuvant. This dissertation is an effort to explore the ability of EP67 to deliver 

encapsulated antigen to APCs and increase immune responses generated against 

the encapsulated antigen.   



18 
 

 

Figure1.1 Schematic representation of the different stages involved in the 
induction and regulation of cell-mediated and humoral immune response 
against pathogens.   

Reproduced with permission from [15] 
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Figure 1.2 Role of Complement C5a in host defense and homeostasis.  

Reproduced with permission from [76] 
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Figure 1.3. Structure of human C5a    
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Table 1.1 – Overview of phenotypic and functional features of DC subtypes. 

Adapted with permission from [77] 

 cDC1 cDC2 pDC LC moDC 

Murine 
markers 

CD8α+/CD103+ 
DEC205+ 

CD4+ CD11b+ SiglecH+ 
BST2+ 
B220+ 

Langerin+ CD11b+ 
CD64 
FcγRε and 
Ly6c 

Human 
markers 

CD141+ 
CD162hi 

DEC205hi 

CD1c+ 
CD11blo  

CD123+ 
BDCA-2+ 
BDCA-4+ 

Langerin+ 
DEC205 CD1ahi 

CD11b+ 
CD1a+ 
CD24+ 
CD206+ 
CD16+ 
DC-SIGN 

Functions TH1  
Cross-
presentation 

TH2 and TH17  
Cross-
presentation 

IFN-
α/β and 
IFN-
λ Humoral 

Adaptable  
MOUSE: Treg 
or TH17  
HUMAN: IL-15 
promoting CTLs 
+ Cross-
presentation 

Highly 
adaptable 
(IL-12, IL-
23, TNFα, 
and iNOS) 
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Table 1.2: Summary of dendritic cell receptors targeted for vaccine 

development. Adapted with permission from[78] 

Receptor Designation Function 

1. Group 1 C-type lectin 
receptors 

  

1.1. Mannose receptor  
 

CD206 

Expressed on macrophages and DCs. Binds to 
mannan, mannose, fucose, glucose, maltose, 
GlcNAc, lipoarabinomannan, cell wall of yeast, 
viruses, and bacteria leading to 
phagocytosis/endocytosis. Used to target 
protein, peptides, DNA, dendrimers, liposomes, 
and anti-MR antibodies for vaccine development 
withTh1, Th2, CTL, and Ab responses induced. 
Targeting antigens to MR using mannan has 
been used in human clinical trials. 

   

1.2. DEC205  
 

CD205 
 

Ly 75 

Homologous to the mannose receptor. 
Expressed on DCs and thymic epithelial cells. 
Targeting induces an array of immune 
responses. 

   

   
2. Group 2 C-type lectin 
receptors 

 
 

2.1. Dendritic cell-specific 
intercellular 
adhesion molecule-3-
grabbing 
nonintegrin (DC-SIGN 

CD209 
Clec4L 

Expressed on immature DCs, macrophages 
endothelial vascular cells, atherosclerotic 
plaques, and lymphatic vessels, not on 
placmacytoid DCs. Binds to mannan, mannose, 
fucose, GlcNAc, GalNAc, yeast, lewis blood 
group antigens Lex, HIV-1 gp120, Ebola virus, 
hepatitis C virus, dengue virus, respiratory 
syncytial virus, measles virus, Mycobacterium 
tuberculosis, Leishmania amastigote, 
Helicobacter pylori, Leishmania mexicana, 
Schistosoma mansoni, Porphyromonas 
gingivalis, Neisseria gonorrhoeae, Candida 
albicans, house dust mite (Der p1), and dog 
allergens (Can f1). Interacts with ICAM-3 and 
ICAM-2. Targeting DC-SIGN using antigen 
linked to anti-DC-SIGN antibodies, Manalpha-6 
Man, lactoside, and Lewis oligosaccharide, 
stimulates T-cell and/or antibody responses, 
and has been studied as a potential receptor for 
vaccine targeting. Eight murine homologs 
identified, SIGN-R1 (CD209b) to SIGN-R8. 
 



23 
 

   

Receptor Designation Function 

2.1.1. L-SIGN or DC-
SIGNR 

CD299 
CD209L 
Clec4M 

Expressed on liver sinusoidal cells, lymph 
nodes, and endothelial vascular cells, but not on 
DCs. Binds to HIV gp120, Man9GlcNAc2, HIV, 
simian immunodeficiency virus, ebola virus, 
hepatitis C virus, and respiratory syncytial virus. 
Targeting L-SIGN with anti-L-SIGN antibodies 
induces T-cell responses. Targeting L-SIGN 
shows promise for the development of targeted 
vaccines. 

 

2.1.2. Liver and lymph 
node sinusoidal 
cell type lectin (LSECtin) 

Clec4G 

Expressed in liver, lymph nodes, sinusoidal 
endothelial cells, DCs, and Kupffer cells. Binds 
to N-acetyl-glucosamine, fucose, ebola virus, 
filovirus glycoproteins, lymphocytic 
choriomeningitis virus, S-protein of SARS 
coronavirus, and to CD44, but not to mannose, 
HIV, and hepatitis C. Coexpressed with DC-
SIGNR and CD23. Antibody or ligand-

mediated engagement of LSECtin activates 
rapid internalization, indicating that LSECtin 
may be a suitable receptor for targeting antiges 
in the development of vaccination regimes. 

   

2.1.3. C-type lectin 
immune receptor 
(CIRE) 
(murine homologue of 
DC-SIGN) 

CD209 

Expressed by immature CD8− splenic DCs 
(CD8−CD4+ and CD8−CD4−), on some 
CD4+ DCs, plasmacytoid pre-DCs, and 
not by, CD8+ DCs, macrophages, or 
monocytes. It is a ligand for ICAM-3 and 
binds to HIV. Polyanhydride nanoparticles 
covalently linked to dimannose and lactose 
matures DCs and are internalized by DCs. 
CIRE shows promise as an appropriate 
target for antigen delivery for improved 
vaccine development. 

   

2.2. Langerin CD207 Clec4K 

Expressed on Langerhans cells, CD103+ 
DCs, and splenic CD8+ DCs. Binds to 
mannose and internalizes mannose 
residues into Birbeck granules, where 
Langerin is expressed. Anti-Langerin 
antibody targeting antigens to Langerin is 
endocytozed in vitro and in vivo and 
induces Th1 and antibody responses. 
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Receptor Designation Function 

2.3. MGL 
(human macrophage 
galactose- and 
N-acetylgalactosamine-
specific C-type 
lectin) 

 

Expressed on macrophages, immature 
DCs galactose, GalNAc, Tn antigen, 
filoviruses, and gonorrhea. GalNAc 
modified peptides to target MGL receptor 
expressed on murine and human DCs, 
which stimulates T-cell and antibody 
responses, and this approach could be 
used to design novel anticancer vaccines. 

 

2.4. Dectin-1 or beta-
glucan receptor 
(DC-associated C-type 
lectin-1) 

DCAL-1 
Clec7A 

 

Expressed on myeloid DCs, CD8−CD8− 
DCs, dermal DCs, monocytes, 
macrophages, neutrophils, T cells, B cells, 
mast cells, eosinophils, and monocytes. 
Binds to beta-glucan on yeast, 
mycobacteria, plant cell walls, 
Saccharomyces, Candida, Pneumocystis, 
Coccidioides, Penicillium, and Aspergillus, 
but not Cryptococcus fungal species, and 
interacts with CD37. Anti-Dectin-1 and 
anti-Dectin-2 antibodies linked to proteins 
stimulate CD8+ and CD4+ T cells, and 
immunization with beta-glycan modified 
proteins induces CD4+ andTh17 bias 
responses. 

   

2.4.1. DNGR-1 
(NK lectin group 
receptor-1)  
 

Clec9A 

Expressed onmurine CD8+ DCs not on 
CD4+ DCs, on CD11c+ DCs but not by 
CD11c− cells (B cells, T cells, NK cells, 
NKT cells, macrophages, and 
granulocytes), on plasmacytoid DCs, and 
on human 
blood DCsBDCA-3+ DCs) and monocytes 
(CD14+CD16−). Highly expressed on Flt3 
ligand bone marrow derived CD8+ DCs. 
Target for immune response induction. 

   

2.4.2. Myeloid inhibitory 
C-type lectin 
receptor (MICL)  
 

Clec12A 

Homologous to Dectin-1 and part of 
Dectin-1 cluster. Also termed as CLL-1, 
DCAL-2, and KLRL1. Expressed on 
granulocytes, monocytes, macrophages, B 
cells, CD8+ T cells in peripheral blood, and 
DCs 
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Receptor Designation Function 

2.4.3. C-type lectin-like 
receptor 2 
(CLEC2)  
 

Clec1B 

Expressed on NK cells, monocytes, 
granulocytes, platelets, megakaryocytes, 
and liver sinusoidal epithelial cells. Binds 
to HIV-1 and facilitates HIV-1 spread to 
other cells and binds to snake venom 
rhodocytin. Not much is known regarding 
stimulating immune responses; however, 
colocalization with DC-SIGN suggests that 
it may have an immune stimulatory effect. 

   

2.4.4. CLEC12B 
(macrophage antigen H)  

Clec21B 

Part of the NK gene complex/dectin-1 
cluster of C-type lectin receptors. 
Expressed on macrophages, monocytes, 
and DCs. Not much is known regarding its 
function. 

 

2.4.5. LOX-1 
(Lectin-like receptor for 
oxidized density 
lipoprotein-1) 
 

Clec8A 
 

Part of the dectin-1 cluster of C-type lectin 
receptors and scavenger receptor family. 
Expressed on endothelial cells, smooth 
muscle cells, platelets, fibroblasts, and 
macrophages. Binds to Gram-positive and 
Gram-negative bacteria, oxidized LDL 
modified lipoproteins, phospholipids, 
apoptotic cells, C-reactive protein, and heat 
shock protein (HSP)-70. Targeting LOX-1 
induces immune responses and is a 
promising target for cancer immunotherapy. 

   

2.5. DC immunoreceptor 
subfamily 

  

2.5.1. DC 
immunoreceptor (DCIR)  
 

Clec4A 

Expressed on plasmacytoid DCs, immature 
and mature monocyte-derived DCs 
monocytes, macrophages, and B cells. 
Binds to TLR9. Targeting DCIR stimulates 
immune responses especially CD8+ T cells. 

   

2.5.2. Dectin-2 
(or beta-glucan receptor) 
 

DCAL-2 
Clec6A 

 

Expressed on DCs, macrophages 
neutrophils, and monocytes. Binds to 
beta1,3 and beta1,6-linked glucans on 
yeast, mycobacteria, and plant cell 
walls. Targeting dectin-2 stimulates immune 
responses in mice. 
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Receptor Designation Function 

2.5.3. Blood DC antigen 
(BDCA-2) 

Clec4C 
Expressed on human blood DCs. 
Targeting BDCA-2 suppresses IFN-
alpha/beta cytokine secretion. 

   
3. Scavenger receptors   
3.1. Scavenger receptor 
macrosialin, mucins, and 
LOX-1. Targeting of 
scavenger receptors 
induces immune 
responses in mice. 

 

Expressed on macrophages. Bind to 
modified low density lipoproteins (LDL) by 
oxidation (oxLDL) or acetylation (acLDL). 
Bind to CD68, macrosialin, mucins, and 
LOX-1. Targeting of scavenger receptors 
induces immune responses in mice. 

   

3.1.1. Scavenger 
receptor class A  
 

SR-A1 Expressed on macrophages as a trimer. 

SR-A2 
Members include SCARA1 (MSR1), 
SCARA2 (MARCO), SCARA3, 
SCARA4 (COLEC12), and SCARA5. 

   

3.1.2. Scavenger 
receptor class B 

SR-B1 
Consists of 2 transmembrane units. 
Members include SCARB1, SCARB2, and 
SCARB3 (CD36). 

   
3.1.3. Scavenger 
receptor class C 
 

SR-B1 
Consists of a transmembrane region in 
which the N-terminus is located 
extracellularly. 

   

3.2. DC-
asialoglycoprotein 
receptor (DC-ASGPR) 
 

 

A lectin-like scavenger receptor. 
Expressed on monocyte derived DCs 
(CD14+CD34+), tonsillar interstitial-type 
DCs, and granulocytes. 
Targeting DC-ASGPR induces 
suppressive responses. 

   

4. F4/80 receptor 
 

 

Expression restricted to macrophages. 
Murine homolog of the epidermal growth 
factor-like module containing mucin-like 
hormone receptor-1 protein encoded by 
the EMR1 gene. 

   

4.1. FIRE 
 

 

Expressed on CD8−CD4+ and CD8−CD4− 
immature DCs, and weakly on monocytes 
and macrophages. Targeting FIRE 
stimulates immune responses in mice. 
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Receptor Designation Function 

5. DC-specific 
transmembrane protein 
(DC-STAMP) 
 

 

Expressed on DCs and activated blood 
DCs. 
Targeting DC-STAMP results in 
immunosuppressive responses in 
some studies and in other studies 
stimulates strong cellular responses. 

   

6. FcR 
 

 

Links humoral and cellular immune (Fc 
Receptor) responses, links innate and 
adaptive immune responses by binding 
pathogens and immune complexes, and 
stimulates T cells. Targeting FcR is a novel 
vaccine strategy for stimulating immune 
responses. 
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Table 1.3: Summary of APC targeting studies. Adapted with permission from [77]. 

Targeting moiety Injection Effect Ref. 

DEC205 

α-GalCer NP fp ↑iNKT, ↓growth in B16F10, and 

EG7-OVA (P + T) 

[79] 

Selected nucleic acid 

aptamer 

i.v. ↑CD8, ↓growth OVA-B16 tumor (T if 

OT-I transfer) 

[80] 

Anti-CD11c and 

DEC205 scFv coupled 

to NP 

i.v. ↑CD8, ↓growth OVA-B16 tumor (P) [44] 

mAb fused protein s.c. ↑CD8, ↓growth OVA-B16 (P + T) [45] 

mAb fused protein i.p. ↑CD8, ↑CD4, ↑humoral, and ↓growth 

neu-expressing mammary tumor (P) 

[81, 82] 

mAb fused protein i.p. ↑cross-presentation, ↑CD4, 

↑humoral, and ↓growth neu-

expressing mammary tumor (P) 

[83] 

scFV modified 

adenoviral vector 

fp ↑T cell, ↑humoral (at low doses), 

↓growth OVA-B16 (P) BUT better for 

untargeted vectors 

[84] 

mAb fused protein fp ↑CD8, ↓growth B16 pseudo-

metastasis model (P + T) 

[85] 

Bacteriophage 

displaying scFV 

fp ↓growth B16F10 (Pro + Ther) [86] 

mAb fused protein s.c. ↑CD8, ↑CD4, and ↓growth B16 

melanoma (P + T) 

[87] 

scFV fused to DNA 

vaccine 

i.m. ↑CD8, ↑humoral, long lasting 

memory ↓growth ER2/neu+ D2F2/E2 

breast tumor + spontaneous 

mammary carcinomas (P + T) 

[88] 
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Targeting moiety Injection                   Effect Ref. 

Phase I clinical trial with 

CDX-1401 = human mAb 

fused protein 

i.d. Patients with advanced 

malignancies: ↑cellular, 

↑humoral (T) 

[89] 

DEC206 

Mannosylated NP s.c. ↑TH1 cell, ↑humoral, and 

↓growth B16F10 (P + T) 

[90] 

mAb fused to protein s.c. ↑T cell, ↑humoral, and 

↓growth B11-OVA (P) 

[41] 

Mannan coupled protein i.p. ↑CD8, ↓growth P815 

mastocytoma (T) 

[91] 

Mannose coupled 

dendrimer 

i.d. ↑CD8, ↑CD4, ↑humoral, 

↓growth B16-OVA (P) 

[92] 

Mannosylated NP s.c. ↓growth huErbB2+ renal 

carcinoma cells (T) 

[93] 

Mannan coated liposome-

protamine-DNA 

U ↓growth E7+ TC-1 (P + T) [92] 

Mannosylated and/or 

histidylated NP loaded with 

mRNA 

i.v. ↑CD8, ↓growth B16F10 (P) [94, 95] 

Mannan or pullulan NP 

complexed with protein 

U ↑CD8, ↓growth 

HER2+ tumors (P + T) 

[96] 

D-mannose conjugated 

lipid-core peptide system 

s.c. ↓growth TC-1 HPV-16 tumor 

(P) 

[97] 

Clinical trial with mannan 

coupled protein 

s.c. ↑humoral, less ↑CD8, 

protection against 

recurrence in breast cancer 

patients 

[98] 
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Targeting moiety Injection Effect Ref. 

Two phase I studies with 

CDX-1307 = hCG-β fused 

to mAb 

i.d. or i.v. ↑humoral and T cell with clinical 

benefit in patients with 

advanced epithelial 

malignancies 

[99] 

DC-SIGN  

LV pseudotyped with point-

mutated Sindbis virus 

glycoprotein 

i.d. ↑CD8, ↑CD4, and ↓growth 

transgenic adenocarcinoma, 

E.G7-OVA and PSCA-

expressing B16-F10 (P + T) 

[100] 

mAb coupled protein U ↓growth human Burkitt’s 

lymphoma cell line in humanized 

mice (P) 

[101] 

IDLV pseudotyped with 

engineered Sindbis virus 

glycoprotein  

s.c. ↑CD8, ↓growth CT26 colon 

carcinoma cells (P + T) 

[102] 

LOX-1     

HSP70 fused to protein s.c. ↑CD8 and cross-priming, 

↓growth E.G7 cells (P) 

[103] 

CLEC9A    

mAb coupled to peptide s.c. ↑TH1, ↓growth MUC-1-

A2K/b+ MC38 (P + T) 

[104] 

mAb coupled to peptide s.c. ↑CD8, ↓growth B16 lung pseudo 

metastases (P + T) 

[105] 

DCIR2    

Anti-DCIR2 or anti-

DEC205 mAb coupled 

protein 

i.p. ↑CD8, ↑CD4 (mixed TH1/TH2), 

↑humoral, and ↓growth B16F10-

OVA (P + T) 

[104] 
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Targeting moiety Injection Effect Ref. 

CD11c    

Targeted lipopeptide i.d. ↓growth for OVA: E.G7-OVA, for mWT1: 

mWT1–1498 cells and for tumor lysate: 

MHC-I- B16D8 melanoma (T) 

[106] 

Tumor-derived plasma 

membrane vesicles 

engrafted with two 

CD11c binding 

peptides 

i.v. ↑CD8, ↑humoral, and ↓growth of 

metastatic B16-OVA (T) 

[107] 

CD11b    

Adenylate cyclase-  

(CyaA-) based vector 

i.p. vs. 

i.v. or i.d. 

↓growth OVA-B16 or E.G7-OVA versus 

TC-1 (P + T) 

 

[108] 

Phase II study with 

ProCervix = CyaA-

based vector 

s.c. Clinical phase I trial indicated good safety 

and local tolerance at the highest dose, ↑T 

+ ↑viral clearance + controlled HPV 

recurrence 

[109] 

Fc γ receptor    

IgG1-Fc tumor cells s.c. ↓growth E.G7 (P + T) [110] 

HER2-Fc cDNA i.m. + EP Mu: ↑T, ↓growth HER2+ D2F2/E2 cells (P)  

Hu: in vitro cross-processing and ↑CD8+ T 

cells from breast cancer patients 

[111] 

MHC-II     

DNA loaded 

dendrimer with 

targeting peptide 

s.c. ↑CD8, ↑humoral, ↓growth, strong for 

B16OVA, and weak for gp70 BUT better 

with EP (P) ↔ B16 with Trp2 (T) 

[112] 
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Targeting moiety Injection Effect Ref. 

LV pseudotyped with 

scFv coupled to H 

protein of measles 

virus envelope 

i.v. ↑CD4, ↑cytotoxic, and memory 

CD8 BUT not to the same extent 

as broad tropism LVs 

[113] 

LV pseudotyped with 

scFV coupled to 

murine leukemia virus 

envelope 

s.c. ↑CD8 mediated IFNγ secretion [114] 

DNA encoding anti-

MHC II and anti-CD40 

scFv or chemokines 

(MIP-1α, RANTES) 

with scFV of idiotype 

i.m. or i.d. 

+ EP 

↑CD8, ↑humoral, and ↓growth 

Id+ tumors (P) 

[115] 

BST2    

Protein fused anti-

BST2 Ab 

i.p. ↑CD4, ↑CD8, ↑humoral + 

↓growth B16-OVA (P) 

[116] 

CD40    

CD40  

PLGA-NP coated 

with mAb 

s.c. ↑CD8, ↑CD4 + ↓growth 

B16-OVA (P + T) 

[117] 

CD40 targeted 

adenoviral vector 

i.p. ↑CD8, ↓growth RM-1-

PSMA model (T) 

[118] 

CD40L extracellular 

domain to 

adenoviral vector in 

mice +  

Clinical trial 

i.d. Mice: ↑CD8, ↓growth 

B16F10 (T)  

↑CD8 in melanoma-

draining sentinel lymph 

nodes 

[119] 
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Targeting moiety  Inject

ion 
Effect 

Ref. 

B7    

Syngeneic epithelial 

cells continuously 

secreting CTLA-4-ErbB2 

fusion vaccine 

s.c. ↑CD8, ↑humoral, ↓growth 

ErbB2+ renal cell carcinoma (T) 

[120] 

Treml4, Ig superfamily member 

mAb against Treml4 i.p. ↑CD8, ↑CD4, ↓growth 

neu+ mammary tumor cell line 

NT2.5 (P) 

[121] 

TLRs    

TLR9 targeting protein 

(via DNA sequence) 

i.d. TH - independent ↑CD8 + ↓growth 

E.G7-OVA (P + T) 

[122] 

TLR2 targeting lipid 

moiety + epitopes 

s.c. ↑CD8, ↑humoral + ↓growth B16-

OVA, and Lewis lung-OVA (P + T) 

[123] 

TLR5 targeted peptides 

(via flagellin) engrafted 

onto liposomes 

i.v. ↑maturation of DCs, ↑CD8, 

↑humoral, ↓growth B16, and P815 

(P + T) 

[124] 

TLR4 targeting protein 

(via fibronectin) 

i.t. or 

i.v. 

↑CD8 with cure of established TC-

1 tumors  

i.t.: in the absence of additional 

ADJ  

i.v.: when + ADJ or CPM + ADJ 

[125] 

TLR4 targeting protein 

(via fibronectin) + anti-

CD40, TLR3 and TLR7 

ligands 

s.c. ↑CD8, ↓growth B16-OVA or B16.F10 

(T) 

[126] 
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Targeting moiety Injection Effect Ref. 

Chemokine related   

Fusion of chemokine 

MCP3 or IP10 to 

lymphoma-derived 

scFv as protein or 

DNA plasmid 

s.c. or 

i.d. 

↑humoral, ↓growth 38C-13 

and A20 (P) 

[127] 

OVA with mAb or 

chemokine ligand 

XCL1 against XCR1 

i.v. ↑CD8, ↓growth E.G7 (P) [128] 

 

P: prophylactic, T: therapeutic, fp: footpad, i.v.: intravenous, s.c.: subcutaneous, i.p.: 

intraperitoneal, i.m.: intramuscular, EP: electroporated, i.d.: intradermal, i.n.: 

intranodal, i.t.: intratumoral, U: unknown, CPM: cyclophosphamide iNKT: induced 

natural killer T cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Table 1.4: Vaccine adjuvant properties of EP54 and EP67 

 

 

Vaccine Construct Route Immune Response Ref 

Peptide epitope from MUC1 

glycoprotein conjugated to EP54 

i.p. ↑IgG2b, IgG2c and IgM 

Abs  

[67]  

CTL peptide epitope derived from 

Hepatitis B surface Antigen 

(HBsAg) conjugated to EP54  

s.c Ag-specific CD8+ CTL 

responses against murine 

P815S target cells  

 [72] 

Nicotine hapten conjugated to 

EP54 

i.p. Nicotine-specific Abs   [129] 

Methamphetamine (meth) hapten 

conjugated to EP54 

s.c /i.p. Meth-specific Abs in sera  [130]  

OVA conjugated to EP67 i.p. OVA-specific Th1-like Ab 

class switch and OVA-

specific proliferative 

responses in splenocytes  

[75]  

OVA conjugated to EP67 i.p. ↑ Ag-specific humoral  [73]  

rPrp1,a  protein from cell wall of 

coccidioides conjugated to EP67 

i.p. ↑ humoral responses 

compared to alum and 

CpG  

 [73] 

Peptide epitope derived from gp70 

glycoprotein conjugated to EP54 

and EP67 

s.c ↑ CTL responses and 

↓RAW117-H10 growth 

 [131] 

Live spores of attenuated vaccine 

strain of Coccidioides posadasii 

conjugated to EP67 

s.c ↑ IgG1, IgG2a, Th1, and 

Th17 immune responses  

[132]  

CTL peptide epitopes from MCMV 

PP89 and M84 conjugated to EP67 

i.n. ↑ CTL responses  

↓ MCMV titers 

[74] 
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2.1 Hypothesis 

 Antigen presentation by APCs to T-cells is the bridge between innate and 

adaptive immune systems and dendritic cells as the most professional antigen 

presenting cells play a central role in shaping the immune response. Therefore, many 

strategies have been explored to harness DCs and other APCs to improve vaccine 

efficacy, of these in vivo targeting of APCs using ligands and antibodies against 

several APC surface receptors has shown promise in preclinical studies. However, 

most of these studies have focused on PRRs, which recognize foreign antigens, as 

the targets for antigen delivery and have ignored the complement receptors, which 

respond to molecules produced by the host complement system. EP67 is a host-

derived decapeptide, based on complement component 5a (C5a), that selectively 

binds to the C5a receptor (C5aR/CD88) on APCs, resulting in their activation and 

subsequent increase in processing and presentation of conjugated antigen. 

The primary objective of this work is to develop C5aR-targeted PLGA 

nanoparticles to improve immune responses against the encapsulated antigen, using 

EP67 as the targeting moiety. The central hypothesis of this work is that surface 

modification of PLGA nanoparticles encapsulating model antigen ovalbumin with 

EP67 can target the nanoparticles to APCs, and generate efficacious immune 

responses against the encapsulated antigen. The hypothesis has been tested through 

the following specific aims.  
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2.2 Specific Aims 

2.2.1 Specific Aim-1 – Develop C5aR-targeted PLGA nanoparticles by first 

functionalizing the surface of nanoparticles with PLLA-PEG-MAL linker and then 

conjugating EP67 to the particles. 

2.2.2 Specific Aim -2 – To determine the effect of surface modification of PLGA 

nanoparticles with EP67 on antigen presentation by bone marrow-derived dendritic 

cells in vitro.  

2.2.3 Specific Aim – 3 – To determine the efficacy of respiratory immunization with 

EP67 surface-modified nanoparticles to protect against primary respiratory infection 

with Listeria monocytogenes expressing ovalbumin and to evaluate the immune 

responses generated.  
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Materials and Methods 
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3.1 Peptides 

CGRR-EP67 (CGRR-YSFKDMP[MeL]aR) [70] and inactive scrambled CGRR-

scEP67 (CGRR-M[MeL]RYKPaFDS) [75] were synthesized by standard Fmoc (9-

fluorenyl-methoxycarbonyl) solid-phase methods on a pre-loaded Arg or Ser Wang 

resin, respectively, by sequential coupling of the HBTU (2-(1Hbenzotriazole-1-yl-

1,1,3,3-tetramethyluronium hexafluorophosphate) esters of each amino acid as 

described [66]. Peptides were cleaved from the resin by acidolysis with TFA 

(trifluoroacetic acid) containing phenol [5% v/v], water [2% v/v], and triisopropylsilane 

[2.5% v/v] as scavengers. Cleaved peptides were purified by analytical and 

preparative reverse-phase HPLC, with C18-bonded silica columns using 0.1% TFA 

(dH2O containing TFA [0.1% v/v]) as the running buffer (solvent B) and 0.1% TFA-

containing acetonitrile [60% v/v] (solvent B) as the eluent, and lyophilized. 

3.2 Encapsulation of ovalbumin in biodegradable surface-modified PLGA 

nanoparticles 

Model antigen ovalbumin (OVA; Sigma-Aldrich) was purified by passing 

through a Detox-GelTM endotoxin removal column (Thermo Scientific) and conjugated 

to fluorescein isothiocyanate (FITC-OVA) before encapsulating in biodegradable 

maleimide-functionalized nanoparticles (NP) at 10 wt% theoretical loading using a 

modified double-emulsification / solvent evaporation (ESE) method [133, 134]. The 

primary water-oil emulsion (W1/O) was formed by adding an endotoxin-free “water” 

solution of OVA in PBS (50 mg/mL; 0.2mL) drop-wise to a vortexing (500 RPM) 
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dichloromethane (DCM) “oil” solution containing ester-terminated 50:50 poly D,L-

lactic-co-glycolic acid (PLGA 50:50; research grade; inherent viscosity 0.58 dL/g; 

Lactel Pelham, AL; 50 mg / mL DCM; 2 mL) in an 8 mL scintillation glass vial and 

sonicated on ice for 30 sec (pulse time - 10 sec; interval – 2 sec) at 70% amplitude 

(Misonix Sonicator 3000 w/ model 419 tapered microtip horn with 0.125 in. diameter 

tip). The W1/O emulsion was immediately transferred dropwise to a vortexing PVA 

solution (5% v/v polyvinyl alcohol [70% hydrolyzed; 30,000 -70,000 Da; Sigma-Aldrich] 

in dH2O; 8 mL) in a 20-mL scintillation glass vial and sonicated to form the secondary 

water-oil-water emulsion (W1/O/W2). The secondary emulsion was then transferred to 

a fresh 20-mL scintillation glass vial and the NPs were surface-functionalized with 

maleimide by adding a DCM solution containing the diblock copolymer poly L-lactic 

acid – polyethylene glycol-maleimide (PLLA-PEG-MAL [10 kDa-2 kDa; Polyscitech]; 

20 mg/mL; 200 µL) to the emulsion. The emulsion was stirred (1000 rpm using a cross 

shaped 9.5 × 4.7 mm, Teflon-coated, smooth stirring bar) for 18 h to fully remove 

DCM. Hardened NP was pelleted (25,000 RCF, for 15 min at 4°C) then resuspended 

and pelleted 3X using dH2O (50 mL) to remove residual PVA. Washed particles were 

resuspended in dH2O (10 mL) in a pre-weighed 20-mL scintillation vial, flash frozen in 

liquid N2, lyophilized for 48 h, and stored at -20°C until further use. Maleimide-

functionalized NP were then coated with CGRR-EP67/CGRR-scEP67 by adding 

peptide solution in PBS (1.4 mg/mL; 0.5 mL) to a suspension of NP in PBS (2 mg/mL; 

5 mL) in an 8 mL scintillation glass vial and stirring for 12 h (1000 rpm; cross-shaped 

9.5 × 4.7 mm stirring bar). Surface modified NPs were then washed 3X in dH2O (50 
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mL), resuspended in dH2O (10 mL), flash frozen in liquid N2, lyophilized for 48 h, and 

stored at -20°C after sealing with parafilm. 

3.3 OVA loading in PLGA particles 

OVA loading was determined as described with modification [135]. Particles 

(~10 mg) were allowed to equilibrate to r.t., added to DMSO (0.5 mL) in an 8-mL glass 

vial, and incubated for 1 hr on with constant shaking. A solution of 0.05 M NaOH/0.5% 

SDS in dH2O (5 mL) was added to the DMSO/particle solution and the entire solution 

was stirred (400 RPM) in the capped vial overnight. The undissolved polymer was 

pelleted (10,000 RCF, 10 min) and average OVA concentration in the supernatant 

was determined by Pierce Micro BCA assay (Thermo Scientific) with OVA as the 

standard and DMSO/0.05 N NaOH (0.05% SDS) as the diluent. For scEP67/EP67 

surface modified NPs, maleimide-functionalized NPs were stirred for 12 h in PBS 

(Section 2.1), washed, and lyophilized before determining OVA loading. Average µg 

OVA/ mg formulation ± SD (n=3) was calculated by multiplying OVA concentration 

from the assay by the volume of the sample (5.5 mL) and encapsulation efficiency 

(EE%) was calculated as  

EE% =  
𝐴𝑠𝑠𝑎𝑦𝑒𝑑 µ𝑔 𝑂𝑉𝐴 𝑚𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠⁄

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 µ𝑔 𝑂𝑉𝐴 𝑚𝑔 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠⁄
 𝑥 100 

3.4 Diameter and zeta potential of PLGA nanoparticles 

Average hydrodynamic diameters and zeta-potentials ± SD (n=3 independent 

samples from the same batch) of the particles were measured in dH2O (0.5 mg/mL) 
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at 25°C using a ZetaSizer Nano ZA (Malvern Instruments, Malvern, UK) equipped with 

a He-Ne laser (λ = 633 nm) as the incident beam. 

3.5 Generation and culture of bone marrow-derived dendritic cells. 

Bone marrow-derived dendritic cells (BMDCs) were generated as described 

[136, 137]. Femurs and tibiae were harvested from the hind limbs and cleaned by 

scraping the muscle tissue using a sterile surgical scalpel (#15, Aspen Surgical, 

Caledonia, MI). Bones were sterilized by placing in 70% ethanol for 5 min and rinsed 

2X with RPMI-1640 medium. Bone marrow was exposed by cutting off the ends with 

a sterile scissors and flushed out with complete RPMI (5 mL) (cRPMI; RPMI-1640 

[Hyclone, Logan, UT] containing heat-inactivated fetal bovine serum [HI-FBS, 10% 

v/v, Atlanta Biologicals, Atlanta, GA], L-glutamine [2 mM], sodium pyruvate [1 mM], 

non-essential amino acids [0.1 mM], MEM vitamin solution [1X], penicillin G [100 

U/mL], streptomycin sulfate [100 µg/mL], β-mercaptoethanol [50 µM]) using a 25-

gauge needle. Bone marrow pieces were broken down by gently pipetting the media 

and the resulting cell suspension was passed through a 70 µm cell strainer (Becton 

Dickinson, Franklin Lakes, NJ). Cells were pelleted (400 RCF;10 min at 4°C), 

supernatant discarded, and erythrocytes lysed by resuspending in RBC lysis buffer (5 

mL, 5 min at RT, RBC lysis buffer: 155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA). 

Bone marrow cells were then washed 2X with RPMI-1640, and cultured in 100 mm 

petri dishes (4 × 106 cells/dish) containing BMDC media (cRPMI supplemented with 

rmGM-CSF [20 ng/mL, Peprotech, Rocky Hill, NJ]). On day 3, fresh BMDC media (10 

mL) was added to the dishes.  On day 6,six half of the media was collected, cells were 
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pelleted, resuspended in BMDC media (10 mL) and added back to the dishes. BMDCs 

were collected on day 8 and used for further experiments. 

3.6 Internalization of nanoparticles by BMDCs 

Internalization of NPs by BMDCs was measured by culturing BMDCs (4 x 105 

cells/well; 24-well plate) in cRPMI (1 mL) containing FITC-OVA encapsulated, 

uncoated NP [NP(FITC-OVA); 20 µg], FITC-OVA encapsulated NP surface modified 

with scrambled EP67 [scEP67-NP(FITC-OVA); 20 µg] or EP67 [EP67-NP(FITC-OVA); 

20 µg] for 2 h at 37 oC/5% CO2. To control for adsorption of NP onto the cell surface, 

BMDCs were allowed to equilibrate at 4 oC for one h, then treated with NP and 

incubated for 2 h at 4 oC. Cells were washed 3X in PBS (1 mL), stained with Zombie 

Yellow, anti-mouse CD11c-PE Cy5 (clone N418, eBioscience, San Diego, CA) and 

analyzed by flow cytometry. 

3.7 Activation of BMDCs 

Activation of BMDCs by NPs was measured by culturing BMDCs (4 x 105 

cells/well; 24-well plate) in cRPMI (1 mL) containing NP(OVA) [100 µg], scEP67-

NP(OVA) [100 µg] or EP67-NP(OVA) [100 µg] for 24 h at 37 oC/5% CO2. Cells were 

then washed 3X in PBS (1 mL), resuspended in sterile PBS (0.1 mL) containing 

Zombie Yellow (1 µL, BioLegend), incubated at r.t. for 20 min in the dark, FACS Stain 

Buffer (0.1 mL) was then added and cells were pelleted (500 RCF, 4°C, 5 min.). 

Supernatants were aspirated and Fc receptors were blocked by resuspending in 

FACS Stain Buffer (0.1 mL/well) containing mouse BD Fc Block (1 µg / 106 cells), and 

incubating on ice for 20 min. FACS Stain Buffer (0.1 mL) was then added and cells 
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were pelleted (500 RCF, 4°C, 5 min.).  Cell surfaces were stained for activation 

markers by resuspending the cells in FACS Stain Buffer (50 μL) containing half the 

manufacturer’s suggested amount of PE-Cy5 Anti-Mouse CD11c [Clone N418] 

(eBioscience), PE Anti-Mouse MHC-II [Clone M5/114.15.2] (Miltenyi), FITC Anti-

Mouse CD80 [Clone 16-10A1] (Miltenyi), APC Anti-Mouse CD86 [Clone PO3.3] 

(Miltenyi), then incubating on ice in the dark for 30 min. FACS Stain Buffer (0.15 mL) 

was then added and cells were pelleted (500 RCF, 4°C, 5 min.).  Cells were then fixed 

by resuspending cells in Fixation Buffer (0.1 mL/well; BioLegend), and incubating on 

ice for 20 min. Cells were then prepared for flow cytometry by washing in FACS Stain 

Buffer (0.2 ml) (3X). 

Cells were analyzed on a BD LSR II flow cytometer (Becton and Dickinson, La Jolla, 

CA) with BD High Throughput Sampler. Flow cytometer was compensated using 

single-stained cells, and thea maximum number of events were acquired and 

analyzed by FlowJo software (Tree Star, Ashland, OR, USA).  

3.8 Detection of antigen presentation by BMDCs 

Antigen presentation of OVA epitopes (OVA257–264 /SIINFEKL – H-2Kb peptide 

ligand; OVA323-339
 /I-Ab peptide ligand) by BMDCs was measured by T-cell hybridoma 

assay using OVA responsive T-cell hybridomas CD8OVA1.3 (OVA257–264) and DOBW 

(OVA323-339) (kindly donated by C.V Harding, Case Western Reserve University) [138, 

139]. Day 8 BMDCs (4 x 105 cells/well; 24-well plate) were cultured in cRPMI (1 mL) 

containing NP(OVA) [100 µg], scEP67-NP(OVA) [100 µg] or EP67-NP(OVA) [100 µg] 

for 2 h at 37 oC/5% CO2. BMDCs were then washed 2X in PBS (1 mL) and co-cultured 
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with equal number of CD8OVA1.3 or DOBW cells (5 x 104 cells/well; 96-well plate) in 

D10F media (0.2 mL) (DMEM/High Glucose [Hyclone, Logan, UT] containing HI-FBS 

[10% v/v], penicillin/streptomycin [100 U/ml], sodium pyruvate [1 mM], HEPES [10 

mM], and 2-mercaptoethanol [0.5 mM]) for 18 h at 37 oC/5% CO2[140]. Cells were 

then pelleted (2000 RCF; 10 min; 4 oC), and supernatants collected and stored at -80 

oC until analyzed for secreted IL-2 by ELISA (Mouse IL-2 ELISA MAX™ Standard, 

BioLegend) per manufacturer’s instructions.  

3.9 Respiratory Immunization 

All animal procedures were approved by University of Nebraska Medical Center 

Institutional Animal Care and Use Committee. Naïve female C57BL6/NHsd mice (4 

weeks old, Envigo) were housed under pathogen-free conditions and allowed to 

acclimatize for at least one week before experiments. Animals were immunized with 

sterile PBS (50 µL) or sterile PBS containing NP-OVA or EP67 NP-OVA (25 µg OVA 

equivalent) on days 0 and seven by intranasal instillation, which is expected to deliver 

the vaccine to entire respiratory tract and lungs[141, 142]. For intranasal instillation, 

mice were anesthetized with Ketamine/Xylazine cocktail (105/5 mg/kg, I.P), held 

upright and the vaccine was administered by both nostrils using a 200 µL micropipette.   

3.10 LM-OVA respiratory challenge and quantitation of bacterial burden. 

Recombinant Listeria monocytogenes expressing ovalbumin (LM-OVA) (kindly 

donated by John T. Harty, University of Iowa) [143] was cultured in Tryptic soy broth 

(Sigma-Aldrich) containing streptomycin sulfate (50 µg/mL) at 37 oC in a shaking 

incubator (150 RPM) for 24 h. Sterile glycerol (1 mL; 80% v/v) was added to LM-OVA 
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culture (9 mL), aliquoted into cryovials (1 mL) and stored at -80 oC until the day of 

infection. LM-OVA titers in one of the frozen stocks were determined one day before 

immunization.  

At fourteen days post-immunization (Day 21), animals were infected with a sub-

lethal dose of LM-OVA (2 × 107 CFU) in the same method as vaccines. Three days 

post-infection (Day 24) animals were sacrificed and the organs were harvested (lungs, 

liver and spleen). Bacterial burden in the organs was determined by homogenizing the 

organs in cRPMI (1 mL) using a hand-held homogenizer and 10-fold serial dilutions 

were prepared using D-PBS as diluent. The dilutions (20 µL) were pipetted onto a 

TSB-agar plate (100 mm; MIDSCI), the plates were allowed to dry in a sterile hood 

and incubated for 24 h at 37 oC[144]. The number of bacterial colonies was then 

counted by eye. Average LM-OVA titers/g of tissue was calculated as  

𝐿𝑀 − 𝑂𝑉𝐴 𝐶𝐹𝑈

𝑔
 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠× 𝐷𝐹 ×

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑎𝑡𝑒 (𝑚𝐿)

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝐿)×𝑜𝑟𝑔𝑎𝑛 𝑤𝑒𝑖𝑔ℎ𝑡
 

Where the number of colonies was taken from the highest dilution where 5 to 50 

colonies were observed, DF was the selected dilution factor, the sample volume is the 

volume plated (0.02 mL) and volume of homogenate = [volume of cRPMI (1 mL) + 

organ weight]. 

3.11 Preparation of lung lymphocytes and splenocytes 

Fourteen days’ post-immunization (Day 21), on the same day as respiratory 

challenge with LM-OVA, mice were euthanized, and the lungs were perfused with 

sterile DPBS (5 mL) via right ventricle of the heart and harvested. Lungs were then 
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dissected into small pieces using a sterile scissors and transferred to a sterile C-Tube 

(Miltenyi) containing cRPMI (5 mL) with collagenase IV (2 mg/mL; Worthington 

Enzymes). Lungs were then homogenized using Miltenyi tissue dissociator 

(“m_lung_01” setting) and incubated for 1 h at 37° C in a shaking incubator (200 RPM, 

Vortemp). Lungs were homogenized again on the tissue dissociator (“m_lung_01” 

setting) and a single cell suspension was obtained by passing the cells through a 

sterile 40 µm cell strainer. Cells were then pelleted (400 RCF, 4°C, 5 min), supernatant 

decanted and resuspended in cRPMI (5 mL) in a sterile 15 mL conical tube (BD 

Falcon). Lympholyte-M solution (5 mL; Cedarlane Labs) was under-layed below the 

cell suspension using a sterile Pasteur pipette and centrifuged (1500 RCF, 20 mins, 

RT, no brakes) to separate lymphocytes. Lymphocytes at the interphase were 

collected, washed 1X with sterile PBS, resuspended in cRPMI and stored on ice until 

used.  

To prepare single cell suspensions of splenocytes, spleens were first 

homogenized using a tissue dissociator (“m_spleen_01” setting) in cRPMI (5 mL), 

passed through a 70 µm cell strainer and diluted with sterile DPBS (45 mL). Cells were 

then pelleted (500 RCF, 4°C, 10 min), the supernatant was decanted, and the cells 

were resuspended in RBC lysis buffer (4 mL) and incubated for 5-7 min at RT. Cells 

were then passed through a 40 µm cell strainer, washed twice with D-PBS (50 mL), 

resuspended in cRPMI and stored on ice until used. Percent viability and total live cell 

counts were determined by trypan blue exclusion using a Cellometer Auto T4 cell 

counter (Nexcelom Biosciences). 
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3.12 Surface phenotyping of antigen-specific T-cells  

The surface phenotype of antigen specific T-cells was determined at 14 days 

post-immunization (Day 21) by flow cytometry. Lung lymphocytes and splenocytes 

were isolated and plated in 96-well plates (106 cells/0.1 mL/well). Cells were washed 

twice by pelleting (400 RCF, 4°C, 5 min.) and resuspending in DPBS (0.2 mL). Dead 

cells were then stained by incubating the cells in DPBS (0.1 mL) containing Zombie 

NIR dye (1 µL/106 cells), and the cells were incubated for 20 min at RT in dark. Cells 

were then washed once with BD Stain Buffer (0.1 mL) and Fc receptors were blocked 

by incubating in BD Stain Buffer (0.1 mL) containing mouse BD Fc Block (1µg / 106 

cells) and incubating on ice for 20 min. Cells were washed with BD Stain Buffer (0.1 

mL) and stained with OVA tetramers by incubating with BD Stain Buffer (50 µL) 

containing MHC Class-I Tetramers-BV421 (NIH Tetramer core - H-2Kb / SIINFEKL) 

or MHC Class-II Tetramers-BV421 (NIH Tetramer core-I-Ab / HAAHAEINEA) (1 µg/ 

106 cells) for 30 mins at 37 oC in the dark. Cells were then washed with BD Stain Buffer 

(0.15 mL) and stained with cell surface markers by incubating in BD Stain Buffer (50 

µL) containing half the manufacturer’s suggested amount of FITC Anti-Mouse CD8a 

FITC (Clone 53-6.7; BioLegend) or Alexa flour 488 Anti-Mouse CD4 (Clone 

GK1.5;BioLegend), PE Anti-Mouse CD127 (Clone A7R34;BioLegend), APC Anti-

Mouse KLRG1 (Clone 2F1;BioLegend), PE/Dazzle Anti-Mouse CD62L (Clone MEL-

14;BioLegend) and PE/Cy5 Anti-Mouse CD44 (Clone IM7;BioLegend) on ice for 30 

min in the dark. Cells were then washed in BD Stain Buffer (0.15 mL) and fixed by 

incubating with Fixation Buffer (0.1 mL) on ice for 20 min. Cells were then washed 

twice with BD Stain Buffer (0.2 mL), resuspended in BD Stain Buffer (0.2 mL) and 
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analyzed on a BD LSR-II flow cytometer. Splenocytes from immunized animals were 

used as single-stains for tetramers and BD CompBeads (Anti- Rat/Hamster Igκ) were 

used as single-stains for all the other antibodies for compensation settings. Maximum 

number of events from each sample were acquired and analyzed by FLowJo software 

(Tree Star, Ashland, OR, USA).  

 

3.13 Quantitation of cytokine secretion by epitope responsive splenocytes 

The cytokine secretion profile of splenocytes harvested 14 days post-

immunization was determined by re-stimulating cells (2 × 106 cells) ex vivo by 

incubating with cRPMI (0.4 mL) containing OVA I-Ab epitope 

(ISQAVHAAHAEINEAGR; 10 µg/mL) in a 48-well plate for 48 h at 37 oC/5% CO2.  

Supernatants were collected and stored in -80 oC freezer until analyzed, using a 

multiplex assay (Mouse Th17 Magnetic Bead Panel, Millipore) per manufacturer’s 

instructions. The concentration of cytokines was measured as median fluorescence 

intensity (MFI) of at least 50 beads per cytokine. Standards were measured in 

duplicates for seven concentrations including a blank control. Standard curves for 

each cytokine were plotted using a five-parameter logistic curve fit 

(www.myassays.com).  
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 Encapsulation of protective proteins or peptides in nanoparticles composed of 

biodegradable poly (lactide-co-glycolic acid) polymers is a well-established platform 

to improve efficacy of subunit vaccines by (i) protecting vaccines from enzymatic 

degradation, (ii) increasing residence time at administration site, (iii) facilitating uptake 

by APCs because of their particulate nature and, (iv) acting as an adjuvant that can 

activate APCs. Moreover, the surface of nanoparticles can also be modified with 

various ligands or antibodies that can target APCs to further improve vaccine efficacy. 

Several studies have demonstrated that modifying the surface of nanoparticles with 

ligands or antibodies targeting intracellular and extracellular pattern recognition 

receptors (PRRs) such as Toll-like receptors (TLRs), C-type lectin receptors (CRRs) 

and NOD-like receptors (NLRs) can induce humoral and cell-mediated immune 

responses against encapsulated antigens.  

 In our previous studies, we have demonstrated that EP67, a host-derived 

decapeptide based on complement component 5a (C5a) of the innate immune 

system, acts as an immunostimulant and an adjuvant capable of generating Th1 

biased humoral and cellular immune responses in mice against a covalently 

conjugated peptide, protein or inactivated pathogens upon systemic administration. In 

our recent studies, we have also shown that respiratory immunization with an EP67-

based vaccine composed of protective CD8+ T-cell epitopes from murine 

cytomegalovirus (MCMV) protects against primary respiratory infection with MCMV 

and increases the proportions of epitope-specific long-lived memory precursor effector 

cells (MPEC) in the lungs and spleen compared to an inactive, scrambled EP67-
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conjugated CTL peptide vaccine and vehicle alone, suggesting that EP67 can act as 

a mucosal adjuvant.  

EP67 is expected to act as an adjuvant, in large part, by selectively binding to 

the C5a receptor (C5aR/CD88) on APCs, resulting in their activation and subsequent 

increase in processing and presentation of conjugated antigen. Thus, we 

hypothesized that surface modification of biodegradable PLGA nanoparticles with 

EP67 would increase the efficacy of immune responses against the encapsulated 

antigen.  To test this hypothesis, we encapsulated a model antigen ovalbumin (OVA) 

in biodegradable PLGA nanoparticles, modified the surface of nanoparticles with 

EP67 using the interfacial activity assisted surface functionalization (IAASF) 

technique. We then compared the extent to which respiratory immunization with OVA 

encapsulated in the EP67 surface-modified, unmodified nanoparticles or vehicle alone 

protects naïve female C57Bl/6 mice against primary respiratory infection with 

recombinant Listeria monocytogenes expressing soluble OVA (LM-OVA) and affects 

the generation of systemic and mucosal cellular responses. Additionally, we have also 

tested the effect that EP67 surface modification of nanoparticles has on their 

internalization and activation of murine bone marrow-derived dendritic cells (BMDCs) 

in vitro. 

4.1 Surface modification of PLGA nanoparticles with EP67 improves 

internalization by BMDCs. 

Presentation of exogenous antigen to T cells requires the uptake of antigen by 

antigen-presenting cells followed by processing and presentation in the context of 
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MHC molecules [145, 146]. T-cell activation and memory development have also been 

linked to the dose of antigen-experienced by dendritic cells [147, 148]. Therefore, 

internalization of antigen by dendritic cells is an important parameter that affects the 

efficacy of vaccines.  

   To determine if the surface modification of PLGA nanoparticles with EP67 

affects the internalization of the NPs by murine BMDCs, we first encapsulated FITC- 

labeled OVA (FITC-OVA) in PLGA NPs and modified the surface with reactive 

maleimide groups by incorporating the diblock copolymer PLLA-PEG-MAL into the 

NPs using IAASF technique (Table 4.1) (Fig 4.1A)[134]. Surface modification with 

PLLA-PEG-MAL was confirmed by the presence of an ethylene glycol peak (3.8 ppm) 

in the 1H-NMR NMR (Fig. 4.2). We then attached EP67 to the NPs using a Cys-Gly-

Arg-Arg linker (PLGA NP-MAL-CGRR-EP67) (Fig 4.1B), and EP67 attachment to NPs 

was then confirmed by amino acid analysis (Fig. 4.3). We next incubated murine 

BMDCs (Day 8) with unmodified [NP(FITC-OVA)], scrambled EP67 (CGRR-

M[MeL]RYKPaFDS)-modified [scEP67-NP(FITC-OVA)], and EP67- modified [EP67-

NP(FITC-OVA)] nanoparticles for 2 h and compared the internalization by measuring 

the proportion of BMDCs positive for FITC-OVA using flow cytometry. Internalization 

of nanoparticles was significantly higher for EP67-modified (52%) when compared to 

unmodified (40%; p≤0.05) or scEP67-modified (38%; p≤0.01) NPs (Fig. 4.5E). The 

MFI of FITC in BMDCs treated at 37 oC was significantly higher for EP67-modified 

(4953 AU) when compared to unmodified (2472; p≤0.01) or scEP67-modified (1918 

AU; p≤0.01) NPs. To rule out false positives due to surface adsorption of NPs, we also 

compared NP internalization and MFI of FITC in BMDCs treated with NPs at 4 oC (Figs 
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4.5B, C). In contrast to treatment at 37 oC, there was no difference between the groups 

when BMDCs were treated at 4 oC. Thus, surface modification with EP67 increases 

the internalization of nanoparticles by BMDCs. 

4.2 Surface modification of nanoparticles with EP67 activates BMDCs and 

improves antigen presentation to T-cells. 

Although the level of antigen uptake is an important criterion, it is not enough 

to induce T-cell activation. For generating effective immune responses, it is necessary 

that the antigen is presented to T-cells by activated antigen-presenting cells that have 

upregulated expression of co-stimulatory molecules [145, 149]. Antigen presentation 

in the absence of co-stimulation leads to T-cell anergy and induces antigen tolerance 

[24, 150], an undesirable outcome for vaccination. 

 To determine if the surface modification of nanoparticles activates BMDCs, we 

treated immature murine BMDCs with NP(OVA), scEP67-NP(OVA) and EP67-

NP(OVA) for 24 h and compared the surface expression levels of BMDC activation 

markers CD80, CD86 and MHC II by flow cytometry (Fig. 4.6). The expression of 

activation markers, as measured by MFI, was significantly higher on BMDCs treated 

with EP67-NP(OVA) [CD80 – 43306 AU, CD86 – 1221 AU, MHC-II – 26491 AU] when 

compared to BMDCs treated with NP(OVA) [CD80 – 19441 AU (p≤0.01), CD86 – 792 

AU (p≤0.01), MHC II – 15295 AU (p≤0.01)], and scEP67-NP(OVA) [CD80 – 30607 AU 

(p≤0.001), CD86 – 812 AU (p≤0.01), MHC-II – 20806 AU (p≤0.001)]. Thus, surface 

modification of nanoparticles with EP67 activates BMDCs better than unmodified and 

scEP67-modified nanoparticles.  
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 To determine if the activation of BMDCs by surface-modified nanoparticles 

translates into increased antigen cross-presentation/presentation via the MHC I/II 

pathways, we co-incubated nanoparticle-treated BMDCs with OVA-responsive T-cell 

hybridomas CD8OVA1.3 (MHC-I/OVA257–264) and DOBW (MHC-II/OVA323-339) for 18 h 

and compared the concentrations of IL-2 in the culture supernatant by ELISA. IL-2 is 

secreted by T-cells upon T-cell receptor ligation by cognate peptide-MHC complexes 

[151] on activated APCs, and therefore can be used as a surrogate for antigen 

presentation [152]. The concentration of IL-2 was significantly higher in the 

supernatants of DOBW cells (Fig. 4.7A) when co-incubated with EP67-NP(OVA)- 

treated BMDCs [EP67-NP(OVA) -770.47 pg/mL; NP(OVA) -510.46 pg/mL (p≤0.001); 

scEP67-NP(OVA) -460.41 pg/mL (p≤0.001)]. Similarly, the IL-2 concentrations in 

CD8OVA1.3 cell supernatant (Fig. 4.7B) co-incubated with EP67-NP(OVA)-treated 

BMDCs [96.34 pg/mL] was significantly higher when compared to CD8OVA1.3 cells 

co-incubated with NP(OVA)- [59.90 pg/mL (p≤0.001)] and scEP67-NP(OVA)- [51.22 

pg/mL (p≤0.001)] treated BMDCs. Thus, BMDCs treated with nanoparticles surface-

modified with EP67 were significantly better at antigen cross-

presentation/presentation when compared to unmodified or scEP67-modified 

nanoparticles. 

4.3 Immunization with EP67 surface-modified OVA-encapsulated PLGA NPs 

increases protection against primary mucosal infection with LM-OVA. 

 In our earlier studies, we found that EP67, when conjugated to a CD8+ T-cell 

epitope, can be used as a mucosal adjuvant to improve protection against respiratory 
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infection with murine cytomegalovirus (MCMV) [74] and also that encapsulation of 

EP67-conjugated CTL epitope in biodegradable nano- and micro- particles improves 

protection against MCMV when compared to free vaccine [153]. However, the effect 

of conjugating EP67 onto the surface of biodegradable NPs on the immune responses 

generated against encapsulated antigen is not known.  

 Recombinant Listeria monocytogenes expressing ovalbumin (LM-OVA) has 

been routinely utilized as a model pathogen to study the efficacy of novel immunization 

strategies using ovalbumin as a model antigen [154, 155].  Although the natural route 

of infection for Listeria monocytogenes is the oral route, mice were demonstrated to 

be susceptible to intranasal challenge with peak bacterial titers in lungs, liver and 

spleen on day 3[156]. Thus, the respiratory challenge with LM-OVA can be used as a 

model for testing efficacy of mucosal immune responses generated by immunization. 

 To determine if surface modification of PLGA NPs with EP67 affects the 

efficacy of immune response against the encapsulated antigen, we administered 6-

week old female C57Bl/6 mice with vehicle alone (PBS), encapsulated OVA NPs 

(NP(OVA)) and encapsulated OVA NPs surface-modified with EP67 (EP67-NP(OVA)) 

in a volume (50 µL) which is expected to reach the total respiratory tract, including the 

lungs [141] (Fig. 5A). We then infected the mice 14 days’ post-immunization with sub-

lethal dose[156] (2 × 107 CFU/ 50µL) of Listeria monocytogenes expressing OVA (LM-

OVA) and compared peak bacterial titers in lungs, liver and spleen three days post-

infection[156] (Fig. 4.8A).   
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 LM-OVA titers in mice immunized with EP67-NP(OVA) [2.751×108 CFU/g] in 

lungs (Fig. 4.8B) were significantly lower when compared to NP(OVA)- [1.275×109 

CFU/g; P = 0.0122] and PBS- [1.528×109 CFU/g; P = 0.0026] treated mice. In liver 

(Fig. 4.8C) the titers in EP67-NP(OVA)- [2.724×106 CFU/g] treated mice were 

significantly lower than in NP(OVA)- [1.430×108 CFU/g; P = 0.0099] treated mice and 

no statistical difference when compared to PBS- [1.015×108 CFU/g; P = 0.0573] 

treated mice. Similarly, in spleen (Fig. 4.8D), titers in EP67-NP(OVA) [2.529×107 

CFU/g] treated mice were significantly lower than in NP(OVA) [1.738×108 CFU/g; P = 

0.0028] treated mice; whereas there was no statistical difference when compared to 

PBS- [9.242×107 CFU/g; P = 0.1356] treated mice. Thus, immunization with EP67 

surface-modified nanoparticles increased the efficacy of immune response against the 

encapsulated antigen. 

4.4 Respiratory immunization with EP67 surface-modified OVA encapsulated 

PLGA NPs increases the magnitude of mucosal and systemic antigen-specific 

T-cells. 

Effective protection against viral and intracellular bacterial infection requires 

potent pathogen-specific CTL responses[14, 157]. Resistance to intravenous 

challenge with LM-OVA, an intracellular pathogen, has been demonstrated to be 

primarily due to OVA-specific CD8+ T-cells but not antigen-specific humoral 

responses. Given that respiratory immunization with EP67-NP(OVA) increased 

protection against respiratory challenge with LM-OVA, it is expected that respiratory 
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immunization with EP67-NP(OVA) would increase the proportions of OVA-specific 

systemic and mucosal T-cells.  

To determine if respiratory immunization with EP67-NP(OVA) increases the 

magnitude of OVA-specific T cell responses, we again administered mice with vehicle 

alone (PBS), encapsulated OVA NPs (NP(OVA)) and encapsulated OVA NPs surface-

modified with EP67 (EP67-NP(OVA)) under the same dosage regimen (Fig. 5A). We 

then compared the proportions of OVA-specific activated T cells, on the day of 

infection (14 days post immunization), in lungs and spleen by staining with OVA-

specific tetramers for CD4 (I-Ab / HAAHAEINEA) and CD8 (H-2Kb / SIINFEKL) and 

analyzing by flow cytometry. Immunization with EP67-NP(OVA) generated a higher 

proportion of CD4+CD44hitet+ cells in lungs (Fig. 4.9A) and spleen (Fig. 4.9B) by 

about 0.5% and 2% over NP(OVA)- or PBS-treated animals. Furthermore, EP67-

NP(OVA) generated a higher proportion of CD8+CD44hitet+ cells than NP(OVA) or 

PBS in lungs (Fig. 4.9C) by 0.2% and in spleen (Fig. 4.9D) by 0.8%. Thus, respiratory 

immunization with EP67-NP(OVA) increases the proportion of systemic and mucosal 

antigen-specific T-cells. 

4.5 Respiratory immunization with EP67 surface-modified OVA-encapsulated 

NPs affects CD127/KLRG1 memory subsets of systemic antigen-specific CD8+ 

and CD4+ T-cells. 

      Effective immunization against a pathogen requires the generation of a stable 

pool of long-lived antigen-specific memory T-cells which can respond quickly to 

protect against infection [158]. It is possible to identify memory precursor cells with the 
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potential to become long-lived memory cells during the peak of T-cell response 

generated post-immunization by analyzing the cell surface expression of IL-7Rα 

(CD127) and KLRG1 [159, 160]. Based on CD127 and KLRG1 expression, T-cells 

can be classified into early effector cells (EEC - CD127-KLRG1-), memory precursor 

effector cells (MPEC - CD127+KLRG1-), short-lived effector cells (SLEC - CD127-

KLRG1+) and, double positive effector cells (DPEC - CD127+KLRG1+)[160, 161]. 

Although studies have shown that all the subsets have similar potential to clear 

pathogens, only EECs and MPECs have the potential to become long-lived memory 

cells[161].  

    To determine if respiratory immunization with EP67-NP(OVA) affects 

CD127/KLRG1 memory subsets of systemic antigen-specific CD4+ and CD8+ T-cells, 

we compared the proportions of CD127/KLRG1 subsets within the CD4+CD44+tet+ 

and CD8+CD44+tet+ cells generated in the spleens using flow cytometry. EP67-

NP(OVA) generated higher proportions of SLEC (CD4 - ~16% / CD8 - ~13%), DPEC 

(CD4 - ~3% / CD8 - ~0.8%) and MPEC (CD4 - 5% / CD8 - ~38%) compared to 

NP(OVA) (Fig. 4.10). On the other hand, the proportion of EEC was found to be higher 

in NP(OVA) by ~23% in CD4+ cells and ~42% in CD8+ cells. Thus, surface 

modification of PLGA NPs with EP67 affects the CD127/KLRG1 memory subsets of 

systemic CD4+ and CD8+ T-cells. 
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4.6 Respiratory immunization with EP67 surface-modified OVA-encapsulated 

NPs affects CD127/KLRG1/CD62L memory subsets of systemic antigen-specific 

CD8+ and CD4+ T-cells. 

    Activated antigen-specific CD44+ T-cells can also be classified into functionally 

heterogeneous memory subsets based on the cell surface expression of CD127, 

KLRG1, and lymph node homing receptor CD62L [162]. SLECs (SLEC– CD127- 

KLRG1-CD62L-) have high cytolytic potential in vitro, but lack long-term survival.  

Effector memory precursor cells (TEM MPEC- CD127+KLRG1-CD62L-) demonstrate 

both cytolytic activity and long-term survival, whereas central memory precursor cells 

(TCM MPEC- CD127+KLRG1-CD62L+) have low cytolytic activity but have long-term 

survival and high homeostatic proliferation.   

    To determine if respiratory immunization with EP67-NP(OVA) affects 

CD127/KLRG1/CD62L memory subsets of systemic antigen-specific CD4+ and CD8+ 

T-cells, we compared the proportions of CD127/KLRG1/CD62L subsets within the 

CD4+CD44+tet+ and CD8+CD44+tet+ cells generated in the spleens using flow 

cytometry. EP67-NP(OVA) generated higher proportions of TEM MPEC (CD4 - ~9% / 

CD8 - ~28%), and TCM MPEC (CD4 – 0.3% / CD8 - ~2%) compared to NP(OVA) (Fig. 

4.11). In contrast, the proportion of SLEC was found to be higher in NP(OVA) by ~8% 

in CD4+ cells and ~2% in CD8+ cells. Thus, surface modification of PLGA NPs with 

EP67 affects the CD127/CD62L memory subsets of systemic CD4+ and CD8+ T-cells. 
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4.7 Respiratory immunization with EP67 surface-modified OVA encapsulated 

NPs affects cytokine secretion profile of epitope responsive systemic T-cells. 

     To determine the effect of respiratory immunization with EP67-NP(OVA) on the 

cytokine secretion profile of epitope responsive T-cells, we ex vivo restimulated the 

splenocytes harvested 14 days post-immunization with the immunodominant OVA 

CD4 epitope (ISQAVHAAHAEINEAGR) for 48 h and analyzed the supernatants for 

Th1 (IL-2, IL-6) (Fig. 4.12A), Th17 (IL-17A, IL-22) (Fig. 4.12B) and Th2 (IL4, IL-5) (Fig. 

4.12C) cytokines. Splenocytes isolated from EP67-NP(OVA) treated mice produced 

significantly higher quantities of Th1 (~100%) and Th17 (~300%) cytokines when 

compared to both PBS- and NP(OVA)-treated mice, whereas no difference was found 

in the production of Th2 type cytokines. Thus, respiratory immunization with EP67-

NP(OVA) affects the cytokine secretion profile of CD4 epitope responsive T-cells and 

shifts it towards Th1 and Th17 type responses.  
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Endotoxin-free ovalbumin (OVA) was encapsulated in PLGA 50:50 nanoparticles by 

the W/O/W emulsification / solvent extraction method. (A) Maleimide-activated 2 kDa 

PEG linkers were added to the nanosphere surfaces during OVA encapsulation as 

part of PLLA(10 kDa)-b-PEG(2 kDa)-maleimide diblock copolymers that were 

physically partitioned into nascent PLGA 50:50 nanospheres before complete solvent 

extraction and subsequent lyophilization. The extent that the surfaces of lyophilized 

particles were functionalized with maleimide was determined by 1H-NMR (Fig.4.2). 

(B) EP67 was activated with sulfhydryl groups by the addition of N-terminal Cys 

through a Gly-Arg-Arg-linker and reacted with lyophilized maleimide-activated 

nanospheres resuspended in PBS [pH 7.4]. The extent that the surfaces of lyophilized 

particles were modified with EP67 was determined by amino-acid analysis (Fig.4.3). 

 

 

 

Figure 4.12 Synthetic strategy for modifying the surface of PLGA 50:50 

nanoparticles with EP67 
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Figure 4.2 Surface functionalization of PLGA NPs with PLLA-PEG-MAL was 
confirmed by the presence of PEG peak in the 1H-NMR spectra of the NPs  
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Figure 4.3 Coating of maleimide functionalized NPs with EP67 was confirmed 
by amino acid analysis of blank PLGA-EP67 NPs. 
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Figure 4.4 Internalization of FITC-OVA loaded NPs by BMDCs.  

NP(FITC-OVA), scEP67-NP(FITC-OVA) and EP67-NP(FITC-OVA) were incubated 

with BMDCs on a cover slip placed inside a 24 well plate for 1h, washed 3X with 

PBS, nuclei stained with DAPI and analyzed by confocal microscopy.  
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Immature BMDCs (male C57BL/6) were incubated at (A, B, C) 4°C or (D, E, F) 37°C 

for 2 h with ~1.5 µg of endotoxin-free fluorescein-modified OVA (FITC-OVA) loaded 

in ~20 μg of unmodified PLGA 50:50 nanoparticles [NP(FITC-OVA), dark grey bars], 

PLGA 50:50 nanoparticles surface-modified with inactive scEP67 [scEP67-NP(FITC-

OVA), grey bars], or PLGA 50:50 nanoparticles surface-modified with EP67 [white 

Figure 4.13. Modifying the surface of PLGA 50:50 nanoparticles with EP67 

increases internalization by immature murine bone marrow-derived DCs. 
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bars, EP67-NP(FITC-OVA)] as described in Fig 4.1. Cells were rinsed with PBS, 

stained with viability dye and PE-Cy5 anti-CD11c antibodies, then analyzed by flow 

cytometry. Representative FACS data of median fluorescein staining EVENTS from 

viable CD11c+ BMDCs incubated with the indicated nanoparticles for 2 h at (A) 4°C 

or (D) 37°C. The average percent of total viable CD11c+ BMDCs at (B) 4°C or (E) 

37°C that were FITC-OVA+ ±SD (n=2 wells) and the average median fluorescence 

intensities (MFI) of fluorescein staining of live CD11c+FITC-OVA+ BMDCs at (C) 4°C 

or (F) 37°C ±SD (n=2) between treatment groups were compared by one-way 

ANOVA with Dunnett’s post-test where *p ≤0.05 and **p ≤0.01. Data are 

representative of at least three independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 



69 
 

 

 

Figure 4.6 Modifying the surface of PLGA 50:50 nanoparticles with EP67 
increases the expression of activation markers on the surface of immature 
murine BMDCs 

Immature BMDCs (male C57BL/6) were incubated at 37°C for 24 h with media alone 

[black bars, Media] or media containing ~7.9 µg endotoxin-free OVA loaded in ~100 

μg of uncoated PLGA 50:50 nanoparticles [dark grey bars, NP(OVA)], PLGA 50:50 

nanoparticles surface-modified with inactive scEP67 [grey bars, scEP67-NP(OVA)], 

or PLGA 50:50 nanoparticle surface-modified with EP67 [white bars, EP67-NP(OVA)]. 

BMDCs were then stained with viability dye, anti-CD11c, anti-CD80, anti-MHC-II and 

anti-CD86 antibodies and analyzed by flow cytometry. Average median fluorescence 

intensity ±SD (n=2) of staining CD11c+ cells with (A) PE-Cy5 anti-CD80, (B) anti-

CD86, or (C) anti-MHC II between the indicated treatment groups were compared 

using one-way ANOVA with Dunnett’s post-test where **p≤0.01, ***p≤0.001, and 

****p≤0.0001. Data are representative of at least three independent experiments.  
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Immature BMDCs (C57BL/6) were incubated at 37°C for 2 h with media alone [black 

bars, Media] or media containing ~7.9 µg endotoxin-free OVA-loaded in ~ x mg 

unmodified nanoparticles (~400 nm diam.) [NP(OVA), dark grey bars], nanoparticles 

surface-modified with inactive scEP67 [scEP67-NP(OVA), grey bars] or nanoparticles 

surface-modified with active EP67 [EP67-NP(OVA), white bars] through 2 kDa PEG 

linkers (~0.3 wt% EP67). BMDCs were then washed and incubated with OVA-specific 

CD4+ (DOBW) or CD8+ (CD8 OVA 1.3) T cell hybridomas for 18 h at 37°C. Average 

concentrations of IL-2 ± SD (n=3) released into the media by (A) CD4+ (DOBW) or (B) 

Figure 4.14. Modifying the surface of PLGA 50:50 nanoparticles with EP67 
increases murine BMDC activation of model naïve T cells against encapsulated 

protein in vitro. 
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CD8+ (CD8 OVA 1.3) T cells were determined by ELISA and compared between 

treatment groups using one-way ANOVA with Dunnett’s post-test where **p≤0.01, 

***p≤0.001, ****p≤0.0001. 
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Figure 4.8 Modifying the surface of PLGA 50:50 nanoparticles with EP67 
increases the efficacy of respiratory immunization  

Modifying the surface of PLGA 50:50 nanoparticles with EP67 increases the efficacy 

of respiratory immunization with encapsulated protein against primary respiratory 

infection with L. monocytogenes that ectopically expresses OVA. (A) Vehicle alone 

(PBS), or vehicle containing ~25 µg LPS-free OVA encapsulated in unmodified PLGA 

50:50 nanoparticles [NP(OVA)] or PLGA 50:50 nanoparticles surface-modified with 

EP67 [EP67-NP(OVA)] was administered to naïve female C57BL/6 mice (~6 wk old) 

on Day 0 and Day 7 by IN administration (50 μL). Fourteen days after the final 
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immunization (Day 21), L. monocytogenes ectopically expressing OVA (LM-OVA) was 

administered IN (2 x 107 CFU in 50 µL) and peak titers of LM-OVA (Day 3 post-

infection; Day 24) were determined by CFU assay. Average peak LM-OVA colony 

forming units (CFU) per gram of tissue ± SD (n = 7 mice) in the (B) lungs, (C) liver, 

and (D) spleen were compared using one-way ANOVA with uncorrected Fisher’s LSD 

test. Data are representative of two independent experiments. 
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Modifying the surface of PLGA 50:50 nanoparticles with EP67 increases proportions 

of encapsulated protein-specific mucosal and systemic T cells after respiratory 

Figure 4.15 Modifying the surface of PLGA nanoparticles with EP67 increases 
proportions of antigen-specific mucosal and systemic T cells after respiratory 

immunization. 
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immunization. Naïve female C57BL/6 mice (~6 wk old) were immunized as described 

in Fig.4.8. (Days 0 and 7) and sacrificed on the day of challenge (Day 21).  Proportions 

of (A, B) OVA-specific (tet+) CD4+CD44HI or (C, D) OVA-specific (tet+) CD8a+CD44hi 

cells in the lungs and spleen were determined by flow cytometry. Average 

percentages of CD4+CD44HItet+ cells and CD8+CD44HItet+ cells ±SD (n=4 mice) 

between treatment groups were compared in the respective organs using one-way 

ANOVA with uncorrected Fisher’s LSD test.  
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Figure 4.10 Modifying the surface of PLGA nanoparticles with EP67 affects 
CD127/KLRG1 memory subsets of mucosal T-cells. 

Modifying the surface of PLGA nanoparticles with EP67 affects CD127/KLRG1 

memory subsets of mucosal CD4+ and CD8+ T-cells generated against encapsulated 

protein by respiratory immunization. Naïve female C57BL/6 mice (~6 wk old) were 

immunized as in Fig. 5 and sacrificed on the day of challenge (Day 21). Average 

percent of (A) CD4+CD44HITet+ or (B) CD8a+CD44HITet+ cells in the lungs that 

were SLEC (CD127-KLRG1+), DPEC (CD127+KLRG1+), MPEC (CD127+KLRG1-), 

or EEC (CD127-KLRG1-) ± SD (n=4 mice) were determined by flow cytometry and 

compared using two-tailed unpaired t-test. 
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Modifying the surface of PLGA nanoparticles with EP67 affects 

CD127/KLRG1/CD62L memory subsets of systemic CD4+ and CD8+ T cells generated 

against encapsulated protein after respiratory immunization. Naïve female C57BL/6 

mice (~6 wk old) were immunized as in Fig. 4.8 and sacrificed on the day of challenge 

(Day 21).  Average proportions of (A) CD4+CD44HITet+ or (B) CD8a+CD44HITet+ cells 

in the spleen that were SLEC (CD127-KLRG1-CD62L-), TEM MPEC (CD127+KLRG1-

CD62L-), or TCM MPEC (CD127+KLRG1-CD62L+) ± SD (n=4 mice) were determined 

by flow cytometry and compared using two-tailed unpaired t-test. 

Figure 4. 16 Modifying the surface of PLGA nanoparticles with EP67 affects 

CD127/KLRG1/CD62L memory subsets of T cells. 
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Naïve female C57BL/6 mice (~6 wk old) were immunized as in Fig. 4.8. Splenocytes 

were harvested on the day of infection (Day 21) and incubated with OVA CD4+ epitope 

Figure 4.17 Modifying the surface of PLGA nanoparticles with EP67 selectively 

affects the cytokine secretion pattern of CD4+ epitope-responsive splenocytes. 
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for 48h. Average concentrations ±SD (n=4) of (A) Th1, (B) Th17, or (C) Th2 cytokines 

in the media were determined by multiplex assay and compared using one-way 

ANOVA with uncorrected Fisher’s LSD test. Results are representative of at least two 

independent experiments. 
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 Table 4.1 Characteristics of OVA-encapsulated PLGA nanoparticles 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation 

 

Loading 
(µg/mg ± SD) 

Diameter 
(nm ± SD) 

Polydispersity Index  
(PDI ± SD) 

Zeta Potential 
(mV ± SD) 

Peptide 
Content 
(µg/mg) 

NP(OVA) 78 ± 3 332 ± 4 0.20 ± 0.02 -16.8 ± 0.5 
- 

scEP67-NP(OVA) 79 ± 2 432.8 ± 0.8 0.41 ± 0.03 -12.5 ± 0.6 
1.75 ± 0.2 

EP67-NP (OVA) 78 ± 4 382 ± 7 0.171 ± 0.002 -13.3 ± 0.7 
0.99 ± 0.2 
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This study provides evidence that surface modification of OVA encapsulated 

nanoparticles with EP67 increases the efficacy of immune responses against OVA in 

female C57BL/6 mice after respiratory immunization. We found that respiratory 

immunization with EP67 surface modified OVA encapsulated PLGA nanoparticles (i) 

increased protection against respiratory infection with OVA-expressing Listeria 

monocytogenes by significantly reducing bacterial burden at mucosal (lungs) and 

systemic (liver and spleen) sites (Fig 4.8), (ii) increased magnitudes of OVA-specific 

CD4+/CD8+ T-cells in lungs and spleen (Fig 4.9), (iii) increased proportions of short-

lived effector cells (SLECs), double positive effector cells (DPECs), memory precursor 

effector cells (MPECs) and decreased early effector cells (EECs) in lungs (Fig 4.10), 

(iv) increased effector memory MPECs and central memory MPECs without affecting 

SLECs in spleen (Fig 4.11) and (v) affected the cytokine secretion profile of 

splenocytes responsive to MHC II epitope of OVA (Fig 4.12). 

 Our study also provides evidence that surface modification of OVA-

encapsulated NPs with EP67 (i) increases internalization of nanoparticles by immature 

BMDCs when compared to uncoated or inactive scEP67 coated nanoparticles (Fig. 

4.5), (ii) increases activation of BMDCs, as measured by upregulation of activation 

markers MHC-II, CD80 and CD86, when compared to uncoated or inactive scEP67 
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coated nanoparticles (Fig. 4.6) and, (iii) increases antigen-presenting potential of 

BMDCs, determined by activation of OVA-specific T-cell hybridomas CD8OVA1.3 

(CD8+) and DOBW (CD4+) by BMDCs treated with to uncoated, inactive scEP67 or 

EP67 coated nanoparticles (Fig. 4.7).  

Dendritic cells are the most potent antigen-presenting cells that play a major 

role in generating adaptive immune responses against invading pathogens. Several 

studies have demonstrated that directing antigen to DCs by targeting pattern 

recognition receptors (PRRs), using antibodies or PRR ligands, can enhance antigen 

presentation and thus improve the efficacy of immunization. In our earlier studies, we 

have shown that EP54-, a sister analog of EP67, containing vaccine constructs are 

rapidly internalized via the C5aR present on human monocyte-derived DCs and 

presented in the context of HLA I/II. Given that EP67 has a 1000-fold higher affinity to 

C5aR than EP54, it is reasonable to expect that DCs will similarly internalize and 

present EP67-containing vaccines. EP67 is also expected to improve antigen 

processing and presentation directly by activating DCs and, indirectly by inducing DCs 

to produce various cytokines and chemokines that favor a pro-inflammatory immune 

response, as evidenced by the upregulation of maturation markers CD80, CD40, and 

CD54, inducing secretion of chemokines (CCL2, CCL3, CCL4, CXCL8, and CXCL10) 
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and cytokines (IL-6, IL-1β, TNF-α, and IL-10) by human monocyte-derived DCs 

(unpublished data). These studies together can be used to explain the results of our 

current study. EP67 on the surface of NPs upon interaction with C5aR on antigen 

presenting cells (i) induces receptor-mediated internalization of NPs, (ii) followed by 

activation of APCs resulting in increased surface expression of antigen-presenting 

molecules and, consequently, (iii) better activation of CD4+ and CD8+ T-cells resulting 

in enhanced immune responses against the encapsulated antigen.  

The effective immune response against an invading pathogen involves the 

generation of a large pool of pathogen-specific effector T-cells (TEFF), some of which, 

after the infection is resolved, transition into effector memory (TEM) and central 

memory cells (TCM) with high proliferative and survival potential. Although, the rate of 

transition from TEFF to TEM and TCM depends on the nature of immunization and 

presence of antigen, the long-term fate of TEFF cells is decided during the initial phase 

of T-cell activation. The long-term fate of T-cells depends on the duration of initial DC-

T-cell interactions which is affected by the dose of antigen-experienced by DCs. T-

cells that interact with DCs exposed to high antigen dose are expected to differentiate 

into memory T-cells.  
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 Keeping the above information in mind, the increased memory precursor 

effector cells observed after respiratory immunization with EP67 surface-modified NPs 

when compared to unmodified NPs may be due to faster translocation of EP67 surface 

modified NPs across the respiratory epithelium, through M-cells which may express 

C5aR alike intestinal M-cells, into mucosal-associated lymphoid tissue (MALT) which 

is rich in the lymphoid cells required to generate an immune response. The higher 

proportions of MPECs can also be explained by increased uptake of EP67 surface-

modified NPs by mucosal APCs through C5aR, and this is supported in part, by the 

increased internalization of EP67 surface-modified NPs by BMDCs in vitro observed 

in this study. However, the effect of particle size on internalization by APCs and 

trafficking across epithelium cannot be overlooked. As such, both unmodified and 

EP67 surface modified NPs are in the optimal size range required for APC 

phagocytosis and translocation across the epithelium (although not receptor mediated 

in the case of unmodified NP), therefore it is possible that EP67 surface modification 

is only accelerating the transition of effector cells into memory precursors, as 

supported by the higher proportion of early effector cells in the unmodified NP-treated 

animals (Fig. 4.9).  
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6.1 Summary and Conclusions 

  Vaccination is one of the most effective ways to prevent infectious diseases, 

however, there are several diseases against which conventional vaccination 

strategies have failed to generate effective immune responses or have a low safety 

profile. Furthermore, conventional vaccines consisting of live attenuated or 

inactivated pathogens are difficult to develop and have the potential to revert to 

pathogenicity. Subunit vaccines composed of antigenic proteins or peptides can 

potentially overcome the limitations of conventional vaccines, but have limited 

efficacy because of low immunogenicity, inability to generate T-cell immunity, rapid 

clearance from administration site and insufficient delivery to antigen presenting 

cells. Thus, there is an urgent need to develop novel strategies that can overcome 

the disadvantages of subunit vaccines.   

  In this study, we report the development of C5aR-targeted biodegradable 

PLGA nanoparticles that improve the efficacy of respiratory immunization by 

enhancing the immune responses generated against the encapsulated model 

antigen ovalbumin. We have shown that surface modification of PLGA nanoparticles 

with C5aR ligand EP67 will increase the internalization of nanoparticles by BMDCs 

and simultaneously activate BMDCs as shown by the upregulation of MHC II and 

costimulatory molecules. The activated BMDCs also appear to have higher antigen-

presenting potential as shown by the increased secretion of IL-2 by OVA-specific T-

cell hybridomas DOBW and CD8 OVA1.3.  

Furthermore, we have demonstrated respiratory immunization with EP67 

surface-modified OVA-encapsulated PLGA nanoparticles (i) increased protection 



88 
 

against respiratory infection with LM-OVA by significantly reducing bacterial numbers 

(ii) increased magnitudes of OVA-specific CD4+/CD8+ T-cells in lungs and spleen, (iii) 

increased proportions of short-lived effector cells (SLECs), double positive effector 

cells (DPECs), memory precursor effector cells (MPECs) in lungs, (iv) increased 

effector memory MPECs and central memory MPECs without affecting SLECs in 

spleen and (v) affected the cytokine secretion profile of splenocytes responsive to 

MHC-II epitope of OVA. 

In summary, our findings suggest that surface modification of biodegradable 

nanoparticles increases the efficacy of respiratory immunization against the 

encapsulated antigen by increasing magnitude and proportions of memory precursor 

effector cells, which have the highest potential to become long-lived memory cells, 

and provide long-term immunity. Thus, surface modification of biodegradable 

nanoparticles encapsulating the desired antigen with EP67 may be an effective 

approach to increase the efficacy of mucosal vaccines,   

6.2 Future Directions 

  Although the work presented here demonstrates the proof of concept that 

surface modification of PLGA nanoparticles can increase the efficacy of respiratory 

immunization against the encapsulated antigen, the formulation by itself is not 

optimized. It is important to understand the effect of different formulation parameters 
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like the size of the particle, release rate of antigen, the length of PEG cross-linker 

and the extend of surface modification with EP67 will have on the immune 

responses. Therefore, the next step would be to modify the above-mentioned 

parameters and optimize the vaccine formulation. After an optimized formulation is 

achieved, the next goal is to test the efficacy of the formulation in protecting mice 

from respiratory infection with murine cytomegalovirus, using protective antigens 

from MCMV as the encapsulated antigen, when compared to immunization with co-

administration of inactivated virus with EP67.  
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