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ABSTRACT 

MECHANISMS FOR THE POTASSIUM-SPARING EFFECTS OF 

FUROSEMIDE IN MICE ON HIGH POTASSIUM DIETS 

Bangchen Wang, Ph.D. 

University of Nebraska Medical Center, 2018 

Supervisor: Steven C. Sansom, Ph.D. 

 

Because of its cardio-protective benefits, diets that are low in Na+ and high in K+ are 

often warranted in conjunction with use of diuretics such as furosemide for treating hypertension. 

It is critical to understand how such diets influence the diuretic actions on renal K+ handling in 

order to choose the best drug for patients. 

Furosemide is a commonly used K-wasting diuretic. It increases urinary K+ excretion by 

increasing distal Na+ delivery that stimulates K+ secretion. However, in wild-type mice (WT) 

adapted to an alkaline low Na+ high K+ diet (LNaHK), both 12-hour IP furosemide injection and 

7-day furosemide water treatment decreased renal K+ clearance. We hypothesized that there is 

furosemide-sensitive net K+ secretion in WT adapted to LNaHK. Free-flow micropuncture 

experiments showed that furosemide increased [K+] in the early distal tubule (EDT [K+]) in WT 

on a regular diet (RD) but decreased EDT [K+] in WT on LNaHK. Furosemide did not affect 

EDT [K+] in ROMK knockout mice (ROMK KO) on LNaHK or WT on an alkaline normal Na+ 

high K+ diet (HK). Furosemide-sensitive Na+ excretion was significantly greater in mice on 

LNaHK than those on RD or HK. Patch clamp analysis of split-open thick ascending limbs (TAL) 

revealed that the 70-pS ROMK channel exhibited a higher open probability (Po) but similar 

density in WT on LNaHK, compared to WT on RD. These results indicate that mice adapted to 
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LNaHK exhibit furosemide-sensitive net K+ secretion in the TAL that is dependent on increased 

NKCC2 activity and mediated by ROMK channels. 

Furosemide acidifies the urine by increasing acid secretion via the Na+-H+ exchanger 3 

(NHE3) in TAL and vacuolar H+-ATPase (V-ATPase) in the distal nephron. Because alkaline 

urine is required for BK-αβ4-mediated K+ secretion, we hypothesized that furosemide reduces 

BK-αβ4-mediated K+ secretion by acidifying the urine. Furosemide water treatment for 11 days 

led to decreased urine pH in both WT and BK-β4 knockout mice (BK-β4 KO) with increased V-

ATPase expression and elevated plasma aldosterone levels. However, furosemide water 

decreased renal K+ clearance and elevated plasma [K+] in WT but not BK-β4 KO. Addition of 

acetazolamide in furosemide water restored urine pH along with renal K+ clearance and plasma 

[K+] to similar levels as control group. Additionally, western blotting and immunofluorescence 

staining showed that furosemide decreased cortical expression of BK-β4 and reduced apical 

localization of BK-α in connecting tubules (CNT); they were restored by adding acetazolamide to 

furosemide water. These results indicate that in mice adapted to HK, furosemide reduces BK-

αβ4-mediated K+ secretion by acidifying the urine. 

In conclusion, by inhibiting net K+ secretion in the TAL and BK-αβ4-mediated K+ 

secretion in CNT, furosemide acts as a K-sparing diuretic in mice adapted to LNaHK and HK. 
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INTRODUCTION 

Health benefits of high potassium diets 

 For tens of thousands of years, humans have been hunter-gatherers and consumed an 

ancient diet that is rich in fruits and vegetables with low sodium (Na) and high potassium (K). In 

the past 200 years since the industrial evolution, modern humans, especially in the western 

culture, have switched to the modern western diet, which contains abundant processed food but 

few fruits and vegetables with high Na+ and low K (1). The high Na+ low K+ modern diet has 

long been known for its association with cardiovascular diseases including hypertension and 

stroke (2, 3). The FDA-recommended daily intake in adults is less than 2300 mg/day for Na+ and 

at least 4700 mg/day for K. Unfortunately, according to data from the National Health and 

Nutrition Examination Survey (NHANES), most US adults exceed the recommended Na+ intake 

with an average of 3600 mg/day and only 2800 mg/day K+ intake (4, 5).  

 The most extensively studied of dietary impacts on cardiovascular diseases are the DASH 

(Dietary Approaches to Stop Hypertension) diet studies. In one study, 412 subjects, with an 

average blood pressure of 135/86 mmHg and without antihypertensive treatments, were given 

either the control diet or the DASH diet that is rich in fruits, vegetables, and low-fat dairy 

products with three different levels of Na+ intake: low at 50 mmol/day (2.2 g/day), intermediate at 

100 mmol/day (4.3 g/day), and high at 150 mmol/day (6.5 g/day). The K+ intake was 

approximately 40 mmol/day (1 g/day) for control group and 80 mmol/day (2 g/day) for DASH 

group. When compared to those on the control diet, subjects on DASH diet had lower blood 

pressure at each Na+ intake level, with the lowest blood pressure in the low Na+ DASH group (6).  

Other widely promoted healthy diets include Mediterranean, Paleolithic, and vegetarian 

diets. They all emphasize the consumption of fruits and vegetables and contain higher K+ and 

lower Na+ contents than the western diet. They have been associated with lower risks for 
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cardiovascular diseases, cancer and overall mortality (7-12). The Paleolithic diet best mimics the 

diet consumed by ancient humans for tens of thousands of years as hunter-gatherers. From studies 

of over 50 hunter-gatherer societies, Eaton SB et. al. (13) estimated the daily Na+ and K+ intake 

of ancient humans. Table 1 clearly demonstrates the large difference in Na+ and K+ contents 

between the Paleolithic hunter-gatherer and modern western diets. Furthermore, the study on the 

Yanomami tribe (14) showed an even more strikingly high K/Na+ intake ratio with an average 

blood pressure of 100/60 mmHg.  

Another important aspect of the high K+ diets is the alkalinity. Many high K+ foods 

including fruits, vegetables and legumes are naturally alkaline. The large difference between 

urinary K+ and Cl- excretion in the Yanomami people suggests the highly alkaline nature of their 

diet (Table 1). In stroke-prone spontaneously hypertensive rat, supplemental KHCO3 or K+ 

citrate attenuated hypertension compared to control; while supplemental KCl exacerbated 

hypertension and increased stroke risk (1, 15, 16).  The studies of supplemental KHCO3/citrate vs 

KCl in humans, however, did not show an effect on blood pressure (17-19). 

Nonetheless, the benefits of high K+ diets as well as K+ supplements have been strongly 

supported by numerous studies. Therefore, it is critical to understand how the body maintains K+ 

homeostasis with the excess K+ intake. 
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Table 1. Daily urinary Na+ and K+ excretion of different diets. 

Diet Na+ (mmol/day) K (mmol/day) 
K/Na+ 

ratio 

Cl (mmol/day) 

FDA Guideline 100 120 1.2 N/A 

Modern (5) 157 72 0.5 N/A 

DASH (low Na) (6) 65 82 1.3 N/A 

Paleolithic (13) 30 282 9.3 N/A 

Yanomami (14) 1 152 152 13.7 

N/A, not available 
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Normal K+ homeostasis in the body 

 The plasma [K+] has to be tightly controlled within the range of 3.5 – 5.0 mM. Both 

hypokalemia and hyperkalemia may lead to dysfunctions in muscles, kidneys and especially the 

heart. In a healthy person, the entire daily intake of K+ is excreted, 90% in urine and 10% in 

stools. Compared to the 100 mmol daily K+ intake and 65 mmol extracellular K+, 3300 mmol K+ 

is stored in the intracellular compartment, mainly in muscle cells (Figure 1). In addition to renal 

excretion, this large pool of intracellular K+ plays a critical role in quickly adjusting plasma [K+] 

to prevent hyperkalemia during an acute K+ intake. K+ is shifted into the cells by the Na+-K+-

ATPase (NKA) that pumps 2 K+ in and 3 Na+ out of the cell.  
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Figure 1. Normal K+ balance in the body (modified from Wingo CS, et. al. 2000) (20). 

K+ in the body is balanced between the small extracellular pool (~65 mEq) and the large intracellular pool 

(~3300 mEq). K+ is actively pumped into the cells by NKA. In equilibrium, the daily K+ intake (~100 

mEq/day) is completely excreted by the kidneys (90 – 95 mEq/day) and the colon (5 – 10 mEq/day). 
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Kidneys play the essential role to maintain K+ balance in the long term. Under normal 

conditions, K+ in blood is freely filtered into the glomerulus. Most of filtered K+ is reabsorbed by 

the proximal tubule (PT) and the thick ascending limb (TAL) of the loop of Henle, following Na+ 

reabsorption. In the aldosterone-sensitive distal nephron (ASDN), which consists of distal 

convoluted tubule 2 (DCT2), connecting tubule (CNT), and cortical collecting duct (CCD), K+ is 

secreted into the tubular lumen (Figure 2) (21). This distal K+ secretion is driven by the negative 

lumen potential generated by Na+ reabsorption via epithelial Na+ channel (ENaC) and is mediated 

by two K+ channels, renal outer medullary K+ (ROMK) channels in principal cells and large 

conductance Ca2+-activated K+ (BK) channels in both principal cells and intercalated cells. The 

ROMK channel is considered constitutively active and mediates K+ secretion under basal 

conditions, i. e. regular diets (regular rodent chow) (22, 23). The BK channel, however, has a 

minimal role under regular diets. It is activated by high urinary flows under high K+ dietary 

conditions (24). Given the high K+ nature of the ancient diets, the BK channel is considered to be 

the ancient K+ channel (25). Deletion of either channel is compensated by the overexpression of 

the other (26, 27). The two K+ channels are regulated differently and work together to safeguard 

against the life-threatening hyperkalemia (25).  
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Figure 2. K+ transport in the nephron.  

K+ is freely filtered into the glomerulus. Approximately 2/3 of filtered K+ is reabsorbed in the PT following 

Na+ and water reabsorption. Approximately 20% is reabsorbed in the TAL by Na+-K+-2Cl- cotransporter 2 

(NKCC2). K+ is secreted into the lumen of the ASDN (consisting of DCT2, CNT, and CCD), driven by the 

negative lumen potential generated by Na+ reabsorption via ENaC.  
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Structure, localization and function of ROMK channels in the kidney 

ROMK (a.k.a. Kir1.1 or KCNJ1) is a member of the KCNJ family (potassium inwardly-

rectifying channel, subfamily J) that is characterized by a larger inward current than outward 

current (22). They have two transmembrane domains, a K+ selectivity filter, and cytoplasmic N- 

and C- terminal domains (Figure 3). Kir channels (inwardly-rectifying K+ channels) are 

constructed by four homomeric or heteromeric subunits, forming a pore in the center (28). In the 

kidney, ROMK channels are localized in the apical membrane of the TAL as well as the principal 

cells of ASDN. Differing from other members in the family, ROMK channels are only weakly 

inwardly-rectifying with a high basal open probability and mediates K+ secretion into the tubular 

lumen (22).  

Patch clamp studies have found an apical 30-pS Kir channel in the CCD and both a 30-pS 

and a 70-pS Kir channel in the TAL (29-32). Several lines of evidence indicate that these 

secretory K+ channels were ROMK channels. First, immunostaining found ROMK expressed in 

these nephron segments (33-35). Secondly, expression of ROMK in Xenopus oocytes exhibited 

indistinguishable biophysical and pharmacological properties compared to the secretory 30-pS 

Kir channel (22, 23, 36). Finally, the 30-pS and 70-pS Kir channels were not found in the TAL 

and CCD of ROMK knockout mice (37).  
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Figure 3. ROMK structure and isoform expression along the nephron (modified from Welling and 

Ho, 2009) (28).  

A. ROMK consists of two transmembrane domains, a K+ selectivity filter, and cytoplasmic N- and C- 

terminal domains. B. ROMK has three different splicing variants. ROMK1 is expressed in the CNT and 

CD. ROMK2 is expressed in the TAL, DCT, CNT, and CCD. ROMK3 is expressed in the TAL and DCT. 
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ROMK channels play different roles in the TAL vs ASDN (Figure 4). In the TAL, 

ROMK is required for recycling K+ back into the lumen in order to maintain NaCl reabsorption 

via Na+-K+-2Cl- cotransporter 2 (NKCC2). Mutations in ROMK cause the type 2 Bartter 

Syndrome, which presents with maternal polyhydramnios, premature delivery, polyuria, 

polydipsia, volume depletion, transient hyperkalemic acidosis and later hypokalemia (38, 39). 

Consistently, ROMK knockout mice also exhibit a similar phenotype with high neonatal 

mortality and severe volume depletion with impaired NaCl reabsorption in TAL (40). In the 

ASDN, however, ROMK channels mainly serve to secrete K+ in a well-regulated fashion to 

maintain K+ balance in the body (41, 42). The different roles of ROMK channels in different 

nephron segments may have to do with the differential expressions of ROMK isoforms (Figure 

3) (28). ROMK2 and ROMK3 are expressed in the TAL; while ROMK1 and ROMK2 are 

expressed in the ASDN. A recent study showed that ROMK1 deletion impaired ROMK 

regulation by high K+ diets in the ASDN without affecting NaCl reabsorption in the TAL (43).  
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Figure 4. Role of ROMK in the TAL and ASDN (modified from Welling and Ho, 2009) (28).  

ROMK channels play different roles in the TAL and ASDN. In the TAL, ROMK encodes for the 30-pS and 

70-pS K+ secretory channels in the apical membrane, which are required for the recycling of K+ reabsorbed 

by NKCC2 to maintain NaCl reabsorption. The NKCC2 transport is powered by NKA in the basolateral 

membrane. In the ASDN, ROMK encodes for the 30-pS K+ secretory channel in the apical membrane. The 

K+ secretion is driven by the negative lumen potential generated by Na+ reabsorption via ENaC. They are 

also powered by NKA in the basolateral membrane. 
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Structure, localization and function of BK channels in the kidney 

BK channels (also called Maxi-K, KCa1.1 or SLO1) are large conductance (150 – 250 

pS), voltage-gated, Ca2+-activated K+ channels. The BK channel consists of four pore-forming α 

subunits, encoded by the Kcnma1 gene, and one of the four different accessory β subunits (β1 – 

β4), encoded by the Kcnmb1-4 genes. The α-subunit consists of seven transmembrane domains 

and a large cytosolic C-terminal domain (Figure 5) (44-46). As a unique part of the BK channel, 

the S0 segment is required for the modulation by β subunits (47, 48). The S1-S4 segments form 

the voltage sensor; S5 and S6 segments form the pore and selectivity filter (49). The C-terminal 

domain of BK-α contains two regulators of K+ conductance (RCK) domains. The RCK1 contains 

a Ca2+ and a Mg2+ binding site, while the RCK2 contains another Ca2+ binding site in a region 

termed as the Ca2+ bowl. These sites are responsible for BK channel activation by Ca2+ and Mg2+ 

(50, 51). Each β subunit of BK has two transmembrane domains connected by a large extracellular 

loop (Figure 5). The four β subunits exert different and complex effects on the BK channel, 

including modulations of voltage and Ca2+ sensitivities, pharmacokinetics, and protein trafficking 

(52-58). Recently, four γ subunits of BK were discovered, and they seem to regulate BK channels 

in a similar manner as the β subunits (45, 59-61). BK channels are expressed in a wide variety of 

tissues and play important roles in various physiological processes including smooth muscle 

contractility, neuronal excitability, and hair cell tuning (62-68). The diverse functions of BK 

channels may be explained by the alternative splicing of the α subunit and modulations by tissue-

specific β subunits (45, 69-71).  
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Figure 5. Structure of the α and β subunits of BK (modified from Zhang J. et. al. 2014) (45).  

BK-α subunit consists of seven transmembrane domains and a large cytosolic C-terminal domain. The BK-

β subunit consists of two transmembrane domains and a large extracellular loop. 
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In the kidney, BK channels are also expressed in a variety of cell types, including renal 

vascular smooth muscle cells, podocytes, mesangial cells, and tubular epithelial cells. In the 

afferent arterioles, BK channels had modest tonic dilator effects (72). In podocytes and mesangial 

cells, BK channels regulate mesangial contractility and glomerular filtration rate (GFR) (73, 74). 

In renal tubules, BK channels have been found in the TAL (75, 76), DCT (77), CNT (78-80), and 

CD (24, 81-83). High luminal fluid flow has been long known to stimulate distal K+ secretion. 

Traditionally, high flow was thought to stimulate K+ secretion by rapidly flushing tubular fluid 

downstream to maintain the chemical gradient for K+ secretion (84). However, studies by Woda 

et. al. (24, 80) were the first to identify the BK channel as the main player in the flow-induced K+ 

secretion (FIKS) in the CNT and CCD. This was further confirmed by genetic deletion of BK-α, 

where vasopressin blockade caused no change in K+ excretion in BK-α knockout mice despite a 

profound increase in urinary flow (27).  

Among the four BK-β subunits, BK-β1, β2, and β4 are expressed in mouse kidneys (85). 

BK-β1 is expressed in principal cells of mouse CNT (79, 85) and rabbit CNT and CCD (79, 86). 

BK-β1 knockout mice had attenuated kaliuretic response to volume expansion (79, 87). On high 

K+ diets (HK), BK-β1 knockout exhibited elevated plasma [K+], reduced K+ clearance and 

exacerbated hypertension due to elevated aldosterone (88). BK-β4 is expressed in the TAL, DCT 

and intercalated cells of CNT and CD (85). BK-β4 was found to protect BK-α from lysosomal 

degradation (58). On HK, BK-β4 knockout mice presented with elevated plasma [K+] and 

reduced K+ clearance, which may be due to decreased apical localization of BK-α or attenuated 

intercalated cell size reduction in response to HK diets (58, 89, 90). Most recently, the study by 

Larsen et. al.  (91) found that BK-β2 knockout mice displayed normal plasma [K+] and urinary K+ 

excretion with elevated plasma aldosterone on both regular diets (RD) and HK diets. This 

indicates that BK-αβ1 and BK-αβ4 channels are the major players in BK-mediated K+ secretion. 
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The exact mechanism of how flow activates BK channels remains an area of great 

interest. High tubular fluid flow causes increases in intracellular [Ca2+], which can activate BK 

channels (92). However, the Ca2+ current is only transient and cannot sustain BK activation. 

Recent studies have discovered that paracrine and autocrine factors such as ATP and 

prostaglandin E2 (PGE2) may stimulate signaling pathways to sustain BK activity (93-95). 

Furthermore, the primary cilium of principal cells may serve as the mechanosensor for tubular 

fluid flow (96). According to the model shown in Figure 6 (97), high luminal fluid flow bends 

the primary cilium on principal cells, driving Ca2+ entry through the transient receptor potential 

vanilloid 4 (TRPV4) channels (98), stimulating Ca2+ release from intracellular Ca2+ stores, 

activating BK-αβ1 channels in principal cells (92). The sustained activation of BK-αβ1 in 

principal cells and BK-αβ4 in intercalated cells may be achieved via paracrine and autocrine 

signaling of PGE2 and ATP (93-95).  
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Figure 6. Flow-dependent activation of BK channels (modified from Welling, 2016) (97).  

High flow bends the primary cilium on principal cells, driving Ca2+ entry via the TRPV4 channel, 

stimulating Ca2+ release from intracellular storage, activating BK-αβ1 channels in principal cells. The 

sustained activation of BK-αβ1 channels in principal cells and BK-αβ4 channels in intercalated cells occur 

indirectly through paracrine signaling of PGE2 and autocrine signaling of ATP. Abbreviations: MAPK, 

mitogen-activated protein kinases; ERK, extracellular signal regulated kinase; PGE2, prostaglandin E2; 

PKA, protein kinase A; V-ATPase, vacuolar-H+ ATPase; AE4, Anion Exchanger 4. 
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Renal K+ handling on high K+ diets 

Kidneys can quickly adapt to excrete high K+ intake by increasing K+ secretion through 

ROMK and BK channels in the ASDN. As indicated by the name of the nephron segment, 

aldosterone is a major regulator of K+ excretion in the aldosterone-sensitive distal nephron 

(ASDN). In mice fed on a high K+ diet, plasma aldosterone levels reaches to approximately 750 

pg/mL from 240 pg/mL on a regular diet (99). Aldosterone has various actions in the ASDN to 

stimulate urinary K+ excretion. In the principal cells, aldosterone upregulates ENaC expression 

and activity to increase Na+ reabsorption (100, 101), increasing the driving force for K+ secretion 

via both ROMK and BK channels. It also upregulates the activity of the NKA in the basolateral 

membrane to facilitate Na+ reabsorption and K+ secretion (102). Additionally, aldosterone can 

increase the forward trafficking of ROMK channels to increase channel expressions in the apical 

membrane (42, 103). Furthermore, aldosterone upregulates BK-α expression in the intercalated 

cells (58) and TRPV4 expression in both principal cells and intercalated cells (104) to facilitate 

BK channel activation and K+ secretion. Interestingly, under the condition of LNaHK, plasma 

aldosterone is elevated to approximately 3600 pg/mL, 15 times higher than the basal level. It 

seems that this elevation is necessary to generate a high rate of BK-α/β4-mediated K+ secretion, 

creating an osmotic diuresis to maintain K+ homeostasis (99).  

Besides aldosterone, other factors also contribute to maintain K+ balance under HK and 

LNaHK conditions. Recent studies showed that elevated plasma [K+] itself could increase 

kaliuresis by inhibiting Kir4.1/5.1 channels in the basolateral membrane of DCT1, depolarizing 

the cell membrane and blocking Cl- exit (105). The increased intracellular [Cl-] inhibits the With-

no-lysine 4 (WNK4) kinase and reduces the phosphorylation and activity of the Na+-Cl- 

cotransporter (NCC) in DCT (105). The inhibition of NCC causes increased Na+ delivery and 

increased tubular fluid flow to the distal nephron, increasing distal K+ secretion through both 

ROMK and BK channels.  
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Recent studies indicate that the alkalinity of HK diets plays a critical role in renal K+ 

handling. Mice fed an alkaline HK or LNaHK diet maintain their plasma [K+] below 5.0 mM (58, 

90, 99). However, mice fed high KCl (HKCl) or low Na+ high KCl diets (LNaHKCl) have 

substantial hyperkalemia with plasma [K+] above 6.5 mM (58, 90, 99). The intolerance of HKCl 

results from the lack of BK-αβ4-mediated K+ secretion which is only active under alkaline 

conditions (90). Therefore, BK-αβ4 channels are required for increasing urinary K+ excretion and 

maintaining plasma [K+] on alkaline HK and LNaHK diets (58, 90). For simplicity, in the rest of 

this dissertation, HK and LNaHK will refer to the alkaline diets unless otherwise noted. 

Dietary influences on the actions of diuretics 

Diuretic drugs are very commonly used for treating many diseases such as hypertension, 

heart failure, and edema. The CDC estimates that more than 20% of all people over the age of 65 

are taking diuretics (106). The effects of diuretics have been extensively studied and well 

understood. In general, diuretics act on different segments of the nephron to inhibit Na+ 

reabsorption to induce diuresis (Figure 7). Diuretics that act on nephron segments proximal to 

ASDN, such as loop and thiazide diuretics, are K-wasting because they increase Na+ delivery to 

the ASDN and thus lead to increased distal K+ secretion. On the other hand, diuretics that act on 

ASDN such as amiloride and spironolactone are K-sparing because they inhibit Na+ reabsorption 

via ENaC and thus inhibit K+ secretion in the ASDN. 
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Figure 7. Diuretic sites of actions in the nephron (modified from Chaudhry S.) (107).  
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However, the actions of diuretics have been only studied in subjects eating modern diets. 

Little is known about how dietary K+ contents influence the effects of diuretics in humans. 

Animal studies provide useful insights into the effects of diuretics under high dietary K+ 

conditions. In mice adapted to HK diet, NCC activity is inhibited to shift Na+ reabsorption to 

ENaC in the ASDN in exchange for K+ secretion (105). As a result, on both HK and LNaHK 

diets, the effects of thiazide diuretics are greatly attenuated (108, 109); while the effects of K-

sparing diuretics such as amiloride and spironolactone are much enhanced (99, 109). In fact, mice 

on HK diet treated with amiloride or spironolactone exhibit profound hyperkalemia (109).  

Furosemide, commonly known as Lasix® or “water pill”, is one of the most commonly 

used diuretics. It is secreted by the proximal tubule into the lumen. From the luminal side, it 

blocks the Cl- binding site of NKCC2 in the TAL (110). This leads to a series of consequences. 

Furosemide inhibits NaCl reabsorption in the TAL, which usually reabsorbs 20% of filtered Na+, 

leading to profound natriuresis. The increased Na+ delivery to the ASDN creates a more negative 

lumen potential due to Na+ reabsorption by ENaC, causing increased K+ secretion and thus 

kaliuresis. Additionally, furosemide obliterates the medullary interstitial gradient, which is 

established by NaCl reabsorption in the TAL, reducing the urinary concentrating ability. 

Furthermore, furosemide inhibits the tubuloglomerular feedback by disrupting the Cl--sensing 

mechanism of the macula densa, which is mediated by NKCC2 (111-115). However, the 

furosemide-induced volume depletion can still activate the renin-angiotensin-aldosterone system 

(RAAS) probably by activation of sympathetic nervous system (116-118).  

The cardiovascular benefits of HK diets are at least partially attributed to their diuretic 

effects (17, 119, 120). Traditionally, this was thought to be due to the inhibition of NKCC2 in the 

TAL. Micropuncture experiments in Munich-Wistar rats that have exposed renal papilla showed 

that the medullary interstitial [K+] at vasa recta reached 46 mM due to medullary K+ recycling 

(121). The in vitro microperfusion experiments by Stokes et. al. (122) showed that, compared to 5 
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mM [K+], bath solutions with 25 mM [K+] inhibited the basolateral K+ channels in isolated 

medullary TAL. The consequent depolarization of the cell membrane blocked Cl- exit, thereby 

inhibiting the NKCC2-mediated NaCl reabsorption. However, there are a few flaws with this 

mechanism. Chronic K+ loading increased the interstitial [K+] from 32 mM to 46 mM in the vasa 

recta at the bend of the loop with an osmolality of 900 mOsm (121). This 44% increase was not 

well represented in the in vitro experiments, which compared the effects of 5 mM to 25 mM [K+] 

bath solutions. Additionally, the Munich-Wistar rats have renal developmental abnormalities, 

which allow for the loop measurement but may also differ from normally developed animals. 

Furthermore, the inhibition of fluid reabsorption in PT (123) as well as the recent discovery of 

plasma [K+] regulation of NCC in DCT (119) provides another explanation for the diuretic effect 

of HK diet. Overall, the effect of HK or LNaHK diet on the action of furosemide remains unclear.  

The studies in this dissertation seek to investigate how LNaHK and HK diet influence the 

effect of furosemide on renal K+ handling. 

 

  



22 
 

CHAPTER 1: NET K+ SECRETION IN THE THICK ASCENDING 

LIMB OF MICE ON AN ALKALINE LOW NA HIGH K+ DIET * 

Introduction 

In contrast to the modern Western diet that has high Na+ and low K+ contents, the 

“ancient” diets, such as the Paleolithic and Mediterranean diets, comprise a preponderance of 

fruits and vegetables and are low in Na+ and high in K. The ancient diets are well known for their 

health benefits in cardiovascular diseases, diabetes, obesity, and multiple cancers (7, 10, 124-

126). Our understanding of such diets has, in large part, derived from studies of the South 

American Yanomami, an isolated culture known for consuming a high K+ alkaline diet with 

nearly zero Na (14). Our lab has developed and studied the renal K+ handling of mice on LNaHK 

diet as an exaggeration of the ancient diet consumed by the Yanomami (90, 99, 127). Our 

understanding of the mechanism for handling LNaHK intake is crucial to choosing effective 

diuretics and preventing the drastic consequences of hypokalemia or hyperkalemia for patients on 

such diets (108). 

Potassium ions are freely filtered in the nephron and reabsorbed by the proximal tubule 

and the TAL. Potassium is secreted into the lumen in the ASDN by the ROMK and BK channels 

(25, 128). Potassium secretion is driven by the negative lumen potential generated by Na+ 

reabsorption through ENaC channel (42, 109). On HK diet, the medullary interstitial [K+] can 

reach 39-53 mM by medullary K+ recycling (121). The ex vivo microperfusion experiments by 

Stokes et. al. (122) showed that high medullary interstitial [K+] may inhibit NaCl reabsorption via 

NKCC2 and increase distal flow and Na+ delivery to stimulate K+ secretion in the distal nephron. 

This is a recognized cause for the diuretic effect of high K+ diets (42, 129). On the other hand, 

                                                           
* The materials presented in this chapter was previously published: Wang, B., Wen, D., Li, H., Wang-France, J. & 

Sansom, S. C. Net K(+) secretion in the thick ascending limb of mice on a low-Na, high-K diet. Kidney Int 92, 864-

875, 2017. 
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studies showed that NKCC2 activity is increased in mice on a low Na+ diet (130, 131). The 

dietary effect of both low Na+ and high K+ on the ion transport in the TAL remains uncertain. 

Ex vivo microperfusion studies showed that K+ was reabsorbed in the isolated perfused 

medullary TAL but secreted in the cortical TAL (132, 133). However, net K+ secretion in the 

TAL has not been shown in vivo, and the physiological conditions and implications of net K+ 

secretion in the TAL remain unclear. In the current study, we found that after mice were adapted 

to LNaHK diet, furosemide, an inhibitor of NKCC2, enhanced urinary Na+ and decreased urinary 

K+ excretion. Given the high interstitial [K+] generated by medullary K+ recycling, we 

hypothesized that, in mice fed a LNaHK diet, NKCC2 is still active with net K+ secretion in the 

TAL which can be inhibited by furosemide. 

 

  



24 
 

Methods 

Animals 

 All animals were maintained in accordance with the Institutional Animal Care and Use 

Committee of the University of Nebraska Medical Center. Wild-type mice on C57BL/6 

background (Charles River Laboratories, Wilmington, MA), ROMK wild-type and knockout 

littermates on 129/SvJ background (generously provided by Dr. Tong Wang, Yale University 

School of Medicine) were housed in the UNMC animal facility and maintained on a 12-hour day-

night cycle, with free access to water and food.  

Metabolic cage 

Wild-type mice, at 10–12 weeks of age, were given either regular mouse chow (RD; 

0.3% Na, 0.6% K), a high K+ diet (HK diet; 0.3% Na, 5% K with equimolar carbonate/citrate/Cl 

as anions; TD.07278; Envigo, Indianapolis, IN) or a low Na, high K+ diet (LNaHK diet; 0.01% 

Na, 5% K with equimolar carbonate/citrate/Cl as anions; TD.07278; Envigo, Indianapolis, IN) for 

4–7 days. Before experiments, mice were placed in metabolic cages for 1 day for acclimation. For 

acute diuretic treatments, mice were given intraperitoneal injections of vehicle (100 µL poly 

(ethylene glycol); PEG) or furosemide (15 mg/kg) and returned to metabolic cages for 12 hours to 

collect urine and measure food and water consumption. For chronic furosemide treatments, mice 

were provided either furosemide water (0.1 mg/mL, pH 8.4 with 0.7 mM K+) or control water 

(0.7 mM KHCO3, pH 8.4). Urine was collected in metabolic cages for 24 hours the day before 

treatment and on day 1, day 4, and day 7 after treatments. The mice were then anesthetized, 

sacrificed by exsanguination from the carotid artery, and blood and kidneys were collected. Urine 

and plasma osmolality were measured with an osmometer (Model 3250, Advanced Instruments, 

Norwood, MA). Urine and plasma Na+ and K+ concentrations were determined by a flame 

photometer (PFP7, Jenway, Burlington, NJ). 
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Micropuncture  

 A mixture of male and female wild-type and ROMK knockout mice at 10–12 weeks of 

age were given RD, LNaHK diet, or HK diet for 4–7 days. Micropuncture procedures were 

previously described (134). Briefly, mice were anesthetized with ketamine/xylazine cocktail and 

the left kidney was immobilized in a Lucite kidney cup (Vestavia Scientific, Atlanta, GA). 

Modified saline solution with FITC-inulin (140 mM NaCl, 5 mM KHCO3, 2% Mannitol, 500 

µg/mL FITC-inulin) was infused via left jugular vein at a rate of 0.5 mL/hr. Urine was collected 

under mineral oil through a bladder catheter. Blood pressure was monitored with a pressure 

transducer (Model 427488, Harvard Apparatus, Holliston, MA) via right common carotid artery. 

Distal tubules were identified by injecting proximal tubules with 0.5% Fast Green FCF (Sigma, 

St Louis, MO). Microelectrodes were made as previously described (134). A K+-selective 

microelectrode and a reference microelectrode were placed in the lumen of an early distal tubule 

(EDT). The voltage readings were recorded using a high impedance electrometer (Model FD223, 

World Precision Instruments, Hamden, CT) before and after an intravenous administration of 

furosemide (5 mg/kg in normal saline) via a separate catheter in left jugular vein. K+ 

concentrations were determined from calibration curves generated by standard solutions that 

minimize Na+ interference on measurements (55 mM NaCl with 2.5, 5, 10, or 20 mM KCl). 

Furosemide-sensitive UNaV̇ was calculated by subtracting UNaV̇ before furosemide treatment from 

UNaV̇ after furosemide treatment. 

GFR measurement 

 Glomerular filtration rate was measured using FITC-inulin (Sigma, St Louis, MO) during 

the micropuncture experiments as previously described (87). The mice were allowed to 

equilibrate for 1 hour after IV catheter placement. Urine was collected under mineral oil for 30 

minutes before and 20 minutes after furosemide administration. Approximately 20 µL blood was 

collected from carotid catheter at the midpoint of each clearance period. Urine flow was 
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determined gravimetrically, and the inulin concentration in urine and plasma were measured 

using a fluorescence microplate reader at 480 nm excitation and 520 nm emission. GFR was 

calculated for the periods before and after furosemide administration.  

Patch clamp  

Wild-type and ROMK knockout mice were provided either RD or LNaHK diet for 7 

days. The mice were anesthetized and sacrificed, and the kidneys were removed and cut in 

coronal sections. TALs were isolated and placed onto a 5 x 5 mm cover glass coated with Poly-L-

lysine (Sigma, St Louis, MO) in the bath solution (in mM: 140 NaCl, 5 KCl, 1.8 MgCl2, 1.8 

CaCl2, and 10 HEPES and pH 7.4). The cover glass was transferred to a plexiglass chamber on 

the stage of an inverted microscope (IX73, Olympus Corporation, Center Valley, PA). The 

tubules were split open by a sharpened micropipette to access the apical surface of TAL. Single-

channel patch clamping was performed as described previously (135, 136). Briefly, glass pipettes 

were pulled using a micropipette puller (P-97, Sutter Instruments, Novato, CA), polished and 

filled with the pipette solution (in mM: 140 KCl and 10 HEPES with pH 7.4 adjusted with KOH). 

Single-channel currents were amplified by the Axopatch 200B Amplifier (AutoMate Scientific, 

Berkeley, CA) and low-pass filtered at 200 Hz by the Low-pass Bessel (LPF-8, Warner 

Instruments, Hamden, CT). Signals were digitized at a sampling rate of 10 kHz by the Digidata 

1440A digitizer (Axon Instruments, Foster City, CA) and recorded and analyzed with pCLAMP 

10 software (Molecular Devices, Sunnyvale, CA). 

Immunofluorescence staining 

 Kidneys from sacrificed mice were placed in HistochoiceMB tissue fixative (Bioworld, 

Dublin, OH) for 24 hours, embedded in paraffin, and sectioned onto slides. Procedures for 

immunofluorescence staining were previously described (89). In short, slides were rinsed for 10 

min in xylene twice, and 2 min in 100%, 95%, 75%, 50%, 35% ethanol, and distilled water. 

Antigen retrieval was performed by microwaving slides in 0.01 M Na+ citrate solution at pH 6.0 
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for 15 min. Slides were then cooled to room temperature and rinsed in 0.1% PBS-Tween for 2 

min (3 times), blocked with 1% BSA in PBS for 30 min, and incubated with primary antibody 

overnight at 4 °C. The next day, slides were rinsed in PBS-T for 2 min (3 times) and incubated 

with secondary antibodies for 1 hour at room temperature. Slides were again rinsed in PBS-T for 

2 min (3 times) and mounted with EMS Shield Mount with DABCO (Electron Microscopy 

Sciences, Hatfield, PA). The following primary antibodies were used: ROMK (rabbit, diluted 

1:200, generous gift from Dr. Paul Welling, University of Maryland, Baltimore, MD), and THP 

(goat, diluted 1:200, Santa Cruz). The following secondary antibodies were applied for 1 hour: 

donkey anti-rabbit IgG conjugated Alexa Fluor 488 and donkey anti-goat IgG conjugated Alexa 

Fluor 594, diluted 1:200 (Invitrogen, Carlsbad, CA).  
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Results 

K+ secretion in the TAL with LNaHK diet 

 In traditional understanding, a high K+ diet inhibits NKCC2 in the TAL, causing its 

diuretic effect (122). We first examined the effect of furosemide in mice on either RD or LNaHK 

diet. On both regular diet (RD) and LNaHK diet, wild-type mice (WT) receiving IP furosemide 

exhibited significantly higher urinary Na+ clearance and lower urine osmolality than those treated 

with vehicle (Figure 8A, Table 2). Thus, Na+ is still actively reabsorbed via NKCC2 in mice on 

LNaHK diet.  
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Figure 8. Effect of furosemide on urinary Na+ and K+ clearances in mice on RD and LNaHK diet.  

A. Twelve-hour renal Na+ clearance of mice on RD or LNaHK diet treated with IP injections of vehicle or 

furosemide. B. Twelve-hour renal K+ clearance of mice on RD or LNaHK diet treated with IP injections of 

vehicle, furosemide, amiloride, or amiloride + furosemide. N = 4 – 14 per group. *p < 0.05 vs vehicle; #p < 

0.05 vs amiloride analyzed using two-way ANOVA with a post-hoc Tukey test. 
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Table 2. Metabolic cage measurements for 12 hours, effects of diuretics. 

 RD +  

vehicle (5) 

RD + 

furosemide (8) 

LNaHK + 

vehicle (12) 

LNaHK + 

furosemide (7) 

Body weight (g) 21.9 ± 0.3 22.0 ± 0.1 22.8 ± 0.3 19.8 ± 0.3# 

Kidney weight (g) 0.27 ± 0.01 0.27 ± 0.01 0.28 ± 0.01 0.27 ± 0.01 

Food intake (g/day) 0.2 ± 0.1 0.7 ± 0.3 0.6 ± 0.1 0.2 ± 0.1# 

Water intake (mL/day) 0.4 ± 0.1 1.3 ± 0.4 2.1 ± 0.3$ 1.9 ± 0.6 

Urine flow (mL/day) 1.3 ± 0.2 2.6 ± 0.5 2.1 ± 0.2 3.4 ± 0.6# 

Urine osmolality (mOsm) 2276 ± 332 1521 ± 308 1878 ± 186 786 ± 123# 

UNaV̇ (µmol/day) 142 ± 63 315 ± 47* 6.2 ± 0.6$ 72.6 ± 15.7# 

UKV̇ (µmol/day) 339 ± 17 390 ± 48 1132 ± 148$ 609 ± 113# 

Hematocrit (%) 41.2 ± 1.2 48.2 ± 1.4* 40.4 ± 1.0 42.4 ± 2.5 

Plasma osmolality 

(mOsm) 
296.7 ± 3.3 295.0 ± 2.7 288.2 ± 4.0 293.3 ± 6.1 

Plasma [Na+] (mM) 155 ± 3 140 ± 3* 151 ± 2 141 ± 1# 

Plasma [K+] (mM) 4.2 ± 0.2 4.1 ± 0.2 6.0 ± 0.3$ 5.8 ± 0.2 

Urine pH 6.4 ± 0.2 5.8 ± 0.1* 6.9 ± 0.1$ 6.0 ± 0.2# 

Parentheses indicate the number of animals. Data are shown as mean ± SEM. *p < 0.05 compared to RD + 

vehicle; #p < 0.05 compared to LNaHK + vehicle; $p < 0.05 compared to RD + vehicle analyzed by two-

way ANOVA with a post-hoc Tukey test. 
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On RD, the mice treated with furosemide exhibited a higher renal K+ clearance than the 

vehicle group. This is expected since furosemide is a K-wasting diuretic by stimulating K+ 

secretion in the distal nephron (137, 138). However, on LNaHK diet, furosemide-treated mice 

had a lower renal K+ clearance than the vehicle group (Figure 8B). To exclude the complicating 

effects of K+ secretion in the distal nephron, mice were treated with furosemide + amiloride and 

amiloride alone, which inhibits the Na+ reabsorbing driving force required for both ROMK- and 

BK-mediated K+ secretion (108, 109). Compared to the amiloride-treated group, the furosemide + 

amiloride group had lower renal K+ clearance on LNaHK diet, but not on RD (Figure 8B). These 

results indicate that the furosemide effect on K+ clearance is independent of the distal K+ 

secretion in mice on LNaHK diet.  

 

To assess the chronic effect of furosemide, WT were kept on LNaHK diet for 7 days and 

then treated them with either furosemide water or control water for 7 days. The results are shown 

in Figure 9 and Table 3. For mice on control water, urinary K+ excretion (UKV̇) was unchanged 

after 7 days. For mice on furosemide water, however, UKV̇ was reduced on the first day of 

furosemide treatment (Figure 9A). After 7 days, plasma [K+] was significantly higher and K+ 

clearance significantly lower in mice on furosemide water compared to control water (Figure 9B, 

C). These results indicate that furosemide is a K-sparing diuretic and can raise plasma [K+] in 

mice on LNaHK diet. 
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Figure 9. Chronic effect of furosemide on renal K+ handling in mice on LNaHK diet.  

A. Urinary K+ excretion (UKV̇) on the day before treatment (day -1), day 1, day 4, and day 7 after treatment 

with control (Ctrl) or furosemide (Furo) water in WT on LNaHK diet. * p < 0.05 compared to LNaHK + 

Ctrl water; # p < 0.05 compared to Day -1 analyzed with two-way repeated measures ANOVA with post-

hoc Holm-Sidak test. B. Plasma [K+] after 7 days of treatment with Ctrl or Furo water in WT on LNaHK 

diet. C. Urinary K+ clearance after 7 days of treatment with Ctrl or Furo water in WT on LNaHK diet. * p < 

0.05 compared to LNaHK + Ctrl water analyzed with one-way ANOVA. 
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Table 3. Metabolic cage measurements for chronic effect of furosemide. 

 LNaHK + Ctrl water (4) LNaHK + Furo water (4) 

Body weight (g) 22.1 ± 0.8 20.9 ± 0.7 

Food intake (g/day) 3.1 ± 0.2 3.4 ± 0.3 

Water intake (mL/day) 8.4 ± 0.8 15.4 ± 1.6* 

Urine flow (mL/day) 4.0 ± 0.2 6.0 ± 0.2* 

Urine osmolality (mOsm) 1872 ± 105 1002 ± 77* 

UNaV̇ (µmol/day) 35.7 ± 7.5 43.6 ± 2.8 

UKV̇ (µmol/day) 3323 ± 283 2620 ± 152 

Hematocrit (%) 41.4 ± 1.2 42.3 ± 1.7 

Plasma osmolality (mOsm) 295 ± 2.6 295 ± 2.6 

Plasma [Na+] (mM) 139.5 ± 1.1 137.1 ± 1.3 

Plasma [K+] (mM) 4.4 ± 0.1 5.3 ± 0.3* 

K Clearance (mL/day) 758 ± 76 498 ± 42* 

Urine pH 9.2 ± 0.1 8.6 ± 0.1* 

Parentheses indicate the number of animals. Data are shown as mean ± SEM. *p < 0.05 compared to 

LNaHK + Ctrl water analyzed by one-way ANOVA. 
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One possible explanation for the effect of furosemide in mice on LNaHK diet is that net 

K+ secretion in the TAL is inhibited. To test this hypothesis more directly, micropuncture 

techniques were used to measure the K+ concentration in the EDT (EDT [K+]) before and after 

intravenous (IV) administration of vehicle or furosemide in mice on RD or LNaHK diet. As 

shown in Figure 10, vehicle administration did not affect the EDT [K+] in mice on either diet. 

Before furosemide treatment, the EDT [K+] was significantly higher in mice on LNaHK diet than 

RD. Furosemide infusion increased the EDT [K+] in mice on RD but decreased EDT [K+] in mice 

on LNaHK diet without affecting MAP or GFR during the collection period (Table 4). These 

results indicate furosemide-sensitive net K+ reabsorption in the TAL of mice on RD and net K+ 

secretion in mice on LNaHK diet. 
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Figure 10. Effect of furosemide on EDT [K+] in mice on RD or LNaHK diet.  

A-D. Representative recordings of K-selective microelectrodes in the lumen of EDT before and after IV 

injections of vehicle or furosemide in WT on RD or LNaHK diet. Arrows indicate the time of injections. E 

and F. EDT [K+] of mice on RD (E) or LNaHK diet (F) before and after IV furosemide injections. N = 4 

per group. *p < 0.05 vs before furosemide analyzed using a paired t-test. 
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Table 4. Hemodynamic measurements in micropuncture experiments. 

 WT RD (4) WT LNaHK (5) WT HK (4) ROMK KO LNaHK (4) 

MAP 

(mmHg) 

Before Furo 108.7 ± 6.6 102.7 ± 3.0 100.0 ± 8.6 96.4 ± 8.4 

After Furo 107.7 ± 7.4 103.4 ± 3.6 100.0 ± 10.0 96.0 ± 9.2 

GFR 

(µL/min/g) 

Before Furo 9.3 ± 1.7 9.3 ± 1.1 7.1 ± 0.6 4.8 ± 0.6* 

After Furo 9.4 ± 0.5 8.4 ± 1.1 6.0 ± 1.1 5.5 ± 0.3* 

Numbers in parentheses indicate the number of animals. Data are shown as mean ± SEM. *p < 0.05 

compared to WT LNaHK analyzed by two-way ANOVA with a post-hoc Tukey test. 
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Normal Na, high K+ diet  

  The net K+ secretion in the TAL may be partly due to the high interstitial K+ 

concentration generated by medullary K+ recycling in mice on HK diet (122, 139). We examined 

whether there was net K+ secretion in the TAL of mice on HK diet. As revealed by the results of 

micropuncture experiments in Figure 11, furosemide did not affect the EDT [K+] of WT on HK 

diet despite decreased urine osmolality as an indication of its effectiveness (Figure 11A and B). 

There was no significant difference in MAP and GFR before and after furosemide treatment 

(Table 4). 

These results suggest that the low Na+ content of LNaHK diet is essential for net K+ 

secretion in the TAL. Studies have shown that HK diet can reduce NKCC2 activity, probably by 

inhibiting Cl- exit from the TAL(122). In agreement with this notion, compared to vehicle, the 

furosemide-treated mice exhibited higher UNaV̇ than vehicle group in WT on RD, but not in WT 

on HK diet (Figure 12A). In contrast to WT on HK diet, the furosemide group exhibited higher 

UNaV̇ than vehicle in mice on LNaHK diet (Figure 8A). Because of the difference in dietary Na+ 

content, we were unable to compare the furosemide-sensitive UNaV̇ between mice on RD and 

LNaHK diet using metabolic cage experiments. Thus, the furosemide-sensitive UNaV̇ was 

evaluated during micropuncture experiments, in which all mice received the same IV infusion for 

the same time period. The mice on LNaHK diet exhibited significantly greater furosemide-

sensitive UNaV̇ than those on RD or HK diet. There was no significant difference in furosemide-

sensitive UNaV̇ between mice on RD and HK diet (Figure 12B). 
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Figure 11. Effect of furosemide on EDT [K+] and urine osmolality of mice on HK diet.  

A. EDT [K+] of mice on HK diet before and after IV furosemide injection. B. Urine osmolality of mice on 

HK diet before and after furosemide. N = 4 per group. *p < 0.05 vs before furosemide analyzed using a 

paired t-test. 
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Figure 12. Effect of furosemide on urinary Na+ excretion in mice on RD or HK diet.  

A. Twelve-hour UNaV̇ of mice on RD or HK diet treated with IP injections of vehicle or furosemide. N = 8 

per group. *p < 0.05 vs vehicle analyzed using two-way ANOVA with a post-hoc Tukey test. B. 

Furosemide sensitive UNaV̇ normalized to body weight of mice on RD, LNaHK diet, or HK diet. N = 4 – 9 

per group. *p < 0.001 vs RD; #p < 0.05 vs LNaHK diet analyzed by one-way ANOVA. 
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Role of ROMK in net K+ secretion 

 Both 30 pS and 70 pS inward rectifying K+ channels (Kir) have been reported to 

represent ROMK in the apical membrane of TAL(37, 140). To investigate which K+ channel 

mediates net K+ secretion, Dr. Huaqing Li in our lab performed single-channel patch clamp 

experiments on split-open TALs from WT and ROMK knockouts (ROMK KO) on RD or 

LNaHK diet. Whereas the 70 pS Kir appeared as one or two channels in a patch, we often found 

the 30 pS Kir as multiple channels (2-5) in a patch. Figure 13A shows recordings of a single 30 

pS Kir (top; -Vp = -60 mV) and multiple 30 pS Kir (middle and bottom; -Vp = -40 mV) in cell-

attached patches from TALs of WT and ROMK KO. No difference was found in Po of the 30 pS 

Kir from mice on LNaHK diet compared with RD (Figure 13C). However, as shown by the 

recordings of Figure 13B and the summary plot of Figure 13C, the Po of the 70 pS Kir (-Vp = -

40 mV) was greater in mice on LNaHK diet compared with RD. 
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Figure 13. Patch clamp recordings of apical K+ channels in the TAL of mice on RD and LNaHK diet 

(performed by Dr. Huaqing Li).  

A. Recordings of single (top; RD, -Vp = -60 mV) and multiple (-Vp = -40 mV) 30 pS (inward currents) K+ 

channels from cell-attached patches of split-open TAL of WT and ROMK KO mice on RD or LNaHK diet. 

Pipette solution contained 140 mM KCl. Red lines denote closed states. B. Recordings of 70 pS Kir 

channels in apical membrane of WT mice. The recordings indicate 2 closed states (long and short) with an 

increased duration in long closed state in channels of mice on RD. C. Summary of Po at –Vp = -40 mV of 

the 30 pS and 70 pS Kir in the TAL from WT on RD and LNaHK diet. *p < 0.05 vs RD analyzed by one-

way ANOVA. 
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Table 5 shows the number and conductance of apical K+ channels in the TALs from WT 

and ROMK KO on RD or LNaHK diet. The single channel conductance of the “30 pS” Kir varied 

with a range of 25 to 38 pS (inward currents) in cell-attached patches and was not significantly 

different among the four groups. Likewise, the single channel conductance of the 70 pS Kir and 

the BK channel was not different in WT on LNaHK diet compared with RD. The same density 

(channels per patch) of 30 pS Kir was found in all four groups. The densities of the 70-pS Kir and 

BK in WT were also not significantly different between the two diets. However, unlike the 30 pS 

Kir, no 70 pS Kir was found in the TAL from ROMK KO on RD nor LNaHK diet. Overall, these 

results show that only the 70 pS Kir is ROMK in the TAL and the 70 pS ROMK channel was 

more active in the apical membranes in mice on LNaHK diet, compared to RD.  

Consistent with the patch clamp results, immunofluorescence staining showed similar 

labeling of ROMK in the apical membrane of TAL for WT on both diets (Figure 14A-F). The 

antibody specificity was validated by ROMK KO as a negative control (Figure 14G-I). 

To further determine the role of ROMK in the TAL net K+ secretion in vivo, 

micropuncture was used to measure the EDT [K+] before and after IV furosemide in ROMK WT 

and ROMK KO on LNaHK diet. As shown in Figure 15A, WT on LNaHK diet exhibited 

furosemide-sensitive net K+ secretion in the TAL. However, as shown in Figure 15B, ROMK KO 

on LNaHK diet did not exhibit furosemide-sensitive net K+ secretion. These results indicate that 

ROMK is required for the net K+ secretion in the TAL of mice on LNaHK diet. 
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Table 5. Number and conductance of apical K+ channels in the TAL. 

 Diet N of mice N of patches 
30 pS Kir 70 pS Kir BK 

P# C# G (pS) P# C# G (pS) P# C# G (pS) 

WT RD 8 17 7 13 31.4 ± 1.4 7 11 70.7 ± 2.2 2 5 165.0 ± 5.0 

WT LNaHK 7 27 4 5 34.7 ± 0.5 5 6 69.8 ± 0.9 4 6 185.2 ± 24.3 

KO RD 5 20 6 12 35.5 ± 0.6 0* 0  1 1 225.8 

KO LNaHK 4 17 6 9 34.2 ± 1.7 0 0  0 0  

Experiment performed by Dr. Huaqing Li. “P#” denotes the number of patches that contain one or more 

respective channel. “C#” denotes the total number of respective channels.  “G” denotes single channel 

conductance (mean ± SEM). *p < 0.05 compared to WT analyzed by a chi-squared test. 

 

  



44 
 

 

Figure 14. ROMK localization in the TAL of mice on RD and LNaHK diet.  

A-C. Immunostaining of ROMK (green), Tamm-Horsfall Protein (THP; marker of TAL; red), and both in 

the outer medulla of WT on RD. D-F. Immunostaining of ROMK (green), THP (red), and both in the outer 

medulla of WT on LNaHK diet. G-I. Immunostaining of ROMK (green), THP (red), and both in the outer 

medulla of ROMK KO on RD. All images were taken at 400X magnification. All scale bars are 10 µm. 
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Figure 15. Effect of furosemide on EDT [K+] in ROMK WT and KO on LNaHK diet.  

A and B. EDT [K+] of ROMK WT (A) and KO (B) on LNaHK diet before and after IV furosemide 

injection. N = 7 for WT; N = 3 for ROMK KO. *p < 0.05 vs before furosemide, analyzed by a paired t-test. 
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Discussion 

The TAL reabsorbs about 25% of filtered K+ via the apical NKCC2 and basolateral K-

selective channels. However, much of the K+ transported by the NKCC2 is recycled back to the 

lumen through the apical ROMK in order to maintain a continual supply of K+ for NaCl 

reabsorption (28, 40). In the ex vivo microperfusion experiments with isolated hamster TAL, 

Tsuruoka et. al. (132) found net K+ reabsorption in the medullary TAL but net K+ secretion in the 

cortical TAL. Bailly et. al. (133) also found a net K+ secretion in isolated perfused mouse cortical 

TALs. However, two other groups failed to observe net K+ secretion with isolated perfused TALs 

(141, 142). The discrepancies are probably due to differences in experimental conditions. 

Nonetheless, net K+ secretion in the TAL has never been described in vivo, and its physiological 

conditions and implications remain unclear. The present study demonstrates in vivo net K+ 

secretion in the TAL of mice that are adapted to LNaHK diet, but not to a high K+ diet with 

normal Na. The 70 pS ROMK channel is the likely avenue for K+ secretion in mice on LNaHK 

diet. 

 

Net K+ secretion in TAL with LNaHK diet 

Furosemide is a widely used diuretic for the treatment of hypertension, edema, congestive 

heart failure, hepatic failure, and chronic kidney disease (143, 144). Empiric potassium is a 

recommended supplement for furosemide due to its K-wasting effect (145). Furosemide inhibits 

NKCC2 in the TAL and increases distal Na+ delivery and flow, thus promoting distal K+ secretion 

in the ASDN (138). Consistent with this understanding, in mice on RD, furosemide increased 

renal K+ clearance. In mice on LNaHK diet, however, furosemide showed the opposite effect of 

reducing renal K+ clearance. The fact that furosemide reduced K+ clearance both in the presence 

and absence of amiloride strongly suggests furosemide-sensitive net K+ secretion in the TAL. 

Notably, 12 hours after IP furosemide injection, renal K+ clearance was decreased, but plasma 
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[K+] was unaffected. This may be due to extrarenal K+ handlings including transcellular shift into 

muscle cells and excretion in the colon (146). Chronic treatment with furosemide for 7 days 

decreased K+ clearance and elevated plasma [K+], demonstrating that furosemide changes from a 

K-wasting to a K-sparing diuretic when the mice are kept on LNaHK diet.  

Additionally, in mice on LNaHK diet, elevated aldosterone along with other factors 

upregulate ENaC, ROMK, and BK expressions and activities to promote K+ secretion in the 

ASDN (42, 99, 101, 109). As shown in Table 2, furosemide still increased urine flow and 

decreased urine osmolality but did not increase UNaV̇ after 7 days. This indicates that the 

increased distal Na+ delivery by furosemide is completely reabsorbed by ENaC, provided that 

NCC in the DCT is completely inhibited by the LNaHK diet (108). Along with increased distal 

flow, furosemide should further stimulate K+ secretion through ROMK and BK in the ASDN. 

However, the overall effect of furosemide in mice on LNaHK diet is a decrease in UKV̇, 

suggesting that the inhibition of TAL net K+ secretion must exceed the stimulation of distal K+ 

secretion. 

Our micropuncture studies provided more direct evidence for net K+ secretion. 

Furosemide had strikingly opposite effects on EDT [K+] in mice on RD and LNaHK diet without 

altering MAP or GFR within the periods of measurements. Because of the high interstitial [K+], 

the paracellular pathway could mediate net K+ secretion. However, the EDT [K+], which was 

initially different in the two diets before treatment, reached similar concentrations a few minutes 

after furosemide injections. This result makes the paracellular pathway unlikely because 

furosemide would not block K+ secreted by the paracellular route. Moreover, for paracellular K+ 

secretion, the EDT [K+] after furosemide should still be greater in mice on LNaHK diet than on 

RD.  

In vivo micropuncture of the mouse distal nephron has the limitation of the absence of 

flow measurements before and after systemic injections of furosemide. Intravenous injections of 
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furosemide will diminish the medullary interstitial gradient and change the flow in the EDT. 

However, with the inhibition of NKCC2 by furosemide, we expect that the tubular fluid in EDT is 

similar to the fluid in late proximal tubule. For mice on LNaHK diet, the EDT [K+] before 

furosemide was higher than after furosemide, suggesting that the [K+] in the EDT was greater 

than [K+] in the late proximal tubule. Along with the opposite effect in mice on RD, we provide 

strong evidence for net K+ secretion in the TAL. Additionally, furosemide may inhibit carbonic 

anhydrase (147), causing more K+ following Na+ delivery to the EDT, which would increase the 

EDT [K+]. Therefore, if furosemide inhibits carbonic anhydrase, the actual amount of furosemide-

sensitive K+ secretion in the TAL of LNaHK diet mice would be greater than that observed. 

 

Role of NKCC2 in net K+ secretion 

The diuretic effect of HK diet was thought to be due to inhibition of NKCC2 (42, 122). 

On LNaHK diet, however, NKCC2 activity is enhanced, indicating that the diuretic effect of 

LNaHK diet is not by the same mechanism as in HK diet. In fact, a recent study by Cornelius et. 

al. (99) showed that in mice on LNaHK diet, the BK-αβ4-mediated K+ secretion in the distal 

nephron may contribute to the diuretic effect. 

Another important finding in our study is that the net K+ secretion in TAL seems to be 

unique for mice on LNaHK diet but not HK diet, probably because of upregulated NKCC2 

activity. This is consistent with a previous ex vivo study showing that NKCC2 was inhibited by 

the high interstitial [K+] in mice on HK diet (122). Without an active NKCC2, the NKA cannot 

supply enough intracellular K+ for secretion. This provides further evidence for transcellular K+ 

secretion. The exact mechanism for increased NKCC2 activity in mice on LNaHK diet needs 

investigation.  
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The low Na+ content of LNaHK diet may result in volume depletion leading to the 

activation of the renin-angiotensin-aldosterone system (RAAS) and elevated plasma vasopressin 

(AVP). Both AVP and angiotensin II (Ang II) are regulators of NKCC2. AVP increases NKCC2 

expression via V2 receptor-mediated pathways (148). However, studies showed that plasma and 

urinary AVP levels were either unchanged or decreased in animals fed a low Na+ diet (149-151). 

The effect of LNaHK diet on plasma AVP remains unclear. Another possible candidate is Ang II. 

Studies showed that a low Na+ diet increased NKCC2 phosphorylation and caused a shift from 

the low-affinity NKCC2A to the high-affinity NKCC2B isoform, partly mediated by the actions 

of Ang II on AT1 receptors (130, 152). Ang II level is greatly increased in mice on LNaHK diet, 

but not on HK diet (99, 127, 153). These findings suggest that elevated Ang II may be responsible 

for the upregulated NKCC2 activity in mice on LNaHK diet. 

 

Role of ROMK in net K+ secretion 

Other K+ channels, including BK channels, have been observed by our laboratory and 

others (76) in the TAL. However, ROMK has been identified as the K+ channel involved in 

recycling the K+ that is reabsorbed by NKCC2 (37, 40, 140). ROMK KO exhibit type 2 Bartter’s 

with extreme natriuretic diuresis (40). Consistent with the previous study (140), our patch clamp 

experiments identified the 70 pS K+ channel as ROMK in the apical membrane of TAL. In 

contrast to the study by Lu et. al. (37), we found the same density and Po of a 30 pS K+ channel 

in ROMK KO. It is possible that ROMK KO exhibited no furosemide-sensitive net K+ secretion 

in the TAL because of decreased NKCC2 activity. However, the increased activity of the ROMK 

channel, but not the 30 pS channel, in WT on LNaHK diet indicates that ROMK mediates the 

observed net K+ secretion.  

Unlike ROMK in the ASDN, the mechanism for regulating ROMK in the TAL is not 

well understood. In the ASDN, ROMK activity is upregulated in response to high dietary K+ by 
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increasing channel density rather than Po (154). Aldosterone-dependent signaling pathways, 

including SGK1 and PKA, promote the forward trafficking of ROMK channels to the apical 

membrane of ASDN by phosphorylating ROMK (42, 103, 155). Interestingly, our patch clamp 

experiments showed that TAL from mice on LNaHK diet exhibited increased Po rather than 

channel density of ROMK. The immunofluorescence staining also indicates that LNaHK diet did 

not affect ROMK trafficking. The recent study by Dong et. al. (43) demonstrated that ROMK1 

isoform, which is expressed in the CCD, but not TAL, was required for ROMK trafficking in 

response to high K+ intake. This study suggests that the ROMK2 isoform in the TAL is regulated 

by different signaling pathways than the ROMK1 in the ASDN. Mice on LNaHK diet have highly 

elevated aldosterone and Ang II compared to RD (99, 127, 153). Since the TAL is absent of 11-β-

hydroxysteroid dehydrogenase 2 (156), aldosterone is unlikely to regulate ROMK in TAL. 

WNK1, WNK3, and WNK4 all regulate ROMK by affecting clathrin-dependent endocytosis in 

the ASDN (97). Thus, the WNKs are unlikely to regulate the Po of ROMK in the TAL. The patch 

clamp study by Lu et. al. (157) also showed that Ang II regulates the activity of the 70 pS ROMK 

in the TAL. Thus, Ang II may play a role to increase ROMK activity in the TAL of mice on 

LNaHK diet.  

Intracellular pH is another important regulator of ROMK activity. Like other Kir 

channels, the Po of ROMK is highly sensitive to intracellular pH (30). The urine pH was higher 

in mice on LNaHK diet than on RD due to the alkaline dietary content. However, the dietary 

effect on the intracellular pH of TAL cells remains unclear. 

 In summary, we have provided in vivo evidence of furosemide-sensitive net K+ secretion 

in the TAL of mice on LNaHK diet. Net K+ secretion is dependent on increased NKCC2 activity 

and may be mediated by ROMK. With net K+ secretion in the TAL, furosemide becomes a K-

sparing diuretic and may lead to hyperkalemia. As summarized in Figure 16, furosemide inhibits 

the net K+ reabsorption in the TAL of mice on RD, increasing distal Na+ delivery and flow, 
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thereby promoting K+ secretion through ROMK and BK channels in ASDN. In mice on LNaHK 

diet, upregulated ROMK and NKCC2 activity results in net K+ secretion in the TAL via ROMK 

channels. Elevated plasma aldosterone on LNaHK diet upregulates ENaC, ROMK, and BK in 

ASDN to promote distal K+ secretion. Furosemide not only inhibits the net K+ secretion in the 

TAL but also increases distal flow and Na+ delivery that further stimulate distal K+ secretion. The 

net result of these two opposing effects is a decrease in K+ excretion. Our finding is especially 

important when considering diuretic treatments for patients consuming a healthy low Na+ high K+ 

diet, which changes furosemide from a K-wasting to a K-sparing diuretic.  
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Figure 16. Summary figure of dietary effects on furosemide actions on urinary K+ excretion.  

A. On RD diet, furosemide blocks NKCC2, inhibiting net K+ reabsorption in the TAL while increasing 

distal Na+ delivery and flow, which stimulates K+ secretion through ROMK and BK in ASDN. The net 

effect of furosemide is an increase in urinary K+ excretion. B. On LNaHK diet, up-regulated NKCC2 and 

ROMK, possibly by Ang II, results in net K+ secretion in the TAL. Elevated aldosterone (Aldo) from 

LNaHK diet upregulates ENaC, ROMK, and BK in the ASDN to promote distal K+ secretion. Furosemide 

blocks NKCC2, inhibiting net K+ secretion in the TAL. Although furosemide increases distal Na+ delivery 

and flow that stimulate K+ secretion in ASDN, the net result is a decrease in urinary K+ excretion. 

Transporters in the basolateral membrane and cell types of ASDN have been omitted for simplicity. 
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CHAPTER 2: FUROSEMIDE REDUCES BKαβ4-MEDIATED K+ 

SECRETION IN MICE ON A NORMAL NA HIGH K+ DIET 

Introduction 

 K+ is freely filtered into the glomerulus, reabsorbed in the proximal tubule and TAL, and 

secreted into the lumen in the distal nephron via ROMK and BK channels. ROMK channels are 

considered constitutively active and secrete K+ at the basal conditions (22, 23). By contrast, BK 

channels are activated by high urinary flow and secrete K+ under high dietary K+ conditions (24, 

25). In particular, the BK-αβ4 channel located in the intercalated cells of distal nephron (85) is 

required to maintain K+ homeostasis in mice on an alkaline high K+ diet (127). The BK-β4 

subunit of the BK-αβ4 channel is an accessory subunit that protects the pore-forming BK-α 

subunit from lysosomal degradation (58). BK-β4 is regulated by the acidity/alkalinity of the diet 

(90). Compared to those on a high KCl diet (HKCl), mice on an alkaline HK diet exhibited 

increased BK-β4 expression and increased apical membrane localization of BK-α (90). However, 

it is unclear whether BK-β4 is regulated by tubular fluid pH or plasma pH. 

 Diuretics are among the most commonly used medications in the US. More than 20% of 

the population over the age of 65 are taking diuretics in the US (106). Numerous studies have 

shown the influences of high dietary K+ intake on the actions and effectiveness of diuretics. 

Compared to those on a regular diet, mice on HK diet exhibit diminished thiazide-sensitive 

natriuresis due to decreased NCC activity (105, 158) but enhanced amiloride-sensitive natriuresis 

due to upregulated ENaC activity (108, 109). Furosemide has a reduced natriuretic effects on HK 

diet (122, 159), but increased efficacy on LNaHK diets (159).  

Additionally, furosemide is well known for its effect to acidify the urine. Classically, this 

was thought to be due to increased Na+ delivery to distal nephron, generating a more favorable 

negative lumen potential for H+ secretion from the vacuolar H+-ATPase (V-ATPase) (160, 161). 
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Chronic furosemide treatment increases V-ATPase expression (162). More recently, the study by 

de Bruijn et. al. (163) showed that furosemide acidifies the urine by increasing H+ secretion via 

the Na+-H+ exchanger 3 (NHE3) in the TAL. Taking these together with the notion that BK-β4 is 

regulated by pH, we hypothesize that in mice on HK diet, furosemide reduces BK-αβ4-mediated 

K+ secretion by acidifying the urine.  
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Methods 

Animals 

 All animals were maintained in accordance with the Institutional Animal Care and Use 

Committee of the University of Nebraska Medical Center. Wild-type mice with C57BL/6 

background (Charles River Laboratories, Wilmington, MA) and BK-β4 knockout mice with 

C57BL/6 background (generously provided by R. Brenner, Stanford University, CA) were housed 

in the UNMC animal facility and maintained on a 12-hour day-night cycle, with free access to 

water and food.  

Metabolic cage 

Wild-type (WT) and BK-β4 knockout mice (β4-KO), both male and female, at 12–16 

weeks of age, were kept on either a regular diet (RD; 0.3% Na, 0.6% K), an alkaline high K+ diet 

(HK diet; 5.0% K+ with 5% of equal carbonate/citrate/Cl and 0.32% Na+; TD.07278; Envigo, 

Indianapolis, IN), and regular drinking water for 7 days. They were then given either control 

water (0.8 mM KHCO3 in drinking water) or furosemide water (0.1 g/L furosemide + 0.8 mM 

KOH for HK diet; 0.4 g/L furosemide + 0.8 mM KOH for RD) for 11 days. Another group of WT 

mice were kept on HK diet for 7 days and then given furosemide + acetazolamide water (0.1 g/L 

furosemide + 0.4 g/L acetazolamide + 2.0 mM KOH) for 7 days. All mice were acclimated to 

metabolic cages for one day each time, for a total of three times before experiments. Urine was 

collected for 24 hours in metabolic cages on the day before treatment water and 1, 4, 7, and 11 

days after treatment. The mice were then anesthetized, sacrificed by exsanguination from the 

carotid artery, and blood and kidneys were collected. Urine pH was measured with a pH meter 

(Model 215, Denver Instruments, Bohemia, NY). Arterial blood gas values and hematocrit were 

determined by the MN 300 i-STAT system with EC8+ cartridges (Abbott Point of Care, 

Princeton, NJ). Urine and plasma osmolality were measured with an osmometer (Model 3250, 
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Advanced Instruments, Norwood, MA). Urine and plasma Na+ and K+ concentrations were 

determined by a flame photometer (PFP7, Jenway, Burlington, NJ). 

Perfusion-fixation and immunofluorescence staining 

 Kidneys were fixed with 2% paraformaldehyde as previously described (164). Mice were 

anesthetized with ketamine/xylazine cocktail, and chest cavity was opened. PBS containing 2% 

paraformaldehyde was perfused via the left ventricle for 5 minutes. The kidneys were then 

removed and cut into slices, which were fixed in 2% paraformaldehyde at 4 °C overnight. 

Specimen were then embedded in paraffin and cut into serial sections on slides. Procedures for 

immunofluorescence staining were previously described (89). The following primary antibodies 

were used: anti-BK-α (mouse, diluted 1:100, UC Davis/NIH NeuroMab, Davis, CA), anti-V-

ATPase B1 (rabbit, diluted 1:100, Santa Cruz), and anti-calbindin-D28K (mouse, diluted 1:100, 

Sigma, St. Louis, MO). The following secondary antibodies were applied for 1 hour at room 

temperature: donkey anti-mouse IgG conjugated Alexa Fluor 488 and donkey anti-rabbit IgG 

conjugated Alexa Fluor 594 (diluted 1:200, Invitrogen, Carlsbad, CA). The stained sections were 

mounted using EMS Shield Mount with DABCO (Electron Microscopy Sciences, Hatfield, PA). 

Western blotting 

Kidneys were collected from sacrificed mice, and kidney cortex was separated from 

medulla tissue and used for Western blotting as previously described (99, 134). Kidney samples 

were placed in cold lysis buffer containing RIPA buffer + protease/phosphatase inhibitor (Sigma, 

St Louis, MO) + 0.1% Triton X-100 (Sigma, St Louis, MO) + 1mM PMSF (Sigma, St Louis, 

MO). Samples were cut into small pieces, sonicated, and kept on ice for 30 min before 

centrifuged at 12500 g for 30 min at 4 °C. Supernatant was collected, to which 4X Laemmli 

sample buffer (Bio-Rad, Hercules, CA) containing 10% β-mercaptoethanol (Sigma, St Louis, 

MO) was added. Samples were boiled for 5 min and loaded into 4 – 20% gradient gel (Bio-Rad) 

and run at 100 V for 1.5 hrs. The gel was then transferred onto Amersham Hybond-P membrane 
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(GE Healthcare Life Sciences, Pittsburgh, PA) at 100 V for 1 hr. The membrane was then 

blocked with 3% BSA 3% non-fat milk in TBS-T for 1 hr at room temperature. It was then 

incubated with primary antibodies in blocking buffer overnight at 4 °C. The next day, the blot 

was washed in TBS-T for 5 min 3 times and incubated with secondary antibodies for 1 hr at room 

temperature. The blot was then washed and developed with Femto reagent (Thermo Fisher 

Scientific) and imaged. Primary antibodies included anti-BK-β4 (rabbit polyclonal, diluted 1:500, 

Alomone Laboratories, Jerusalem, Israel), anti-NHE3 (mouse monoclonal, diluted 1:200, 

Invitrogen, Carlsbad, CA), and anti-V-ATPase B1 (rabbit polyclonal, diluted 1:200, GeneTex, 

Irvine, CA). Secondary antibodies included goat anti-mouse IgG HRP-conjugated (diluted 

1:15,000, Santa Cruz Biotechnology, Santa Cruz, CA), goat anti-rabbit IgG HRP-conjugated 

(diluted 1:15,000, Santa Cruz Biotechnology, Santa Cruz, CA), and anti-β-actin HRP-conjugated 

(diluted 1:15,000, Thermo Fisher Scientific, Waltham, MA). Densitometry analysis was 

performed using imageJ software. 

Aldosterone Measurement 

Plasma aldosterone levels were measured using the aldosterone ELISA kit EIA-5298 

(DRG Diagnostics, Marburg, Germany) following manufacturer’s protocol.  

HPLC measurement of furosemide concentration 

 The concentrations of furosemide in urine were determined with high-performance liquid 

chromatography (HPLC) as previously described (165). The instrument (Agilent LC 1200; Santa 

Clara, CA) was connected to a G1321A Agilent fluorescent detector and the chromatograms were 

recorded using Agilent ChemStation software. A C18 column (Waters Spherisorb 10.0 µm) was 

used as the stationary phase. The mobile phase consisted of cetonitrile – 0.125 M SDS – 0.01 M 

perchloric acid (234.6:35:665, w/w) pumped at a constant flow-rate of 0.6 ml/min. The retention 

time of furosemide was 3.7 min and was separated from the rest of the compounds present in 

urine and plasma in chromatographs obtained with excitation at 360 nm and emission at 413 nm. 
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A standard curve was constructed using the areas under the furosemide peak of plasma samples 

containing 0, 10, 20, 50, 100, 200, 500, 1000, 2000, and 5000 µM furosemide. The furosemide 

concentrations of urine samples were then calculated using the standard curve. 
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Results 

Furosemide effect on urine pH 

Consistent with the urine acidification effect of furosemide (138, 163, 166, 167), our 

results showed that over the course of treatment, furosemide water (Furo) reduced urine pH in 

both WT and β4-KO on HK diet (Figure 17). However, blood pH was not different between the 

HK + Ctrl and HK + Furo group (Table 6). Notably, urine pH kept decreasing until day 7. This 

gradual reduction could be due to increased V-ATPase expression in the distal nephron (162). 

Indeed, compared to HK + Ctrl group, the HK + Furo group had higher V-ATPase expression 

(Figure 18A). The NHE3 expression remained unchanged in the whole kidney and the medulla 

(Figure 18). Since V-ATPase expression is regulated by aldosterone, we measured the plasma 

aldosterone levels. HK + Furo group had significantly higher plasma aldosterone levels compared 

to HK + Ctrl group (Table 6). 
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Table 6. Blood measurements after 11 days (or 7 days for HK + Furo Actz) of treatment 

Genotype WT KO 

Treatment HK + Ctrl HK + Furo HK + Furo Actz RD + Ctrl RD + Furo HK + Ctrl HK + Furo 

Number of Mice 12 14 3 4 4 8 7 

Plasma Na+ (mM) 137.6 ± 1.1 140.9 ± 1.0* 143.5 ± 8.2 138.3 ± 0.7 138.0 ± 1.3 139.8 ± 1.2 140.1 ± 1.0 

Hct (%) 36.5 ± 0.3 39.8 ± 0.5* 38.3 ± 1.5 37.0 ± 0.6 40.5 ± 0.6* 35.4 ± 0.3 38.0 ± 1.2* 

Blood pH 7.46 ± 0.02 7.45 ± 0.03 7.44 ± 0.03 7.46 ± 0.02 7.46 ± 0.03  7.45 ± 0.03 

P Aldo (pg/mL) 862 ± 165 1489 ± 179*           

  

*p < 0.05 vs Ctrl group; #p < 0.05 vs Furo group analyzed with two-way ANOVA with a post-

hoc Tukey test. 
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Figure 17. Furosemide effect on urine pH.  

Urine pH of WT (A) and β4-KO (B) on day -1, 1, 4, 7, and 11 of Ctrl and Furo treatments, or day -1, 1, 4, 

and 7 of Furo + Actz treatment. *p < 0.05 vs. HK + Ctrl water; #p < 0.05 vs. Day -1, analyzed with two-

way repeated measures ANOVA with a post-hoc Holm-Sidak test (p < 0.001 for both treatment and days 

with interaction p < 0.01). N = 4 – 14 animals per group. 
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Figure 18. Western blot and quantification of NHE3 and V-ATPase expressions normalized to β-

actin in mice treated with HK + ctrl and HK + furo.  

*p < 0.05 vs. HK + Ctrl analyzed with a student’s t-test. N = 4 animals per group. 
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Furosemide effect on renal K+ handling  

As a well-known K-wasting diuretic, in mice on RD, Furo water group had a significantly 

lower plasma [K+] and a higher trend of K+ clearance compared to the Ctrl water group (Figure 

19). However, in WT on HK, Furo treatment reduced UKV̇ on day 1 (Figure 20). After 11 days of 

treatment, the HK + Furo group had a lower K+ clearance and higher plasma [K+] than the HK + 

Ctrl group (Figure 21). This indicates that furosemide becomes a K-sparing diuretic in mice on 

HK. Interestingly, this effect seems to be dependent on BK-β4 since furosemide did not affect K+ 

clearance or plasma [K+] in β4-KO on HK (Figure 21).  

To test whether the furosemide effect on K+ excretion is due to urine acidification, 

another group of mice on HK were treated with furosemide water with acetazolamide added to 

alkalinize the urine (HK + Furo Actz). Because of volume depletion in HK + Furo Actz mice, the 

treatment was 7 days instead of 11 days. The addition of Actz successfully kept the urine alkaline 

without affecting the blood pH (Figure 17, Table 7). Unlike HK + Furo, HK + Furo Actz group 

showed similar UKV̇, plasma [K+], and renal K+ clearance as HK + Ctrl group (Figure 20, Figure 

21). Interestingly, the combination of furosemide and acetazolamide produced a much more 

profound diuresis than furosemide alone (Table 7), consistent with the recognized synergistic 

effect of these two diuretics (168, 169). 

Tubular fluid pH is well known to be positively correlated with K+ secretion in the distal 

nephron (170, 171). To illustrate this relationship, we plotted renal K+ clearance vs urine pH and 

included data from WT and β4-KO kept on HKCl diet. Consistent with this notion, in WT on HK, 

renal K+ clearance was positively correlated with urine pH. However, such a correlation was not 

significant for β4-KO on HK (Figure 22). This indicates that the correlation between urine pH 

and K+ clearance was dependent on BK-β4 expression. 
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Figure 19. Furosemide effect on plasma [K+] and renal K+ clearance in mice on RD.  

Plasma [K+] (A) and renal K+ clearance (B) of WT on RD on day 11 of Ctrl or Furo treatments. *p < 0.05 

vs. RD + Ctrl analyzed with a student’s t-test. N = 4 animals per group.  
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Figure 20. Furosemide effect on urinary K+ excretion (UKV̇) in mice on HK.  

UKV̇ of WT (A) and β4-KO (B) on day -1, 1, 4, 7, and 11 of Ctrl and Furo treatment, or day -1, 1, 4, and 7 

of Furo + Actz treatment. *p < 0.05 vs. HK + Ctrl, #p < 0.05 vs. Day -1, analyzed with two-way repeated 

measures ANOVA (p < 0.05 for drug treatment in WT) with a post-hoc Holm-Sidak test. N = 4 – 17 per 

group. 
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Figure 21. Furosemide effect on plasma [K+] and renal K+ clearance in mice on HK.  

Plasma [K+] (A) and renal K+ clearance (B) of WT and β4-KO on day 11 of Ctrl and Furo treatment, or day 

7 of Furo + Actz treatment. *p < 0.05 vs. HK + Ctrl; #p < 0.05 vs. HK + Furo, analyzed with two-way 

ANOVA with a post-hoc Tukey test (p < 0.001 for treatment in plasma [K+]; p < 0.01 for treatment in renal 

K+ clearance). N = 4 – 17 animals per group. 
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Table 7. Metabolic cage measurements after 11 days (or 7 days for HK + Furo Actz) of treatment 

Genotype WT KO 

Treatment HK + Ctrl HK + Furo HK + Furo Actz RD + Ctrl RD + Furo HK + Ctrl HK + Furo 

Number of Mice 12 14 6 4 6 8 7 

Body Weight (g) 22.4 ± 0.4 21.4 ± 0.5 20.5 ± 0.8 18.9 ± 1.4 19.2 ± 2.1 21.0 ± 0.6 19.1 ± 0.7 

Food Intake (g/day) 2.55 ± 0.18 2.20 ± 0.13 2.00 ± 0.62 0.09 ± 0.04 0.21 ± 0.07 2.65 ± 0.23 2.23 ± 0.48 

Water Intake 

(mL/day) 
14.8 ± 1.1 12.7 ± 1.1 16.0 ± 2.2 1.1 ± 0.4 5.5 ± 1.6* 10.5 ± 1.1 12.8 ± 1.0 

V̇ (mL/day) 7.2  ± 0.7 7.1 ± 0.6 10.3 ± 1.5# 0.7 ± 0.2 2.6 ± 0.8 5.4 ± 0.6 6.8 ± 0.7 

U Osm (mOsm) 1020 ± 73 809 ± 47* 720 ± 39* 2725 ± 452 1367 ± 451* 1173 ± 42 908 ± 81* 

UNaV̇ (µmol/day) 277 ± 18 281 ± 11 336 ± 47 142 ± 19 129 ± 26 284 ± 25 302 ± 45 

 

*p < 0.05 vs Ctrl group; #p < 0.05 vs Furo group analyzed with two-way ANOVA with a post-

hoc Tukey test. 
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Figure 22. Correlation between renal K+ clearance and urine pH in WT (A) and β4-KO (B) on HK.  

Solid circles denote HK + Ctrl group; empty circles denote HK + Furo group; solid triangles denote HK + 

Furo Actz group; empty triangles denote HKCl group. 

 

  



69 
 

Furosemide effect on BK-αβ4 expression 

Previous studies showed that the alkalinity/acidity of diets regulates the BK-αβ4-

mediated K+ secretion by altering BK-β4 expression, which is required for maintaining the apical 

localization of BK-α(58, 90). We hypothesized that furosemide would have similar effects by 

acidifying the urine. Shown by the western blot in Figure 23 and the immunofluorescent staining 

in Figure 24, compared to HK + Ctrl group, HK + Furo group but not HK + Furo Actz group had 

significantly reduced BK-β4 expression and decreased apical localization of BK-α in the kidney 

cortex. Interestingly, in HK + Ctrl group, BK-α was only located in the apical membrane of 

intercalated cells of CNT but not CCD or MCD, as evidenced by co-staining with V-ATPase (IC 

marker) and calbindin (DCT/CNT marker). Consistent with this differential regulation of BK-α in 

different nephron segments, the BK-β4 expression in the whole kidney remained unaffected by 

Furo treatment (Figure 23C). 
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Figure 23. Furosemide effect on BK-β4 expression in the kidney.  

BK-β4 expression normalized to β-actin in the whole kidney (A) and kidney cortex (B) of WT on HK 

treated with Ctrl vs Furo water. C. BK-β4 expression normalized to β-actin in the kidney cortex of WT on 

HK treated with Ctrl vs Furo Actz water *p < 0.05 vs. HK + Ctrl analyzed with a student’s t-test. 
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Figure 24. BK-α localization in kidney sections of WT on HK treated with Ctrl or Furo water.  

A-D: Representative images from the CNT of HK + Ctrl group. E-H: Representative images from the CNT 

of HK + Furo group. I-L: Representative images from the CNT of HK + Furo Actz group. M-P: 

Representative images from the CCD of HK + Ctrl group. Q-S: Representative images from the MCD of 

HK + Ctrl group. A, E, I, M, Q were stained with anti-BK-α; B, F, J, N, R were stained with anti-V-

ATPase; D, H, L, P were serial sections of their respective row and stained with anti-Calbidin-D28K. Scale 

bars are 10 µm.  
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Discussion 

 The results of the present study demonstrate the following: 1) chronic furosemide 

treatment acidified the urine partly by upregulating V-ATPase expression; 2) chronic furosemide 

treatment reduced renal K+ clearance and increased plasma [K+] in WT but not BK-β4 KO on 

HK; 3) chronic furosemide treatment downregulated BK-β4 expression in the cortex and 

decreased BK-α apical localization in the CNT of WT on HK; 4) the effect of furosemide on K+ 

handling and BK-αβ4 was prevented by alkalinizing the urine with acetazolamide.  

 

Urine Acidification by Furosemide 

 Furosemide causes marked urine acidification and is used to diagnose distal renal tubular 

acidosis (166, 172, 173). The classical explanation was similar to the K-wasting effect of 

furosemide. The increased distal Na+ delivery to ENaC generates a more negative lumen potential 

in the ASDN for both K+ and H+ secretion (160). The study by Kovacikova J et. al. (161) also 

showed that the acute urine acidification effect was dependent on ENaC in the CNT. However, 

the recent study by de Bruijin et. al. (163) showed that acutely, furosemide-induced urine 

acidification was caused by increased H+ secretion from NHE3 in the TAL. Another study 

showed that chronic furosemide treatment in mice on a regular diet acidified urine in an ENaC-

independent manner and increased V-ATPase expression without changes in plasma aldosterone 

(162).  

Consistent with previous studies, our data showed that chronically, furosemide reduced 

the urine pH starting from the 1st day of treatment and caused a gradual decrease until day 7. 

After 11 days of treatment, the V-ATPase expression in the whole kidney was doubled. However, 

unlike the previous study (162), our data showed increased plasma aldosterone levels in the HK + 

Furo group, which is consistent with their elevated plasma [K+]. Furthermore, by inhibiting Na+ 

reabsorption in TAL, furosemide inhibits Ca2+ reabsorption in the TAL and sends more Na+ to be 
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reabsorbed by NCC and ENaC, which reduces the driving force for Na+-Ca2+ exchange by Na+-

Ca2+ exchanger 1 (NCX1), inhibiting Ca2+ reabsorption in DCT and CNT (174, 175). In addition 

to aldosterone, the activity of V-ATPase may be stimulated by the increased urinary [Ca2+] via 

the action of Ca-sensing receptor (CaSR) (176). Although the NHE3 expression remained 

unchanged by furosemide, the synergistic effect of furosemide + acetazolamide suggests that 

NHE3 activity may be upregulated during furosemide treatment and contribute to the urine 

acidification by furosemide. Further investigations are required to determine the activity of NHE3 

in the TAL during chronic furosemide treatment. 

 

Furosemide, Urine pH and BK-αβ4-mediated K+ Secretion 

 The link between pH and BK-αβ4 has been previously demonstrated by our lab. As the 

diet becomes more acidic, BK-β4 expression is decreased, reducing apical membrane localization 

of BK-α (58, 90, 99). In the current study, chronic furosemide treatment reduced urine pH, BK-β4 

expression, and apical membrane localization of BK-α in WT on HK. This effect astoundingly 

overrides the K-wasting effect from increased distal Na+ delivery, resulting in an overall decrease 

in renal K+ clearance and an elevation of plasma [K+]. In fact, furosemide did not cause a 

significant increase in urine flow (V̇) or UNaV̇ in mice on HK, despite the fact that the urinary 

concentration of furosemide measured with HPLC was 683 ± 97 µM, about 50 folds higher than 

its IC50 (7.2 – 15.1 µM) (177) (Table 8, Figure 25). This could be because NKCC2 activity is 

partly inhibited in mice on HK (122, 159). However, the effectiveness of furosemide was still 

demonstrated by the further decreased urine osmolality, increased hematocrit, increased plasma 

aldosterone levels, and reduced urine pH in HK + Furo group. Moreover, the less profound 

diuretic and natriuretic effect of furosemide under HK conditions did not stimulate ROMK and 

BK-αβ1-mediated K+ secretion as much as regular dietary conditions. This might have caused the 
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reduction in BK-αβ4-mediated K+ secretion to be the predominant effect and resulted in a net 

decrease in K+ excretion.   
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Table 8. Furosemide concentrations in urine and plasma of WT and BK-β4 KO. 

  WT HK + Furo BK-β4 KO HK + Furo 

[Furo] in urine (µM) 683 ± 97 610 ± 123 

[Furo] in plasma (µM) 6.5 ± 3.2 21.7 ± 17.4 
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Figure 25. A sample HPLC trace for a urine sample.  

It shows a distinct peak at 3.680 min, corresponding to the elution of furosemide. 
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Interestingly, in BK-β4 KO on HK, furosemide acidified the urine without affecting renal 

K+ clearance or plasma [K+], which were comparable to those of WT HK + furo group. These 

results suggest that the K-sparing effect of furosemide in WT on HK is due to the inhibition of K+ 

secretion via BK-αβ4 channels. The K-sparing effect was abolished when the urine is alkalinized 

with acetazolamide. This could also be due to the further increase in distal Na+ delivery 

stimulating K+ secretion. However, the fact that BK-β4 expression and BK-α localization were 

similar between HK + Furo and HK + Furo Actz groups indicates that the furosemide effect on 

BK-αβ4 was due to urine acidification. This synergistic effect was previously reported (169, 178) 

and suggested as a potential combination therapy for the treatment of congestive heart failure 

refractory to high doses of loop diuretics (168). Such patients have increased Na+ reabsorption in 

the proximal tubules, rendering loop diuretics ineffective (179).  

 The apical localization of BK-α is regulated by BK-β4 via its protection from lysosomal 

degradation (58). However, the mechanism of how luminal pH regulates BK-β4 expression 

remains unclear. The pH needs to be sensed from the luminal side of intercalated cells. One 

possible pH sensor is the CaSR located in the apical membrane of both principal cells and 

intercalated cells of the DCT and CD (180). Studies showed that extracellular alkalinization 

above pH 6 increased CaSR activity due to a sensitization towards extracellular Ca2+ (181, 182). 

The activation of CaSR would release Ca2+ from intracellular storage and increase Ca2+ entry via 

TRPV5 channels (183) to further activate BK channels (44). The TRPV4 channel plays a critical 

role in upregulating BK-mediated K+ secretion during adaptation to HK diets (98). The coupling 

of CaSR and TRPV4 was recently demonstrated in gastric cancer cells (184); however, such a 

relationship remains to be investigated in the kidney.  

 Another interesting finding in this study is that pH regulation of BK-αβ4 only occurs in 

the CNT but not CCD or MCD. This was supported by both IF staining, where BK-α was 

localized in the apical membrane of CNT only, and the western blot, where BK-β4 expression 
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was only reduced in the kidney cortex. CNT has been identified as the major site of K+ secretion 

180 and furosemide-induced H+ secretion (161, 185). According to our IF staining, in the CNT, 

BK-α was almost exclusively expressed in the intercalated cells. This agrees with the notion that 

intercalated cells play the major role in BK-mediated flow-induced K+ secretion (83, 97).  

The association between luminal pH and K+ secretion has been known for decades (170, 

171, 186).  Luminal acidification from pH 7.4 to 6.8 impairs K+ secretion in rabbit CCD without 

changing Na+ reabsorption (187). Although ROMK channels are regulated by cytosolic pH (171, 

188), they are insensitive to extracellular pH (41, 188). The intracellular pH of principal cells is 

unlikely to be affected by luminal pH due to lack of acid-base transporter in the apical membrane 

(189). The link between luminal pH and K+ secretion has been attributed to several possibilities 

including a pH-sensitive apical K-Cl cotransporter in principal cells (186), a TASK2 K+ channel 

that is regulated by extracellular pH (186), and ENaC modulation by luminal HCO3
- (190). Our 

current study provides another explanation that luminal pH regulates BK-αβ4-mediated K+ 

secretion, as evidenced by our finding that BK-β4 is required for the positive correlation between 

urine pH and renal K+ clearance. 

 

Limitations and conclusions 

 One limitation of our study is the use of drinking water for drug treatment. This method 

is non-invasive and minimizes stress but also makes drug dosage different in each animal. 

According to Table 7, although the water intake is not statistically different among the different 

groups on HK, it may vary among individuals, leading to larger standard errors. Another 

limitation of our study is that at high doses, furosemide may inhibit NCC in the DCT. However, 

NCC activity is highly inhibited on HK due to elevated plasma [K+]. Since the plasma [K+] was 

even higher in HK + Furo group, NCC activity should also be inhibited. Another explanation for 

the K-sparing effect of furosemide is that it may inhibit NKCC1 in the basolateral membrane of 
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intercalated cells to limit K+ secretion through BK (191). However, the plasma concentration of 

furosemide in the HK + Furo group (6.5 ± 3.2 µM) was much lower than its IC50 (23 ± 12 µM) 

(192) (Table 8). Additionally, the restoration of BK-β4 expression and BK-α localization by co-

administration of acetazolamide strongly suggests that furosemide exerts its effect on BK-αβ4 via 

urinary acidification.  

Furosemide is a commonly used K-wasting diuretic, and patients taking furosemide often 

require K+ supplements to prevent hypokalemia. However, our current study found that 

furosemide became a K-sparing diuretic in mice adapted to HK. Instead of the risk for 

hypokalemia, furosemide increased the plasma [K+] in these mice. As shown by our proposed 

model in Figure 26, on a regular diet, ROMK is the main K+ channel responsible for K+ secretion 

in the ASDN. Furosemide increases Na+ delivery to the ASDN, generating a more negative lumen 

potential, increasing K+ secretion via ROMK channels. The increased flow will also activate the 

BK-αβ1 channels in principal cells. The net result is an increase in urinary K+ excretion. On an 

alkaline high K+ diet, furosemide acidifies the urine by increasing H+ secretion from NHE3 and 

V-ATPase. Lower pH downregulates BK-β4 expression, decreasing apical localization of BK-α, 

reducing BK-αβ4-mediated K+ secretion. Because of the less profound natriuretic and diuretic 

effect of furosemide under HK, the increase in ROMK and BK-αβ1-mediated K+ secretion is less 

than the decrease in BK-αβ4-mediated K+ secretion. The net result is a decrease in total K+ 

excretion. 
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Figure 26. Differential effects of furosemide on K+ clearance in mice on regular diet vs an alkaline 

high K+ diet.  

A. On a regular diet, BK-α stays in the cytoplasm, and K+ is mainly secreted via the ROMK channel. 

Furosemide blocks Na+ reabsorption by NKCC2, increasing Na+ delivery to distal nephron, increasing K+ 

secretion via ROMK, leading to increased K+ clearance. B. On an alkaline high K+ diet, K+ is secreted by 

both ROMK and BK channels. Furosemide blocks Na+ reabsorption by NKCC2, increasing Na+ delivery 

and flow to distal nephron, increasing K+ secretion via ROMK and BK-αβ1. On the other hand, furosemide 

increases acid secretion from NHE3 and V-ATPase, acidifying the urine, which decreases BK-β4 

expression and reduces apical localization of BK-α. The net result is a decrease in K+ clearance, making 

furosemide a K-sparing diuretic. 
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In one rat study by Rodicio JL and Hernando L, furosemide and acetazolamide each 

caused increased K+ excretion separately; however, when furosemide was added during 

acetazolamide administration, K+ excretion was reduced despite profoundly increased Na+ 

excretion (178). This phenomenon can be potentially explained by our findings that urine pH 

regulates BK-αβ4-mediated K+ secretion. During acetazolamide administration, urine was 

alkalinized, increasing BK-αβ4-mediated K+ secretion, contributing to the kaliuretic effect of 

acetazolamide. When furosemide was added, urine was acidified, reducing BK-αβ4-mediated K+ 

secretion, leading to decreased kaliuresis despite increased natriuresis. Furthermore, in a clinical 

study, when furosemide and thiazide were administered in doses with equal natriuretic effects, the 

kaliuresis induced by furosemide was lower than that of hydrochlorothiazide (193). This 

phenomenon has been explained by the fact that during furosemide treatment, the Na+ not 

reabsorbed by TAL was picked up by NCC in early DCT, reducing the delivery of Na+ to distal 

K+ secretion sites (193, 194). However, our study provides an alternative explanation that 

furosemide may inhibit BK-mediated K+ secretion, leading to a lower kaliuretic effect than 

thiazide.  

In conclusion, our study indicates that furosemide decreases BK-αβ4-mediated K+ 

secretion by acidifying the urine, making furosemide a K-sparing diuretic in mice adapted to an 

alkaline high K+ diet.  
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GENERAL DISCUSSION 

Major findings of the dissertation 

 In summary, the major findings of this dissertation are: 

1. There is a ROMK-mediated net K+ secretion in the TAL of mice adapted to LNaHK but 

not HK (Chapter 1). 

2. Furosemide decreases renal K+ clearance in mice on LNaHK by inhibiting the net K+ 

secretion in the TAL (Chapter 1). 

3. BK-αβ4 channels are regulated by luminal pH in the intercalated cells of CNT (Chapter 

2). 

4. Furosemide reduces BK-β4 expression and BK-α apical localization in the CNT by 

acidifying the urine, thereby decreasing renal K+ clearance in mice on HK (Chapter 2). 

Taken together, these findings demonstrate how dietary Na+ and K+ intake affect 

furosemide actions on renal K+ handling. On a regular Western diet, furosemide is a K-wasting 

diuretic; while on an alkaline low/normal Na+ high K+ diet, furosemide is a K-sparing diuretic. 

 

Mechanisms for the net K+ secretion in the TAL  

 As discussed in  Chapter 1, Ang II is possibly a critical upstream regulator of the net K+ 

secretion in the TAL by regulating both ROMK and NKCC2 activities. In addition to ROMK and 

NKCC2, the basolateral K+ exit should also play an important role in the net K+ secretion. In 

order for a net K+ secretion, K+ must preferentially exit the apical side. The elevated plasma [K+] 

of mice on LNaHK may have inhibited the basolateral K+ channels. However, the luminal [K+] 

was also elevated to a similar extent. Since ROMK became more active on LNaHK, there must be 

other factors that inhibit the basolateral K+ channels but not the apical ROMK channel.  
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Both a 50-pS (195-197) and an 80-pS (198) K+ channels have been identified in the 

basolateral membrane of both cortical and medullary TAL (cTAL and mTAL). The 80-pS K+ 

channel is activated by vasopressin (199). The 50-pS K+ channel is activated by adenosine (196) 

and Ang II (200) and inhibited by arachidonic acid (195), PGE2 (197), and CaSR activation 

(201) . Although the inhibition of the 50-pS K+ channel by Ang II via AT1 receptor seems 

contradictory to the net K+ secretion in TAL, Ang II may exert the opposite effect via AT2 

receptor on LNaHK, similar to its action on ROMK (157). One study claimed that KCNJ10, the 

major basolateral Kir channel in DCT and CD (202-204), formed the basolateral 40~50-pS K+ 

channel in TAL (205). However, this seems unlikely because this particular study found the 40-

pS KCNJ10 channel only in the distal half of cTAL; while the 50-pS channel has been found in 

both mTAL and cTAL. In addition to K+ channels, one study found a K+-Cl- cotransporter 4 

(KCC4) in the basolateral membrane of TAL (206). Although the KCC4 expression is not 

affected by a high K+ diet (207), the effect of LNaHK remains unclear. 

 

Components involved in the K-sparing effect of furosemide in mice on LNaHK 

Studies from Chapter 1 and Chapter 2 show that furosemide decreases renal K+ clearance 

in mice on both LNaHK and HK through different mechanisms. Comparing the experiments 

between LNaHK + Furo and HK + Furo, a few things are worth noting. 1) Micropuncture 

experiments show a furosemide-sensitive net K+ secretion in the TAL of mice on LNaHK but not 

HK. 2) Furosemide evokes a much greater natriuresis and diuresis in mice on LNaHK than HK. 

3) Furosemide reduces urine pH in mice on both LNaHK and HK. This indicates that there are at 

least three components involved in the furosemide effect on renal K+ handling on LNaHK. In 

mice on LNaHK, furosemide inhibits the net K+ secretion in TAL but increases the K+ secretion 

through ROMK by delivering more Na+ to ASDN. By acidifying the urine, furosemide probably 
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reduces BK-αβ4-mediated K+ secretion as well. The combined effect on the TAL, ROMK and 

BK makes furosemide a K-sparing diuretic in mice on LNaHK. 

 

Mechanisms for furosemide-induced urine acidification 

 The mechanism for furosemide-induced urine acidification seems to be multifactorial. 

The study by Na et. al. (162) showed that chronic furosemide treatment increased the V-ATPase 

expression but did not affect serum aldosterone levels. However, we found an increase in the V-

ATPase expression with elevated aldosterone. The discrepancy may be caused by elevated 

plasma [K+] in furosemide-treated mice on HK. Other studies also showed that furosemide 

increased plasma aldosterone levels probably by activation of RAAS (116, 208, 209). Aside from 

furosemide, elevated plasma AVP could also upregulate V-ATPase activity. Although some 

studies showed that furosemide increased plasma AVP acutely (210, 211), others showed no 

effect during chronic furosemide treatments (211). Another possibility is that furosemide elevated 

plasma Ang II levels (116-118), which has been shown to increase V-ATPase expression in 

unilaterally nephrectomized rats (212). However, aldosterone, AVP, and Ang II are unlikely to 

account for all factors involved in the furosemide-induced urine acidification. According to 

previous studies done by our lab, mice on LNaHK exhibited even higher plasma aldosterone 

levels (around 3600 pg/mL) (99). They should also have elevated AVP and Ang II levels due to 

the low Na+ content of the diet. However, these mice were still able to maintain alkaline urine pH 

above 8.8. One possible explanation is that by inhibiting Na+ reabsorption in TAL, furosemide 

inhibits Ca2+ reabsorption in the TAL as well as DCT and CNT (174, 175). The increased luminal 

[Ca2+] activates CaSR and stimulates V-ATPase activity (176). Additionally, chronic furosemide 

treatment induces hypertrophy of DCT, CNT and CCD (213). The increased V-ATPase 

expression could also be due to the hypertrophy of CNT and increased number of type A 

intercalated cells in response to furosemide treatment (162).  
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Mechanisms for luminal pH regulation of BK-αβ4 channels 

The linear relationship between renal K+ clearance and urine pH agrees with the pH 

sensitivity of CaSR activity (181, 182). This supports our proposed mechanism of BK-αβ4 

regulation by CaSR shown in Figure 27. In mice on HK + Ctrl, the luminal pH in CNT is very 

alkaline, greatly enhancing CaSR activity in the apical membrane. It can increase intracellular 

[Ca2+] to activate BK channels by releasing Ca2+ from ER and increasing Ca2+ reabsorption via 

TRPV5 channels (44). It may also upregulate BK-β4 expression via unknown pathways, possibly 

involving cAMP (214, 215). As a feedback inhibition mechanism, CaSR stimulates V-ATPase 

activity to acidify the lumen (176). In mice on HK + Furo, the lumen in CNT is acidified by 

increased activity of NHE3 and V-ATPase, reducing CaSR activity, which decreases BK channel 

activity and BK-β4 expression. The only known study demonstrating a direct link between CaSR 

and BK channels was in rat bronchopulmonary sensory neurons (216), where CaSR activation 

increased BK currents in cells with low baseline BK activity but slightly inhibited BK currents in 

cells with high baseline BK activity. The relationship between CaSR and BK activation remains 

to be investigated in the kidney. 
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Figure 27. Proposed Mechanism of BK-αβ4 regulation by CaSR.  
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One potential flaw of our hypothesis is that urinary Ca2+ excretion is reduced on high K+ 

diets (217-219), for which the mechanism is unclear. Ca2+ are passively reabsorbed by PT and 

TAL via paracellular route but actively reabsorbed in the DCT and CNT transcellularly via 

TRPV5 channels (180, 220, 221). Since Na+ reabsorption in PT and TAL are inhibited on high K+ 

diets (105, 119, 123), it is likely that Ca2+ reabsorption in the DCT and CNT are upregulated by 

high K+ diets. Similar to the thiazide effect on Ca2+ reabsorption, by inhibiting NCC, high K+ diets 

increase Ca2+ reabsorption in DCT by increasing Na+ transport through NCX. However, another 

study showed that CNT played the predominant role for Ca2+ reabsorption (222). In any case, with 

increased Ca2+ sensitivity, the luminal [Ca2+] in DCT2/CNT may be just enough to stimulate 

CaSR to regulate BK-αβ4 channels there. In fact, this provides an explanation why the regulation 

of BK-α localization by pH was only observed in DCT2/CNT but not CD. It may be because after 

increased Ca2+ reabsorption by TRPV5 in DCT2/CNT, the luminal [Ca2+] in CD was not high 

enough to stimulate CaSR to regulate BK-αβ4, leaving BK-α inside the cytoplasm of CD cells. 

Additionally, the relationship between BK and TRPV4 channels has been demonstrated (104). 

High K+ diets increases the expression and apical localization of TRPV4 in the ASDN in an 

aldosterone-dependent manner, which augments the flow-induced TRPV4-mediated Ca2+ entry, 

activating BK channels. TRPV5 channels may also be upregulated by high K+ diets and activate 

BK channels in a similar manner. On the other hand, CaSR may be upstream of the TRPV4-

dependent BK activation since CaSR can activate both TRPV4 and TRPV5 (183, 184). 

Other than CaSR, another potential regulator of BK-αβ4 is the G-protein coupled receptor 

4 (GPR4), which was recently shown to be a pH sensor in the kidney (223, 224). However, GPR4 

is mainly expressed in the endothelial cells of the peritubular capillaries with rather low 

expressions in the epithelial cells (225). One abstract reported GPR4 expression in the basolateral 

membrane of intercalated cells (226). Therefore, GPR4 is unlikely to sense pH from the luminal 

side. Sensitive to extracellular pH, klotho is another possible regulator of BK-αβ4. Studies 
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showed that klotho can increase the activity of TRPV5 in the DCT (227), increasing Ca2+ 

reabsorption, which may lead to BK channel activation. However, klotho shows enhanced 

TRPV5 activity at a lower pH (228), opposite to our finding of the BK-αβ4 channel regulation. 

Other pH sensors in the CNT, such as soluble adenylyl cyclase and the insulin receptor–related 

receptor also sense the pH from the basolateral side and are unlikely to regulate BK-αβ4.  

 

Diets and Diuretics 

Overall, results in this dissertation reflect just a small part of the complicated interactions 

between diets and diuretics. Healthy diets, especially those low in Na+ and high in K, are often 

recommended along with diuretics for hypertensive patients. As shown by the data on furosemide 

and LNaHK, the combination of the two elicited a marked diuretic and natriuretic effect. 

However, extra precautions should be taken to monitor plasma [K+] to avoid devastating 

consequences of hyperkalemia.  
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APPENDIX 

Table 9. Na+ and K+ Contents of the diets used. 

Diet Na+ K+ Anion 

RD 0.3% 0.6% Cl- 

HK 0.3% 5.0% Citrate, Carbonate, Cl- (equal molar) 

HKCl 0.3% 5.0% Cl- 

LNaHK 0.01% 5.0% Citrate, Carbonate, Cl- (equal molar) 

LNaHKCl 0.01% 5.0% Cl- 
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