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ABSTRACT 

ROLE OF EPS15 HOMOLOGY DOMAIN-CONTAINING PROTEIN 4 (EHD4) IN THE 

KIDNEY 

Shamma S. Rahman, Ph.D. 

University of Nebraska Medical Center, 2018 

Supervisor: Erika I. Boesen, Ph.D. 

In the kidney, endocytic recycling regulates the abundance of channels and transporters 

in the membrane of the tubular epithelium, and thereby controls the kidney’s ability to 

regulate water homeostasis. In recent years, a family of proteins called Eps15 homology 

domain-containing (EHD) proteins has emerged as important regulators of the endocytic 

recycling pathway. Mammals express four paralogs of EHD proteins, EHD1-4, that are 

expressed in different tissues. Although EHD4 is expressed in the kidney, the specific 

physiological role of EHD4 in the kidney remains unknown. Therefore, this dissertation 

was focused to elucidate the physiological role of EHD4 in the kidney. In the mouse kidney, 

EHD4 was found to be expressed most abundantly in the inner medullary collecting duct 

(IMCD), a site for fine-tuning final urine concentration. Studying the renal parameters of 

Ehd4-/- (EHD4-KO) mice showed that EHD4-KO mice had a higher urine flow and lower 

urine osmolality than wild-type (WT) mice. EHD4 was found to be expressed in the 

hypothalamus, but its deletion did not affect the plasma osmolality or arginine vasopressin 

(AVP) excretion. EHD4-KO mice were able to exhibit anti-diuretic responses to 24-h water 

restriction similar to the WT mice, suggesting that the diuretic phenotype of EHD4-KO 

mice is due to defective renal water and solute handling. Formation of a concentrated 

urine requires the presence of the renal medullary osmotic gradient, partially contributed 

by renal urea handling, and fine-tuning of water reabsorption via aquaporin (AQP) 2 in the 
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IMCD. Given the abundant expression of EHD4 in the IMCD, it was hypothesized that 

EHD4 regulates AQP2 trafficking in the principal cells and renal urea handling. Both in 

vivo and in vitro analysis showed that in the absence of EHD4, the apical membrane 

abundance of AQP2 was significantly attenuated. EHD4 was also found to regulate 

basolateral membrane abundance of AQP4 in principal cells. Although EHD4 was found 

to co-localize with AQP2, immuno-complex containing AQP2 did not show the presence 

of EHD4, suggesting a lack of direct physical interaction between the two proteins. 

Additionally, EHD4-KO mice had higher urea excretion than WT mice, suggesting a 

dysfunctional urea handling in these mice. To delineate the exact role of EHD4 in renal 

urea handling, mice were subjected to a series of experiments involving intake of modified 

protein diets, which confirmed a role of EHD4 in the regulation of renal urea handling. 

Overall, this dissertation describes a novel role for EHD4 in the regulation of AQP2, AQP4, 

and renal urea handling in the kidney. 
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1 Parts of the material presented in this section was previously published in:  
1Rahman, S. S., and Boesen, E. I. Outside the mainstream: novel collecting duct proteins 
regulating water balance. Am. J. Physiol. Renal Physiol. 311: F1341-F1345 (2016) 
 
2Rahman, S.S., Moffitt, A. E. J., Trease, A., Foster, F. W., Storck, M., Band, H., Boesen, E. I. EHD4 
is a novel regulator of urinary water homeostasis. FASEB J. (2017) 



2 
 

Physiological functions of the kidney 

The kidney has three broad physiological functions: secretion of hormones, 

gluconeogenesis, and maintenance of extracellular homeostasis of pH and blood 

electrolytes. The functional unit of the kidney, called the nephron, consists of two parts: 

the glomerulus, which is involved in the ultrafiltration of the blood, and the tubule, which 

consists of specialized epithelial cells involved in the reabsorption and secretion process 

(65).  

The renal corpuscle consist of glomerular capillaries and the glomerular capsule 

known as Bowman’s capsule. Blood undergoes filtration as it passes through the renal 

corpuscles, wherein large cells and proteins are retained in the blood in the glomerular 

capillaries, and water and solutes freely pass into the Bowman’s space. The kidneys filter 

180 liters of blood each day in an average 70 kg human and the rate at which the kidney 

filters blood is called glomerular filtration rate (156). 

The filtrate entering the Bowman’s space then passes into the nephron tubules. 

The ultrafiltrate undergoes regulated stages of reabsorption, which involves removal of 

water and solute from the tubular fluid and transporting it back to the blood, and secretion, 

which involves releasing molecules into the tubular fluid from the epithelium as it passes 

down the nephron tubules. The first part of the nephron tubule is the proximal convoluted 

tubule. The apical (luminal) surface of the epithelial cells of the proximal tubules contains 

dense microvilli and the cytoplasm of these cells contains numerous mitochondria, 

allowing these cells to participate in the bulk reabsorption of water and solute. Next, the 

filtrate enters the loop of Henle, which consists of thin descending limb, thin ascending 

limb, and thick ascending limb. Next, the filtrate passes to the distal convoluted tubule, 

which is lined by small cuboidal epithelial cells. Finally the filtrate reaches the collecting 

duct, which consist of two major types of cells: intercalated cells, involved in acid-base 
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regulation, and the principal cells, involved in the fine-tuning of urine volume and 

composition. An adult human produces 1 to 2 liters of urine in average, which is regulated 

by factors like the hydration state, physical activity, environmental conditions, weight, and 

the health of the person (65, 156).   

Urine formation and composition 

Urine formation begins as soon as the ultrafiltrate enters the proximal tubules, 

where complete reabsorption of the essential molecules, such as glucose and amino 

acids, takes place. About 65-70% of filtered sodium is reabsorbed in the proximal tubule 

via the sodium-hydrogen exchanger (NHE) (115) and sodium-glucose cotransporter, lining 

the apical membrane of the proximal tubules. Sodium reabsorption in the proximal tubule 

is coupled to water reabsorption, wherein water enters and exits the epithelial cells via 

aquaporin (AQP) 1(140).  

The descending thin limb of the loop of Henle is highly permeable to water due to 

the presence of AQP1 (23, 153), but impermeable to sodium due to a lack of sodium 

channels and transporters in the membrane (95). On the other hand, the ascending limb 

of the loop of Henle is permeable to sodium due to the presence of sodium-potassium-

chloride cotransporter 2 (NKCC2) (62), as well as NHE, that allows reabsorption of 25% 

of filtered sodium. However, this section of the nephron is completely impermeable to 

water due to a lack of any aquaporin water channels (162). Such an arrangement, which 

is discussed in detail in the following section, allows the formation of concentrated urine. 

The distal convoluted tubules of the nephron contains the sodium-chloride cotransporter 

(NCC) (52), which participates in the reabsorption of 5% of filtered sodium. The collecting 

duct offers the final stages of regulation of the volume and composition of urine, and about 

5% of sodium reabsorption occurs via the epithelial sodium channel (ENaC) (54). Water 

reabsorption in the distal parts of the nephron is variable and this variability allows the 
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kidney to regulate the water excretion and reabsorption to maintain a constant water 

balance. A detailed role of the water channels of the collecting duct is discussed in the 

following section. 

Water balance 

Maintaining extracellular fluid osmolality is integral for survival. Imbalance in body 

water can have adverse effect on the cell size and function. The hypothalamus, 

neurohypophysis, and the kidney are involved in the regulation of water balance in the 

body (33).   

Clinical implications of water imbalance 

A failure to maintain water balance can result from different forms of urine-

concentrating defects. Diabetes insipidus is such a disorder where the patient produces 

large volumes of urine. Defects in the synthesis or secretion of arginine vasopressin (AVP) 

can result in central diabetes insipidus (2), whereas unresponsiveness of the kidney to 

AVP can cause nephrogenic diabetes insipidus (85, 111). Unmanaged polyuria, such as 

during diabetes insipidus, can cause the osmolality of the plasma to elevate and result in 

an often-fatal condition known as hypernatremia. Treatment options for these diseases 

are limited and a major limiting factor in designing better therapies for such conditions of 

water imbalance is the lack and gap in the knowledge of the detailed molecular and cellular 

pathways that regulate the hypothalamic-neurohypophyseal-renal axis. The physiological 

process of maintaining a net zero water balance is very tightly regulated at the cellular 

level. It is, therefore, essential to study these pathways to form a comprehensive 

knowledge of how the body regulates water balance. 
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Role of the collecting duct in fine-tuning water balance 

The ability of the kidney to produce a concentrated urine (i.e. reabsorbing more 

water) or dilute urine (i.e. excreting more water) depends on the state of water-

permeability of the nephron sections. The water-permeability of the nephron structures 

can be altered by acutely regulating the paracellular and transcellular water flow. The 

paracellular route is regulated by the tight junction proteins, which act as zippers to seal 

the intercellular spaces between adjacent epithelial cells (73). The tight junction proteins 

along the thick ascending limb and collecting duct are highly expressed, making these 

segments water-impermeable. However, the water-permeability of the collecting duct can 

be increased by AVP by increasing the transcellular route of water reabsorption via the 

regulation of the membrane trafficking of aquaporins (AQPs) of the IMCD.  

Aquaporins of the kidney 

Water homeostasis is a critical process involving the coordinated action of the 

hypothalamus, including the thirst mechanism and control of AVP release, and the 

kidneys, where water is either reabsorbed or excreted in the urine. Reabsorption of water 

from the tubular lumen into the interstitium occurs via specialized water channels called 

AQPs (96, 198). The kidney expresses different subtypes of AQPs in different segments 

of the nephron. AQP1 is constitutively expressed in the apical membrane of the epithelium 

of proximal tubules and thin descending limb of the loop of Henle (96). Although AQP1-

mediated water transport in these proximal sections of the kidney contribute to the bulk 

reabsorption of water, the collecting duct (CD) represents the key site for fine-tuning of 

water balance by the kidney. AQP2, the apical water channel of the principal cells of the 

CD, is the only AQP whose presence on the apical membrane of the principal cell is 

regulated by AVP, and as a result determines the water permeability of the CD (198). 

Humans harboring mutation in the AQP2 gene develop nephrogenic diabetes insipidus 
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(34). The principal cells of the CD constitutively expresses AQP3 and AQP4 on the 

basolateral membrane (140).  

General structure and expression profile of AQP2 

AQP2 is the water channel found in the apical plasma membrane of principal cells 

of the collecting ducts of the kidney. Cloning and expression analysis of AQP2 was first 

performed in 1993 (51) and since then the regulatory mechanisms of AQP2 has been 

extensively studied. AQP2 is composed of 6 transmembrane α-helices, with both the 

amino and carboxyl ends facing the inside of the cell (59). The expression and trafficking 

of AQP2 in the principal cells is regulated by AVP and is required for the water permeability 

of the collecting duct of the kidney. A large number of different mutations of AQP2 gene 

have been found and a defect in its trafficking causes nephrogenic diabetes insipidus, 

where the kidney is unable to reabsorb water and concentrate urine (128). However, most 

of the time, nephrogenic diabetes insipidus occurs due to a mutation of the vasopressin 

V2 receptor (129). 

AVP-dependent regulation of AQP2 

AVP is a major regulator of renal water reabsorption and exerts its effects on the 

kidney through its G-protein coupled receptor. The collecting duct expresses V2 receptor, 

a Gs-coupled receptor, on the basolateral membrane of the principal cells. Similar to other 

Gs-coupled receptors, activation of V2 receptor increases the level of cyclic-AMP (cAMP) 

and activates protein kinase A (PKA) in the principal cells. Extensive studies on rodents 

have been performed to understand the effect of AVP on the regulation of AQP2 in 

principal cells. AVP-mediated regulation of AQP2 can be classified as being short-term, 

which occurs within minutes, and as long-term, which can take place over several hours 

to days (75, 140).  
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The short-term regulation of AQP2 by AVP involves the changes in the cellular 

localization of AQP2 (139). In the presence of AVP, localization of AQP2 is shifted from 

the cytoplasm to the apical plasma membrane, and is mediated by a combination of both 

an increased exocytosis and inhibition of endocytosis of AQP2-containing vesicles (18). 

AVP mediates the changes in the localization of AQP2 by changing the phosphorylation 

status of AQP2 that results in an increased forward trafficking of the channel and retention 

of AQP2 in the apical membrane (126). Exocytosis of AQP2 is dependent on the 

phosphorylation of the serine-256 residue (50), whereas the phosphorylation of serine-

269 strongly favors the retention of AQP2 in the apical plasma membrane and inhibits its 

endocytosis (124). AVP also reduces the phosphorylation on serine-261 residue (113), 

although the role of this phosphorylation site in the trafficking of AQP2 remains unknown. 

In addition to inducing changes in the phosphorylation status of AQP2, AVP also regulates 

the redistribution of AQP2 by modulating the cytoskeletal proteins such as actin (145). 

The long-term effect of AVP on AQP2 involves changes in the total abundance of 

the channel in principal cells (67), which is regulated in at least two ways. Firstly, AVP 

increases the half-life of AQP2 protein in principal cells, such as from 9 to 14 hours in 

cultured principal cells (169). Secondly, AVP increases the transcription of the AQP2 

gene, which ultimately increases the translation of AQP2 mRNA (120). The promoter 

region of AQP2 has binding sites for cAMP responsive element binding (CREB) protein, 

the binding of which increases the transcription of AQP2 (209).  

Much progress has been made into understanding the molecular mechanisms 

involved, especially as they relate to the classical AVP-AQP2 axis (18, 66, 75, 140). 

However, recent studies have implicated several novel proteins and local factors in the 

regulation of water balance, as discussed below, and these may or may not act by 

influencing the components of the classical linear AVP-AQP2 axis upstream of AQP2.  
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AVP-independent regulation of AQP2 

Several studies have called into question whether cAMP is necessary for apical 

trafficking of AQP2 downstream of activation of G protein-coupled receptors such as the 

V2-receptor. A recent study highlighted a disconnect between the time course of cAMP 

elevation in response to stimulation of these Gs coupled receptors and the apical 

membrane targeting of AQP2 (150). Treatment of cells with an adenylyl cyclase (AC) 

inhibitor did not prevent AQP2 membrane targeting (150), and AC6-null mice do not 

increase cAMP in response to AVP yet still are able to concentrate their urine in response 

to water restriction or d-deamino-arginine vasopressin (dDAVP), an analog of AVP 

administration (161). Accordingly, cAMP-independent signaling pathways for AQP2 apical 

trafficking in response to activation of these receptors await elucidation. 

Regulation of AQP2 by prostaglandin E2 (PGE2) 

One of the major local factors influencing the trafficking of AQP2 in principal cells 

is prostaglandin E2 (PGE2). PGE2 is a lipid mediator derived from the metabolism of 

arachidonic acid, which is converted to PGE2 by the sequential actions of 

cyclooxygenase-1 and -2 and PGE synthase enzymes. PGE2 exerts its influence via 4 

different types of G protein-coupled prostanoid receptors, namely EP1-4 (14). The CD 

expresses all 4 of these receptors. EP2 is only expressed in the cortical collecting ducts 

(84), whereas the other EPs are expressed all along the CD (6, 15, 16). EP2 and EP4 are 

coupled to Gs protein, whereas EP1 and EP3 are coupled mainly to Gi protein (14). This 

differential coupling pattern of EPs results in evoking opposite effects on AQP2 trafficking, 

and ultimately on urine-concentrating mechanisms. 

In rat IMCD, PGE2 and agonists of EP1 and EP3 have been shown to decrease 

the AVP-induced water permeability and AQP2 trafficking at a post-cAMP level (78, 132, 

191, 211). EP1 retards AQP2 trafficking by activating protein kinase C (PKC) that results 
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in an increase in the endocytosis of AQP2. In the CD, EP3 couples to Gi and inhibits the 

synthesis of cAMP, thereby inhibiting the exocytosis of AQP2. Another interesting way by 

which PGE2 could increase diuresis is by acting on the EP2 located in the papillary 

interstitial cells. EP2 is the only prostanoid receptor expressed in the papillary interstitial 

cells and binding of PGE2 to EP2 increases hyaluronan synthesis in these cells (165, 

213). Hyaluronan has a high capacity to bind water, and thereby alter the papillary matrix 

and inhibit water flow (166). Hence, PGE2 can reduce water permeability and increase 

diuresis within the IMCD through acting on EP1, EP2, and EP3. 

Transcriptional regulation of AQP2 gene transcription 

Transcriptional regulation represents an important means of long-term regulation 

of CD function. Unsurprisingly, deletion of a number of transcription factors results in renal 

developmental abnormalities, phenotypes of nephrogenic diabetes insipidus or urinary 

concentrating defects (109, 210, 214). However, several such transcription factors have 

additionally been shown to play a role in water handling independently of developmental 

effects. Using an inducible system, post-developmental deletion of GATA2 from the 

nephron induced polyuria and revealed an important role of GATA2 as a direct 

transactivator of AQP2, as well as regulating V2R and AQP3 mRNA levels, suggesting 

GATA2 promotes water conservation via multiple mechanisms (210). AVP-independent 

increases of AQP2 by the ligand-activated transcription factor Farnesoid X receptor was 

also recently shown to contribute to regulation of urine volume (214). Hyperosmotic stress 

increases the phosphorylation of TAZ (transcriptional coactivator with PDZ-binding motif, 

also known as Wwtr1), which is followed by increased physical interaction between TAZ 

and nuclear factor of activated T cells 5 (NFAT5), reducing NFAT5 activity (80). NFAT5 is 

an osmoregulatory transcription factor that upregulates the expression of AQP2 in 

response to calcium and osmotic stress (109), suggesting that TAZ may help to fine-tune 
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both NFAT5 and AQP2 expression under conditions of osmotic stress. Together, these 

recent developments show that there is far more to the transcriptional regulation of CD 

water handling proteins than the classical transcription factor CREB. 

Post-translational modifications of AQP2 in principal cells 

The role of phosphorylation of AQP2 has been extensively studied by several 

groups, and it can be readily appreciated from these numerous studies that 

phosphorylation of AQP2 is one of the most highly regulated post-translational 

modifications of the channel (125). As described above, AVP increases the forward 

trafficking of AQP2 to the apical plasma membrane by changing the phosphorylation 

status of the channel. Phosphorylation of serine-256 residue of AQP2 was the first to be 

identified (50), and studies over the last decade have identified other phospho-residues, 

namely serine-261, serine-264, and serine-269 (125). Although PKA is the most well-

defined kinase involved in the phosphorylation of AQP2, the channel has other putative 

sites for other kinases such as PKG, PKC, and casein kinase II (18). Each of the 

phosphoforms of AQP2 have an effect on the cellular localization of AQP2. 

Phosphorylation of serine-256 residue increases the exocytosis of AQP2 and is required 

for facilitating the phosphorylation of serine-264 and serine-269 (70). Phospho serine-269 

AQP2 has only been observed exclusively on the apical membrane, suggesting that the 

phosphorylation of this residue increases the retention of AQP2 in the apical membrane 

(124). Phospho serine-264 AQP2 resides in the compartments close to the plasma 

membrane and in early endocytic pathways (48), whereas phospho serine-261 AQP2 is 

localized in compartments different from the endoplasmic reticulum, Golgi, and lysosomes 

(71). Phosphorylation of AQP2, therefore, is a critical process in determining the cellular 

localization of the channel in the principal cells.  
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Ubiquitination is another form of post translational modification of AQP2 whereby 

the lysine-270 residue of AQP2 undergoes short-chain ubiquitination and mediates the 

endocytosis and degradation of AQP2 (82). In addition to ubiquitination, AQP2 also 

undergoes complex N-glycosylation (7, 68); however, the role of glycosylation of AQP2 is 

unclear. In oocytes, mutants of non-glycosylated and glycosylated AQP2 are retained in 

the endoplasmic reticulum due to failure to properly fold the protein (116). In another study 

it has been shown that glycosylation of AQP2 is necessary for the exit of the protein from 

Golgi and important for membrane trafficking (68). Together, these studies on the post-

translational modifications of AQP2 have shown that these processes are important for 

the cellular localization and function of AQP2, although the knowledge of these processes 

is far from complete. 

Membrane localization of AQP2 in principal cells 

The presence of aquaporins in the apical and basolateral membranes of select 

regions of the nephron is critical for water reabsorption from the tubular fluid. The cAMP-

dependent PKA-mediated phosphorylation of AQP2 downstream of vasopressin V2 

receptor activation by AVP has long been recognized to promote the forward trafficking of 

AQP2 into the apical membrane. The trafficking of AQP2 to the cell membrane from the 

intracellular vesicles involves passage of the channel through the Golgi apparatus and 

endosomal compartments. The insertion of AQP2 channel into the plasma membrane 

involves numerous fission and fusion steps that are regulated by various proteins such as 

the SNARE complex (18).  

As described above, the trafficking of AQP2 in principal cells is regulated by factors 

such as AVP and PGE2, but under non-stimulated conditions, AQP2 can undergo 

constitutive recycling (18). In LLC-PK1 cells, a porcine kidney cell line, inhibition of clathrin-

mediated endocytosis resulted in an increased accumulation of AQP2 in the plasma 
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membrane, which was independent of serine-256 phosphorylation (112). In another study, 

inhibition of AQP2 recycling in LLC-PK1 cells resulted in accumulation of the channel in 

the trans-Golgi (64), showing that recycling of AQP2 is critical for the membrane 

accumulation of the channel. Additionally, induction of actin depolymerization in cultured 

IMCD cells in the absence of any hormonal stimulation increased the accumulation of 

AQP2 in the plasma membrane (189), indicating the importance of the cytoskeleton in the 

trafficking of AQP2. All these observations show that a disruption of either the endocytosis 

or exocytosis of AQP2 can change the amount of AQP2 in the plasma membrane, implying 

that the constitutive recycling of AQP2 is a very dynamic process with endocytosis in 

equilibrium with exocytosis (167). Currently, there is a major gap in understanding this 

constitutive recycling of AQP2 because the molecular machinery for these processes is 

poorly characterized.  

Roles of AQP3 and AQP4 in the CD 

 The principal cells of the CD express AQP3 and AQP4 in the basolateral 

membrane, providing an exit pathway for the water that enters these cells through the 

AQP2 in the apical membrane. Mice lacking AQP3 develop severe polyuria (114). Albeit 

less well-studied than AQP2, differences in AQP3 expression or localization to the 

basolateral membrane can also affect water reabsorption across the CD. Similar to AQP2, 

AVP regulates AQP3 transcription (36); however, recent studies are showing AVP-

independent pathways can also regulate AQP3. Mice lacking acyl-CoA binding protein 

(ACBP), a protein involved in transporting acyl-CoA esters between different enzymes, 

were found to have slightly higher urine flow under basal conditions and a reduced ability 

to conserve water during water restriction, but no apparent difference in sodium or 

potassium handling (101). Expression and basolateral localization of AQP3 was reduced 

in the ACBP knockout mice, with no apparent changes in the expression and localization 
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of AQP1, 2 or 4 (101). Fatty acyl-CoAs can serve as allosteric regulators of cellular 

proteins such as ryanodine-sensitive Ca2+ release channels (40), which are in turn 

important regulators of AQP2 distribution in principal cells (24), however the mechanism(s) 

by which ACBP regulates AQP3 expression and localization is unknown.  

AQP4, along with AQP3, is expressed in the basolateral side of principal cells; 

however, unlike AQP2 or AQP3, its abundance is not regulated by AVP (140). Deletion of 

AQP4 in mice results in polyuria that is milder than that seen in AQP3-null mice (25). 

Unlike AQP2 and AQP3, the expression of AQP4 is unaffected by water restriction (192). 

Moreover, sorting of AQP3 and AQP4 to the basolateral membrane occurs separately in 

the Golgi (3), indicating that there are several non-overlapping cellular pathways 

regulating these aquaporins in the CD.   

Over the decades, studies on the AQPs of the CD have elegantly shown that the 

cellular apparatus involved in the regulation of these water channels is very complex, and 

far from being completely characterized. The presence of these water channels in their 

appropriate membrane is crucial in determining the water permeability of the CD, which in 

turn regulates the ability of the kidney to maintain water balance. While the AVP-mediated 

cellular trafficking of AQP2 has been somewhat well-characterized, the constitutive 

recycling of AQP2 and the other AQPs remain largely unexplored. It is, therefore, 

imperative to accurately identify and characterize proteins and molecular mechanisms that 

regulate the cellular localization of these water channels of the CD. Moreover, as the 

discussion on the role of the kidney and hypothalamus in the maintenance of water 

balance progresses in the upcoming sections, the importance of the cellular trafficking of 

other channels and transporters in the regulation of water balance can be appreciated.
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Role of the renal medullary interstitium in fine-tuning water balance 

The final steps in the maintenance of osmotic homeostasis occur in the kidney, 

and involves the production of a hypoosmotic or hyperosmotic urine depending on the 

hydration state of the individual. The osmolality of the renal medullary interstitium provides 

an osmotic driving force to allow water to exit the tubules, thereby allowing urine to be 

concentrated. The osmolality of the renal medulla can be increased significantly during 

states of dehydration to increase the amount of water that is reabsorbed, and thereby, 

allowing the formation of a hyperosmotic urine, whose osmolality is higher than that of the 

plasma (172, 174).  

The structural arrangement of the nephron is crucial in the generation of the 

osmotic gradient of the renal medullary interstitium. Three features of the nephron 

structure come into play to establish this gradient. First, the nephron forms a hairpin loop 

to allow water and solute exchange between the descending thin limb and the ascending 

thin limb (174). Second, the ascending thin limb is impermeable to water, but permeable 

to sodium due to the presence of NKCC2 that actively transports sodium from the tubular 

fluid into the interstitium, allowing the concentration of the interstitium to build up. Third, 

the concentration gradient of the interstitium allows reabsorption of water from the water-

permeable, but solute-impermeable, descending thin limb. This process, termed 

countercurrent multiplication, establishes the gradient and contributes to one half of the 

maximal medullary concentration, with the other half contributed by urea recycling (87). 

Urea is passively reabsorbed from IMCD via urea transporters of collecting duct and 

enters the interstitium. The reabsorbed urea then re-enters the thin loop of Henle back 

into the filtrate, passes the distal tubules and reaches the IMCD, from where it again 

undergoes passive reabsorption. This re-circulation of urea within renal medulla helps in 

building up the osmotic gradient (74, 206). 
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The preservation of the osmotic gradient of the renal medullary interstitium is 

achieved by a process called countercurrent exchange that involves the vasa recta. The 

special arrangement of the vasa recta prevents the escape of the solutes from the renal 

medulla and thereby stops the dissipation of the gradient (130). Two features of the vasa 

recta allows the preservation of the gradient. First, the blood flow to the renal medulla is 

very low. Although the kidney receives about 25% of the cardiac output, most of the renal 

blood flow is directed to the outer cortex and the renal medulla receives only less than 2 

to 5% (127) of this blood. Second, the arrangement of the two limbs of the vasa recta 

allows countercurrent exchange. In the descending limb of the vasa recta water diffuses 

out of the plasma and solutes from the renal interstitium enters the plasma, thereby making 

the plasma in this side hyperosmotic. In the ascending limb of the vasa recta, the water 

diffuses back into the blood and solutes diffuse back to the interstitium. In this way the 

washing out of the gradient is prevented and the gradient remains preserved. 

As described above, urea plays an important role in both the generation and 

preservation of the renal medullary gradient, the integrity of which is crucial in the 

maintenance of water balance. The following section discusses the various urea 

transporters of the kidney that are involved in the renal urea handling. 

General structure and expression profile of urea transporters 

Urea was first isolated from the urine by Hillaire-Marin Ronelle in 1773 and has 

been long recognized as an important biological molecule in the urine-concentrating 

mechanism (206). Being a water-soluble molecule, urea has low permeability through lipid 

bilayers, and mammalian cells have several types urea transporter (UT) that facilitate the 

transport of urea down a concentration gradient through the plasma membrane (108). 

Each UT has 10 predicted transmembrane helices, except for UT-A1, which has 20 

transmembrane domains arising from two tandem UT domains (164). The region in the 
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first and the last five transmembrane helices are highly homologous, and each 5 

transmembrane repeat contain a conserved motif with the following sequence: 

LPXXTXPF. This motif is thought to be critical for urea permeation (164). 

Two gene families encode for the urea transporters in mammals: Slc14a1 and 

Slc14a2 (171). The Slc14a2 gene encodes the UT-A family, whereas the Slc14a1 gene 

encodes the UT-B family. There are 6 major isoforms of the UT-A family, each with a 

distinct expression profile, which are derived by alternative splicing of the same mRNA 

and alternative promoter of the same gene (47). AVP regulates UT-A1 (179), which is 

expressed in the apical plasma membrane of principal cells of the IMCD and is involved 

in the reabsorption of urea in the IMCD. Two distinct forms of UT-A1, 97 kD and 117 kD, 

have been characterized that arise due to different state of glycosylation of the protein 

(12). UT-A2 (55 kD) is expressed in the liver and the kidney (143), where UT-A2 is involved 

in the transport of urea across the apical membrane into the luminal space of the thin 

descending limb of the nephron (158). UT-A3 is expressed in the IMCD (194), and similar 

to UT-A1 it has two forms, a 44 kD form and a 67 kD form. In rat IMCD, UT-A3 localizes 

to the apical membrane and intracellular vesicles (194), whereas in mouse IMCD UT-A3 

is localized in the basolateral membrane (184). UT-A4 has only been found in rat kidney 

medulla (83), and its function currently remains unknown. Both UT-A5 and UT-A6 are 

expressed in non-renal tissues: UT-A5 in the testis (42) and UT-A6 in the colon (182). UT-

B is expressed in several tissues, including in the basolateral and apical membranes of 

the descending vasa recta (195).   

Cellular mechanisms in the regulation of urea transporters 

UTs play an important role in the urine-concentrating mechanism in the kidney, 

and a loss of UT in mammals result in some form of urine-concentrating defect (45, 173). 
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Urea transportation, therefore, is highly regulated and a major mode of this regulation 

occurs via the cellular regulation of the UTs.  

Regulation of UT-A1 

UT-A1 is critical for basal urine-concentrating ability, as shown in mice where 

transgenic expression of UT-A1 in UT-A1/A3 double knock out mice corrects the urine-

concentrating defect in these animals (92). Perfusion of rat IMCD with AVP rapidly 

increases the facilitated urea permeability (141, 170); the way AVP induces this change 

is by increasing the trafficking of UT-A1 to the apical membrane (143). AVP has also been 

shown to increase the apical membrane accumulation of UT-A1 in the IMCD of Sprague-

Dawley rats (89). Phosphorylation is a major post translational modification of UT-A1 that 

influences its membrane trafficking. Phosphorylation of serine-486 and serine-499 by PKA 

increases the membrane accumulation of UT-A1(11) and both of these phospho forms of 

UT-A1 primarily localize to the apical membrane. Additionally, UT-A1 is also 

phosphorylated at serine-494 by PKC, which acts in concert with PKA to increase the 

insertion of UT-A1 in the apical membrane (9). AMP-activated protein kinase also 

increases the phosphorylation of UT-A1, but in an AVP-independent manner (91). The 

accumulation of UT-A1 in the apical membrane is reduced by 14-3-3 proteins, which bind 

and target UT-A1 for ubiquitination and degradation (41), thereby ultimately reducing urea 

transport in the IMCD.  

The IMCD expresses two isoforms of UT-A1, a more abundant 97 kD form and a 

less abundant 117 kD form (12, 193). The abundance of the 117 kD isoform is regulated 

and increases when medullary urea concentration falls, such as during intake of a low 

protein diet (193), and decreases during high medullary urea concentration, such as 

during anti-diuresis and high protein diet intake (193). However, the expression of the 117 

kD is not regulated by circulating AVP (193). 
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Regulation of UT-A2 

UT-A2, expressed in the thin descending limbs of the kidney nephron, corresponds 

to the COOH-terminal 397 amino acids of the UT-A1 protein, and is a product of alternative 

transcription of the parent Slc14a2 gene, wherein the transcription of UT-A2 begins at 

exon 13 located 200 kb downstream of exon 1 (133). Both the transcript and protein level 

of UT-A2 are elevated by chronic treatment with AVP (202). In mice, UT-A2 is required to 

maintain a high medullary urea concentration when urea supply to the kidney is restricted, 

such as during low protein diet (196), although UT-A2 is dispensable for inner medullary 

urea accumulation under basal conditions.     

Regulation of UT-A3 

UT-A3 is expressed in the IMCD, predominantly in the basolateral membrane of 

IMCD in mice (184, 194) and is transcribed from exons 1-12 of Scl14a2 gene (133). UT-

A3 undergoes phosphorylation in a cAMP-dependent manner, and phosphorylation of the 

protein increases its presence in the plasma membrane (10). Additionally, AVP acutely 

increases the accumulation of UT-A3 in the basolateral membrane of MDCK cells (185), 

thereby increasing urea flux in these cells. Although UT-A1 is required for the basal urine-

concentrating ability in mice, UT-A3 is required for the AVP-mediated increase in urea 

permeability of the IMCD (92). 

Regulation of UT-B 

Within the kidney, UT-B is expressed in the descending vasa recta, where it plays 

an important role in the recycling of urea to maintain the osmotic gradient of the medulla. 

UT-B is also expressed in the red blood cells and humans lacking this transporter develop 

a urine-concentrating defect (173). Mice lacking UT-B develop a severe urine-

concentrating defect under basal conditions (207) due to impairment of urea recycling in 

the vasa recta. The concentrating defect in UT-B-null mice is more severe than that in UT-
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A2-null mice, suggesting that the countercurrent exchange of urea between ascending 

and descending vasa recta are more important in the entrapment of medullary urea than 

the transfer of urea from the vasa recta to the thin limbs (43). Although UT-B deletion in 

mice does not affect the expression of the IMCD UTs, there is an increase in the 

expression of UT-A2 in the mice (90). Short-term treatment with AVP in Brattleboro rats 

reduces UT-B expression, whereas long-term treatment with AVP increases UT-B 

expression (157).  

As apparent from the discussion above, renal urea handling dictates the urine-

concentrating ability of the kidney, and a major regulatory arm of the renal urea handling 

is the cellular regulation of the urea transporters of the kidney. Even after decades of 

studying these transporters, there are gaps in the understanding of the cellular and 

molecular machineries involved in the regulation of these urea transporters. In order to 

better understand these cellular events, it is, therefore, important to properly identify and 

characterize molecules and proteins involved in the regulation of renal urea handling. 

  



20 
 

Role of hypothalamus and neurohypophysis in the regulation of water balance 

An important aspect of water homeostasis is to be able to sense the changes in 

plasma osmolality. Neurons in the organum vasculosum laminae terminalis (OVLT) (27, 

201), supraoptic and paraventricular nuclei of the hypothalamus (107, 118) have been 

identified to be involved in osmosensing. It has been proposed that an increase in plasma 

osmolality, such as during water deprivation, causes membrane depolarization via the 

activation of calcium channels (17, 110). The nature of the actual stimulus that causes 

these changes in membrane polarization are unknown, but a role of the mechanical stretch 

receptors called transient receptor potential vanilloid in osmosensing has been proposed 

(110). The neurons involved in osmosensing undergo shrinkage in the face of 

hyperosmolality, and it is proposed that this reduction in cell volume, as well as 

Angiotensin II (154), allows these cells to stimulate thirst and AVP release.  

The brain regions identified to be associated with the perception of thirst are the 

anterior wall of the third ventricle, the anterior cingulate, parahippocampal gyrus, insula, 

and the cerebellum (38). These regions of the brain are known to be associated with higher 

behavioral functions, explaining why thirst is physiologically connected to complex social 

and emotional behaviors such as motivation. The OVLT senses hyperosmolality and in 

turn relay the stimuli to  the insula and cingula through the thalamic nuclei, initiating the 

sensation of thirst (72), which is quenched immediately upon drinking. Very recently, other 

peripheral sodium sensors in the gastrointestinal tract and liver have been identified that 

are thought to participate in the thirst mechanism (103). 

AVP is a major peptide hormone that regulates numerous physiological functions, 

including the regulation of water balance. AVP is a nonapeptide that  is synthesized from 

a 39-amino acid-long pre-pro hormone (100) in the magnocellular cell bodies of the 

supraoptic and paraventricular nuclei of the posterior hypothalamus. AVP then binds to 
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the carrier protein called neurohypophysin and is transported to the axonal terminals of 

the magnocellular neurons of the posterior pituitary gland (33), where it temporarily stored. 

It takes almost 2 hours for the complete synthesis and storage of AVP, and the half-life of 

AVP is around 30 minutes (79). AVP mediates its affect by binding to V1, V2, V3, and 

oxytocin receptors located in target organs. The V1 receptor is expressed in the 

vasculature, and binding of AVP to V1 receptor results in vasoconstriction. The V3 

receptor is expressed in the pituitary gland. V2 receptors are expressed in the distal 

tubules and collecting ducts of the kidney, where the binding of AVP stimulates the 

increase in the water permeability of the CD and allows concentration of urine (33).  

Two major stimuli for AVP secretion into the circulation are reduced blood volume 

and hypertonic plasma, with the latter being the more sensitive stimulus (35). The osmolar 

threshold of AVP release is almost 5 mOsm/kg lower than the threshold for thirst, allowing 

AVP to regulate urinary water excretion without the need to drink constantly (33). Apart 

from osmotic stimulation, the release of AVP is also regulated by several non-osmotic 

stimuli, such as Angiotensin II, norepinephrine, dopamine, pain, hypoxia, and acidosis 

(106). Altogether, the stimulation of the osmosensing mechanism of the brain triggers the 

thirst mechanism and release of AVP to allow conservation of water.  

Maintenance of water homeostasis is a complex process that involves the 

integrative action of the hypothalamus, neurohypophysis, and the kidney. As discussed 

so far, the regulation of water balance by these organs rely largely on cellular events such 

as protein trafficking. For example, an important regulatory step that determines the 

kidney’s ability to concentrate urine is the endocytic recycling of AQP2 water channel to 

the apical membrane of the tubular epithelium. Once in the apical membrane, AQP2 

allows entry of water from the tubular fluid into the principal cells, thereby allowing the 

kidney to reabsorb water. Similar to AQP2, epithelial cells of the kidney’s nephrons modify 



22 
 

the composition of urine by selective reabsorption or secretion of solutes and water with 

the help of various other channels and transporters located on their membranes. A key 

means of regulating urine composition is via the regulation of the presence and abundance 

of these channels and transporters on the membrane of the epithelial cells (205). Under 

steady-state conditions, expression of many of the channels and transporters on the 

membrane represents the culmination of a very dynamic process, wherein constitutive 

recycling works in balance with post-synthetic membrane localization, endocytosis and 

lysosomal degradation (18, 167). Therefore, it is important to understand the intricacies of 

the endocytic recycling of channels and transporters in the kidney epithelium, and how 

endocytic recycling plays a role in the adjustment of urine composition and thus water 

homeostasis.   
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Endocytic recycling 

Endocytic recycling is a cellular process that regulates the composition of the 

plasma membrane by controlling the uptake and insertion of proteins and other molecules 

from or into the plasma membrane (61). As discussed in the previous sections, this cellular 

process is extremely crucial in the regulation of the renal urine-concentrating mechanism. 

The amount of channels and transporters in the appropriate plasma membrane of the 

tubular epithelium determines the rate and quantity of water and solute reabsorption, and 

therefore, endocytic recycling is crucial for normal physiological processes, such as 

maintenance of water balance.  

Cellular events during endocytic recycling 

Endocytic recycling regulates the amount of materials extracted from the plasma 

membrane by endocytosis and the amount that is returned to the plasma membrane. 

Plasma membrane proteins can be internalized in the cell by either clathrin-dependent or 

–independent endocytosis (28). Regardless of how proteins are internalized into the cells, 

the endocytosed proteins arrive into the early endosome first. The fate of the internalized 

proteins in the cell is, therefore, ultimately determined once it enters the early endosome 

(81). Inside the early endosome, the internalized proteins undergo sorting, while the 

endosome starts generating membrane tubules to pass the internalized cargo to the 

recycling compartments. Depending on the nature of the internalized protein and the state 

of the cell, the protein may be trafficked to the lysosome for degradation. In most 

instances, the internalized proteins pass down to the endocytic recycling compartment 

(ERC) from the early endosome before going back to the plasma membrane (121). It has 

been proposed that during the early-endosomal maturation the tubules emerging from the 

early endosome forms the ERC, while the main body of the early endosome becomes 

what is known as multi-vesicular body (MVB) (155). The ERC has been found to be 
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localized near the microtubule organizing center and the Golgi apparatus. Trafficking from 

the ERC to the plasma membrane involves a number of different routes and the nature of 

the transition primarily depends on the type of internalized protein and the proteins 

regulating the endocytic recycling (61).  

Regulation of endocytic recycling 

The sorting and trafficking of cargo during endocytic recycling is regulated by 

various proteins: Rab- and Arf-GTPases and their effectors; Eps15 homology domain-

containing (EHD) proteins 1-4. These regulators of endocytic recycling serve as 

scaffolding proteins, and regulate the tubulation of the membranes and regulate the 

activity of motor proteins and membrane fission proteins (61). Several studies have 

documented the putative roles of the Rab-GTPases and their effector protein in the 

trafficking of channels and transporters in the collecting duct (29, 176). In particular, large 

scale proteomic analysis of AQP2-containing vesicles from the principal cells have been 

shown to contain many of these Rab proteins (5). Very recently, similar analysis of UT-

A1-containing vesicles have also revealed the presence of Rab-GTPases (22), suggesting 

a potential role of these endocytic regulators in the trafficking of AQP2 and UT-A1. 

Although these studies have only characterized the Rab proteins, limited to no data on the 

roles of EHD proteins on the trafficking of renal channels and transporters is present. In 

recent years, the importance of EHD proteins in the regulation of endocytic recycling have 

emerged and the overall aim of this dissertation is focused to elucidate the novel role of 

these proteins in the kidney. The following section discusses these EHD proteins and what 

is currently known about their cellular and physiological roles. 
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EHD proteins 

The C-terminal Eps15 homology domain-containing (EHD) proteins emerged as 

important regulators of endocytic recycling almost a decade after the discovery of the Rab-

GTPases. Mammals express four members of EHD proteins: EHD1-4 (135). Through their 

interactions with Rab proteins these EHD proteins regulate endocytic recycling (212). 

Structural features and cellular functions of EHD proteins 

EHD proteins consist of 534-543 amino acid residues. The full-length EHD protein 

contains two helical regions, a conserved ATP-binding domain, a linker region, and a C-

terminal EH domain (181). The function of these EH domains is to mediate highly specific 

protein-protein interactions between the EH domain of EHD proteins and the tripeptide 

motif asparagine-proline-phenylalanine of the interacting partner (168). The degree of 

sequence homology of the EH domains among the EHD proteins range from 53.0% to 

81.5% (135). In the cytoplasm, EHD proteins bind to ATP and undergo dimerization, which 

allows the EHD proteins to bind to and associate with membrane tubular proteins. The 

hydrolysis of ATP of the EHD proteins destabilizes the vesicle membrane and results in 

membrane scission.  

Expression profile and physiological functions of EHD proteins 

Tissue distribution analysis of the EHD proteins has revealed abundant expression 

across tissues, including the heart (63), brain (26), kidney (58), and in cell types of various 

origins (180). Although recent studies involving EHD-null mice have started to highlight 

the importance of these proteins in different physiological processes (4, 31, 56, 160), very 

little is known regarding the precise functions of EHD proteins in vivo. 
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Emerging understanding of the physiological roles of EHD proteins 

In recent years, EHD proteins have emerged as important regulators of endocytic 

recycling of membrane proteins. Although reports on the specific functions of EHD 

proteins in the body is currently limited, studies with global EHD knockout mice have 

started shedding some light on the understanding of the physiological roles of EHD 

proteins. Both EHD1 and EHD4-null mice develop small testis (57, 160), indicating a role 

of these EHD members in the male germ cell development. Additionally, EHD proteins 

have been shown to be important in regulating cardiac membrane protein trafficking via 

their interaction with ankyrin-B (63). In particular, EHD3 has been demonstrated to be 

involved in the anterograde trafficking of Na/Ca exchanger and Cav1.2 in ventricular 

mycocytes (31), as well as T-type Ca channels in the atria (32). These studies have shown 

that EHD3 regulates cardiac membrane excitability in mice. 

Both EHD3 and EHD4 regulate the trafficking of internalized proteins in the early 

endosomes (136, 178). In HeLa cells, deletion of EHD4 results in enlargement of the early 

endosomal compartments, with proteins destined for degradation being aggregated in the 

early endosome (178). This study has demonstrated that EHD4 is required for the exit of 

cargo from the early endosomes to the recycling and late endosomes. Although EHD3-

null mice do not develop any pathological phenotype (56),  a recent study with mice lacking 

both EHD3 and EHD4 have shown that the combined deletion of both these members 

result in a glomerular pathology called renal thrombotic microangiopathy (56). This report 

also demonstrated that in EHD3-null mice, there is a compensatory functional upregulation 

of EHD4 within the glomerular endothelial cells, where the expression of EHD4 is usually 

low, suggesting a potential role of EHD4 in the renal microvasculature. Although this report 

elegantly highlighted an important role of EHD4 in the renal microvasculature, the specific 

role of EHD4 in the kidney tubule remains unknown. While the proteomic database of inner 
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medullary collecting duct cells maintained by the NIH Epithelial Systems Biology 

Laboratory shows hits for EHD4 (http://helixweb.nih.gov/ESBL/Database/index.html; last 

accessed on 10/10/2016), no information is available on the exact role of EHD4 in these 

cells. Accordingly, the main focus of this dissertation is to elucidate the physiological role 

of EHD4 in the kidney.  
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Objectives of this dissertation 

Endocytic trafficking of membrane proteins is an important cellular event that 

determines the kidney’s ability to concentrate urine and thus regulate water homeostasis 

(46). As described above, the fate of internalized proteins are determined in the early 

endosome and one of the important regulators of early endosomal activity is EHD4 (178). 

The study of George et. al. (56) indicate that EHD4 is able to compensate for the loss of 

EHD3 in mice, but the exact role of EHD4 in the kidney remains unknown. Based on the 

expression profile of EHD4 in the collecting duct cells derived from the aforementioned 

proteomic database, the aim of this dissertation, therefore, was to determine the 

roles of EHD4 in the kidney, particularly in the regulation of water homeostasis. This 

dissertation will test the hypothesis that EHD4 regulates the formation and 

composition of urine in mice by regulating channel and transporter membrane 

abundance in the collecting duct. As such, the study is divided into three broad aims 

and the objectives of each of these aims are as follows: 

Aim 1: To evaluate the physiological role of EHD4 in the regulation of urine formation and 

composition at the whole body level. 

Aim 2: To investigate the role of EHD4 in the regulation of AQP2 trafficking in principal 

cells of the collecting duct. 

Aim 3: To determine the role of EHD4 in the regulation of renal urea handling. 

Each aim will be presented in the one of the following chapters, with each chapter 

containing an introduction explaining the rationale for the Aim, the methods used to study 

the Aim, the results generated, and a discussion of the findings. At the end of the chapters, 

a final comprehensive Discussion section is presented to provide a cohesive 

amalgamation of the findings of all three Aims.  
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CHAPTER I: ROLE OF EHD4 IN THE REGULATION OF 

URINE FORMATION AND COMPOSITION 3 

  

                                                 
3 The material presented in this chapter was previously published: Rahman, S.S., Moffitt, A. E. J., 
Trease, A., Foster, F. W., Storck, M., Band, H., Boesen, E. I. EHD4 is a novel regulator of urinary 
water homeostasis. FASEB J. (2017)  
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Introduction 

Recently, the study of EHD knockout mice has begun to reveal key physiological 

processes to be regulated by these proteins, such as EHD3-regulated maintenance of 

cardiac membrane excitability (31) and EHD1- and EHD4-dependent development of 

testes size and spermatogenesis in male mice (57). Moreover, it has been reported (56) 

that mice lacking both EHD3 and EHD4 develop renal thrombotic microangiopathy-like 

glomerular lesions in association with reduced glomerular VEGFR2 expression, signifying 

the importance of these proteins in glomerular filtration barrier homeostasis. This study 

(56) also showed that mice lacking only EHD3 do not develop such renal pathology due a 

compensatory increase in EHD4 within the glomerular endothelium. Interestingly, 

glomerular EHD4 staining was very low under baseline conditions in wild-type mice, and 

appeared restricted to endothelial cells (56). Although this previous study indicated an 

important role for EHD3/4 in the glomerulus, whether EHD4 might play a role in trafficking 

of proteins in the tubular and collecting duct system has remained unanswered. 

Additionally, the NIH Epithelial Systems Biology Laboratory’s proteomic databases 

(http://helixweb.nih.gov/ESBL/Database/index.html; last accessed on 10/10/2016) of 

inner medullary collecting duct cells and mpkCCDc14 cells (an immortalized mouse cortical 

collecting duct cell line), revealed EHD4 expression in the collecting duct, suggesting that 

EHD4 may play one or more additional roles in the kidney. However, to date, the role of 

EHD4 per se in normal renal physiology has not been directly addressed. The aim of this 

chapter, therefore, was to determine the roles of EHD4 in the kidney, particularly in 

the regulation of water homeostasis given the proteomics-based evidence of 

collecting duct EHD4 expression.  
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Methods 

Animals 

All animal studies were approved in advance by the Institutional Animal Care and 

Use Committee at the University of Nebraska Medical Center. Experiments were 

conducted on 12 to 18-week old male and female Ehd4-/- (EHD4-KO) mice (n = 6 for male; 

n = 5 for female), generated as described previously (56) on the C57Bl/6 background. 

Age-matched male and female C57Bl/6 (WT) mice (n = 9 for male; n = 4 for female) were 

used as control mice (Jackson Laboratories, Bar Harbor, ME). The animals were housed 

in cages maintained at room temperature, 60% humidity with a 12/12 hour light/dark cycle. 

The mice were given free access to normal rodent chow (7012, Harlan Teklad, Madison, 

WI) and drinking water except as described below. 

Baseline urinary analysis 

Animals were placed in individual metabolic cages for 24 hours for comparison of 

baseline physiological parameters, specifically food intake, water intake and urine output. 

Animals had free access to food and water during the experiment and were returned to 

their home cage at the end of the experiment. “Spot” urine samples were also collected 

following spontaneous voiding. Urine samples were stored at -80 °C until analysis. Urine 

osmolality was analyzed by freezing point depression using an osmometer (model 3250, 

Advanced Instruments, Norwood, MA) and plasma osmolality using a vapor pressure 

osmometer (Model 5520, Wescor, Logan, UT). Electrolyte concentrations of the samples 

were measured using Ion Selective Electrode technology (MEDICA EasyElectrolytes, 

Medica Corporations, Bedford, MA). AVP and creatinine concentrations were measured 

according to the manufacturer’s instructions using a Arg8-Vasopressin ELISA kit (Enzo 

Life Sciences, Farmingdale, NY)  and QuantiChrom™ Creatinine assay kit (Bioassay 

Systems LLC, Hayward, CA) respectively. 
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Response to acute water loading 

Each mouse underwent intra-peritoneal (I.P.) injection of 2 ml sterile water and 

was placed in a metabolic cage for 6 hours during which food and water were withheld 

(55). Urine samples were collected hourly for 6 hours and stored at -80 °C until analysis 

of osmolality, as described above. 

Response to 24-h water restriction 

Male WT and EHD4-KO mice (n = 6-7 in each group) were placed in individual 

metabolic cages with access to food and water. The mice were allowed to acclimate to the 

cage for the first 24 hours, followed by a 24 hour baseline collection period, then a 24 hour 

water restriction period during which no drinking water was provided. During these 

periods, urine was collected under paraffin oil (to prevent evaporation), then stored at -80 

oC for later analysis of osmolality, as above. To test for compensatory changes in EHD 

protein expression in response to water restriction, female EHD4-KO mice underwent a 

similar protocol except that one group continued to receive access to water throughout the 

second 24 hour collection period (euhydrated or EU EHD4-KO mice, n = 4) and the other 

group was water-restricted (WR EHD4-KO mice, n = 6). At the end of the EU or WR period, 

animals were sacrificed to collect renal tissues for immunoblotting and 

immunofluorescence analysis.  

Response to acute amiloride injection 

As a test of epithelial sodium channel (ENaC) activity in vivo, EHD4-KO and WT 

mice received I.P. injections of amiloride (5 mg/kg) (EMD Chemicals, Inc., San Diego, CA) 

and an equivalent volume of vehicle (polyethylene glycol) (163). Mice were placed in 

metabolic cages immediately after the injection. Food and water were withheld, and urine 

was collected over a 4-h period. The difference in urine volume and sodium excretion 
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between vehicle and amiloride treatments for each mouse was calculated and compared 

between groups. 

Response to acute furosemide injection 

As a test of Na-K-2Cl cotransporter 2 (NKCC2) activity in vivo, EHD4-KO and WT 

mice received I.P. injections of furosemide (40 mg/kg) (Hospira Inc., Lake Forest, IL) (86) 

and an equivalent volume of vehicle (polyethylene glycol) on two separate occasions. 

Immediately after the injections, the mice were placed in metabolic cages, food and water 

were withheld, and urine was collected for a 4-hour period. The difference in urine volume 

and sodium excretion between vehicle and furosemide treatments for each mouse was 

then calculated and compared between groups. 

Tissue homogenate preparation 

Mice were sacrificed by thoracotomy under isoflurane anesthesia, accompanied 

by cardiac puncture and exsanguination to allow for blood and tissue collection. Plasma 

was obtained upon centrifugation of heparinized whole blood, while the other tissues were 

snap-frozen in liquid nitrogen and stored at -80 °C. One kidney of each mouse was 

dissected into inner medulla (IM), outer medulla (OM) and cortex, while the other was cut 

longitudinally for histological analyses and immersion-fixed in 10% neutral buffered 

formalin then paraffin-embedded. Additional WT mice were used for isolation of nephron 

segments for EHD4 immunoblotting. The Percoll gradient centrifugation method was used 

to obtain separate preparations of proximal tubules and distal tubules from a collagenase-

digested cortical tubular suspension, following methods described previously with minor 

modifications  (199, 200). Medullary thick ascending limbs (mTALs) were freshly prepared 

from the inner stripe of the outer medulla by a minor modification of the method described 

previously (208). Inner medullary collecting ducts (IMCDs) were isolated from the renal 

inner medulla using a modified version of the protocol described previously (94). 
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Hypothalamic tissue was collected and processed as described by Nørregaard et al. (147) 

and was analyzed for EHD1 and EHD3 expression levels by Western blotting. Renal 

tissues were homogenized in kidney extraction buffer (KEB: 50 mM Tris pH 7.4, 0.1 mM 

EDTA, 0.1 mM EGTA, 10% glycerol, pH 7.4; 200 µl for each IM sample or 10X w/v for OM 

and cortex) and a cocktail of protease inhibitors (final concentrations: 1 mM 

phenylmethylsulfonyl fluoride, 2µM Leupeptin [Sigma-Aldrich, St. Louis, MO], 1 µM 

Pepstatin A [Sigma-Aldrich, St. Louis, MO], a 1:1000 dilution of 0.1% Aprotinin [Sigma-

Aldrich, St. Louis, MO], 14.3 mM 2-mercaptoethanol and 10 µl/ml Phosphatase inhibitor 

cocktail [Sigma-Aldrich, St. Louis, MO]). Supernatant from the homogenates was collected 

after centrifugation at 10,000 g for 5 minutes at 4 °C and protein concentration of each 

sample was measured using the Bradford method (Bio-Rad protein assay kit, Bio-Rad 

Laboratories, Hercules, CA). Homogenates were stored at -80 °C until further analyses 

were carried out. 

Quantitative immunoblot analysis 

Expression levels of different proteins in the renal tissues were analyzed by 

resolving extracts on SDS-PAGE, followed by subsequent electric transfer to 

polyvinylidene difluoride (PVD) membrane (Bio-Rad). The PVD membranes were blocked 

with Odyssey® Blocking Buffer (LI-COR® Biosciences, Lincoln, NE) for 1 hour and then 

incubated overnight in an optimized concentration of the respective primary antibody at 

4°C. After multiple washes in 10 mM Tris-Buffered Saline and 0.05% Tween-20 (TBST), 

the membranes were incubated in appropriate fluorophore-conjugated secondary 

antibodies (1:10000 dilution, Alexa Fluor® conjugates, ThermoFisher Scientific, Rockford, 

IL) and the membranes were scanned, viewed and analyzed with an Odyssey Infra-red 

Imaging System. Beta-actin (1:5000 dilution, Sigma-Aldrich, St. Louis, MO) was used as 

a loading control. The following primary antibodies were used: rabbit anti-EHD1, anti-
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EHD2, anti-EHD3 and anti-EHD4 (1:1000 dilution, generated as described previously) 

(58); rabbit anti-EHD4 (ab-83859, 1:1000 dilution, AbCam, Cambridge, MA); goat anti-

AQP2; (sc-9882, 1:2000 dilution, Santa Cruz Biotechnology, Dallas, TX);  rabbit anti-

NKCC2 (AB-3562P, 1:1000 dilution, EMD Millipore, Cincinnati, OH); rabbit anti-phospho-

NKCC1-Thr212/Thr217 (ABS1004, 1:1000 dilution, EMD Millipore Corporation); rabbit 

anti-αENaC (AB-3530P, 1:500 dilution, EMD Millipore Corporation). 

Immunofluorescence staining and histological analyses of kidneys 

Paraffin-embedded kidney sections from WT and EHD4-KO mice (n = 3-4 per 

group; 3-5 images per IM section) were de-paraffinized with xylene and then dehydrated 

with absolute ethanol. The sections were subjected to rehydration by serial immersion in 

90, 80 and 70% ethanol followed by antigen retrieval by heating in citrate buffer for 20 min. 

After washing in 1X PBS and blocking in 5% FBS in 1X PBS for 1 hour, the sections were 

incubated with primary antibodies against AQP2 (1:2000 dilution) overnight at 4 °C. 

Fluorescently-tagged secondary antibodies (1:500 dilution) were added for 1 hour, 

followed by washing and addition of mounting solution containing 4',6-diamidino-2-

phenylindole (DAPI) (VectaShield, Vector Laboratories, Burlingame, CA). The sections 

were imaged using a confocal microscope (Leica TCS SP8, Leica Microsystems, Buffalo 

Grove, IL) at 60X magnification. Apical membrane abundance of AQP2 was quantified by 

measuring the pixel intensities of the channels within a consistent defined region of the 

apical membrane using the image analysis tool ImageJ (freely downloaded from 

https://imagej.nih.gov/ij/). The analysis was performed in a blinded manner in 3-5 images 

of inner medulla in each mouse. In addition, hematoxylin and eosin, Masson’s trichrome 

and Periodic Acid-Schiff-stained kidney sections were viewed by light microscopy and 

general morphology was evaluated for qualitatively in a blinded manner. 
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Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6 for Windows 

(GraphPad Software Inc., La Jolla, CA). All data are shown as the mean ± SEM. Results 

from experiments yielding a single data point per group were analyzed by Student’s t-test 

or one-way ANOVA, or two-factor ANOVA to test for main effects of genotype and sex. 

Experiments yielding repeated measures were examined by two-way ANOVA for repeated 

measures. Bonferroni correction was used for post-hoc analysis and a P value < 0.05 was 

considered statistically significant. 
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Results 

Expression pattern of EHD4 varies across nephron segments 

Western blot analysis confirmed expression of EHD4 in freshly isolated mouse 

glomeruli, proximal and distal tubular cells, IMCDs, mTALs (Fig. 1). The highest 

expression of EHD4 in nephron segments studied was observed in the IMCD-enriched 

nephron preparation. Cross-contamination of the other preparations with collecting ducts 

was checked by blotting for AQP2, with a positive signal present in the distal tubular 

preparation, IMCD and inner medulla but absent from proximal tubules, mTALs and 

glomeruli.  
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Figure 1: Expression profile of EHD4 across nephron segments.  
Immunoblot of EHD4 in enriched nephron segments from a C57Bl/6 mice (n = 
1). An equal amount of protein was loaded from homogenates of glomeruli, 
proximal tubular cells (PTC), distal tubular cells (DTCs), mTAL, IMCD, and IM 
from WT and EHD4-KO mice. Homogenates were tested for cross-
contamination by blotting for AQP2. 

Figure 1: Expression profile of EHD4 across nephron segments 
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Deletion of EHD4 had no apparent effect on the kidney morphology in mice 

Kidneys of the EHD4-KO mice appeared to develop normally, and although light 

microscopy showed subtle differences in the amount of cytoplasm between WT and 

EHD4-KO tubular cells (blinded analyses performed by Dr. Kirk Foster), no significant 

morphological defect was observed in kidneys of EHD4-KO mice (Fig. 2). Kidney-to-body 

weight ratio was comparable between WT and EHD4-KO mice (male: 6.1 ± 0.14 for WT 

vs. 6.2 ± 0.24 mg/g for EHD4-KO mice, P = 0.77; female: 5.4 ± 0.17 for WT vs. 5.0 ± 0.25 

mg/g for EHD4-KO mice, P = 0.18).  
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Figure 2: Effect of EHD4 deletion on gross renal morphology. Representative 
hematoxylin and eosin staining of whole kidney sections and IM of female WT and 
EHD4-KO mice. Original magnification X40; scale bar = 10 μm. 

Figure 2: Effect of EHD4 deletion on gross renal morphology 
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Absence of compensatory upregulation of other EHD proteins in EHD4-KO mice 

EHD proteins have been previously reported to be upregulated during the absence 

of other EHD proteins (56). Therefore, the expressions of EHD1, EHD2, and EHD3 were 

next analyzed in the kidney of WT and EHD4-KO mice. There was no significant 

compensatory increase in the total abundance of EHD1 and EHD3 in kidneys of EHD4-

KO mice (Fig. 3A & B). EHD2 expression was too low for accurate quantification. 
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A 

B 

Figure 3: Renal expression of EHD1 and EHD3 in the absence of EHD4. Representative 
Western blots and densitometric analysis of (A) EHD1 and (B) EHD3 in cortex, outer, and inner 
medulla of the kidney of WT and EHD4-KO mice. Graphed data are means ± SEM of n (in 
parentheses). P values were determined by unpaired t test. 

Figure 3: Renal expression of EHD1 and EHD3 in the absence of EHD4 
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EHD4-KO mice produce higher volumes of dilute urine than WT mice under baseline 

conditions 

The presence of EHD4 in IMCD and mTAL suggested a potential role in both urine 

formation and concentration. Under 24-hour baseline conditions, water intake was slightly 

(~20%) but significantly higher in EHD4-KO mice compared to WT mice (Pgenotype < 0.05; 

Fig. 4A); food intake was not significantly different between WT and EHD4-KO mice (Fig. 

4B). Notably, EHD4-KO mice produced significantly higher volumes of urine than WT mice 

(by ~140-160%; Pgenotype < 0.0001; Fig. 5A). Urine osmolality of EHD4-KO mice was almost 

50% lower than that of WT mice (Pgenotype < 0.0001; Fig. 5B). Osmolality of spontaneously 

voided “spot” urine revealed a similar significant difference (Pgenotype < 0.01; Fig. 5C). Body 

weights of WT and EHD4-KO mice were comparable (females: 23.0 ± 0.6 g in WT vs 23.4 

± 0.7 g in EHD4-KO, P = 0.65; males: 28.5 ± 2.1 g in WT vs 28.3 ± 1.6 g in EHD4-KO, P 

= 0.88). Plasma creatinine levels were not significantly different between WT and EHD4-

KO mice (males: 0.21 ± 0.04 for WT vs. 0.20 ± 0.04 mg/dL for EHD4-KO mice, P = 0.67; 

female: 0.26 ± 0.02 for WT vs. 0.25 ± 0.03 mg/dL for EHD4-KO mice, P = 0.95). Plasma 

osmolality was measured in these and in additional mice from which tissues were collected 

for analyses described below. Plasma osmolality was not significantly different between 

WT and EHD4-KO mice (Pgenotype = 0.6), or male and female mice (Psex = 0.2), nor were 

there sex differences in the impact of EHD4-KO (Pinteraction = 0.7; males: 326 ± 4 mOsmol/kg 

H2O for n = 13 WT vs. 331 ± 8 mOsmol/kg H2O for n = 10 EHD4-KO mice; female: 321 ± 

5 mOsmol/kg H2O  for WT vs. 321 ± 2 mOsmol/kg H2O for EHD4-KO mice, n = 8 in both 

groups). There was no sex differences in the effects of EHD4 gene deletion on the above 

parameters (Pinteraction > 0.05 in all cases). Accordingly, the biochemical and histological 

analyses described below were performed on either male or female mice to conserve 

tissue. 
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A 

B 

Figure 4: Effect of EHD4 deletion on general metabolic parameters in mice. 
Data presented are 24 h water intake (A) and food intake (B) of male and female 
EHD4-KO mice. All values are means ± SEM of n mice (in parentheses). Data 
were analyzed by 2-factor ANOVA, testing for main effects of genotypes 
(P

genotype
), sex (P

sex
), and the interaction between sex and genotype (P

interaction
). * 

P < 0.05 for EHD4-KO vs. WT mice of each sex, by post hoc test. 

Figure 4: Effect of EHD4 deletion on general metabolic parameters in mice 
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  A 

B 

Figure 5: Effect of EHD4 deletion on urine formation and composition 
in mice. Data presented are 24 h urine flow (A) and urine osmolality (B) of 
male and female EHD4-KO mice. Spot urine osmolality is shown in (C).  All 
values are means ± SEM of n mice (in parentheses). Data were analyzed 
by 2-factor ANOVA, testing for main effects of genotypes (P

genotype
), sex 

(P
sex

), and the interaction between sex and genotype (P
interaction

). * P < 0.05 

for EHD4-KO vs. WT mice of each sex, by post hoc test. 

C 

Figure 5: Effect of EHD4 deletion on urine formation and composition in mice 
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EHD4-KO mice show an exaggerated diuretic response to an acute water load  

To further test the role of EHD4 in renal water handling independent of voluntary 

water intake, the mice were subjected to an acute water load by I.P. injection. Cumulative 

urine excretion showed that the EHD4-KO mice displayed an exaggerated response to 

water loading compared to WT mice (Pinteraction < 0.05 for both sexes; Fig. 6), and both 

male and female EHD4-KO mice had excreted almost 75% of the water load by the end 

of 6 hours whereas WT mice excreted less than 50% (Fig. 6A and B). 
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A 

B 

Figure 6: Response of EHD4-KO mice to an acute water load as 
compared to WT mice. Cumulative urine volume of male (A) and female (B) 
WT and EHD4-KO mice over 6 h after injection of 2 mL sterile water i.p. Data 
were compared by 2-factor repeated-measures ANOVA, testing for main 
effects of genotype (P

genotype
), time (P

time
), and the interaction between time 

and genotype (P
interaction

). * P < 0.05 for EHD4-KO vs. WT mice at the 

corresponding time-points. 

Figure 6: Response of EHD4-KO mice to an acute water load as compared to WT mice 
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Responses to 24-h water restriction are similar between WT and EHD4-KO mice 

To assess the contribution of EHD4 to the urine-concentrating mechanism, WT 

and EHD4-KO mice were subjected to 24-h water restriction. After 24-h water restriction, 

male WT and EHD4-KO mice showed a similar decline in urine flow and increases in urine 

osmolality (Pinteraction > 0.05 in both cases; Fig. 7A and 7B). However, EHD4-KO mice 

maintained significantly higher urine flow and lower urine osmolality compared to WT mice 

even after water restriction (Pgenotype < 0.05 in each case; Fig. 7).  

Although the total abundance of AQP2 did not increase in WT or EHD4-KO after 

24-h water restriction (Western blot; data not shown), the apical intensity of AQP2 

increased significantly in both the groups (Fig. 8). However, the apical intensity of AQP2 

in EHD4-KO mice was significantly lower than that in WT mice under baseline conditions 

(Fig. 8). 
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Figure 7: Response of EHD4-KO mice to 24 h water 
restriction as compared to WT mice. Urine flow (A) and 
osmolality (B) of male WT and EHD4-KO mice before and 
after 24 h water restriction.  Data were compared by 2-
factor repeated-measures ANOVA, testing for main 
effects of genotype (P

genotype
), water restriction (P

water 

restriction
), and the interaction between water restriction and 

genotype (P
interaction

). Graphed data are means ± SEM of 

n mice (in parentheses). *P < 0.05 for EHD4-KO vs. WT 
mice at the corresponding time points.

Figure 7: Response of EHD4-KO mice to 24 h water restriction as compared to WT mice
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Figure 8: Changes in cellular localization of AQP2 in EHD4-KO 
mice before and after 24 h water restriction as compared to WT 
mice. Representative immunofluorescent images and blinded 
quantification of the pixel intensity of AQP2 in the apical membrane 
of principal cells in the IM of male WT and EHD4-KO mice before 
and after 24 h water restriction. Scale bars, 10 μm. Data were 
compared by 2-factor repeated-measures ANOVA, testing for main 
effects of genotype (P

genotype
), water restriction (P

water restriction
), and the 

interaction between water restriction and genotype (P
interaction

). 

Graphed data are means ± SEM of n mice (in parentheses). *P < 
0.05 for EHD4-KO vs. WT mice at the corresponding time points.

Figure 8: Changes in cellular localization of AQP2 in EHD4-KO mice before and after 24 h water
restriction as compared to WT mice 
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Anti-diuretic responses during 24-h water restriction are independent of EHD proteins 

To determine whether there was a compensatory increase in other EHDs during 

water restriction in EHD4-KO mice, female EHD4-KO mice were subjected to either EU 

conditions or water-restricted conditions for 24 hours (Fig. 9). Immunoblots of EHD1, 

EHD2 and EHD3 in renal cortex, OM and IM showed similar expression of these proteins 

in both EU and WR EHD4-KO mice (Fig. 10 A-C). 

  



52 
 

 

  

Figure 9: Comparison of antidiuretic responses of EU 
and WR female EHD4-KO mice. Antidiuretic responses to 
24 h water restriction were evaluated in terms of changes 
in urine flow and osmolality. All mice received access to 
water on the baseline day, whereas only EU (n = 4), not 
WR (n = 6), EHD4-KO mice received water on experimental 
day. Data were compared by 2-factor repeated-measures 
ANOVA, testing for main effects of experimental group 
(P

group
), water restriction (P

water restriction
), and the interaction 

between water restriction and group (P
interaction

). Graphed 

data are means ± SEM of n mice (in parentheses). 

Figure 9: Comparison of antidiuretic responses of EU and WR female 
EHD4-KO mice 
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Figure 10: Comparison of 
expressions of EHD1, 2, 
and 3 in EU and WR female 
EHD4-KO mice. 
Representative Western blots 
and densitometric analysis of 
(A) EHD1, (B) EHD2, and (C) 
EHD3 in the renal cortex, OM, 
and IM tissues of EU and WR 
EHD4-KO mice collected at 
the end of the experimental 
day. All mice received access 
to water on the baseline day, 
whereas only EU (n = 4), not 
WR (n = 6), EHD4-KO mice 
received water on 
experimental day. Please 
note that renal cortex, OM, 
and IM tissues were blotted 
separately, and data for each 
region were normalized to the 
mean for EHD group. The 
mean densitometric data for 
each region is shown on a 
single graph for ease of 
presentative but comparisons 
of relative expression 
between different regions of 
the kidney cannot be made 
from these data. All data are 
means ± SEM of n mice (in 
parentheses). P  values were 
determined by unpaired t test.

Figure 10: Comparison of expressions of EHD1, 2, and 3 in EU and WR female EHD4-KO mice 
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Hypothalamic expression of EHDs 

To begin to address whether the polyuric phenotype observed in the EHD4-KO 

mice could also involve a central component, since the EHD4-KO mouse used is a global 

knockout, hypothalamic tissue were blotted for EHDs. EHD4 was found to be expressed 

in the hypothalamus (Fig. 11A), as was EHD1, whose expression was significantly 

upregulated in EHD4-KO mice (Fig. 11B). EHD3 was also expressed in the hypothalamus 

but no difference in expression was observed between WT and EHD4-KO mice (Fig. 11C). 

Baseline plasma osmolality of EHD4-KO and WT mice was found to be comparable (Fig. 

12A). Despite EHD4-KO mice having increased urine volumes, their 24 hour urinary AVP 

excretion, an indirect index of circulating AVP, was comparable to that of WT mice (Fig. 

12B). 
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Figure 11: EHDs are expressed in the hypothalamus. Western 
blot analysis of hypothalamic expression of EHD4 (A) in a WT mouse 
and EHD1 (B) and EHD3 (C) in WT and EHD4-KO mice. Data were 
compared by unpaired t test and are means ± SEM of n mice (in 
parentheses). 

Figure 11: EHDs are expressed in the hypothalamus 
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Figure 12: EHD4 deletion does not affect plasma 
osmolality or urinary AVP. (A) Plasma osmolality of 
female WT and EHD4-KO mice. (B) Urinary AVP 
excretion rate in male WT and EHD4-KO mice. Data 
were compared by unpaired t test and are means ± 
SEM of n mice (in parentheses). 

Figure 12: EHD4 deletion does not affect plasma osmolality or
urinary AVP 
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EHD4-KO and WT mice have similar urinary sodium excretion and exhibit comparable 

responses to furosemide  

Renal sodium handling plays an important role in the urine-concentrating 

mechanism. Therefore, the effect of EHD4 deletion on the urinary sodium excretion was 

tested. There was no significant difference in urinary sodium excretion between the two 

genotypes under basal conditions (Fig. 13).  

Sodium ion concentration is an important determinant of extracellular fluid 

osmolarity. Epithelial sodium channel (ENaC), which is abundantly expressed in the 

collecting duct, finely regulates sodium reabsorption. To test if the activity of this channel 

is regulated by EHD4, amiloride was administered (a blocker of ENaC) in WT and EHD4-

KO mice. Amiloride failed to generate any natriuretic response in both WT and EHD4-KO 

mice (Fig. 14A). No significant difference in expression of the alpha subunit of the ENaC 

(ENaC) was seen between groups (Fig. 14B). 

The Na-K-2Cl cotransporter 2 (NKCC2), which is expressed by the mTAL plays a 

key role in establishing and maintaining the urinary concentrating mechanism. To test if 

the activity of this cotransporter is regulated by EHD4, WT and EHD4 KO mice were 

challenged with furosemide to block NKCC2. Responses are expressed as the differences 

in sodium excretion and urine production between acute vehicle and furosemide 

treatments. The natriuretic and diuretic responses after furosemide injection were 

comparable between the genotypes (Fig. 15A and 15B). Consistent with this finding, total 

and phosphorylated NKCC2 protein expression levels in renal outer medulla were similar 

between the two genotypes (Fig. 15C).   
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Figure 13: Effect of EHD4 deletion on sodium 
excretion. Data presented for 24 h urinary sodium 
excretion (U

Na
V) of WT and EHD4-KO mice. All values 

are means ± SEM of n mice (in parentheses). Data 
were analyzed by 2-factor ANOVA, testing for main 
effects of genotypes (P

genotype
), sex (P

sex
), and the 

interaction between sex and genotype (P
interaction

).  

Figure 13: Effect of EHD4 deletion on sodium excretion 
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Figure 14: Effect of EHD4 deletion on ENaC activity in vivo. Changes in 
(∆) urinary sodium excretion (A), calculated as the difference between values 
recorded in response to amiloride and vehicle. Data were analyzed by 2-
factor ANOVA, testing for main effects of genotypes (P

genotype
), sex (P

sex
), and 

the interaction between sex and genotype (P
interaction

). (B) Representative 

immunoblot and quantification of αENaC in cortex of female WT and EHD4-
KO mice. Data are presented as means ± SEM of n mice (in parentheses) 
and were analyzed by unpaired t test.

Figure 14: Effect of EHD4 deletion on ENaC activity in vivo 
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Figure 15: Effect of EHD4 deletion on NKCC2 activity in vivo. Changes in (∆) 
urine volume (A) and urinary sodium excretion (B), calculated as the difference 
between values recorded in response to furosemide and vehicle. Data were 
analyzed by 2-factor ANOVA, testing for main effects of genotypes (P

genotype
), sex 

(P
sex

), and the interaction between sex and genotype (P
interaction

). (C) Representative 

immunoblot and quantification of NKCC2 and pNKCC2 in OM of female WT and 
EHD4-KO mice. Data are presented as means ± SEM of n mice (in parentheses) 
and were analyzed by unpaired t test.

Figure 15: Effect of EHD4 deletion on NKCC2 activity in vivo 
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Discussion 

This chapter focused on elucidating the physiological roles of EHD4 in the kidney, 

particularly in the regulation of urine formation and composition. These findings show that 

in the kidney, EHD4 is expressed differentially across the nephron, and that global deletion 

of EHD4 in mice results in a phenotype of mild, apparently nephrogenic, diabetes 

insipidus, with EHD4-KO mice showing increased excretion of osmotically dilute urine. 

To better understand the functional roles of EHD4 in the kidney it was determined 

whether EHD4 protein was expressed in segments of the nephron important in urinary 

concentration and salt and water homeostasis. George et al. (58) had shown previously 

that EHD4 is expressed in the kidney, based on the analysis of whole kidney lysates, with 

immunofluorescence staining indicating expression by glomerular endothelial cells and 

peritubular capillaries (56). Moreover, the proteome databases constructed by the NIH 

ESBL reported EHD1-4 expression in the IMCD and EHD1 in the proximal convoluted 

tubule at the protein level as determined by mass spectrometry (104). Unfortunately, I 

have been unable to successfully immunostain the kidney sections using the currently 

available batches of rabbit polyclonal EHD4 antibodies, whether obtained from Abcam or 

custom-generated by a vendor as described previously (58). I observed via Western blot 

that EHD4 was expressed highly in the glomerulus and IMCD, with some expression in 

the distal tubular cells, mTAL and proximal tubular cells. Additionally, single tubule RNA 

sequencing data generated by Lee et. al. showed that EHD4 mRNA was highest in thin 

ascending limb (104); however, it was beyond our technical capabilities to isolate the thin 

ascending limbs to confirm protein expression by Western blot. The presence of EHD4 in 

IMCD and mTAL raised the question of whether this protein might play a role in the urinary 

concentrating mechanism. Consistent with this hypothesis, EHD4-KO mice were found to 

produce an increased volume of osmotically dilute urine compared to WT mice under 
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baseline conditions. This phenotype is suggestive of a defect in water reabsorption and 

potentially a defect in urine concentrating ability in the absence of EHD4. Although EHD4 

is abundantly expressed in the glomerulus, there was no significant difference in plasma 

creatinine level between WT and EHD4-KO mice, suggesting that EHD4 probably does 

not regulate urine formation and composition by modulating GFR. However, plasma 

creatinine is not a very precise indicator of GFR, and therefore, the role of EHD4 in 

modulating the GFR would require further analyses.   

Further supporting our hypothesis that EHD4-KO mice display altered renal water 

handling, EHD4-KO mice excreted higher volumes of urine than WT mice when 

administered with an acute intraperitoneal water load. That the response was larger in 

EHD4-KO mice compared to WT mice confirms that water handling by the kidney is 

regulated in part by EHD4. Plasma osmolality of EHD4-KO mice was similar to that of WT 

mice, suggesting that even though they have increased excretion of dilute urine, EHD4-

KO mice are able to maintain osmotic homeostasis under normal conditions. EHD4-KO 

mice consumed slightly but significantly elevated amounts of water compared to the WT 

mice. While comparison of raw volumes of water intake and urine output collected using 

metabolic cages is complicated by an unavoidable degree of urine evaporation during the 

funneling and collection process, the percentage increase in water intake (~20%) was 

much smaller than the increase in urine flow measured by metabolic cage collections 

(~140-160%). This finding can be interpreted to argue against primary polydipsia being a 

likely cause of the phenotype observed in EHD4-KO mice, although extensive additional 

experiments would be needed to rule this out definitively. This disparity in the apparent 

increase in water intake compared to urine output also suggests that mechanisms in 

addition to thirst may help to offset excess renal loss of water, possibly including enhanced 

gastrointestinal water absorption or reduced insensible water loss.  
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Excretion of small volumes of concentrated urine is a classic anti-diuretic response 

to water restriction, and EHD4-KO mice show a similar anti-diuretic response in terms of 

urine volume and urine osmolality as the WT mice. Moreover, expression of no other EHD 

protein was increased when EHD4-KO were water-restricted. Together, these data 

suggest that the renal response to water restriction occurs independently of EHD4. 

However, even after water restriction, EHD4-KO mice still displayed lower urinary 

osmolality and higher urine flow compared with WT mice, indicating that EHD4 is required 

to achieve maximal urine concentrating ability. Retention of the anti-diuretic response to 

water restriction suggests that other regulators of AVP-dependent water transport are still 

operational in EHD4-KO mice; whether this might be in part due to a functional role of the 

remaining EHD proteins (EHD1 and EHD3) expressed by the collecting duct is an 

intriguing prospect that could be addressed in future studies by collecting duct specific 

knockout of combinations of EHD proteins. 

As EHD4 was found to be expressed in the mTAL, its role in the regulation of the 

activity of NKCC2, an important cotransporter involved in setting up the osmotic gradient 

for urine concentration, was tested. The data, however, shows that EHD4 deletion does 

not affect the activity of NKCC2, as suggested by the comparable diuretic and natriuretic 

responses to furosemide in EHD4-KO and WT mice. Further, if EHD4 had a major role in 

NKCC2-trafficking, evidence of salt-wasting in EHD4-KO mice is to be expected. Although 

the metabolic cage data gives the appearance of a slight trend towards increased urinary 

sodium excretion in male EHD4-KO mice, 2 of the 9 WT mice had relatively lower sodium 

excretion than the rest of the group, which had similar levels of sodium excretion to the 

EHD4-KO mice. I did not observe any compensatory upregulation of ENaC alpha subunit 

expression in EHD4-KO mice, although changes in activity of ENaC or other distal sodium 

transporters masking the effects of the loss of EHD4 on NKCC2 cannot be ruled out. 
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Unfortunately, the approach to understand the role of EHD4 in regulating ENaC using 

amiloride was unsuccessful, possibly due to insufficient dosage and the results from this 

study remains inconclusive. Which and how many proteins in the kidney interact directly 

or indirectly with EHD4 is currently unknown. 

While these results clearly support a nephrogenic origin of diabetes insipidus seen 

in EHD4-KO mice, other possible explanations for their diuretic phenotype could include 

primary polydipsia (as discussed above), or defective AVP secretion from the 

hypothalamus, along with a faulty AVP-induced signaling cascade in the principal cells of 

the collecting duct. However, 24-hour urinary AVP excretion, which allowed me to 

indirectly assess circulating AVP (69), was comparable between WT and EHD4-KO mice, 

thereby suggesting that the defect in water reabsorption is not due to low circulating AVP. 

Direct measurement of circulating AVP would be ideal, however this is challenging to do 

in mice due to the potential confounding influences of stress, anesthesia and hypovolemia-

induced AVP secretion. Although urinary excretion of AVP represents an indirect index of 

circulating AVP, it has been shown by others that water-loading reduces urinary AVP 

excretion (53), supporting that this represents an indirect but physiologically-viable 

measurement. Both EHD4 and EHD1 are expressed in the hypothalamus, with an 

increase in EHD1 expression in the hypothalamus of EHD4-KO mice, suggesting that 

upregulation of EHD1 might compensate for the absence of EHD4. This suggests that in 

EHD4-KO animals, AVP synthesis or secretion may not be defective but that EHD4-KO 

mice develop a polyuric phenotype despite similar circulating AVP. This in turn could 

suggest a faulty renal response to AVP in EHD4-KO mice. I tried unsuccessfully to 

immunostain kidney sections for the V2 receptor due to technical difficulties with the 

commercial antibody, and so an effect on V2 receptor localization cannot be ruled out. 

EHD4-KO mice were also able to concentrate their urine in response to water restriction, 
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suggesting that the AVP-V2R-AQP2 axis possibly remains intact in EHD4-KO mice. 

Additionally, the apical membrane accumulation of AQP2 increased to a similar level in 

WT and EHD4-KO post-24-h water restriction. This indicates that the forward trafficking of 

AQP2 to the apical membrane during water restriction is functional in EHD4-KO mice, and 

further suggests that a major defect at the level V2 receptor is unlikely to underlie the 

phenotype observed in the EHD4-KO mice.  

The sum total of the data so far suggest that the apical accumulation of AQP2 in 

the EHD4-KO mice were significantly lower than in WT mice under baseline conditions. 

This indicates a possible role of EHD4 in the trafficking of AQP2 under baseline conditions. 

The current working hypothesis is, therefore, that EHD4 plays a role in regulating 

apical trafficking of AQP2 in the collecting duct under baseline conditions.  
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CHAPTER II: ROLE OF EHD4 IN THE REGULATION OF AQP2 

TRAFFICKING IN PRINCIPAL CELLS OF THE COLLECTING 

DUCT 4 

  

                                                 
4 Parts of the material presented in this chapter was previously published: Rahman, S.S., Moffitt, 
A. E. J., Trease, A., Foster, F. W., Storck, M., Band, H., Boesen, E. I. EHD4 is a novel regulator of 
urinary water homeostasis. FASEB J. (2017) 
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Introduction 

The water permeability of the collecting duct is finely regulated by the presence or 

absence of AQP2 in the principal cells. Endocytic recycling plays an important role in the 

regulation of the presence of AQP2 in the apical membrane (18). Endocytic recycling of 

AQP2, as like other membrane proteins, starts with the entry of AQP2 into the early 

endosome (188). The transition of AQP2 from the early endosome to the other endosomal 

compartments depends on the state of the cell. In unstimulated cells, mere inhibition of 

endocytosis has been shown to result in an accumulation of AQP2 in the plasma 

membrane (112), indicating that the recycling process of AQP2 is very dynamic and can 

occur constitutively. In the presence of factors such as AVP and PGE2, the rate of insertion 

of AQP2-containing vesicles can be significantly regulated. AVP increases the 

phosphorylation of residues of AQP2 that favors its exocytosis (113, 123, 138, 144), 

whereas PGE2 may retard the exocytosis of AQP2 (148). In addition to these exogenous 

factors, the recycling of AQP2 depends on the presence of several different types of 

cellular proteins (18). AQP2-containing vesicles have been found to contain proteins that 

regulate endocytic recycling (5). One such protein, called Rab11-Fip2, has been shown to 

be important in the forward  trafficking of AQP2 (137). Rab11-Fip2 is known to interact 

with EHD proteins (136) and is important in the trafficking proteins from the recycling 

endosome to the plasma membrane (30). Although separate previous studies have 

established common interacting partners between AQP2 and EHD proteins, to our 

knowledge no studies have been performed to delineate the direct role of EHD proteins in 

the regulation of AQP2 trafficking. 

Experiments in the previous chapter demonstrated a reduced accumulation of 

AQP2 in the apical membrane of principal cells of EHD4-KO mice under baseline 

conditions, suggesting a role of EHD4 in the regulation of AQP2 trafficking. The membrane 
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abundance of AQP2 in EHD4-KO mice was increased during the water-restricted period, 

which indicates that EHD4 may only be required for the constitutive recycling of AQP2 in 

principal cells. Therefore, it is hypothesized that EHD4 regulates the trafficking of 

AQP2 in principal cells, and in the absence of EHD4, membrane accumulation of 

AQP2 in the principal cells will be reduced. A major aim of this chapter is, therefore, to 

study the effect of EHD4 deletion and depletion on AQP2 trafficking in in vivo and in vitro 

models of principal cells, and to understand the cellular and molecular mechanisms of 

how EHD4 may regulate AQP2. In the first series of experiments, the total cellular and 

membrane abundance of AQP2 is assessed in the presence and absence of EHD4. In 

order to identify the cellular mechanisms that might be involved in the regulation of AQP2 

by EHD4, a protein-protein interaction profile will be generated and the interaction 

between EHD4 and AQP2 will be tested by immunoprecipitation. Depletion of EHD4 has 

been previously shown to increase the activity of Rab5 proteins and enlarge the early 

endosome of HeLa cells (178). In a separate study, a similar increase in the activity of 

Rab5 proteins and early endosomal length were observed in murine macrophages when 

PGE2 was administered to the cells (203). PGE2 is a well-known negative regulator of 

AQP2 and reduces the accumulation of AQP2 in the apical membrane of principal cells. 

Because the cellular and physiological effects of EHD4 deletion is similar to that of 

increased PGE2 synthesis, an additional line of investigation will be performed to test to 

see if EHD4 regulates the synthesis of PGE2.  

Collecting ducts constitutively express AQP3 and AQP4 in the basolateral 

membrane of principal cells to provide an exit route for water, and previous studies have 

reported that mice lacking AQP3 or AQP4 can develop urine-concentrating defects (25, 

114). Therefore, this chapter will also assess the role of EHD4 in the regulation of AQP3 

and AQP4 in the principal cells of the collecting duct.  
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Methods 

Animals 

All animal studies were approved in advance by the Institutional Animal Care and 

Use Committee at the University of Nebraska Medical Center. Baseline metabolic cage 

experiments were conducted on 12 to 18-week old male and female EHD4-KO mice (n = 

6 for male; n = 5 for female) and age-matched male and female C57Bl/6 mice (WT) (n = 

9 for male; n = 4 for female (Jackson Laboratories, Bar Harbor, ME) as described in 

CHAPTER I (page no.31) to collect baseline urine.  

Cell culture  

The mouse cortical collecting duct principal cell line (mpkCCDc14 cells) was 

generously shared by Dr. Mark Knepper (NIH). These cells are known to express AQP2 

endogenously, and are widely accepted as a good in vitro model principal cell line to study 

AQP2 trafficking (67). The cells were grown in modified DMEM/F-12 medium with 

composition as described in (67) and were seeded on permeable filters (Transwell®, 0.4-

μm pore size, 1-cm2 growth area, Corning Costar, Cambridge, MA) at a density of 50,000 

cells/well for Western blotting and immunofluorescent analysis, and 100,000 cells/well for 

surface biotinylation unless otherwise stated.  

Cell transfection 

EHD4-siRNA transfection: Cells were grown to 70-80% confluency in a 6-well dish 

and subjected to Lipofectamine-2000-mediated transient transfection with 20 pmol/well 

solution of either a non-targeting (NT) siRNA (Catalogue# D-001210-01-05, 

Dharmacon™, Lafayette, CO) or an EHD4-specific siRNA (sequence: 3’ 

UGGAGGACGCCGACUUCG-AUU 5’) (Dharmacon™). Expression of EHD4 was 

measured in the transfected cells (by Western blot) after 48 hours to ensure knock down 

of EHD4.  
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EHD4-shRNA transfection: Cells were subjected to Lipofectamine 2000-mediated 

transfection followed by retroviral transduction with either a NT or an EHD4-specific 

shRNA (sequence: 3’ GAAGGCTCGAGAAGGTATATTGCTGTTGACAGTGAGCGATC-

GCCCATCAATGGCAAGATATAGTGAAGCCACAGATGTATATCTTGCCATTGATGGG

CGACTGCCTACTGCCTCGGACTTCAAGGGGCTAGAATTCGAGCA 5’) and positively 

selected for with 2 μg/mL puromycin (Sigma-Aldrich, St. Louis, MO). Transfected cells 

were grown on the filter for 3 days in complete media before switching to serum/hormone-

free media. To simulate baseline conditions, 0.1 nM d-deamino-arginine vasopressin 

(dDAVP) (Sigma-Aldrich, St. Louis, MO) was applied on the basolateral side for 24 h, while 

10 nM dDAVP was used as a stimulatory dose of dDAVP (67). At the end of the 24-h 

period, cells were extracted and lysed as described below. 

GFP-EHD4 plasmid transfection: Cells were grown on cover slips at a density of 

50,000 cells/well in a 24-well dish and allowed to grow to a 80-90% confluency. Next, the 

cells were subjected to Lipofectamine-2000-mediated transfection with GFP-tagged EHD4 

pCDNA3 plasmid, previously generated as described in (58). For transient transfection in 

each well, 7.5 μL Lipofectamine-2000 (Catalogue# 11668-027, ThermoFisher Scientific, 

Rockford, IL) and 3 μg plasmid DNA were separately diluted in 100 μL Opti-MEM™ 

(Catalogue# 31985070,  ThermoFisher Scientific) and allowed to incubate at room 

temperature for 20 minutes. During this incubation period, growth medium from each well 

was removed and 1 mL Opti-MEM™ was added to each well. After the incubation, diluted 

Lipofectamine-2000 was added to the diluted plasmid DNA and the mixture was incubated 

for another 20 minutes to allow complex formation. Finally, 250 μL of the final DNA-

Lipofectamine complex was slowly added to each well containing Opti-MEM™ and cells 

were incubated for 6 hours in the transfection media. After the final incubation, the 

transfection medium was removed and complete growth media was added to the cells. 
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Cells were allowed to grow for 48 hours post-transfection in the complete media before 

performing immunofluorescent staining. Cells treated with Lipofectamine-2000 but no 

GFP4-EHD4 plasmid were used as negative controls.  

Cell lysate preparation 

Confluent mpkCCDc14 cells were subjected to lysis by M-PER™ mammalian 

protein extraction reagent (78501, ThermoFisher Scientific, Rockford, IL) containing 1 mM 

phenylmethylsulfonyl fluoride, 2 µM Leupeptin, 1 µM Pepstatin A, 0.1% Aprotinin, and 10 

µL/mL Phosphatase inhibitor cocktail (Sigma-Aldrich, St. Louis, MO). Cells were incubated 

in the lysis buffer for 1 hour at 4 °C, followed by centrifugation of the lysates at 13,000 g 

for 10 minutes. Supernatant was collected and protein concentration of the lysate was 

measured as described in CHAPTER I (page no. 33). Lysates were stored at -80 °C until 

further analyses were performed. 

Surface biotinylation  

Control and EHD4 shRNA-transfected mpkCCDc14 cells were seeded at a density 

of 100,000 cells/well on semipermeable filters of Transwell systems and cultured for 3 

days prior to performing surface biotinylation as described in (152). Briefly, cells were 

treated with dDAVP (0.1 nM for baseline stimulation) for 24 h at 37°C at the basolateral 

sides. At the end of the 24-h period, cells were washed three times with ice-cold PBS-CM 

(10 mM PBS containing 1 mM CaCl2 and 0.1 mM MgCl2, pH 7.5), followed by incubating 

the cells for 45 min at 4°C in ice-cold biotinylation buffer (10 mM triethanolamine, 2 mM 

CaCl2, 125 mM NaCl, pH 8.9) containing 1 mg/ml sulfosuccinimidyl 2-(biotinamido)-ethyl-

1,3-dithiopropionate (Sulfo-NHS-SS-biotin, ThermoFisher Scientific, Rockford, IL) on the 

apical side. Cells were then washed once with quenching buffer (50 mM Tris-HCl in PBS-

CM, pH 8.0) and twice with PBS-CM, followed by lysing the cells as described above. The 

lysates were sonicated at 2 × 6 pulses at 20% of amplitude and centrifuged at 10,000 g 
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for 5 min at 4°C. Next, the supernatant was transferred to columns (Pierce Spin Column 

Snap Cap, Catalogue# 69725) (ThermoFisher Scientific, Rockford, IL), which were 

previously loaded with 200 μl Neutravidin agarose resin (ThermoFisher Scientific, 

Rockford, IL) and incubated for 60 min at room temperature with end-over-end mixing. At 

the end of the 60-minute incubation, the columns were centrifuged at 8000 rpm for 1 

minute and the flow through was discarded. After washing with degassed PBS containing 

protease inhibitors for 6-8 times, 50 μL of 1X sample buffer containing 50 mM DTT was 

added to the column and incubated for 60 min at room temperature. The final flow-through 

was collected in a 1.5 mL tube and heated at 65 °C for 10 minutes before proceeding to 

Western blotting. Lysates of cells that did not undergo biotinylation, but were otherwise 

prepared identically to biotinylated cells, including purification via Neutravidin agarose 

column, were used as a negative control. Total loaded protein was analyzed by RevertTM 

Total Protein Stain (LI-COR® Biosciences, Lincoln, NE). 

Co-immunoprecipitation of AQP2 and EHD4 

Confluent monolayer of mpkCCDc14 cells were grown on permeable filters at a 

density of 150,000 cells/well in a 6-well dish for 3 days. For the final 24 hours, either no or 

1 nM dDAVP (to stimulate AQP2 expression) was added to the basolateral side of the 

cells. Next, the cells were subjected to lysis as described above, followed by centrifugation 

at 13,000 g at 4 °C to collect the supernatant. AQP2 antibody was added to the 

supernatant at a 1:250 w/w ratio and incubated for 1 hour at 4 °C. Then, 20 μL of 

resuspended Protein A/G Plus-Agarose (sc-2003, Santa Cruz Biotechnology, Dallas, TX) 

kept at room temperature were added to the samples, and samples were incubated 

overnight at 4 °C on a rocker platform to ensure uniform mixing. Immunoprecipates were 

collected the following day by centrifugation of the samples at 1,000 g for 5 minutes and 

the supernatant was discarded. The pellets were washed with 1 mL 1X PBS for 5 times, 
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each time repeating the centrifugation step above. After the final wash, the supernatant 

was discarded and 40 μL of 1X electrophoresis sample buffer containing 10% glycerol, 50 

mM Tris-HCl (pH 6.8), 2% SDS, 0.005% bromophenol blue, and 2% 2-mercaptoethanol 

was added. Samples were heated for 15 minutes at 60 °C and subjected to SDS-PAGE 

to blot for EHD4. Cell lysates that were not incubated in AQP2 antibody but otherwise 

prepared identically to lysates with AQP2 antibody, including incubation with Protein A/G 

Plus-Agarose, were used as negative controls.   

Quantitative immunoblotting of aquaporins 

Expression levels of AQP2, AQP3, AQP4, phospho-serine256-AQP2 (pAQP2), 

and EHD4 in the renal tissues and cell lysates were analyzed by immunoblotting as 

described in CHAPTER I (page no. 34).  The following primary antibodies were used: goat 

anti-AQP2 (sc-9882, 1:2000 dilution); goat anti-AQP3 (sc-9885, 1:1000 dilution), and goat 

anti-AQP4 (sc-9888, 1:1000 dilution) (Santa Cruz Biotechnology, Dallas, TX); rabbit anti-

pAQP2 (ab-109926, 1:1000 dilution, AbCam, Cambridge, MA); rabbit anti-EHD4 (ab-

83859, 1:1000 dilution, AbCam, Cambridge, MA). 

Immunofluorescence staining of aquaporins 

Paraffin-embedded kidney sections from WT and EHD4-KO mice (n = 3-4 per 

group; 3-5 images per IM section) were subjected to immunofluorescent staining as 

described in CHAPTER I (page no. 35). Membrane abundance of AQP2, AQP3, AQP4 

and pAQP2 was quantified by measuring the pixel intensities of the channels within a 

consistent defined region of the apical (for AQP2 and pAQP2) or basolateral (for AQP3 

and AQP4) membrane using the image analysis tool ImageJ (freely downloaded from 

https://imagej.nih.gov/ij/). The analysis was performed in a blinded manner in 3-5 images 

of inner medulla in each mouse.  
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To analyze localization of AQP2 and GFP-tagged EHD4 in cultured principal cells, 

mpkCCDc14 cells were plated on cover slips as described above. Cells were fixed in 4% 

formaldehyde in 1X PBS for 20 minutes. Next, cells were washed in 1X PBS for 5 minutes 

and subjected to permeabilization by 0.075% Triton X-100 for 20 minutes. Cells were then 

blocked in 2 mg/ml BSA in 1X PBS for 30 minutes, followed by incubation in primary 

antibodies for 1 hour at 37°C. Fluorescently-tagged secondary antibodies (1:500 dilution) 

(Alexa Fluor® conjugates, ThermoFisher Scientific, Rockford, IL) were added next and 

cells were incubated for 1 hour at room temperature. Finally, cells were washed 3 times 

in 1X PBS, and mounting solution containing DAPI was added. The analysis was 

performed in 3-4 images for each treatment group (n = 3 per treatment group, with n being 

the number of separate experiments). 

The following primary antibodies were used: goat anti-AQP2 (1:2000 dilution), goat 

anti-AQP3 (1:100 dilution), goat anti-AQP4 (1:100 dilution), rabbit anti-pAQP2 (1:1000 

dilution), rabbit anti-GFP (ab-6556, 1:200 dilution, AbCam, Cambridge, MA). 

Measurement of PGE2 

Cells were plated in a 6-well dish at a density of 100,000 cells/well. After 24 hours, 

the complete growth media were removed and a serum/hormone-free media was added 

to the cells. Next, the cells were subjected to siRNA transfection as described above and 

were allowed to grow for 48 hours. At the end of the 48-h period, 1 mL media surrounding 

the cells was collected and the amount of PGE2 released was measured. PGE2 level in 

urine and cell culture media was measured according to the manufacturer’s instructions 

with a PGE2 ELISA kit (Catalogue# 514010, Cayman Chemicals, Ann Arbor, MI).  
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Protein-protein interaction map 

The protein-protein interaction map for EHD4 was generated using the 

bioinformatics tool STRING ver. 10.5 (available at www.string-db.org). STRING 10.5 is a 

database of known and predicted protein interactions. The interactions were derived from 

four sources: genomic context, high-throughput experiments, coexpression, and existing 

knowledge from literature database. The minimum required interactions score was set at 

medium confidence of 0.400, with the highest score being 0.900. 

Statistical analyses 

Statistical analyses were performed using GraphPad Prism 6 for Windows 

(GraphPad Software Inc., La Jolla, CA) as described in CHAPTER I.  
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Results 

EHD4 deletion reduces accumulation of AQP2 in the apical membrane and AQP4 in the 

basolateral membrane of principal cells 

As urine osmolality of euhydrated mice was reduced and urine flow increased in 

EHD4-KO mice compared to WT mice, total cellular abundance of AQP2, AQP3, and 

AQP4, as well as pAQP2 in the renal inner medulla of these two genotypes were 

compared. As shown in Figures 16A and 17A, there was no difference in the total AQP2 

and pAQP2 protein level in the inner medullas of the two groups. However, 

immunofluorescence staining of AQP2 as well as pAQP2 was more dispersed within 

principal cells of EHD4-KO mice compared to WT mice, which showed a clear apical 

localization of AQP2 in principal cells of the collecting duct (Fig. 16B and 17B). Moreover, 

apical pixel intensity of both AQP2 and pAQP2 was significantly reduced (~20% for AQP2 

and ~40% for pAQP2) in EHD4-KO mice compared with WT, indicating reduced 

membrane accumulation of AQP2 and pAQP2 in EHD4-KO mice. Additionally, a robust 

decline in the basolateral membrane intensity of AQP4 staining in EHD4-KO mice (~70% 

reduction) was found when compared to the WT mice, although total staining of AQP4 

also appeared to be significantly reduced in EHD4-KO mice (Fig. 18A). Using the same 

AQP4 antibody, Western blot analysis showed a slight reduction in glycosylated-AQP4 

and a significant increase in non-glycosylated-AQP4 (Fig. 18B). Basolateral abundance 

of AQP3 (Fig. 19) was comparable in both the genotypes. 
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Figure 16: EHD4 regulates localization of AQP2 in the IM of mice 
kidney. (A) Representative immunoblot and densitometric 
quantification of AQP2 in the IM of female WT and EHD4-KO mice. (B) 
Representative immunofluorescent image and blinded quantification of 
apical intensity of renal IM of male WT and EHD4-KO mice with AQP2 
antibody. Original magnification, X60. Graphed data are means ± SEM 
of n mice (in parentheses). P values were determined by unpaired t test. 

Figure 16: EHD4 regulates localization of AQP2 in the IM of mice kidney 



78 
 

  
A 

B 

A
pi

ca
l p

ix
el

 in
te

ns
ity

of
 p

S
25

6A
Q

P
2

Figure 17: EHD4 regulates localization of pAQP2 in the IM of 
mice kidney. (A) Representative immunoblot and densitometric 
quantification of pAQP2 in the IM of female WT and EHD4-KO mice. 
(B) Representative immunofluorescent image and blinded 
quantification of apical intensity of renal IM of male WT and EHD4-
KO mice with pAQP2 antibody. Original magnification, X60. 
Graphed data are means ± SEM of n mice (in parentheses). P 
values were determined by unpaired t test. 

Figure 17: EHD4 regulates localization of pAQP2 in the IM of mice kidney 
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Figure 18: EHD4 regulates expression of AQP4 in the basolateral 
membrane of the collecting duct. (A) Representative immunofluorescent 
images and blinded quantification of AQP4 in the IM of male WT and EHD4-
KO mice. Scale bars, 10 μm. (B) Representative immunoblot and 
densitometric quantification of glycosylated and non-glycosylated AQP4 in 
the IM of male WT and EHD4-KO mice. Graphed data are means ± SEM of 
n mice (in parentheses). P values were determined by unpaired t test. 

Figure 18: EHD4 regulates expression of AQP4 in the basolateral membrane of the collecting duct 
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Figure 19: Effect of EHD4 deletion on the basolateral 
expression of AQP3. Representative immunofluorescent 
images and blinded quantification of AQP3 in the IM of male 
WT and EHD4-KO mice. Scale bars, 10 μm. Graphed data 
are means ± SEM of n mice (in parentheses). P values were 
determined by unpaired t test. 

Figure 19: Effect of EHD4 deletion on the basolateral expression of AQP3 
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EHD4 deletion decreases the accumulation of glycosylated AQP2 in the apical membrane 

of cultured principal cells 

Although the blinded quantification of the apical membrane pixel intensity of AQP2 

immunofluorescence staining presented in Figure 16 suggests that EHD4-KO mice have 

reduced apical membrane AQP2 abundance, it remains possible that some of the 

difference in intensity detected may reflect a difference in the sub-apical space as well as 

or rather than the apical membrane itself. To further confirm the role of EHD4 in the 

regulation of apical membrane AQP2 localization in principal cells under baseline 

conditions, mpkCCDc14 cell line was stably transfected with either NT or EHD4-specific 

shRNA. Transfection with EHD4-shRNA resulted in an almost 65% reduction in the 

expression of EHD4 protein as compared to that in control cells (Fig. 20). These 

mpkCCDc14 cells are known to express AQP2 endogenously and the expression of AQP2 

is upregulated in a dose-dependent manner in the presence of dDAVP (67), which was 

also demonstrated in cultured cells used in this study (Fig. 21). As shown in Figure 18, 

knock down of EHD4 in mpkCCDc14 cells did not significantly affect the total abundance of 

AQP2 at baseline (0.1 nM dDAVP) or after a 10 nM stimulatory dose of dDAVP (Pgenotype 

> 0.05), and dDAVP increased the expression of glycosylated and non-glycosylated AQP2 

in both control and EHD4-shRNA cells in a similar manner (PdDAVP = 0.013, Pinteraction > 

0.05), indicating an EHD4-independent effect of dDAVP on the total expression of AQP2. 

Surface biotinylation of apical AQP2 revealed that knock down of EHD4 in mpkCCDc14 

cells significantly reduced the apical level of glycosylated but not non-glycosylated AQP2 

compared to that observed in NT-shRNA (control) cells (Fig. 22), corroborating the 

reduction in apical immunofluorescence staining observed in EHD4-KO mouse kidney 

sections in Figure 16.  
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Figure 20: EHD4 expression in shRNA-transfected 
mpkCCDc14 cells. Representative immunoblot and 
densitometric quantification of EHD4 in mpkCCDc14 
cells transfected with either non-targeting (control) or 
EHD4-specific shRNA. Graphed data are means ± 
SEM of n separate experiments (in parentheses). P 
values were determined by unpaired t test. 

Figure 20: EHD4 expression in shRNA-transfected mpkCCD cells 
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Figure 21: Effect of EHD4 knockdown on the expression of total AQP2 in 
mpkCCDc14 cells. Representative immunoblot and densitometric quantification 
of glycosylated and non-glycosylated AQP2 in control and EHD4-shRNA cells 
treated with 0.1 nM dDAVP (baseline stimulation) for 24 h, followed by a 
stimulatory dose of 10 nM dDAVP. Graphed data are means ± SEM of n 
separate experiments (in parentheses). P values were determined by 2-factor 
ANOVA to test for the effects of genotypes (P

genotype
), dDAVP (P

dDAVP
), and the 

interaction between dDAVP and genotype (P
interaction

).  

Figure 21: Effect of EHD4 knockdown on the expression of total AQP2 in mpkCCD cells 



84 
 

  

Figure 22: Effect of EHD4 knockdown on the cell surface expression of AQP2 in mpkCCD cells 

Figure 22: Effect of EHD4 knockdown on the cell surface expression of AQP2 in 
mpkCCDc14 cells. Representative immunoblot and densitometric quantification of AQP2 
after surface biotinylation of mpkCCDc14 cells. Lysates of cells that did not undergo 
biotinylation, but were otherwise prepared identically to biotinylated cells, including 
purification via the Neutravidin agarose column, were used as a negative control. Total AQP2 
surface and cytosolic fractions that were not passed through column) in whole-cell lysate 
(WCL; C = control, E = EHD4-shRNA) and biotinylated-AQP2 fractions (BF; C = control, E = 
EHD4-shRNA) were loaded and the appropriate bands for glycosylated and non-glycosylated 
AQP2 were confirmed by running a WT IM homogenate. A high saturation image of the same 
blot is shown below to show the bands in the BF samples more clearly. Total loaded protein 
was used for normalizing the quantification of AQP2 intensity. For representative images of 
Western blots, white gaps indicate where intervening lanes were spliced out, with vertical 
alignment maintained as per the original blot. Graphed data are means ± SEM of n separate 
experiments (in parentheses). P values were determined by unpaired t test.  
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Protein-protein interaction profile of EHD4 shows possible interaction of EHD4 with 

regulators of water reabsorption and AQP2 trafficking 

To understand the role of EHD4 in the regulation AQP2 trafficking in principal cells, 

an interaction profile of EHD4 using STRING ver. 10.5 (Fig. 23) was generated. Three of 

the EHD4-interacting proteins, namely Rab5a, Rab5b, and Rab5c, were discovered as 

proteins involved in the regulation of water reabsorption (KEGG pathway ID: 04962, false 

discovery rate = 0.000347). Interactions between EHD4 and Rab5 proteins were all 

derived from text-mining. Additionally, EHD4 was also shown to interact with Rab11-Fip2 

(interaction score = 0.892), an important regulator of AQP2 shuttling (137).  
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Figure 23: Protein-protein interaction profile of EHD4. STRING ver. 10.5 was used to 
generate the predicted interaction profile of EHD4 in mouse. The minimum confidence score 
was set at 0.400, with the highest score being 0.900. 

Figure 23: Protein-protein interaction profile of EHD4 
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EHD4 co-localizes, but may not physically interact, with AQP2 in cultured principal cells  

To better understand the interaction between EHD4 and AQP2, the cellular 

localization of EHD4 and AQP2 was examined in mpkCCDc14 cells transfected with GFP-

tagged EHD4 pCDNA3. Transfected cells containing GFP-EHD4 show the characteristic 

localization of EHD4 in pleomorphic tubulovesicular structures in the perinuclear region 

and around the cell periphery (58) (Fig. 24). When co-stained with AQP2 antibody, GFP-

EHD4 was found to localize with AQP2 in the transfected mpkCCDc14 cells (Fig. 25), 

indicating that EHD4 exists in close proximity to AQP2. To test if EHD4 physically interacts 

with AQP2, immunoprecipitation of AQP2 from mpkCCDc14 cells (Fig. 26) was performed. 

As shown in Figure 26, EHD4 was not found in the immunoprecipitates containing AQP2, 

suggesting a lack of direct physical contact between AQP2 and EHD4.  
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Figure 24: Transfection of mpkCCDc14 cells with GFP-tagged 
EHD4 pCDNA3. Representative immunofluorescent image of 
cultured mpkCCDc14 cells transfected with or without GFP-tagged 
EHD4 pCDNA3. Original magnification, X60.

Figure 24: Transfection of mpkCCD cells with GFP-tagged EHD4 pCDNA3 
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Figure 25: EHD4 co-localizes with AQP2 in mpkCCDc14 cells. 
Representative immunofluorescent image of cultured mpkCCDc14 cells 
transfected with or without GFP-tagged EHD4 pCDNA3 and co-stained with 
AQP2. Original magnification, X60.

Figure 25: EHD4 co-localizes with AQP2 in mpkCCD cells 
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EHD4 deletion increases the urinary PGE2 excretion in mice 

To test the hypothesis that EHD4 regulates PGE2 synthesis, the urinary PGE2 

excretion in WT and EHD4-KO mice was measured. Urinary PGE2 excretion of EHD4-KO 

mice was significantly higher than that in WT mice (Fig.  27), indicating a potential role of 

EHD4 in the regulation of PGE2 synthesis. 
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Fig 27: Effect of EHD4 deletion on the urinary PGE2 
excretion in female mice. WT and EHD4-KO female mice 
were placed in metabolic cages for 24 hours and urine was 
collected to measure urinary PGE2 excretion. Data shown are 
mean ± SEM for n mice (in parentheses). Data were 
compared using unpaired t-test.  

Figure 27: Effect of EHD4 deletion on the urinary PGE2 excretion
in female mice 
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EHD4 regulates the synthesis of PGE2 in cultured principal cells 

To test the role of EHD4 in the regulation of PGE2 synthesis in principal cells, 

EHD4 expression was transiently knocked down in mpkCCDc14 cells with EHD4-siRNA 

and measured the amount of PGE2 released into the media as an indicator of PGE2 

synthesis. EHD4-siRNA transfection caused a robust (~92%) reduction in the expression 

of EHD4 expression in mpkCCDc14 cells within 48 hours (Fig. 28). Moreover, EHD4-siRNA 

treated cells released significantly more PGE2 into the surrounding media than control 

NT-siRNA cells (Fig. 29), indicating an increased synthesis of PGE2 in EHD4-depleted 

cells. 
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Figure 28: EHD4 expression in siRNA-transfected 
mpkCCDc14 cells. Representative immunoblot and 
densitometric quantification of EHD4 in mpkCCDc14 
cells transfected with either non-targeting (NT) or 
EHD4-specific siRNA for 48 h. Graphed data are 
means ± SEM of n separate experiments (in 
parentheses). P values were determined by unpaired 
t test.  

Figure 28: EHD4 expression in siRNA-transfected mpkCCD cells 
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Figure 29: EHD4 regulates the synthesis of PGE2 in 
mpkCCDc14 cells. Data are presented for the concentration of 
PGE2 level in the media surrounding siRNA transfected 
mpkCCDc14 cells collected after 48 h of transfection.  Graphed 
data are means ± SEM of n separate experiments (in 
parentheses). P values were determined by unpaired t test.  

Figure 29: EHD4 regulates the synthesis of PGE2 in mpkCCD cells 
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Discussion 

This section focused on the role of EHD4 in the regulation of AQP2 trafficking in 

principal cells of the collecting duct. These data show that when EHD4 is deleted the 

membrane abundances of AQP2 and AQP4 is significantly reduced. It was also found that 

EHD4 co-localizes with AQP2 in principal cells, but may not physically interact with AQP2. 

Moreover, EHD4 has been found to regulate the synthesis of PGE2 both in vivo and in 

vitro, providing an additional mode of regulation of the trafficking of AQP2 in principal cells.  

In the absence of EHD4, the subcellular distribution of both AQP2 and pAQP2 was 

found to be altered in the principal cells of the kidney. In collecting duct principal cells of 

WT mice, AQP2 and pAQP2 were more apically localized, whereas in EHD4-KO mice, 

these proteins were dispersed throughout the principal cells. Moreover, the apical 

accumulation of both AQP2 and pAQP2 was significantly reduced in the absence of EHD4, 

as evident from the reduced immunofluorescence staining intensity quantified at the apical 

membrane of EHD4-KO mice. The regions of interest for this blinded analysis of the 

confocal immunofluorescence images were drawn close to and including the apical 

membrane. It therefore remains possible that some of the AQP2 staining intensity included 

in the analyzed regions was attributable to a difference in sub-apical as well as apical 

AQP2. However, surface biotinylation of mpkCCDc14 cells following silencing of EHD4 also 

demonstrated a significant reduction of glycosylated AQP2, suggesting that the reduced 

immunofluorescence intensity detected reflected a reduced apical localization of AQP2. 

Together, these findings indicate that less AQP2 is available in the apical membrane to 

facilitate water reabsorption in EHD4-KO mice, which may contribute to the polyuria in 

these mice.   

Under baseline conditions, AQP2 is constitutively trafficked between the apical 

membrane, subapical vesicles and basolateral membranes (75), and when AVP levels are 
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low, AQP2 is mainly localized to the sub-apical endocytic vesicles (138). Binding of AVP 

to its V2 receptor in the principal cells induces the phosphorylation of AQP2 at ser-256 

residue (138) and allows its translocation to the apical membrane (139). At the level of 

molecular interactions, this seemingly simple trafficking process requires the coordinated 

activities of multiple molecules. AVP binding to its receptor triggers several downstream 

signaling pathways: cAMP-mediated PKA activation, elevated intracellular Ca2+ level, and 

activation of other protein kinases (146). Phosphorylation of AQP2 is followed by 

reorganization of the actin cytoskeleton (187, 190) and allows traffic of AQP2 to the apical 

membrane. Accordingly, AQP2 trafficking within the cell involves the intricate interactions 

of many proteins (18). To our knowledge, no studies to date have determined whether 

AQP2 might directly bind with EHD4, therefore, it was examined if EHD4 physically 

interacts with AQP2 in principal cells. The immunoprecipitation data do not support direct 

physical interaction between AQP2 and EHD4; however the complex nature of AQP2 

trafficking allows the possibility of EHD4 being a part of AQP2 traffic regulation through an 

indirect interaction with components of the endocytic traffic machinery. For example, actin 

cytoskeleton dynamics has been suggested to be regulated by EHD proteins via their 

interaction with Syndapin (PACSIN) I and II (13, 60) and therefore provides potential for 

the involvement of EHD proteins in AQP2 trafficking. Moreover, absence of Rab11-Fip2, 

one of the interacting partners of EHD proteins (136), disrupts the recycling of AQP2 (137), 

providing another possible link to the involvement of EHD proteins in AQP2 trafficking. 

Additionally, EHD4 was found to co-localize with AQP2 in principal cells, strongly 

indicating a close proximity of the two proteins and a possible indirect interaction between 

the two proteins. The lack of EHD4 may eventually reduce the association of AQP2 with 

important trafficking proteins, and thereby stall the constitutive recycling of AQP2. Further 

biochemical analyses to define the mechanism and molecular interactions by which EHD4 

regulates AQP2 represent an exciting future direction. 
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AVP is a potent stimulator of the forward trafficking of AQP2. In the presence of 

AVP, AQP2-containing vesicles shift from the sub-apical region and fuse with the apical 

membrane, thereby increasing the amount of AQP2 in the apical membrane of principal 

cells (18). It could be possible that EHD4 deletion stalls the forward trafficking of AQP2 in 

the principal cells that ultimately reduces the membrane availability of AQP2. However, 

the data showed a similar increment in the amount of AQP2 in the apical membrane of 

both WT and EHD4-KO mice after water restriction. This data suggest that the forward 

trafficking of AQP2 may occur independently of EHD4. It is currently not known which part 

of the AQP2 recycling process is regulated by EHD4. Trafficking of membrane proteins 

like AQP2 through the endosomal system is a very dynamic process and in order to study 

the transition of AQP2 through each of the endosomal compartment in the absence of 

EHD4 would require a more sophisticated tool such as live-cell imaging technique coupled 

to pulse-chase experiments rather than a routine immunofluorescence analysis. Co-

staining AQP2 with specific endosomal compartment marker would only provide a snap 

shot of the total process, and therefore, would not be an ideal technique for assessing the 

role of EHD4 in the constitutive recycling of AQP2. Because there is an overall reduction, 

and not absolute absence, of AQP2 in the apical membrane in the absence of EHD4, it is 

very likely that the speed of AQP2 recycling becomes very slow EHD4-depleted principal 

cells, and such a hypothesis can only be tested using live-cell imaging, which was beyond 

the feasible and technical scope of this study.  

PGE2 is the primary product of arachidonic acid metabolism pathway and is a 

known negative regulator of AQP2 trafficking (148). Several studies has defined the role 

of PGE2-mediated AQP2 regulation as an additional mode of increasing water 

permeability of the collecting duct (149, 183). The data has so far suggested that the role 

of EHD4 in the regulation of AQP2 trafficking is AVP-independent. Moreover, EHD4 was 
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observed to co-localize with AQP2 in principal cells, but EHD4 and AQP2 could not be 

precipitated together. Although it is possible that EHD4 may interact with AQP2 indirectly, 

an alternative mechanism of regulation of AQP2 by EHD4 cannot be ruled out. Therefore, 

additional pathways that may be involved in the regulation of AQP2 in the absence of 

EHD4 were examined. PGE2 regulates AQP2 as well as other proteins that are also 

regulated by EHD4 (203). These observations provided us with grounds for analyzing the 

effect of EHD4 on the production of PGE2. Both the in vivo and in vitro data have shown 

that EHD4 regulates the synthesis of PGE2. In mice, the deletion of EHD4 resulted in an 

increase in the urinary PGE2 excretion, which was further confirmed in our cultured 

principal cells where knock down of EHD4 resulted in increased synthesis of PGE2. These 

data suggest that in the absence of EHD4 there is an increased production of PGE2, which 

may then inhibit the recycling of AQP2 in principal cells. Production of PGE2 in a cell 

depends on the translocation of cytosolic phospholipase A2 (cPLA2) enzyme to the 

membrane in order to initiate the metabolism of arachidonic acid (39). It could be possible 

that EHD4 regulates the translocation of cPLA2 and thereby regulates the synthesis of 

PGE2. The exact mechanism of how EHD4 regulates PGE2 synthesis awaits further 

investigation.  

AQP4 makes an important contribution to the water permeability of the inner 

medullary collecting duct (25). As visualized by confocal immunofluorescence staining, 

there was a robust attenuation of the basolateral accumulation of AQP4, but not AQP3, in 

EHD4-KO mice, indicating that exit of water from the principal cells may also be impaired 

in these mice. However, a divergent expression profile of AQP4 was observed in EHD4-

KO mice via immunoblotting. Although the total abundance of inner medullary AQP4 was 

similar between WT and EHD4-KO mice (bands quantified together), there was a 

significant increase in the non-glycosylated AQP4 (lower band) and a slight decrease in 
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glycosylated AQP4 (upper band) in EHD4-KO mice. One possible technical explanation 

for the discordant Western blot and immunofluorescent staining data could be that the 

antibody used for AQP4 has a preferential selectivity for glycosylated-AQP4 epitope in 

immuno-stained kidney sections, reducing the apparent overall abundance. Current 

understanding of AQP4 trafficking to the basolateral membrane is limited, in part due to 

technical challenges associated with studying the basolateral membrane of the collecting 

duct, and the exact role of EHD4 in this mechanism awaits further investigation. Previous 

studies have shown that sorting of AQP3 and AQP4 in trans-Golgi network for the 

basolateral membrane occurs separately (3), which could explain why only AQP4 

membrane accumulation, and not AQP3, was reduced in EHD4-KO mice. In addition, the 

lack of a change in localization of AQP3 in EHD4-KO mice demonstrates that there is 

specificity in terms of which proteins EHD4 regulates. Current understanding of AQP4 

trafficking to the basolateral membrane is limited and the exact role of EHD4 in this 

mechanism needs further investigation. 

Similar to the data on AQP4, I also observed a significant reduction in the 

membrane abundance of glycosylated APQ2 only. Glycosylation is an important post-

translational process for proper targeting of membrane proteins (197), including AQP2 

(68). Around 25% of the newly-synthesized AQP2 undergoes glycosylation and this post-

translational process is required for the exit of AQP2 from the Golgi and eventual sorting 

at the plasma membrane (68). My data on the reduced level of only the glycosylated AQP2 

and AQP4 suggest a possible role of EHD4 in the regulation of exit of newly-synthesized 

AQPs from the Golgi in the principal cells. However, very little is known about the exact 

role of glycosylation on AQP trafficking, which makes interpreting these data difficult. Data 

so far suggest that the AVP-stimulated forward trafficking of the AQP2 does not require 

EHD4. It is possible that trafficking of subapical AQP2-containing vesicles that have 
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already exited Golgi do not require EHD4 to be inserted into the plasma membrane. 

Although there no increase in the total amount of other EHD paralogs in the EHD4-KO 

mice, it is possible that there is functional compensation by another EHD paralog allows 

the exit of some of the AQP2-containing vesicles from the Golgi in the absence of EHD4.  

Altogether, data from this chapter show that EHD4 regulates the cellular 

distribution of AQP2 and AQP4 in the principal cells. The reduced accumulation of AQP2 

and AQP4 in their respective membrane in EHD4-KO mice may be responsible for the 

diuretic phenotype in these animals. Additionally, deletion of EHD4 increases the 

synthesis of PGE2 in the principal cells, which might be responsible for the reduced 

membrane accumulation of AQP2 in principal cells. Although the aquaporins were mainly 

investigated in this chapter to understand the role of EHD4 in renal water handling, several 

other renal processes may be affected by the deletion of EHD4 and contribute to the 

observed phenotype. Urea uptake and recycling within the inner medulla, and the renal 

medullary osmotic gradient are additional important factors in underlying renal water 

reabsorption and urinary concentrating ability. Analysis of the role of EHD4 in renal urea 

handling and whether EHD4 might regulate urea transporters is, therefore, the focus of 

the next section.  
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CHAPTER III: ROLE OF EHD4 IN THE REGULATION OF 

RENAL UREA HANDLING 
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Introduction 

Maintenance of constant plasma osmolality is vital to sustaining normal 

physiological functions and is tightly regulated by the kidney. Kidneys have the ability to 

regulate water excretion independently of sodium excretion, thereby allowing conservation 

of this major cationic osmotic constituent of the plasma. When required, kidneys are able 

to concentrate the urine from an osmolality of ~290 to ~1200 mOsm/kg H2O simply by 

increasing the amount of water reabsorbed in the collecting ducts (174). In this way, 

kidneys are able to produce a "hyperosmotic" urine — urine with an osmolality greater 

than that of the plasma. The architecture of the nephron segments within the kidney (151, 

174) allows establishment of a progressively increasing osmotic gradient starting from the 

cortico-medullary boundary to the tip of the papillary inner medulla. This osmotic gradient 

of the renal interstitium drives the sodium-independent water reabsorption in the kidney. 

Establishment and maintenance of this osmotic gradient also depends on the tight cellular 

regulation of the abundance of water and solute transporters as well as other proteins in 

the tubular epithelium and renal vasculature. These regulatory steps, in addition to other 

factors such as central osmoreceptors and voluntary water intake, act in concert to keep 

the plasma osmolality constant. 

Urea, generated in the liver by the breakdown of protein, is one of the two major 

osmotic constituents of the inner medullary osmotic gradient, and is the predominant 

solute in the urine during strong anti-diuresis (174). High interstitial urea concentration 

within the inner medulla is established by renal urea recycling that occurs via the various 

renal urea transporters. Urea reabsorption in the kidney is passive, and the permeability 

of the tubule to urea varies across the nephron section (117). As the filtrate moves along 

the nephron, urea concentration in the tubular lumen keeps increasing due to 

disproportional reabsorption of water, and the urea concentration reaches the highest in 
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the medullary collecting duct, where this high concentration of tubular urea drives the 

passive reabsorption of urea via the urea transporters, thereby setting the steep interstitial 

osmotic gradient (117).  

Urea transporters comprise 2 large subfamilies, UT-A and UT-B (88), and each 

member of these subfamilies are differentially expressed in mammalian tissues. Of the 

UT-A subfamily, UT-A1, A2, A3, and A4 are all expressed in the kidney tubular epithelium, 

whereas UT-B is expressed in the renal vasculature, specifically the descending vasa 

recta (88). UT-A1 is present on the apical plasma membrane of the principal cells of the 

collecting ducts; UT-A2 is expressed within the descending thin limb of the loop of Henle; 

UT-A3 is localized on the basolateral membrane of the principal cells of the collecting 

ducts; and UT-A4 is present in the rat kidney medulla (88). Owing to their exclusive 

localizations in the collecting ducts, UT-A1 and -A3 serve as vital points of regulation of 

renal medullary urea recycling. Indeed, mice that lack both UT-A1 and -A3 develop severe 

defects in their urine-concentrating abilities (44) due to the failure to establish a functional 

interstitial osmotic gradient, resulting in severe urea-induced osmotic diuresis. When 

maintained on a 20% diet, the urine volume of UT-A1/A3 double knockout mice is almost 

twice and the urine osmolality is almost half of that of wild type mice (45). Moreover, this 

basal urine-concentrating defect in UT-A1/A3-null mice is restored when UT-A1 is 

overexpressed in the mice (92), indicating that UT-A1 is absolutely required for maximal 

urine-concentrating ability. The membrane abundance and cellular localization of UT-A1 

are regulated by endocytosis (186), an EHD4-regulated cellular mechanism (178). 

Additionally, the diuretic phenotype of UT-A1/A3 mice is very comparable to that of EHD4-

KO mice. Also, it has been reported that EHD1 interacts with snapin (204), a common-

interacting partner of UT-A1 (122). Although the study focused only on EHD1, and EHD4 

has not studied as extensively as EHD1, it is possible that EHD4 may also interact with 
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snapin and thereby regulate UT-A1 via snapin.  Therefore, it is possible that the diuresis 

in EHD4-KO mice may arise due an increased urea load in the renal tubules resulting from 

a reduced membrane abundance of UT-A1. Hence, it is hypothesized that EHD4 

regulates the membrane accumulations of UT-A1 of the IMCD, thereby affecting 

renal urea handling, and regulating the generation of the osmotic gradient in the 

kidney. 
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Methods 

Animals 

All animal studies were pre-approved by the Institutional Animal Care and Use 

Committee at the University of Nebraska Medical Center. Male (n = 6-7) and female (n = 

5) Ehd4-/- (EHD4-KO) mice were bred from heterozygous Ehd4+/- parents, which were 

previously generated on a C57Bl/6 background as described in (56). Age-matched wild-

type (WT) C57Bl/6 mice (Jackson Laboratories, Bar Harbor, ME) (male, n = 8-9; female, 

n = 4) or littermate Ehd4+/+ (EHD4-HOM) mice (male, n = 7; female, n = 4) were used as 

control groups. In all experiments, animals were 14-18 weeks old and were housed in 

cages maintained at room temperature, 60% humidity with a 12/12 hour light/dark cycle. 

Unless otherwise stated, mice were given free access to regular rodent chow (7012, 

Harlan Teklad, Madison, WI) and drinking water. 

Analysis of urine in mice fed with standard rodent chow 

Age-matched WT and EHD4-KO mice were placed in individual metabolic cages 

for 24 hours to collect urine for analyzing the baseline urinary urea excretion. Animals had 

free access to standard rodent chow containing 19% protein (7012, Harlan Teklad, 

Madison, WI) and drinking water, and were returned to their home cage at the end of the 

experiment for a week. At the end of the week, the animals were sacrificed to collect renal 

tissues for immunoblotting and histological analyses. 

Modified protein diet protocol 

To better understand the physiological role of EHD4 in the regulation of renal urea 

handling, systemic urea load was manipulated by modifying the protein content in the 

rodent chow. The rationale for this approach was based on the Berliner hypothesis (8), 

which states that in the absence of functional urea transporters in the kidney epithelium a 

high protein diet will result in a diuretic phenotype. Subsequently, this diuretic phenotype 
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can be rescued by restricting protein intake via feeding of a low protein diet. Accordingly, 

I proceeded with this approach by cycling the feeding routine in mice every 10 days from 

normal (20%) to high protein (40%) diet, then switching the high protein diet to a low 

protein (6%) one. To determine the effect of dietary protein intake on renal urea handling, 

EHD4-HOM and EHD4-KO mice were fed with specialized protein diets were purchased 

from Harlan Teklad (Madison, WI). These diets are isocaloric (3.8 Kcal/g) and are matched 

in calcium (0.7%) and phosphorus content (0.54%). The predominant protein source is 

casein and the calories are matched by adjusting the amount of carbohydrates. Protein 

diets were divided into the following three categories: low (6% protein; Harlan Teklad cat# 

TD. 160634), normal (20% protein; Harlan Teklad cat# TD. 160635), and high (40% 

protein; Harlan Teklad cat# TD. 160636). Mice were cycled through 20% (closest to the 

animal facility standard rodent chow), then 40%, and then 6%. Mice ate the modified 

protein diet for 7 days in their home cage and were then placed in individual metabolic 

cages for 48 hours with access to drinking water and the corresponding protein diet. Mice 

were allowed to acclimate to the metabolic cage environment for the first 24-h period, and 

urine was collected over the final 24-h period for baseline urinary analysis. At the end of 

the entire protein diet protocol, all animals were switched to 20% protein diet for at least 7 

days before sacrificing the mice to collect renal tissues for osmolality measurements.  

Measurement of tissue osmolality 

Renal tissue osmolality was measured using a method described previously in 

(147, 177). Briefly, kidneys were rapidly excised, de-capsulated, and dissected to collect 

the total inner medulla and similar-sized cortex and outer medulla. Excised tissue samples 

were next put in pre-weighed 200 µL tubes and the wet weight of the tissues were 

measured immediately. Next, the tissues were held at 60 °C in a dry oven. The oven was 

dried using Drierite (W. A. Hammond Drierite CO. LTD., Xenia, OH) for 48 hours before 
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the start of tissue collection. The tissues were allowed to dry out for 8 hours before 

measuring the final dry weight of the tissue samples. Following the dry weight 

measurement, tissue samples were immersed in 25 µL distilled water and solutes were 

allowed to diffuse out of the tissues into the water for 24 hours at 4 °C. After the 24-h 

incubation, tubes were briefly centrifuged and the supernatant were collected for 

biochemical analyses. Apparent urea concentration in tissue water (CT) was calculated as 

follows using the concentration in the supernatant (CS) and the dilution introduced by 

adding 25 μL of water to the dry material: 

CT = CS * [25 / (wet weight – dry weight in mg)] 

Biochemical assays 

Plasma, urine, and tissue urea concentration was measured according to the 

manufacturer's instructions using the QuantiChrom™ Urea Assay Kit (BioAssay Systems, 

Hayward, CA). Osmolality of the supernatant collected for tissue osmolality measurement 

was measured using a vapor pressure osmometer (model 5520, Wescor, Logan, UT).  

Quantitative immunoblotting 

Renal tissues were homogenized and prepared for Western blotting as described 

in CHAPTER I (page no. 34). An antibody directed against the C-terminal of UT-A1, 

previously validated for use in immunoblotting (143), was generously shared by Dr. Janet 

Klein, Emory University.  

Immunofluorescence staining 

Immunofluorescent analysis of at least 3 images of the inner medulla of WT and 

EHD4-KO mice (n = 4 mice per group) were performed using the method described in 

CHAPTER I (page no. 35). The following primary antibodies were used: rabbit anti-UT-A1 

(raised against the C-terminal of rat UT-A1, amino acids 911-929, Catalogue# SPC-406D, 
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1:200 dilution, StressMarq, Victoria, BC, Canada); goat anti-AQP2 (1:2000 dilution, Santa 

Cruz Biotechnology, Dallas, TX). Because the above UT-A1 antibody recognizes the C-

terminal of UT-A1, it also cross-reacts with UT-A2; however, the antibody would only bind 

with UT-A1 in the principal cells (marked by AQP2), which does not express any UT-A2.  

Statistical analyses 

Statistical analyses were performed as described in CHAPTER I (page no. 36). 
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Results 

EHD4-KO mice have a higher urinary urea excretion than WT mice 

Urinary urea excretion was significantly higher in both male and female EHD4-KO 

mice than that in WT mice (Fig. 30) when maintained on a regular rodent chow containing 

19% protein. The difference in urinary urea excretion in EHD4-KO was over twice than 

that in WT mice. Plasma urea concentration was slightly lower (~16% in males and ~10% 

in females) in EHD4-KO mice than WT mice (Fig. 31), but the difference did not reach 

statistical significance.  
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Figure 30: Effect of EHD4 deletion on urinary urea 
excretion. 24 h urinary urea excretion in male and female WT 
and EHD4-KO mice during standard rodent chow intake. All 
values are means ± SEM of n mice (in parentheses). Data were 
analyzed by 2-factor ANOVA, testing for main effects of 
genotypes (P

genotype
), sex (P

sex
), and the interaction between 

sex and genotype (P
interaction

). * P < 0.05 for EHD4-KO vs. WT 

mice of each sex, by post hoc test. 

Figure 30: Effect of EHD4 deletion on urinary urea excretion 
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Figure 31: Effect of EHD4 deletion on plasma urea 
concentration. Plasma urea concentration in male and 
female WT and EHD4-KO mice during standard rodent chow 
intake. All values are means ± SEM of n mice (in 
parentheses). Data were analyzed by 2-factor ANOVA, testing 
for main effects of genotypes (P

genotype
), sex (P

sex
), and the 

interaction between sex and genotype (P
interaction

). * P < 0.05 

for EHD4-KO vs. WT mice of each sex, by post hoc test.  

Figure 31: Effect of EHD4 deletion on plasma urea concentration 
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EHD4-KO mice showed an exaggerated diuretic response to high protein diet compared 

to EHD4-HOM mice 

When fed a 20% protein diet, both male and female EHD4-KO mice had higher 

urine flow and urinary urea excretion than EHD4-HOM mice (Fig. 32 and 33). In female 

mice, the differences in the urine flow (Fig. 32A) and urinary urea excretion (Fig. 32B) 

between EHD4-HOM and EHD4-KO mice were further increased during 40% protein diet 

intake. In female mice, 6% protein diet reduced the urine flow and urinary urea excretion 

in both EHD4-HOM and EHD4-KO mice such that these parameters were no longer 

significantly different (Fig. 32A and B).  

Both urine flow and urinary urea excretion remained higher in male EHD4-KO mice 

than EHD4-HOM mice when fed with 40% protein diet (Figure 33A and B). Moreover, both 

the urine flow and urinary urea excretion was higher in male EHD4-KO mice than EHD4-

HOM mice when fed with 6% protein diet (Figure 33A and 33B).  

Although the amount of food intake was similar in both male and female EHD4-

HOM and EHD4-KO mice for each particular diet, the total amount of food consumed 

declined as the protein content of the diet increased (Fig. 34A and 35A). Total protein 

intake was comparable between the two genotypes for each of the diets, with the 

exception of the female mice on the high protein diet (Fig. 34B and 35B). Protein content 

in the diet had a positive effect on the amount of water intake in both the genotypes (Pdiet 

< 0.05), resulting in an increase in amount of water consumed during high protein diet; 

however, the difference in the water intake between the EHD4-HOM and EHD4-KO mice 

remained comparable for each of the diets (Fig. 34C and 35C). The amount of water intake 

was significantly higher in male EHD4-KO mice than in EHD4-HOM mice when fed with 

6% protein diet (Fig. 35C). Changes in body weight in mice during each of the protein diets 

were comparable between the two genotypes in both the sexes (Fig. 34D and 35D).
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A 

B 

Figure 32: Effect of manipulation of dietary protein on renal 
urea handling in female mice. Data presented are 24 h urine 
flow (A) and urinary urea excretion (B) in female EHD4-HOM and 
EHD4-KO mice fed with 6%, 20%, and 40% protein diets. All 
values are means ± SEM of n mice (in parentheses). Data were 
analyzed by 2-factor ANOVA, testing for main effects of 
genotypes (P

genotype
), diet (P

diet
), and the interaction between diet 

and genotype (P
interaction

). * P < 0.05 for EHD4-KO vs. EHD4-HOM 

mice at a particular diet, by post hoc test. 
Figure 32: Effect of manipulation of dietary protein on renal urea handling in female 
mice 
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A 
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Figure 33: Effect of manipulation of dietary protein on 
renal urea handling in male mice. Data presented are 24 h 
urine flow (A) and urinary urea excretion (B) in male EHD4-
HOM and EHD4-KO mice fed with 6%, 20%, and 40% protein 
diets. All values are means ± SEM of n mice (in parentheses). 
Data were analyzed by 2-factor ANOVA, testing for main 
effects of genotypes (P

genotype
), diet (P

diet
), and the interaction 

between diet and genotype (P
interaction

). * P < 0.05 for EHD4-

KO vs. EHD4-HOM mice at a particular diet, by post hoc test.  

Figure 33: Effect of manipulation of dietary protein on renal urea handling in male
mice 
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Figure 34: Effect of manipulation of dietary protein on general metabolic parameters in 
female mice. Data presented are 24 h food intake (A), protein intake (B), water intake (C), and 
change in body weight in female EHD4-HOM and EHD4-KO mice fed with 6%, 20%, and 40% 
protein diets. All values are means ± SEM of n mice (in parentheses). Data were analyzed by 
2-factor ANOVA, testing for main effects of genotypes (P

genotype
), diet (P

diet
), and the interaction 

between diet and genotype (P
interaction

). * P < 0.05 for EHD4-KO vs. EHD4-HOM mice at a 

particular diet, by post hoc test. 

Figure 34: Effect of manipulation of dietary protein on general metabolic parameters in female mice 
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Figure 35: Effect of manipulation of dietary protein on general metabolic parameters in male 
mice. Data presented are 24 h food intake (A), protein intake (B), water intake (C), and change in body 
weight in male EHD4-HOM and EHD4-KO mice fed with 6%, 20%, and 40% protein diets. All values 
are means ± SEM of n mice (in parentheses). Data were analyzed by 2-factor ANOVA, testing for main 
effects of genotypes (P

genotype
), diet (P

diet
), and the interaction between diet and genotype (P

interaction
). * 

P < 0.05 for EHD4-KO vs. EHD4-HOM mice at a particular diet, by post hoc test.  
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Figure 35: Effect of manipulation of dietary protein on general metabolic parameters in male mice 
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Tissue osmolality and tissue urea concentration in EHD4-KO mice were comparable to 

those in EHD4-HOM mice when fed with 20% protein diet 

In mice maintained on a 20% protein diet, there was a gradient of increasing tissue 

osmolality from renal cortex to the inner medulla in both male and female EHD4-HOM and 

EHD4-KO mice (Figure 36A and 37A) (Ptissue < 0.0001). Deletion of EHD4 did not have a 

significant effect on tissue osmolality in either sex (Pgenotype > 0.05). Tissue urea 

concentration also exhibited a similar increasing gradient as the tissue osmolality, with the 

highest concentration present in the inner medulla (Ptissue <0.0001) (Fig. 36B and 37B). 

The tissue urea concentration across the three kidney regions were comparable in both 

the genotypes (Fig. 36B and 37B).  
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Figure 36: Role of EHD4 in the regulation of renal osmotic 
gradient in female mice. Data presented are tissue osmolality 
(A) and tissue urea concentration (B) in female EHD4-HOM and 
EHD4-KO mice fed with 20% protein diet. All values are means 
± SEM of n mice (in parentheses). Data were analyzed by 2-
factor ANOVA, testing for main effects of genotypes (P

genotype
), 

renal region (P
region

), and the interaction between diet and 

genotype (P
interaction

).  

Figure 36: Role of EHD4 in the regulation of renal osmotic gradient in female mice 
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Figure 37: Role of EHD4 in the regulation of renal 
osmotic gradient in male mice. Data presented are 
tissue osmolality (A) and tissue urea concentration (B) in 
male EHD4-HOM and EHD4-KO mice fed with 20% 
protein diet. All values are means ± SEM of n mice (in 
parentheses). Data were analyzed by 2-factor ANOVA, 
testing for main effects of genotypes (P

genotype
), renal 

region (P
region

), and the interaction between diet and 

genotype (P
interaction

).  

A 

B 

Figure 37: Role of EHD4 in the regulation of renal osmotic gradient in male 
mice 
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Cellular distribution of UT-A1 appeared more peri-nuclear in EHD4-KO mice than in WT 

mice  

Higher urea excretion in EHD4-KO mice could arise from a reduced cellular 

abundance of UT-A1 in the inner medulla. To test if UT-A1 was lower in the EHD4-KO 

mice than in WT mice, the total abundance of UT-A1 in the inner medulla was examined. 

Immunoblotting revealed no difference in the overall UT-A1 abundance between the two 

genotypes (Fig. 38). To investigate if the apical membrane accumulation of UT-A1 was 

reduced in the EHD4-KO mice, the cellular localization of UT-A1 in principal cells of the 

IMCD was studied using immunofluorescence staining. Tissues were co-stained with 

AQP2 antibody to mark principal cells, which express UT-A1 and UT-A3. The antibody 

used for staining recognizes the C-terminal of UT-A1, which allows for the visualization of 

only UT-A1 in these principal cells. Qualitative analysis of UT-A1 staining revealed 

increased staining of UT-A1 in EHD4-KO mice than in WT mice (Fig. 39). Moreover, UT-

A1 in EHD4-KO mice appeared to be localized more towards the nucleus, whereas it was 

more towards the apical membrane in the WT mice.  
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Figure 38: Effect of EHD4 deletion on the total 
cellular abundance of UT-A1. Representative 
immunoblot and densitometric quantification of UT-A1 in 
IM of female WT and EHD4-KO mice. All values are 
means ± SEM of n mice (in parentheses). Data were 
analyzed by unpaired t test.

Figure 38: Effect of EHD4 deletion on the total cellular abundance of UT-
A1 
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WT EHD4-KO 

Figure 39: Effect of EHD4 deletion on the cellular localization of UT-A1. 
Representative immunofluorescent images of UT-A1(red) in IM of female WT and 
EHD4-KO mice (n = 4 per group; 3 images per animal). Samples were co-stained 
with AQP2 (green) to identify principal cells in the IM. Gain settings for red channel 
was intensified to visualize UT-A1 in the WT samples, and was maintained at the 
same level during analysis of EHD4-KO samples. Enlarged image of a tubule from 
each genotype is shown in the inset. Scale bar, 10 μm.

Figure 39: Effect of EHD4 deletion on the cellular localization of UT-A1 



124 
 

Discussion 

This study focused on the role of EHD4 in the regulation of renal urea handling. 

EHD4-KO mice develop a diuretic phenotype that is very similar to that observed in mice 

lacking UT-A1/A3, including high urine flow and reduced urine osmolality, thereby 

suggesting a potential role of EHD4 in urea handling. In line with the hypothesis, a 

significantly higher urea excretion was observed in EHD4-KO mice than both WT and 

EHD4-HOM mice when fed with rodent chow containing a normal protein content (either 

19 or 20%). Increasing protein content in the diet to 40% further increased the urine flow 

and urinary urea excretion in EHD4-KO mice compared to EHD4-HOM mice, and at least 

in females, the diuretic phenotype was attenuated in EHD4-KO mice when fed with 6% 

protein diet. Although EHD4 may not be involved in the generation and preservation of the 

renal osmotic gradient in mice fed with 20% protein diet, the preliminary data on UT-A1 

localization suggest a potential role of EHD4 in the regulation of UT-A1. Thus, I conclude 

that the diuretic phenotype in EHD4-KO mice may be partially attributable to defective 

urea handling in the kidney. 

Urea handling in the kidney is an important regulator of the urine-concentrating 

mechanism, allowing the kidney to produce a hyperosmotic urine. Most of the current 

understanding on the role of urea in urine-concentrating mechanisms derive from the 

fundamental urea handling model proposed by Berliner in the late 1950s (8). In this 

elegant model, Berliner described that the urea accumulation in the IMCD does not evoke 

osmotic diuresis due to the high urea permeability of the IMCD that results from the 

presence of urea transporters. Indeed, dysregulation of renal urea handling in the IMCD, 

such as during the absence of functional urea transporters UT-A1/A3, has been shown to 

impact the ability to properly concentrate urine (44, 45). These studies have reported that 

UT-A1/A3 double knockout mice develop severe polyuria without any aberrant renal 
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morphology (159), comparable to what has been observed in EHD4-KO mice. Consistent 

with these observations, EHD4-KO mice was found to have an increased urinary urea 

excretion compared to WT mice, almost twice than that in WT mice.  Moreover, the plasma 

urea concentration was also slightly reduced in EHD4-KO mice (~10-16%), which is 

consistent with urea wasting and also suggests that the increased urea excretion in the 

EHD4-KO mice is not due to increased production of urea.  

The excretion of urea by the kidney is thought to be dependent on two factors: the 

filtered load of urea and the amount of urea reabsorbed along the nephron. Increased 

urinary urea excretion in EHD4-KO mice may possibly arise due to a reduced reabsorption 

of urea in the IMCD, where EHD4 is abundantly expressed. Urea reabsorption in the IMCD 

occurs in two steps: entry of urea from the luminal fluid into the principal cells via UT-A1 

followed by exit into the renal interstitium via the UT-A3 in the basolateral side. The cellular 

abundances of both UT-A1 and UT-A3 are regulated by various cellular mechanisms, 

including endocytosis (11, 186). The polyuria observed in EHD4-KO mice is similar to that 

observed in mice lacking both UT-A1 and UT-A3 (45). In these UT-A1/A3 double knockout 

mice, transgenic overexpression of UT-A1 restores the diuretic phenotype, suggesting that 

UT-A1 is necessary for basal maximal urinary concentration (92), a parameter which is 

also defective in EHD4-KO mice. Therefore, it could be possible that in EHD4-KO mice 

the amount of UT-A1 may be reduced in the IMCD, causing reduced urea reabsorption in 

the IMCD. Proteins from the UT-A family share a high degree of sequence homology 

because they are splice variants derived from the same gene (175), making it quite 

challenging to accurately identify and quantify these transporters in the renal tissues by 

immunostaining. An antibody raised against the C-terminal of the parent UT-A protein was 

used that recognizes UT-A1 (expressed in the IMCD), UT-A2 (expressed in the thin 

descending limb), and UT-A4 (expressed in the IMCD of rat, not mouse). The bands 
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around ~97 kD were identified as UT-A1, similar to what has been reported previously 

(12). Western blotting of inner medulla for total UT-A1 did not show any statistically 

significant difference in the abundance of UT-A1 between EHD4-KO and WT mice. 

Because total cellular abundance of a protein does not indicate its abundance in the 

membrane, immunofluorescence staining was employed to examine the cellular 

localization of UT-A1. Using a commercially available UT-A1 antibody that recognizes the 

same epitope of UT-A1, a dramatic and contrasting difference in the staining intensity of 

UT-A1 between the two genotypes was observed. UT-A1 staining appeared more intense 

and peri-nuclear in EHD4-KO mice than that in WT mice. These results, albeit conflicting 

with the Western blot data, suggest a potential role of EHD4 in the regulation of UT-A1 

trafficking in the principal cells. Future studies involving UT-A1-transfected principal cell 

line would be needed to probe further into the role of EHD4 in UT-A1 trafficking. Such a 

set up would allow us to understand the role of EHD4 in the trafficking of UT-A1 specifically 

in the principal cells and allow us to identify if and how EHD4 regulates UT-A1. 

In the liver, catabolism of amino acids derived from dietary protein generates urea, 

which is then excreted by the kidney. The filtered load of urea in the kidney is, therefore, 

in part dictated by the amount of dietary protein. In his urea-handling model (8), Berliner 

had proposed that in the setting of dysfunctional urea transportation in the IMCD, an 

increased filtered load of urea would result in a urine-concentrating defect. This urine-

concentrating defect would arise because less urea would be reabsorbed from the tubular 

lumen, which would increase the amount of urea in the lumen and therefore result in urea-

induced diuresis. He further described that this urine-concentrating defect would be 

subsequently reversed when the filtered urea load is reduced. It is currently hypothesized 

that the high urea excretion in EHD4-KO mice is at least partly due to a defective urea 

reabsorption in the IMCD. Hence, I proceeded to test this hypothesis further using the 
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aforementioned model of manipulating filtered urea load with dietary protein. When fed 

with 40% protein diet, there was a further increase in the urine flow and urinary urea 

excretion in both male and female EHD4-KO mice. In female mice particularly, the shift 

from 20% to 40% protein diet resulted in a greater differences in those renal parameters 

between the EHD4-HOM and EHD4-KO mice. However, the difference in the urine flow 

and urea excretion between the two female genotypes were comparable when the diet 

was switched to 6% from 40% protein. The disappearance of differences in these renal 

parameters in the female mice suggest that EHD4-KO mice could effectively reabsorb 

enough urea from the tubule via the available UT-A1 in the membrane when urea load is 

reduced. These findings are in line with Berliner’s urea-handling model, and the data 

strongly suggest that EHD4 regulates urea handling in the kidney. Moreover, the 

exaggerated diuretic response to high protein diet in EHD4-KO mice is very comparable 

to that seen in UT-A1/A3 double knockout mice (45). In these UT-A1/A3 double knockout 

mice, the diuretic phenotype is restored when UT-A1 is transgenically overexpressed in 

these mice (92), showing that UT-A1, and not UT-A3, is required for basal urine-

concentrating ability. Therefore, the current working hypothesis is that in EHD4-KO mice, 

the accumulation of UT-A1 in the apical membrane of principal cells is reduced. This 

reduction causes a decrease in the amount of urea that can be reabsorbed in the IMCD, 

thereby resulting in an accumulation of urea in the tubular lumen. Because of this urea 

accumulation, EHD4-KO mice develop urea-induced diuresis. Although the 

immunofluorescence staining of UT-A1 in the kidney sections suggested increased peri-

nuclear localization of UT-A1 in EHD4-KO mice, the results are inconclusive. The role of 

EHD4 in regulating apical UT-A1 localization require further analysis, such in a cell culture 

model. 
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Modulation of filtered urea load via modification of dietary protein intake is a model 

that has been used successfully in many previous studies to understand renal urea 

handling (44, 45, 47); however, I became aware of the limitations of this model during 

these experiments. One of the unexpected results of this study was the discovery of a sex 

difference in the response to 6% protein diet. In male mice, both the urine flow and urinary 

urea excretion was further elevated in both the genotypes during 6% protein intake. The 

increased diuresis was matched by an increase in water intake. It has been previously 

reported by others that low protein diet triggers a urine-concentrating defect in rats (76, 

77) and it is proposed that this defect arises in an attempt to conserve nitrogen in the body. 

It is possible that in the male mice low protein intake triggers a metabolic stress response 

to allow the urea to be recycled back to the liver to conserve nitrogen. In doing so, the 

renal urea gradient is compromised and the tissue osmotic gradient is washed out, 

resulting in a urine-concentrating defect. Recent studies have shed some light on how 

protein restriction may stimulate the integrated stress response pathways (97-99). A 

recent study has shown that these pathways are more active in female mice than in males 

during amino acid-restricted diet (105), providing a better adaptive capacity in females 

during amino acid restriction. It is possible that female mice can adapt faster to the low 

protein diet and overcome the nitrogen deficit faster than male mice, thereby not showing 

the urine-concentrating defect. Another reason for the urine-concentrating defect in male 

mice could be due to a residual effect of the high protein diet. Because the diets in the 

mice were switched from 40% to 6%, it is possible that some of the effects of the 40% 

protein diet could have been retained in the male mice, thereby causing diuresis. In future, 

a better approach to rule out this residual effect of 40% protein diet would be to step down 

the protein level gradually to 20% and then to 6% protein. Probing into the role of EHD4 

in renal urea handling in mice maintained on 6% protein diet and understanding the effect 

of sex on renal urea handling are some of the exciting future directions for this work. 
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Urea undergoes a significant amount of recirculation in the kidney that allows for 

the sequestration of urea in the renal medulla (102). The disproportional reabsorption of 

water and urea results in a high concentration of urea in the fluid that arrives in the IMCD. 

This mechanism allows urea to diffuse into the interstitium via UT-A1 and UT-A3, thereby 

resulting in an accumulation of urea in the inner medulla of the kidney. This accumulated 

urea in the inner medulla, however, may escape into the blood via the ascending vasa 

recta. This risk is overcome by the parallel and close arrangement of the vasa recta and 

the tubules that allows the urea to be recycled back into the descending vasa recta (via 

UT-B) and into the descending thin limbs (via UT-A2). Therefore, urea recycling within the 

renal interstitium helps in the generation and maintenance of the osmotic gradient required 

for concentrating urine. The current data suggest that the generation and preservation of 

the renal tissue osmolality and urea concentration is independent of EHD4. Moreover, 

there was no difference in the amount of tissue urea between EHD4-HOM and EHD4-KO 

mice, even though the functional data suggests a role of EHD4 in the reabsorption of urea. 

Previous studies have reported compensatory upregulation of urea transporters in the 

absence of one or more urea transporters in mice (90). In one particular study (90) with 

UT-B knockout mice, there was almost a 120% increase in the abundance of UT-A2 in the 

outer medulla, indicating that mice are capable of an adaptive response to the loss of a 

urea transporter that may allow them to maintain a functional intrarenal urea recycling 

pathway.  Despite a high urea excretion, EHD4-KO mice may be able to maintain a steady 

urea concentration possibly by increasing the recycling of urea between the vasculature 

and tubule. EHD4-KO mice indeed have a slightly reduced plasma urea level than WT 

mice, suggesting that may be there is an increased recycling of urea via UT-B from the 

vasa recta into the inner medulla. The expression profiles of other renal urea transporters 

will need to be assessed in order to fully understand how EHD4-KO mice are able to 

preserve the osmotic gradient in the kidney despite high urea excretion. One of the major 
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technical difficulties with studying each of these urea transporters is the lack of specific 

commercial antibodies for each of the urea transporters. The available antibodies in the 

market cross-react with the other isoforms, making quantitative analysis difficult to 

perform. 

Most of the current understanding of renal urea handling are based on hypothetical 

models proposed by various groups, and ongoing studies have helped shed light on the 

complexity of the process. These data strongly suggest a role of EHD4 in the regulation 

of renal urea handling. In the light of the current data, wherein high levels of EHD4 

expression are found in the IMCD, it is hypothesized that EHD4 is most likely to regulate 

the reabsorption of urea in the IMCD; however, the exact role of EHD4 in the regulation 

renal urea handling remains unclear. As mentioned before, RNA sequencing data has 

shown that EHD4 is also expressed in the thin limbs, so it is also possible that EHD4 may 

regulate UT-A2 in the thin limbs.  The working hypothesis is that EHD4 regulates the 

membrane accumulation of UT-A1 in the IMCD. A lack of EHD4 in mice reduces the 

membrane accumulation of these urea transporters in the IMCD, thereby reducing 

urea reabsorption and causing a urea-induced osmotic diuresis.  
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Major findings of the dissertation 

The experiments performed in this dissertation have provided novel insights into 

the physiological and cellular role of a regulator of endocytic recycling. Endocytic recycling 

is an important cellular mechanism that is involved in the regulation of extracellular fluid 

osmolality (46, 75). EHD4 regulates endocytic recycling, but the specific role of EHD4 

pertaining to renal water and solute handling remains largely unknown. The overall aim of 

this dissertation was to elucidate the role of EHD4 in the kidney in order to bridge some of 

the gap in the knowledge of cellular machinery involved in the regulation of renal channels 

and transporters. This dissertation described for the first time a role of EHD4 in the 

regulation of trafficking of AQP2 and AQP4 in principal cells, and recycling of urea in the 

kidney. This study provides important insights on the cellular machineries of the endocytic 

recycling process in the kidney, and shows how the lack of a regulator of endocytic 

recycling can have a profound effect on the kidney’s ability to handle water and urea. 

This study has shown for the first time that EHD4 is an important regulator of urine 

formation and composition.  A major finding of this study has been the discovery that EHD4 

regulates renal water handling, and in its absence EHD4-KO mice were found to develop 

a diuretic phenotype. Experiments from Chapter I revealed that EHD4 is required for the 

control of basal and maximal urine concentration, and anti-diuretic responses during 24-h 

water restriction is independent of EHD4. Data gathered in Chapter I also revealed that 

EHD4 might not regulate the central release of AVP in mice. Additionally, in Chapter III 

EHD4 was discovered to be involved in the regulation of renal urea handling, a complex 

physiological process that is crucial for concentrating urine. Albeit weak, current data 

suggest a potential role of EHD4 in the regulation of UT-A1 cellular localization in principal 

cells.   
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Investigations in Chapter II revealed that EHD4 regulates the membrane 

abundance of both AQP2 and AQP4 in their respective membranes in principal cells. 

Although several studies have identified and isolated protein complexes found within 

AQP2-containing vesicles in principal cells, very limited information is available regarding 

the exact role of these proteins in the actual trafficking event. Studies in Chapter II of this 

dissertation have addressed how EHD4 may regulate AQP2 trafficking, and shown that 

EHD4 reduces the accumulation of glycosylated AQP2 in the apical membrane of principal 

cells. Both Chapters I and II strongly indicate that EHD4 may not be involved in the 

classical AVP-mediated regulation of AQP2 trafficking, and may regulate the constitutive 

recycling of AQP2, an avenue that currently remains largely unexplored in the scientific 

world. Moreover, almost no information is currently present regarding the trafficking of 

AQP4 in the kidney. A novel and valuable finding of Chapter II of this dissertation has been 

the discovery of the role of EHD4 in the regulation of AQP4 trafficking to the basolateral 

membrane in principal cells. Deletion of EHD4 reduces the membrane abundance of 

AQP4 in the basolateral membrane of principal cells, which possibly contributes to the 

diuretic phenotype of the EHD4-KO mice.   

In addition, this work also provided evidences supporting the role of EHD4 in the 

regulation of synthesis of PGE2. This finding provides a possible mechanism of regulation 

of AQP2 and/or UT-A1 trafficking in the principal cells via EHD4. Moreover, there was a 

lack of evidence to support a role of EHD4 in the regulation of renal sodium handling. 

Taken together, these findings indicate that EHD4 regulates renal water handling, and 

therefore plays an important role in the formation of urine and its composition. My 

current working hypothesis is that EHD4 regulates urine formation and composition 

by regulating the cellular trafficking of AQP2, AQP4, and UT-A1. Figure 40 

summarizes these major findings.    
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Figure 40: Representative figure of the major findings of this study. Global deletion 
of EHD4 in mice results in increased urine flow, reduced urine osmolality, and increased 
urea excretion. Data generated during this study (dashed lines) has shown the role of 
EHD4 in the regulation of membrane accumulation of AQP2, AQP4, and UT-A1, and 
the generation of PGE2 in principal cells. EHD4 has also been found to co-localize with 
AQP2 in cultured principal cells, but immunoprecipitation data suggest a lack of direct 
physical interaction between the two proteins. Deletion of EHD4 increases the 
production of PGE2 both in vivo and in vitro. One way PGE2 reduces membrane 
accumulation of AQP2 in principal cells is via the inhibition of AQP2 recycling (solid 
line), which has been reported in previous studies (148). Therefore, it is hypothesized 
that EHD4 deletion results in an increase in PGE2, which in turn may stall the recycling 
of AQP2 in principal cells. 

Figure 40: Representative figure of the major findings of this study 
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Potential mechanisms underlying the effect of EHD4 on the subcellular localization 

of AQP2 

A defect in urine-concentrating mechanism may arise due a faulty renal water 

handling. Fine-tuning of water reabsorption occurs exclusively in the collecting duct, where 

membrane abundance of the aquaporin water channels of the principal cells determine 

the water permeability of the collecting duct. The role of EHD4 in the regulation of the 

cellular localization of the aquaporin channels of the IMCD are discussed in the following 

section. 

Role of EHD4 in the regulation of post-translational modifications of aquaporins of the 

principal cells 

The aquaporin water channels of the principal cells, namely AQP2, -3, and -4, 

regulate the water permeability of the collecting duct. AQP3 and -4 are constitutively 

expressed in the basolateral membrane of principal cells, whereas expression of AQP2 in 

the apical membrane is regulated. It was found that EHD4 deletion reduces the amount of 

AQP2 in the apical membrane of principal cells of IM in mice (Fig. 16). Additionally, using 

a cultured principal cell line, it was also found that EHD4 regulates the accumulation of 

glycosylated AQP2 in the apical membrane of principal cells (Fig. 22), indicating a 

potential role of EHD4 in regulating the glycosylation process of AQP2. EHD4 does not 

appear to influence the abundance and localization of non-glycosylated-AQP2. 

Glycosylation of membrane proteins occur in the rough ER (197) and a distinct peri-

nuclear localization of EHD4 was observed in the cultured principal cells (Fig. 24 and 25), 

thereby raising the possibility that EHD4 to regulate the glycosylation process of AQP2.  

Additional evidence supporting this notion comes from the data on AQP4 expression in 

EHD4-KO mice. In the absence of EHD4, the amount of AQP4 is significantly reduced in 

the basolateral membrane (Fig. 18), and immunoblotting revealed a reduced expression 



136 
 

of glycosylated-AQP4, and not the non-glycosylated form. Together, these data on AQP2 

and AQP4 suggest a role of EHD4 in the glycosylation of these membrane proteins, and 

the specific role of EHD4 in the regulation of glycosylation of membrane proteins remains 

to be tested in future.  

Potential cellular mechanisms by which EHD4 regulates apical membrane abundance of 

AQP2 

EHD proteins usually interact with their partner proteins via an interaction between 

EH-NPF motifs (135). AQP2 lacks an NPF motif, therefore the chances of a direct physical 

interaction between AQP2 and EHD4 is small. Moreover, EHD4 was not found in the 

immunoprecipitate complex containing AQP2 (Fig. 26), suggesting a lack of direct physical 

interaction between the two proteins. However, EHD4 was found to co-localize with AQP2 

(Fig. 25), thereby providing a high possibility for these proteins to interact in some indirect 

way. A better approach in understanding the exact nature of the interaction between EHD4 

and AQP2 would be to transfect principal cells with constructs containing specific domains 

of EHD4 and then testing to see if AQP2 can be found in the pulled down complexes. 

Data from both in vivo and in vitro models show that EHD4 deletion reduces the 

accumulation of AQP2 in the apical membrane of principal cells. EHD4 is known to 

regulate the early endosomal trafficking of membrane proteins (178) and in principal cells, 

it was observed that EHD4 localized near the plasma membrane (Fig. 24 and 25), where 

early endosomes would be found. These data indicate that one way EHD4 possibly 

regulates the membrane activity of channels and transporters in principal cells is by 

regulating the early endosomal trafficking. The protein-protein interaction profile predicts 

that EHD4 interacts with early endosomal proteins called Rab5 (Fig. 23). It has been 

reported previously that when EHD4 is absent, the activity of Rab5 increases (178), which 

in turn may increase early endosomal traffic. Therefore, it is possible that the reduced 
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membrane abundance of AQP2 in the absence of EHD4 could arise due to increased 

uptake into the early endosome combined with a reduced entry to the recycling endosome. 

Sorting of proteins in the early endosome is a highly dynamic process and involves 

coordinated activity of several proteins, including EHD4 (81). Because early endosomal 

sorting is dynamic, it would require a robust live-cell imaging technique involving pulse-

chase experiments with labelled compounds to follow the dynamics of the traffic of AQP2 

through the endosomal system in the principal cell when EHD4 is absent. Such an 

approach in the future would certainly allow accurate identification of the role of EHD4 in 

the regulation of AQP2 trafficking, but it was beyond the scope of the current project. 

Another possible reason behind the reduced membrane accumulation of AQP2 in 

EHD4-depleted cells could be due to reduced entry of AQP2 into the recycling endosome. 

Under basal conditions, AQP2 is known to undergo constitutive recycling (112) and one 

of the major proteins that regulate the shuttling of AQP2 to and from the recycling 

endosome is Rab11-Fip2 (137). Rab11-Fip2 is known to interact with EHD proteins (136), 

therefore it is possible that Rab11-Fip2 may be a common interacting partner between 

AQP2 and EHD4. Studies with EHD3 have shown that the interaction between EHD3 and 

Rab11-Fip2 is required for the entry of internalized cargo into the recycling endosome 

(136). Although interaction between EHD4 and Rab11-Fip2 has not been studied, it is 

possible that, in the absence of EHD4, the interaction between AQP2 and Rab11-Fip2 

may be lost, thereby resulting in reduced entry of AQP2 into the recycling endosome. Due 

to the lack of a Rab11-Fip2 antibody that works with co-immunoprecipation, this 

hypothesis remains to be tested using alternative techniques such as yeast-two hybrid 

binding assay in the future. 

Although it is possible that the effect of EHD4 on AQP2 is mediated by physical 

interactions, it is also very likely that some alternative mechanisms that regulates AQP2 
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is altered in EHD4-depleted cells. One pathway that was found to be upregulated in EHD4-

depleted cells was the synthesis of PGE2 (Fig. 27 and 29). The recycling of AQP2 is 

negatively regulated by PGE2, so it is quite possible that EHD4 regulates AQP2 recycling 

in a PGE2-dependent manner. 
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Physiological roles of EHD4 in the regulation of renal function 

Studies performed over several decades have already established the importance 

of endocytic recycling in the regulation of renal function (75). It was, therefore, not 

surprising when expression profiling of EHD proteins across tissues revealed the presence 

of EHD4 in the kidney (58). However, the specific role of EHD4 in the kidney remained 

unknown, and only very recently a role for EHD proteins in the glomerular 

microvasculature had been reported (56), but nothing is known regarding the functional 

role of EHD4 or other EHDs in the tubular system. The overall objective of the work 

contained in this dissertation has been to elucidate the physiological roles of EHD4 in the 

regulation of renal function, and to shed some light on to the cellular processes regulated 

by EHD4 in the kidney.  

In order to better understand the exact role of EHD4 in the kidney, it was important 

to identify the sections of the kidney where EHD4 is expressed. It was found that, among 

all the nephron sections that could be isolated, EHD4 is expressed the most in the IMCD 

(Fig. 1). This part of the kidney is exquisitely involved in the fine-tuning of urine formation 

and its final composition. Consistent with this expression profile, it was found that EHD4-

KO mice have a higher urine flow and lower urine osmolality than WT mice (Fig. 5). This 

diuretic phenotype in EHD4-KO mice suggests that EHD4 is important for regulating 

urinary water homeostasis. At the level of the kidney, water homeostasis is maintained by 

two major urine-concentrating mechanisms- 

1.  Increased permeability of the collecting duct to water, which depends on a 

functional AVP-AQP2 axis between the hypothalamus and the kidney. 

2. High osmolality of the renal medullary interstitial fluid, which depends on effective 

renal water, sodium, and urea handling mechanisms. 
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I explored the roles of EHD4 in the regulation of both of these major physiological 

processes. 

Role of EHD4 in the regulation of the hypothalamic-renal feedback mechanisms 

Formation and concentration of urine in the kidney depends on the feedback 

mechanisms involving the hypothalamus (central component) and the kidney (renal 

component) (75). These central and renal components form the regulatory axis that 

maintains water balance during variations of water intake and water loss.  Along with being 

expressed in the IMCD, EHD4 was also found to be expressed in the hypothalamus (Fig. 

11); however, the exact cell type that expresses EHD4 is not currently known and this was 

a crude attempt to investigate whether EHD4 is expressed in the hypothalamus. These 

data suggest that EHD4 could be involved in the regulation of the central and/or renal 

components of water balance. The interpretation that the diuretic phenotype is due to 

defective renal water handling rather than primary polydipsia derives primarily from the 

observations made during the acute water loading experiments (Fig. 6) as well as the 

subcellular localization of AQP2 (Fig. 16). An i.p. injection of water allowed us to bypass 

the oral route of water intake. This approach provided a way to assess the role of EHD4 

in eliminating a water load without the influence of the thirst mechanism mediated via the 

central regulatory component of water homeostasis. As shown in figure 6, the diuretic 

response to an acute water load in EHD4-KO mice was significantly larger than that in WT 

mice. The exaggeration of the diuretic phenotype in EHD4-KO mice after the water load 

suggested that the renal component of water homeostasis may be compromised in EHD4-

KO mice.  

It has been long known that an increase in plasma osmolality is a strong stimulation 

for the secretion of AVP from the hypothalamus (35). Secreted AVP from the 

hypothalamus enters the blood circulation and increases the water permeability of the 
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collecting duct of the kidney to allow concentration of urine (93, 139). A series of 

observations in EHD4-KO mice so far has led us to believe that the diuretic phenotype of 

the EHD4-KO mice is not attributable to a central effect of loss of EHD4, given that the 

role of EHD4 in the hypothalamus is unclear at this point. Firstly, the plasma osmolality of 

EHD4-KO mice was similar to that in WT mice (Fig. 12A), indicating an ability to conserve 

water balance even in the light of the diuresis. Secondly, it was also found urinary AVP 

excretion to be similar between the two genotypes (Fig. 12B). Urinary AVP excretion is 

not a direct measurement of the circulating AVP, but it has been successfully used before 

(53, 69) as a surrogate marker for circulating AVP. Similarity of AVP excretion between 

the two groups indicate that the effect of EHD4 deletion on the regulation of AVP release 

from the hypothalamus is either negligible or masked by another compensatory 

mechanism. Indeed, the expression of EHD1 in the hypothalamus increases significantly 

in EHD4-KO mice (Fig. 11B). EHD proteins possess a high degree of homology with each 

other (134) and have been reported to compensate for each other in previous studies (56). 

Therefore, it is possible that the effect of EHD4 deletion on the central component remains 

masked due to EHD1, which allows keeping AVP secretion, and in turn plasma osmolality, 

constant despite the diuresis. The upregulation of EHD1 in the hypothalamus of EHD4-

KO mice suggests that EHD4 has a necessary functional role in the hypothalamus, which 

remains to be tested. Thirdly, the mismatch between water intake and urine volume in 

EHD4-KO mice was greater than WT mice (Fig. 4A and 5A), suggesting that polydipsia 

may not be the primary cause of this diuretic phenotype in EHD4-KO mice. This 

observation further provides more evidence for a renal defect rather than a defect in the 

central component; however, more experiments, such as studying the response of EHD4-

KO mice to dipsogenic agents, will be needed to elucidate the exact role of EHD4 in the 

thirst mechanism.   
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Role of EHD4 in the regulation of renal AVP-AQP2 axis 

Multiple lines of evidence suggest that the AVP-AQP2 axis remains functional in 

EHD4-KO mice. No difference in the cellular abundance of pAQP2 was found between 

WT and EHD4-KO mice under baseline conditions (Fig. 17A), which indicates a functional 

AVP-AQP2 axis in EHD4-KO mice. Moreover, EHD4-KO mice were found to exhibit similar 

anti-diuretic responses as WT mice during 24-h water restriction (Fig. 7). AVP is the major 

anti-diuretic agent released during water deprivation (49) and allows conservation of water 

by increasing water permeability of the collecting duct. AVP increases the phosphorylation 

of AQP2 (144), resulting in an increase in the membrane accumulation of AQP2. Both the 

abundance and the membrane availability of AQP2 increased in a similar way in both WT 

and EHD4-KO mice post-water restriction (Fig. 8). These observations strongly indicate 

that the AVP-AQP2 axis in the kidney remains intact even in the absence of EHD4.  

The role of the AVP-AQP2 axis in the regulation of water permeability of the IMCD 

comes into play when plasma osmolality increases, such as during water restriction. 

EHD4-KO mice showed a similar anti-diuretic response to 24-h water restriction as WT 

mice. This data, along with the other observations discussed in the previous section, 

suggest that this AVP-AQP2 axis is functional in the absence of EHD4. Moreover, the 

diuresis in EHD4-KO mice is more prominent under baseline conditions, and urine-

concentrating abilities seemed to be functional during water restriction. Although EHD4-

KO mice were able to concentrate their urine post water restriction, the urine osmolality of 

EHD4-KO mice remained significantly lower compared to WT mice (Fig. 7B). This 

suggests that EHD4 is required for maximal urine-concentrating ability. Therefore, it is 

possible that the diuretic phenotype in EHD4-KO mice is more of a baseline defect, which 

can be overcome during anti-diuresis. 



143 
 

EHD proteins have been reported previously to exhibit compensatory roles for one 

another when one of the members is absent (56). Consistent with this, there was an 

increased expression of EHD1 in the hypothalamus in the absence of EHD4 in mice (Fig. 

11B). Hence, it is possible that the urine-concentrating ability in EHD4-KO remains 

functional due a compensatory upregulation of other EHD proteins. No such increase in 

the expressions of EHD1, -2, and -3 in the renal tissues of EHD4-KO mice after 24-h water 

restriction was observed (Fig. 10), suggesting that the anti-diuretic response to water 

restriction occurs in an EHD-independent manner. All these observations suggest that 

EHD4 has a role in the regulation of renal water reabsorption during baseline conditions, 

whereas key physiological mechanisms allowing for increases of urinary concentration 

under conditions of water restriction remain intact. 

Role of EHD4 in the regulation of renal osmotic gradient 

In order for the kidney to generate a hyperosmotic urine, it needs to maintain a 

hyperosmolar environment in the renal medulla. Two major processes in the renal medulla 

contribute to the generation of the osmotic gradient: active transport of sodium ions via 

the NKCC2 in the MTAL, and the facilitated diffusion of urea through the urea transporters 

of the IMCD. It was found that both MTAL and IMCD expresses EHD4 (Fig. 1), and 

therefore, it is possible that EHD4 regulates the generation of the osmotic gradient by 

influencing either or both of these two processes at these sites. The data on the NKCC2 

expression and responses to acute furosemide injection suggest that EHD4 may not be 

involved in the regulation of sodium transport via NKCC2 (Fig. 15). However, it is possible 

that the effect of EHD4 deletion on sodium reabsorption via NKCC2 may be masked by 

the compensatory upregulation of the activities of other medullary sodium 

channels/transporters, such as ENaC activity in principal cells. It has been previously 

reported that a chronic administration of furosemide in rats result in an increases in ENaC 
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abundance (131) that results in the generation of tolerance to diuretics. My attempt to 

understand this phenomenon remained largely unsuccessful and inconclusive because of 

the failure of amiloride to generate a natriuretic effect (Fig. 14). ENaC is responsible for 

only a small percentage of total Na reabsorption, perhaps contributing to the difficulty in 

detecting an effect in conscious mice Although the abundance of αENaC was not different 

between WT and EHD4-KO mice, it is still possible that the activity or membrane 

abundance of ENaC, as well as NKCC2, may be compromised in EHD4-KO mice. 

Endocytic recycling is known to regulate the membrane abundance of both ENaC (19, 20, 

37) and NKCC2 (1, 21). Indeed, SNAP29, one of the predicted interacting partners of 

EHD4 (found through STRING analysis) (Fig. 23), has been identified in vesicles involved 

in NKCC2 trafficking (21). Despite the expression of EHD4 in these segments where 

NKCC2 and ENaC are expressed, the exact role of EHD4 in the regulation of these 

channels and transporters remain unclear. One way to understand if EHD4 regulates 

either or both NKCC2 and ENaC would be to study the effect of EHD4 deletion on the 

membrane accumulation of these channels and transporters in appropriate cultured cells. 

The renal osmotic gradient is generated by the buildup of solute concentration, 

particularly sodium and urea. It was found that the osmotic gradient across the renal 

interstitium was similar between EHD4-HOM and EHD4-KO mice (Fig. 36A and 37A). On 

a first glance, this data would seem to indicate that the maintenance of the renal osmotic 

gradient is independent of EHD4, which may be true. However, the generation and 

preservation of this osmotic gradient is a complex process, and EHD4 may be involved in 

the regulation of this process in a way that may not be readily apparent from the current 

data. Urea reabsorption and recycling within the IM are important factors for maintaining 

the renal osmotic gradient. Tissue urea concentration of EHD4-KO mice was found to be 

similar to that in EHD4-HOM mice (Fig. 36B and 37B). These data indicate that, along with 
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tissue osmolality, preservation of tissue urea gradient may also be EHD4-independent. 

However, it was also found that in the absence of EHD4, urinary urea excretion is 

increased and plasma urea level is slightly reduced (Fig. 30 and 31). These findings 

present an interesting view on the role of EHD4 in the regulation of renal urea handling 

and urea gradient. EHD4-KO mice seem able to conserve the tissue urea gradient despite 

an apparent urea-wasting phenotype, at least when maintained on a normal protein diet. 

One possible explanation for this paradoxical finding between urea excretion and tissue 

urea gradient could be a reduced reabsorption of urea in the IMCD, where EHD4 is highly 

expressed, and an increased re-entry of urea from the vasculature into the interstitium.  

Principal cells of the IMCD express two urea transporters: UT-A1 in the apical 

membrane that transports urea from the luminal fluid into the principal cell, and UT-A3 in 

the basolateral membrane that transports urea from the inside of the principal cell to the 

renal interstitium (88). Absence of both UT-A1 and UT-A3 can result in a urine-

concentrating defect in mice (45), but only UT-A1, and not UT-A3, is required for basal 

urea permeability and a maximal urine-concentrating ability (92). Although some studies 

have highlighted the importance of endocytosis in the regulation of UT-A1 and -A3, there 

is no current report on the role of EHD proteins in the regulation of trafficking of these 

transporters. In the water restriction experiment, EHD4-KO mice was found to increase 

urine osmolality when water was restricted, but the urine osmolality remained lower than 

that in WT mice (Fig. 7B). This observation indicates that EHD4 is required for maximal 

urine-concentrating ability in mice. Moreover, an EHD-interacting protein, called Snapin 

(119), also interacts with UT-A1 (122). Combining these observations, it seems very likely 

that EHD4 may regulate the maximal urine-concentrating ability by regulating UT-A1 in 

the IMCD. Although the current results on the localization of UT-A1 in the principal cells 

needs further verification, it appears that EHD4 may regulate the accumulation of UT-A1 
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in the apical membrane of principal cells. In EHD4-KO mice, there seems to be a lack of 

UT-A1 in the apical membrane (Fig. 39) and this in turn might result in reduced urea 

reabsorption within the IMCD.  

It is also quite possible that the increased urea excretion in EHD4-KO mice may 

result due to the high urine flow in these mice. The high urine flow would allow less time 

for proper urea reabsorption in EHD4-KO mice, thereby increasing urea excretion. 

However, I would argue against this flow-induced increase in urea excretion in EHD4-KO 

mice. The data from the experiments involving modified protein diets showed that, at least 

in female mice, a high protein diet exacerbated the diuretic phenotype and further 

increased the urea excretion (Fig. 32), which was reversed by a low protein diet. These 

observations point more toward a defect in renal urea reabsorption in the absence of 

EHD4; however, it is also possible that EHD4 regulates the activity of UT-A2 in the thin 

descending limb. Data generated by Lee et. al. (104) from RNA sequencing of single 

tubules, shows that the expression of EHD4 mRNA is actually the highest in the thin limbs, 

which makes it possible for EHD4 to regulate UT-A2 as well. Therefore, a comprehensive 

profiling of the status of all arms of renal urea handling will be needed to confirm the exact 

role of EHD4 in this physiological process. 

 

  



147 
 

Conclusion and perspectives 

The functional data presented in this dissertation indicate an important regulatory 

role of EHD4 in the renal handling of both water and urea. The findings of these studies 

indicate that EHD4 does this, at least in part, through regulation of the subcellular 

localization of AQP2 and AQP4 in the collecting duct. Future studies are needed to fully 

elucidate the identity and cellular site of the urea transporter(s) regulated by EHD4, 

although UT-A1 appears to be a likely candidate. 

This study highlighted the potential impact on renal function of proteins involved in 

endocytic trafficking, which has received little attention so far. This study provides an 

insight into the cellular machineries that are involved in the regulation of water 

homeostasis. The exact roles of EHD proteins in humans and any pathophysiology 

associated with the lack of these proteins in humans has not been explored yet. This work 

has clinical relevance because an imbalance in body water can be fatal. In many clinical 

conditions, such as during nephrogenic diabetes insipidus, the water permeability is 

significantly reduced, resulting in a reduced reabsorption of water. EHD4-KO mice 

demonstrated a phenotype very similar to that seen during nephrogenic diabetes 

insipidus. One form of this disease occurs due a dysfunctional recycling of AQP2 in the 

principal cells. These findings shed an important light on the cellular processes involved 

in the trafficking of AQP2, as well as AQP4, that may be used in designing appropriate 

therapeutic agents. Targeted therapy is absolutely necessary for patients suffering from 

this disease because there are no treatment strategies available right now, and the only 

way to manage this condition is by monitoring fluid intake. Unresolved polyuria, such as 

during nephrogenic diabetes insipidus or acute renal failure, can raise the solute levels in 

the circulation and, thereby, can be fatal. In addition to polyuria, imbalance in body water 

can also occur during improper water retention, such as during congestive heart failure 
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(75). Increased expression and membrane accumulation of AQP2 has been shown to be 

one of the driving forces in the development of congestive heart failure (142). This work 

showed that EHD4 regulates AQP2 trafficking, thereby, providing a novel target for future 

work focusing on the designing of therapeutic agents to treat water imbalance and will 

likely prompt investigators in the future to explore whether reduced EHD4 expression or 

function might contribute to fluid imbalance in humans.  
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