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ABSTRACT 

Development of novel oral therapies for the treatment of inflammatory bowel disease 

Shrey Kanvinde, Ph.D. 

University of Nebraska Medical Center, 2018 

Supervisor: David Oupický, Ph.D. 

Inflammatory bowel disease (IBD) is a chronic and remittent inflammation of the 

gastrointestinal tract (GIT). Despite extensive research efforts, there is no cure nor a well-

defined pathogenesis for IBD. Loss of epithelial barrier function, increased colonic 

immune cell infiltration and upregulation of pro-inflammatory cytokines are the 

hallmarks of IBD. Despite treatments like painkillers, aminosalicylates, steroids, and 

biologics, almost 70% patients require surgery at least once in their life time. The main 

limitation with most of the current treatments is they are either absorbed systemically or 

administered systemically resulting in adverse side effects. As a result, there is a huge 

unmet need for therapies that can be safely and locally delivered to treat inflammation.   

Chloroquine (CQ) has been used as an anti-malarial for a long time and recently it 

has found anti-inflammatory applications. However, long term administration of CQ 

results in severe side effects like retinopathy because of systemic absorption. In this 

dissertation, we have re-designed CQ into a polymer (pCQ) and evaluated its potential as 

an orally administered IBD therapeutic. We found that pCQ showed preferential 

localization in the GIT which almost negligible systemic levels. We further evaluated the 

anti-inflammatory activity of pCQ in a mouse model of IBD and found reduction in colon 
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inflammation.  We achieved this while reducing the systemic absorption almost 100 times 

which translates into an increased safety profile. 

We then assessed the effect of local delivery of combination of TNFα siRNA and 

polymeric CXCR4 antagonist (PCXA) via chitosan (CS) nanoparticles (NPs) in vivo. We 

found that the particles not only demonstrated a desirable size but also protected the 

siRNA against biorelevant conditions which are usually encountered in the GIT. Our 

results also indicate uptake of these particles by macrophages which are target cells and 

infiltrated the inflamed colon tissue in IBD. We tested the particles in vivo in a mouse 

model of colitis. We observed the therapeutic effect due to CXCR4 inhibition as well as 

observed TNFα silencing in the colon. 

Both these systems showed promise as local anti-inflammatory therapies. 

However, further development is needed to enhance their anti-IBD potential. 
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Chapter 1: Introduction 

1.1 Inflammatory Bowel Disease 

IBD is a collective term for a group of chronic inflammatory diseases affecting the 

GIT. It majorly manifests itself in two forms – ulcerative colitis (UC) and Crohn’s disease 

(CD). UC and CD can share many clinical characteristics, although they are considered 

distinct inflammatory conditions. Chronic and relapsing mucosal inflammation is a major 

characteristic of both UC and CD. UC affects the colon which is the terminal part of the 

intestine. UC inflammation affects only the mucosa without affecting deeper tissue layers. 

In UC, the inflammation usually extends proximally from the colon and is continuous but 

confined to colon and rectum. Inflammation in CD can affect any region of the GIT and is 

usually discontinuous. CD inflammation in transmural, meaning it affects the deeper 

layers like muscularis and serosa as well. Other symptoms include intestinal swelling, 

abdominal pain, diarrhea, blood in stool and weight loss. IBD has an annual healthcare 

cost of over $1.7 billion in the United States. Despite extensive research efforts, the exact 

mechanism of how IBD occurs is still unknown. Current research points out in the 

direction that IBD is a result of a complex interplay between a variety of factors. Broadly 

the factors can be classified as follows –  

1.1.1 Genetics 

There have been recent technological developments in DNA analysis and sequences in 

conjunction with utilization of huge multinational databases [1]. This has led to many 

groups exploring genetic contributions to IBD development. All these studies have 
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identified 163 which are associated with IBD of which 30 are CD specific, 23 are UC 

specific and 110 are associated with both the conditions [2]. NOD2 which encodes for a 

protein recognizing MDP in bacteria was the first identified susceptibility gene for CD [3]. 

Stimulation of MDP induced autophagy and modulates the immune system. It also 

participates in MDP-independent pathways like T-cell regulation. A genome-wide meta-

analysis has already shown an association between NOD2 and development of CD [4]. 

Numerous studies have reported the effect of autophagy in IBD immune response 

particularly two genes, ATG16L1 and IRGM [5]. Autophagy plays a role in intracellular 

homeostasis by degrading and recycling cytosolic contents as well as intracellular 

microbes. ATG16L1 mutations have been implicated in higher risk of IBD incidence [6]. 

IBD-associated polymorphisms in IRGM leads to reduced protein expression. Genetic 

screen studies have identified the involvement of IL23R, JAK2, STAT3 in both UC and CD 

[7]. Reported studies have proved that the expanding number of susceptibility gene loci 

described in IBD is an indication that genetic influences are critical components of the 

disease pathogenesis. However, explainable susceptibility loci discovered so far account 

for only 20%-25% of the heritability found in the above-mentioned studies. This is not 

only true for IBD, but also true for many other polygenetic diseases, and the phenomenon 

has been called “the mystery of missing heritability of common traits” or “genetic 

vacuum” [8]. New insights like gene-gene interactions, gene-pathway interactions and 

gene-environment interactions may lead to more valuable information in IBD 

pathogenesis than just focusing on finding new gene variants.  
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1.1.2 Environmental triggers 

Environmental factors play an important role in the pathogenesis of IBD. The 

common environmental triggers include smoking, diet, drugs, geographical location, 

social stress, and psychological element. Amongst all these, smoking is the most studied 

and well-documented factor for IBD. In 1982, an inverse relationship between smoking 

and UC development was reported [9]. Subsequently few reports confirmed the 

protective effect of smoking on UC development where patients who were smokers had 

a lower rate of relapse of inflammation. However, reports on CD described that smoking 

increases the incidence of CD and correlates with higher rate of postoperative disease [10].  

Many efforts have been directed at associating dietary excess or shortage of 

various foods as a factor in incidence of IBD [11]. Most commonly, higher intake of 

saturated fatty acids and monosaccharides, as well as low dietary fiber have been 

associated with a higher risk of CD development [12]. Many studies have emphasized the 

conflicting role of high intake of dietary monosaccharides on development of IBD. In 

retrospective studies, CD patients who felt sick had a higher percentage of 

monosaccharides in their diet [13, 14]. Russel and co-workers showed associated 

consumption of cola and chocolate with higher incidence of IBD [15]. Their observations 

were confirmed by Sakamoto and co-workers by demonstrating higher incidence of IBD 

in patients who consumed sweets and artificial sweeteners [16]. Contrary to these 

findings, Chan and co-workers conducted a large study having over 400000 volunteers 

that reported no association between the intake of monosaccharides and the incidence of 

either UC or CD [17]. Increased consumption of lactose was not reported to have any effect 
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on the development of IBD [14]. Few reports also demonstrated a slight increased risk of 

IBD development by excess consumption of animal protein. The same group also reported 

that a high fat diet, especially rich in cholesterol and animal fats may increase the rate of 

incidence of IBD [18]. These findings were corroborated by Ananthakrishnan and co-

workers, who confirmed the effect of trans fatty acid consumption on UC development 

[19]. Consumption of linolenic acid has been linked to development of IBD. This fatty acid 

gives rise to arachidonic acid which is broken down into metabolites that exhibit pro-

inflammatory properties [20]. John and co-workers carried out a study of over 25000 

participants maintaining a 7-day food diary and demonstrated the protective effect of 

unsaturated omega-3 fatty acid intake on the occurrence of UC [21]. Many studies have 

reported that high fiber consumption reduces the risk of IBD up to 40% [22]. Vitamin D 

deficiency is commonly observed in IBD patients. As such, few researchers believe this 

deficiency to be a dietary factor that may increase the incidence of IBD. Increased intake 

of fruit whole or as fruit juice especially with Vitamin C has been implicated in reduced 

risk of IBD development [23]. No correlation between alcohol intake and IBD 

development has been observed [24]. Looking at the overall literature, dietary factors play 

an underestimated role in the development of IBD. Following a certain diet maybe of 

advantage in reducing the incidence of IBD, especially for individuals already affected by 

such conditions. This might help in achieving or maintaining stages of remission and 

improving the overall quality of life. However, there is no single specific diet for IBD 

patients, so dietary recommendations can be used in supplement to therapy [25].  
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According to ecological and epidemiological evidence, air pollution may play a 

role in the incidence of IBD as well. Countries with higher development of 

industrialization have shown an increase in the incidence of IBD [26]. Increase in pollution 

levels correlates with an increase in circulating polymorphonuclear leukocytes and 

plasma cytokines [27]. Overall, environmental factors represent a gray area in IBD 

pathogenesis. Multiple explanations have been reported describing the interactions of 

environmental factors with the components of immune system resulting in an abnormal 

inflammatory response, however, none of the explored factors have convincingly 

described the pathogenesis of IBD [28]. Thus, further studies are needed to explain the 

role of environmental determinants of IBD.  

1.1.3 Microbial factors 

The GI environment is rich in microorganisms. About 1011-1014 microorganisms 

which contain 300-500 bacterial species are reported to be present in the gut [29]. In 

healthy individuals, bacteria play an important role in intestinal homeostasis. The role of 

gut bacteria in nutrition, immune development and energy metabolism has been 

elucidated [30]. Majority of the gut bacteria are gram-negative with minor population of 

gram-positive bacteria [31]. The diversity and the number of the gut microbiota are 

severely affected during presence of inflammation [32]. Almost 25% less genes were 

detected in the feces of IBD patients compared to healthy individuals [33]. There are 

multiple indications that bacteria may play a role in the development of IBD, as evidenced 

by the effectiveness of antibiotics in some IBD patients [34]. Secondly, IBD patients have 

increased antibody titers against bacteria which are present in gut under normal 
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conditions [35]. The genetic parameters associated with bacterial detection like NOD2 and 

T cell immunity are implicated in IBD [36]. Lastly, most of the animal models of IBD need 

luminal bacteria for initiation of inflammation [37]. To date many pathogens have been 

assessed as causative agents for IBD pathogenesis. Reduction of phyla Firmicutes is a well-

defined change that has been reported by multiple metagenomic studies [32, 38]. Analysis 

of the fecal microbiome showed reduction in anti-inflammatory microbiota and an 

increase in the pro-inflammatory microbiota [39]. Most known pathogenic bacteria in the 

human GIT belong to phylum proteobacteria [40, 41]. Adherent-invasive E. coli has been 

reported in multiple studies. AIEC usually invades the epithelium and replicates in the 

macrophages [42]. AIEC has been detected more frequently in patients with IBD 

compared to healthy individuals [43]. Similar observations have also been made for 

Campylobacter concisus, Clostridium difficile and few other bacteria [44, 45]. Although, all 

this data suggests the potential role of bacterial imbalance might play a role in IBD 

development, no study has pointed out whether these changes are causative in IBD or just 

a consequence of the alterations in the GI environment during inflammation. Thus, further 

studies which point out the response of the gut microbiota to various other factors are 

needed to strengthen the role of the microbiota in the development of IBD.  

1.1.4 Immunological factors 

The role of mucosal immunity, especially T cell response has been studied for a 

considerable time in IBD pathogenesis. There is evidence that imbalance between the 

innate and the adaptive immune pathways plays a role in the erratic immune response 

observed in IBD. Adaptive immune response has been the focus of many pathogenesis 
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studies in IBD and lead to the conclusion that CD is driven by a Th1 response while UC 

has been associated with an unconventional Th2 response. Innate immune response has 

been recently studies and has been associated with epithelial barrier integrity, innate 

microbial sensing and unfolded protein response.  

Innate immunity forms the first line of defense against pathogens which is often 

non-specific and allows the body to respond quickly to stimuli usually within minutes. It 

is mediated by epithelial cells as well as immune cells. This response is initiated by 

microbial pattern recognition receptors present on cell surface called TLRs and NOD-like 

receptors in the cytoplasm. Studies have found the behavior and expression of both these 

receptors to be significantly altered in IBD patients. Neutrophil accumulation, IL-1β and 

IL-8 production was reduced in IBD patients. Studies have revealed that mutations in 

NOD2 which are associated with CD affect the ability of the gut to response to LPS 

contributing to disease development. Although controversial, available reports point the 

role of NOD2 mutations in reduced activation of NF-κB as well as development of 

tolerance. IL-23 represents a key cytokine in immune responses against pathogens. 

Polymorphisms in IL-23 gene have been reported to play a role in both UC and CD. The 

epithelial barrier represents the second line of defense against the invasion by bacteria. 

Increase in the intestinal permeability and loss of the epithelial barrier has been observed 

in IBD. Mucus layer which covers the epithelium represents the first barrier against 

microbes. The cells which constitute the epithelium also secrete many anti-microbial 

peptides. The expression of these peptides has also been to be altered in IBD patients. The 
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role of the adaptive immune system in IBD development is still undergoing extensive 

research. 

1.2 Current treatment strategies and challenges  

Therapy options which are currently utilized include conservative measures as 

well as surgical procedures for patients who do not respond to treatment. Traditionally, 

the goal of IBD therapy has been to alleviate the symptoms of the disease and prolong 

remission. Many drug- as well as patient related factors influence the treatment of IBD. 

Drug-related factors include PK and PD, while patient-related factors include severity of 

disease, location of inflammation and responsiveness to treatment. Due to the absence of 

a permanent cure and the chronicity of the disease, patients essentially must be on 

treatment life-long [46]. Presently, a wide array of drugs both conventional and novel are 

available for treatment of IBD. Despite this, almost 80% of patients require surgery due to 

failure of therapy [47]. Current treatments for IBD can be divided into five main categories 

(Fig. 1) which are described as follows- 

1.2.1 Anti-inflammatory drugs 

Anti-inflammatory drugs are one of the earliest therapies which were used for the 

treatment of IBD. To date they represent one of the most frequently used therapy options 

in patients with ulcerative colitis. Aminosalicylates form a majority of this class of drugs. 

5-ASA usually recommended as the first line of therapy for mild to moderate IBD. It is 

usually used as an oral or rectal formulation. Pro-drugs such as sulfasalazine, balsalazide 

are also available [48]. Aminosalicylates mainly function by inhibition of lipoxygenase 
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and cyclooxygenase pathways which are involved in metabolism of arachidonic acids 

which are the precursor of eicosanoids and downstream inflammatory cytokine signaling 

[49]. Patients who do not respond to aminosalicylates are usually treated with 

glucosteroids and corticosteroids [50]. Both these classes affect the immune and 

inflammatory responses, and function by reducing pro-inflammatory cytokines [51]. 

1.2.2 Immunosuppressants 

Patients with severe IBD who are unresponsive to corticosteroid therapy are 

usually treated with immunosuppressive agents like cyclosporine or MTX. Most of the 

drugs of this class have been used in other diseases and cancers way before they were 

used for treatment of IBD. MTX is a folate analog and an inhibitor of DHFR [52]. It 

interferes with synthesis of DNA and exhibits anti-inflammatory effects including 

reduced production of pro-inflammatory cytokines and lymphocyte apoptosis [53]. 

Clinical trials for oral and IM therapies have been conducted. MTX showed significant 

improvement in IBD patients. MTX also maintained remission in patients [54]. However, 

MTX group also suffered more side effects which were nausea or liver test abnormalities 

[55]. Patients who are steroid dependent for remission are treated with azathioprine and 

mercaptopurine. Both these drugs are purine analogs and are converted to active 

metabolites that interfere with nucleic acid synthesis, lymphocyte proliferation. They have 

been studied in the treatment of IBD since 1960s, with multiple trials showing promising 

effects. However, most of the trials indicated that therapy with AZA or 6-MP would be 

usually for an indefinite amount of time for responding patients. Although effective in 

induction and maintenance of remission, long term usage of these drugs leads to 
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development of pancreatitis and leukopenia. As a result, the use of this medication is best 

coupled with another regimen like steroids. 

1.2.3 Biologic agents 

This class represents the newest and one of the most clinically used therapeutics 

which directly targets the main features of inflammation. Antibodies against upregulated 

pro-inflammatory cytokines form a major part in this group. TNFα is a potent mediator 

of inflammation which is commonly upregulated in the intestinal mucosa of IBD patients 

[56]. It is one of the late-stage cytokine of inflammatory cytokine cascade. It has been 

reported to play an important role in the development and progression of the disease. As 

a result, TNFα neutralization has been an extensively explored therapeutic strategy in 

various inflammatory disorders [57]. TNFα antibodies have been the most successful 

clinically translated biologic therapy for IBD. 

Infliximab is a human chimeric monoclonal antibody which is a genetically 

constructed IgG1 murine antibody binding to both the soluble and the membrane-bound 

TNFα [58, 59]. It has been successful in the induction as well as remission maintenance of 

CD and UC [60, 61]. Adalimumab and Certolizumab are both TNFα antibodies which 

have been clinically approved for IBD therapy. Improvement in TNFα antibodies have 

also been made by modifying their structure. Certolizumab pegol is a pegylated, Fab’ 

fragment of a humanized monoclonal antibody which binds TNFα [62]. The pegylation 

improves the stability and enhanced the circulation time in the body leading to reduction 

in dose [63]. It has shown better remission rates as compared to other antibodies on market 
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[64]. It does not contain Fc portion and consequently does not show cellular cytotoxicity 

[65].  

Despite being successful, these therapies have face many limitations. 

Immunogenicity is observed in some patients as they develop antibodies against the 

monoclonal agents. The development of immunogenicity usually occurs through both 

thyroid-dependent and thyroid-independent mechanisms [66]. These anti-drug 

antibodies are usually IgG antibodies that hinder the binding of monoclonal therapeutic 

to its target cytokine or increase the rate of excretion via RES [67]. Almost 60% patients 

were reported to develop anti-drug antibodies against infliximab [68]. As a result, the dose 

of infliximab has been optimized which has lowered the prevalence of anti-infliximab 

antibodies to 10-20% in clinical trials [69]. However, in this patient population, loss of 

clinical response and rise of infusion reactions has been observed once they develop anti-

infliximab antibodies [70]. Another limitation, majorly because of the systemic silencing 

of TNFα is the development of immunosuppression, which predisposes these patients to 

opportunistic infections and development of colon cancer [71]. Development of active TB 

with infliximab has been documented [72]. As a result, approaches other than targeting 

inflammation through cytokines have also been explored [73]. Such therapies can be used 

in conjunction with anti-TNFα therapies to improve the therapeutic outcomes in IBD 

therapy or for treating patients who are refractory to anti-TNFα therapies. One such 

strategy which has attracted significant attention is anti-adhesion therapy [74]. IBD 

involves extensive lymphocyte trafficking from the circulation which interact with the 

endothelial cells using adhesive interactions [75]. The proteins involved in these 
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interactions represent attractive targets for developing new therapeutic strategies for 

controlling inflammation in IBD. Antibodies against adhesion molecules and integrins 

have been developed. Natalizumab is developed against anti-α4 integrin to reduce 

lymphocyte migration into the intestinal mucosa [76]. However, since this antibody was 

not specific to the intestine, there were concerns with development of PML leading to 

decline in its use [77]. This antibody became a building block for this concept and led to 

development of similar future drugs. First drug from the second-generation drug includes 

“gut selective” vedolizumab. It is an anti-α4β7 antibody that shows gut specific 

immunosuppression. Clinical trials have not only indicated the efficacy but also reduced 

risk of PML with vedolizumab leading to approvals from FDA and EMA [78]. Similar gut 

selective antibodies like etrolizumab (anti-β7 integrin) and PF-00547659 (anti-MadCAM-1) 

have been developed and undergoing clinical trials [79, 80]. AJM300 is a recently 

developed oral α4  integrin antagonist [81]. It has concerns with development of PML, 

however, a discontinuous therapy with this agent is possible because of its short half-life 

(daily dosing of three times) providing a possible strategy if PML were to occur [82]. 

There are other newer generation biologic drugs in phase III clinical trials. 

Ustekinumab is an antibody against IL-12/23 which has been clinically approved and used 

for treatment of psoriasis and arthritis [83]. Its potential in treatment of IBD is being 

studied. Another class of upcoming biologic drug includes Tofacitinib which is a JAK1 

and JAK3 inhibitor [84]. A novel aspect of this drug is that it has been developed for oral 

administration. It has been approved for rheumatoid arthritis and is under clinical trials 

for treatment of IBD. 
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1.2.4 Antibiotics 

The GI ecosystem contains many bacteria, the composition of which changes with 

time, age, diet and geography [85]. Although a causative species has not been pointed out, 

there is plenty reports confirming the involvement of the GI microbiota in the 

development of inflammation in IBD [86]. No IBD development is observed in genetically 

engineered murine models that are raised in germ free environment but occurs when 

bacteria are introduced in the intestines. As a result, manipulation of the GI microbiome 

has been explored as an anti-IBD strategy [87]. Antibiotics can be used to control the 

inflammation by decreasing the bacterial population in the lumen and changing the 

composition of the intestinal microbiome to favor beneficial bacteria [88]. Antibiotics are 

usually used prophylactically in IBD treatment [73]. Few clinical trials have tested 

commonly used antibiotics like macrolides, fluoroquinolones, 5-nitroimidazoles and 

rifaximin either individually or in combination [34]. All the studies revealed significant 

benefits. Similar benefits were also observed in studies with ciprofloxacin and 

metronidazole in CD [89]. These studies even revealed that antibiotic treatments induced 

remission. However, the limitation with the use of antibiotics is the presence of many 

sources of variation. Other than patient-related factors, various antibiotics have different 

antibacterial spectrum. As a result, it becomes confusing to analyze data from trials which 

involve a combination of antibiotics. Additionally, antibiotics have side effects that they 

induce. Ciprofloxacin causes tendonitis and photosensitivity [90]. Metronidazole causes 

GI distress and peripheral neuropathy if used long term [91]. Antibiotics may also cause 
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a rebound effect in GI bacteria after the therapy is stopped leading to relapse [92]. 

Antibiotic resistance development is another limitation [93]. 

1.2.5 Symptomatic relief agents 

Underlying mechanisms and pathophysiology of IBD have received significant 

attention. However, the absence of a solid causative mechanism makes treatment 

confusing. Surprisingly, there has been very few reports about the various symptoms that 

are experienced by IBD patients. One survey study reported that a significant number of 

patients experience diarrhea, fatigue, abdominal pain, joint ache and night sweats [94]. 

Presence of blood or mucus in stool was reported to be more prevalent in UC patients 

compared to CD patients. Even in phases where the patients were reported to have 

inactive disease, they still experienced the symptoms. Other than physical symptoms, 

almost half the patients experienced stress [95]. Most common reported stress was family 

stress followed by work and financial stress. However, it is difficult for clinicians to 

associate stress with the presence of symptoms as feeling stressed with the presence of 

symptoms is common. The reports on correlation between the pharmacological and 

psychological parameters in IBD is limited. As a result, this area needs better research.  

The current symptomatic treatment focuses on management of pain and diarrhea. 

Acetaminophen is widely used in place of NSAIDs that have been considered as a 

potential cause of flares in IBD [96]. For more advanced pain relief, narcotics have been 

prescribed. However, their use is very minor as they are associated with increased risk of 

mortality [97]. Common anti-diarrheal drugs used in IBD include loperamide, 
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diphenoxylate, codeine and cholestyramine. Loperamide has been used most extensively 

in a postoperative setting. Clinical trials have proved the efficiency of this drug in 

managing diarrhea during IBD [98]. GI side effects as well as effects on normal physiology 

of the GIT were less as compared to placebo group [99]. Based on the no reduction in the 

defecation frequency and occurrence of side effects, many studies reported that 

diphenoxylate has no place in the management of IBD symptoms. Looking at the bigger 

picture, it is observed that a clinician’s decision about the treatment is still influenced by 

the patient’s symptoms [73]. Symptomatic relief therapies will always be needed even 

though a more pathophysiology based therapy is developed at some point of time. Thus, 

finding treatments that can manage abdominal pain and diarrhea with less side effects are 

needed. At the same time, assessing the efficacy of both psychological and 

pharmacological interventions in IBD is needed. 

1.3 Need for oral therapies for IBD 

As described in the previous section, majority of the current therapies in IBD are 

administered parenterally. Long-term dosing is needed in a chronic condition like IBD 

and these therapies, in the long run show severe side effects. As a result, the payoff for all 

these drugs comes at a huge risk. This has resulted in an unmet need therapies that act 

locally in the colon, at the site of inflammation. Oral route of delivery is an attractive 

option for delivering anti-inflammatory agents where the inflammation is local. In 

addition to its traditional advantages like ease of administration, it also offers a route to 

deliver the treatment directly to the site of action with minimal non-specific exposure. 

Rectal route is another interesting avenue. However, it is difficult to target discontinuous 
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inflammation or inflammation in the proximal part of the GIT with the rectal route. In 

case of oral administration, with appropriate modifications in the delivery system, a local 

effect as opposed to a systemic effect can be achieved. This will limit all the systemic side 

effects while allowing safe and prolonged dosing regimens. 
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Figure 1. Options for treatment of IBD (Adapted from [52]) 
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1.4 Challenges in oral delivery for IBD treatment 

Despite being a promising route of administration, oral delivery to the colon 

presents its own challenges. The major challenge being that it relies on a number of 

physiological factors to achieve optimal drug concentration at the site of action, to make 

sure therapeutic efficacy is achieved. The physiological conditions in the colon of an IBD 

patient vary significantly from those in a healthy individual. The changes which occur in 

the GIT during inflammation are highlighted in this section (Fig. 2). They form an 

important consideration in the formulation of systems intended to deliver therapeutics to 

the colon.  

1.4.1 Transit time 

In humans, colonic transit time is usually 2 to 6 hours. However, gastric and 

colonic time in IBD patients vary significantly compared to healthy individuals. This is 

mainly due to the presence of diarrhea which is very common in IBD patients. Colonic 

transit times in IBD patients have been reported to range from 6 to 70 hours. This 

represents a significant hurdle in determining the time of dosing with respect to bowel 

movements. Changes in the transit time have been reported to significantly impact 

targeting specific regions of the colon using conventional formulations as the drugs show 

higher retention in the proximal GIT as compared to the colon. 

1.4.2 pH 

There are very few reports indicating any changes in the small intestinal pH in IBD 

patients. However, colonic pH is significantly acidic in both UC and CD patients. pH in 
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colon is influenced by many processes like microbial fermentation, metabolism of fatty 

acids by bile, various secretions, intestinal volume and transit times. Since all the 

parameters are disrupted during IBD, changes in the colonic pH are not unexpected. pH 

in the colon ranges from 6.8 to 7.2 from proximal to distal colon, respectively. These values 

can significantly differ in patients with IBD with the reported values being in the range of 

5.5 to as low as 2.3, irrespective of the stage of the disease [100, 101]. These changes in the 

pH affect the composition of the colonic microbiome and well as the transit times. This 

can alter the behavior of formulations which are enzymatic or pH-dependent for release 

of drugs.   

1.4.3 Intestinal volume 

The composition of intestinal luminal contents varies significantly in IBD patients 

compared to healthy individuals. These changes directly impact the transit time as well 

as the pH conditions. Higher fluid secretion leads to dilution of the enzymes that play a 

vital role in absorption through the colon. This may also alter the composition of the 

intestinal flora which alters the digestion of carbohydrates leading to changes in transit 

times. These changes can affect the way conventional formulations are processed in the 

GIT and create hurdle to local delivery of drugs. 

1.4.4 Histological changes 

The intestinal epithelium represents one of the most selective barriers in the 

human body. It regulates the transport of the luminal contents into the tissue. Small 

molecules are restricted selectively while macromolecules are not transported. While this 
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barrier seems to be an attractive target that can be manipulated to achieve selective 

absorption of drugs, epithelial integrity is lost in IBD. Inflammation not only disrupts the 

barriers but also affects the individual cell types. Significant crypt damage as well as loss 

of the intestinal brush border affects the uptake and absorption properties of the 

epithelium. There is loss of goblet cells which are responsible for mucus production which 

results in thinning of the mucus layer which usually represents the first barrier to reach 

the tissue. This affects the permeability of lipophilic drugs and mucoadhesive systems. 
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Figure 2. Physiological changes in the GIT in IBD. (adapted from [102]) 
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1.5 Applicability of oral particulate delivery systems in colonic inflammation 

As discussed previously, the current treatments for IBD are largely limited due to 

their systemic side-effects. With the biologic therapies like antibodies, development of 

resistance and immunosuppression are other concerns. With a view to overcome the 

limitations of traditional small molecule drugs for IBD, sustained-release drug delivery 

systems like capsules and enteric coating tablets have been developed for release drugs 

specifically in the colon. These delivery systems minimize the absorption of drugs in the 

upper GIT by releasing active agents influenced by colon specific conditions such as pH, 

enzymes, etc. However, as discussed in preceding section, the colonic conditions in the 

presence of active inflammation vary significantly compared to healthy colon. Inter-

patient variability is another confounding factor. Consequently, current macroscopic 

delivery systems lack specificity to target only the inflamed parts [103]. Furthermore, 

about 90% of the IBD patients experience diarrhea which results in rapid intestinal 

clearance of these delivery systems, compromising their efficacy. To circumvent the 

limitations of the current macroscopic delivery systems for IBD, many groups have 

focused on utilizing particulate delivery systems. In 1998, Rein and co-workers laid down 

a hypothesis stating that the disruption of the intestinal barrier at the inflamed colonic 

regions could allow preferential accumulation of particles in those areas. Additionally, 

the accumulation of macrophages and dendritic cells at the inflammation site could result 

in higher uptake of particles. A size-dependent deposition study of fluorescent 

polystyrene microparticles and nanoparticles in an experimental model of colitis was 

carried out as a step in the direction towards this strategy. Higher adhesion of particles 
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was observed at the layers of inflamed tissues which had more mucus while in the 

ulcerated areas, a size dependency was observed. Targeting to inflamed areas became 

more effective with smaller particles. Particles in the submicron sizes showed higher 

uptake by macrophages and could evade clearance by diarrhea which is a common 

symptom of IBD. Encouraged by these studies, many groups started using particulate 

systems to encapsulate drugs or biologics to create more applicable and complex 

treatment strategies for IBD therapy which were either dependent on their size or 

harnessed a colon-specific target for accumulation. The following part reviews 

development of some of these systems according to their driving stimulus. 

1.5.1 Size dependent systems 

Particle size reduction to the nanometer scale has been shown to improve the 

accumulation of nanoparticles in the inflamed colonic areas thus a promising finding for 

IBD therapy. The size reduction allows for enhanced and specific delivery of active 

principles in inflamed tissue via an epithelial enhanced permeability and retention effect 

while allowing selective uptake by the immune cells that accumulate in these areas [104]. 

Accumulation in the inflamed tissue increases the local concentration of drugs which is a 

useful parameter for IBD therapeutics. Reduction in the size also helps particles escape 

quick clearance due to diarrhea [105]. NPs can undergo internalization by paracellular 

transport, transcytosis through M cells and through gaps in the intestinal villi [106, 107]. 

There have been numerous reports which look at particle deposition as well as uptake in 

inflamed colon based on their size. Highest binding to inflamed colon mucosa was 

observed with 100nm particles when polystyrene particles ranging from 0.1 to 10 µm were 
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orally administered for 3 days in TNBS colitis model in rats [108]. However, after washing 

off the mucus there was a significant reduction in the particles suggesting high proportion 

of particles getting entrapped in the mucus rather than being taken up by immune cells. 

This effect was observed independent of the particle material as a number of studies 

showed similar effect with various non-functionalized particles [109]. A comparative 

study between NP and microparticle uptake into rectal mucosa in human IBD patients 

showed that microparticles accumulated to a higher extent while only trace amounts of 

NPs were detected [110]. Although the microparticles showed enhanced bioadhesion and 

accumulation, there was negligible absorption across the epithelial barrier. On the 

contrary, NPs were found to be transported to the serosal compartment indicating 

microparticles might be a more suited drug delivery vehicle for local colonic application 

in humans. There is no explanation for the opposite observations for the effect of particle 

size on colon accumulation between animals and humans. While a glance at the reported 

study suggests that a reduction in particle size is essential for accumulation in the colon, 

there is no proof that that non-functionalized particles show specific accumulation in the 

inflamed versus the healthy parts of the colon in vivo. As a result, other strategies for 

enhancing the accumulation in inflamed regions including surface modification have 

been studied. 

1.5.2 Surface charge dependent systems 

Very few reports have been published about the effect of physicochemical 

properties other than particle size on the adhesion and accumulation of particles in the 

inflamed colon tissue [111]. The effect of surface charge on binding to inflamed tissue has 



25 
 

been reported mainly through ex vivo studies or in vivo studies with rectal administration 

with conflicting conclusions. Surface charge modification should theoretically improve 

selectivity towards inflamed tissue by influencing the electrostatic interactions between 

the particles and the tissues. Additionally, binding of surface charged modified particles 

to other components in GIT like bile acids during transit is another concern. Thus, 

additional pharmaceutical strategies are needed, in conjunction with surface charge 

modification to achieve localized drug delivery to the inflamed tissue. 

Many studies have revealed improved deposition and therapeutic efficiency in 

IBD of particles having a positive surface charge. Cationic systems adhere to mucosal 

surfaces because of interaction between the nanocarrier and the negatively charged 

mucosa [112]. Mucins which form a major portion of the colonic mucosal surface possess 

a negative charge as most of their carbohydrates are substituted with sulfate and sialic 

acid residues [113, 114]. As a result of their charge interactions, most of the cationic 

materials possess mucoadhesive properties. Adhesion can be a desirable as it can promote 

more interaction between the mucosal surface resulting in higher particle uptake as well 

as reduced clearance in the presence of diarrhea, which is common in IBD. In CD, there is 

an increase in mucus production leading to a thicker mucus layer in the inflamed regions, 

making mucoadhesion an attractive strategy to enhance specificity and retention of 

delivery systems in those areas [115]. One of the most frequently used cationic polymer 

especially in oral delivery systems is CS. CS-functionalized PLGA NPs were reported to 

adhere onto human intestinal mucosa ex vivo [116]. However, very less uptake in the 

tissue was observed for both inflamed and healthy areas probably due to strong 
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association with the negative mucosal surface. This finding has also been supported by 

other reports which used TMC, a derivative of CS [112]. As a result, this approach might 

be effective in delivering drugs which act on extracellular domains [102]. 

Anionic systems have been developed with a goal to target positively charged 

proteins like eosinophil cationic protein and transferrin which are overexpressed in colons 

of IBD patients [117]. Such systems are able to diffuse through the mucus layer due to less 

association with the negative charge [118]. When compared ex vivo, anionic liposomes 

showed two-fold higher adhesion to inflamed tissue as compared to cationic and neutral 

liposomes [119]. The adherence was in direct proportion to the negative charge density. 

However, only limited conclusions can be drawn from such studies as the conditions in 

vivo might differ significantly. 

Drawing from these studies, it is not very clear as to how the size or the charge 

affects the adhesion, uptake and absorption of the particles. As a result, an additional level 

of control and complexity has been added by synthesizing delivery systems that utilize 

physiological changes that occur during the course of GI transit or during inflammation. 

1.5.3 pH- dependent delivery systems 

These delivery systems make use of the difference in pH in different regions in the 

GIT. The pH in the GIT varies from highly acidic in the stomach to almost neutral in the 

ileum and the colon. As a result, a delivery system that disintegrates at colonic pH can 

provide colon-specific delivery. Traditional delivery systemic like tablets and capsules 

have been utilizing enteric coatings to create delayed release of drug in the colon to 
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achieve specific delivery [120]. One of the most used pH dependent polymers are 

methacrylic acid copolymers, commercially known as Eudragit. In addition to pH 

dependence, Eudragit polymers also show mucoadhesion.  Innovating from these 

conventional dosage forms, many studies have been reported where such polymers have 

been adopted to form nano-delivery systems. Liposomes coated with Eudragit have 

shown superior mucoadhesion in pig intestine compared to other polymer coatings [121]. 

Although showing favorable release kinetics which were colon specific, this system was 

shown to degrade when incubated in the presence of bile salts which would hinder its 

application in vivo [122]. This led to development of pH dependent colon specific 

polymeric nanocarriers for IBD treatment. Budesonide loaded particles made up of PLGA 

and Eudragit S100 mixture showed superior anti-inflammatory effect than conventional 

enteric coated microparticles [123]. Similar system was applied and used for developing 

nanocapsules [124]. Nanocapsules showed a higher loading capacity for lipophilic drugs 

as they have a polymeric wall around a core [125]. Both these systems also showed colon 

specific release. These systems have also been tested and reported for their ability to 

reduce inflammation in various animal models. Although promising in preclinical testing, 

pH-dependent nanocarriers face hurdles in their clinical translation because of the inter 

as well as intra-patient variability in pH that is observed in IBD. As a result, a system 

which solely depends on pH difference in the GIT might not be reliable for IBD therapy. 

1.5.4 ROS-responsive delivery systems 

These delivery systems utilize high levels of ROS which are commonly observed 

in the inflamed tissue. Usually high concentrations of ROS are localized only to sites of 
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inflammation due to the accumulated phagocytes [126]. Although the concept of ROS-

responsive delivery systems is relatively old, very few oral delivery systems have been 

developed which utilize it for treating inflammation, mainly because it necessitates the 

synthesis of novel materials which can be fabricated into nanocarriers. One such example 

are TKNs which were formulated from PPADT which degrades in presence of ROS [127]. 

This material was used to encapsulate TNFα siRNA complexed with a cationic lipid to 

form NPs. These particles showed selective accumulation in the inflamed colon areas in 

vivo. These particles were also shown to significantly reduce inflammation and 

inflammatory cytokines as compared to controls. Another system which utilized ROS was 

designed to mimic SOD/ catalase enzyme system which actively neutralizes ROS 

generated in the body [128]. This system degraded specifically in the presence of 

superoxide which is a major ROS in the body and reduced inflammation by neutralizing 

over produced ROS in vivo in the colon. 

1.5.5 Actively targeted delivery systems 

With the advent of systems that are colon specific, researchers have started looking 

into developing delivery systems that can deliver therapeutics specifically to the inflamed 

regions of the GIT. Such systems use ligands decorated on the surface of the particles to 

actively achieve specific accumulation in the inflamed areas to deliver therapeutics and 

get an enhanced anti-inflammatory effect [129]. The strategy is based on the concept that 

the ligand-receptor interaction expressed specifically at the inflammation sites will 

improve the accumulation of the formulation on those areas. The ligands are selected to 

harness various inflammation-induced changes like receptor or protein expression in the 
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tissue. This approach has been vastly used for developing parenteral delivery systems to 

target diseases like cancer and infections [130]. Encouraged by the success of these 

systems, many researchers have attempted this approach to develop orally administered 

particulate systems. Commonly used targeting moieties include monoclonal antibodies 

and peptides as they exhibit high targeting specificity [131]. However, development of 

formulations which utilize these targeting moieties is a challenge as they are labile to 

gastric acid as well as enzymes. Many targeting moieties have been tested for oral colon 

inflammation-specific drug delivery. The first proof of concept study utilized polystyrene 

nanoparticles coated with anti-ICAM-1 antibodies. The biodistribution and uptake of 

these particles, following oral administration was assessed in vivo using fluorescence and 

radiolabeling [132]. Almost 60% of the administered antibody dose was degraded, these 

particles showed targeting predominantly in the upper GIT. Although ICAM-1 is 

overexpressed on the surface of inflamed mucosal tissues, this study was not performed 

in an animal model of colitis [133]. Macrophages infiltrate the inflamed colon tissue in 

IBD. As a result, mannose receptors and MGL which are overexpressed by the 

macrophages under inflammatory conditions [134]. Bioreducible mannosylated cationic 

polymer which could complex siRNA by electrostatic interactions to form ~250nm NPs 

showed significant macrophage targeting ability [135]. The uptake was shown specifically 

by macrophages and not by epithelial cells showing that the targetability was because of 

the mannose. A similar system comprising of PLGA NPs grafted with mannose showed 

high accumulation ex vivo in inflamed areas of the colon. However, both these studies did 

not assess the accumulation in an in vivo model of colitis. A galactosylated trimethyl 
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chitosan-cysteine NP system complexed with Map4K4 siRNA was developed to target the 

MGL on the macrophages [136]. This system showed significantly higher uptake in 

macrophages compared to control NPs proving the effect of galactose receptor-mediated 

endocytosis. This system demonstrated significant reduction in inflammation in DSS-

induced colitis mouse model. Based on the same concept various other systems which 

achieve targeting through Fab’ portion of a macrophage specific ligand and other 

receptors like transferrin, CD98 have been developed and reported [137]. Not only 

polymeric nanoparticles but also liposomes and hydrogels have been actively targeted to 

inflamed areas in the colon. 

1.6 Conclusion 

In the following chapters, I will present the most important findings on the 

development of oral therapies for IBD treatment and the studies related to their 

physicochemical characterization and biological testing. The characterization and the 

validation studies we performed to assess the suitability of the animal models we have 

used in this dissertation are describe in chapter 2. Chapter 3 describes alteration of the PK 

of chloroquine using a PDC to make it more suitable for oral delivery for local treatment 

of inflammation. Chapter 4 explores the physicochemical testing and therapeutic effect of 

polydrug/ siRNA combination in IBD treatment. 
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Chapter 2: Characterization of animal models for suitability 

2.1 Introduction 

As discussed in the previously, IBD is a chronic and debilitating disorder. It is the 

result of complex interplay between various immunological, genetic and environmental 

factors. This has led to many groups have tried to elucidate the mechanism of 

development of IBD using a variety of in vitro studies because of the ability to control 

various causative factors independently. However, the complexity of the disease has 

negated all the advances in the study of IBD leading to a lot of fundamental gaps in our 

knowledge. A great deal of information about other human diseases as well as design of 

therapies has been carried out on the basis of studies carried out in animal models [138]. 

However, one of the problems with understanding the pathophysiology as well as 

designing therapies for IBD has been attributed to the lack of suitable animal models. An 

ideal model of IBD would be a disease in an animal that is identical in every factor to 

human IBD [139]. This would ensure that the animal model has similar pathological 

features as well as response to experimental treatments. In addition to this, the animal 

model also must be amenable to experimental manipulation to study disease progression 

and pathogenesis. Currently used IBD animal models are broadly categorized and their 

advantages and limitations are mentioned in the table below- 
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Table 1. Currently used IBD animal models (Adapted from [140]). 

Category Model Advantages Disadvantages 

Gene 

knockout 

IL-2 KO 

Chance to identify the role of 

specific genes, target specific 

cells 

Reduced 

pathologic 

relevance as human 

IBD rarely has 

single gene 

mutation 

IL-10 KO 

T cell receptor 

mutant 

TNF-3’ UTR 

KO 

Transgenic IL-7 TG   

Spontaneous 

C3H/HejBir 
Disease with multifactorial 

causes which increases 

pathogenic relevance 

Poor breeding 

ability, high cost 

for colony 

maintenance 
SAMP1/Yit 

Inducible 

Acetic acid 

Easy induction, inexpensive 

Lack of 

reproducibility, 

varying protocols, 

overlooks 

pathogenic factors 

associated with the 

human disease 

Iodoacetic acid 

TNBS 

DSS 

Oxazolone 
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As described in the table, there have been many animal models of intestinal 

inflammation but the definition of an ideal model exposes many problems which spring 

from huge fundamental gaps in our knowledge on IBD. No single model captures all the 

complexities of human IBD, but takes into consideration only a particular major aspect of 

the disease. As a result, the animal models currently used are more of models of intestinal 

inflammation rather than IBD models. Another major challenge in testing novel oral drug 

delivery systems in IBD is mimicking the GI environment in vitro, particularly because of 

the diversity in the pH, enzymes and mucosal surfaces [101]. Despite having many 

limitations, the current animal models offer a lot of choices can give insight not only into 

how the GI environment changes during inflammation but also whether new therapeutic 

candidates may show promise in IBD-like disorders. As a result, from the perspective of 

developing and testing novel therapeutic candidates, it is not only essential to characterize 

the suitability of the animal model based on its pathophysiology but also for potential 

interactions between the inflammation inducing agent and the drug delivery system. In 

this chapter we discuss the characterization of DSS and the C. rodentium induced mouse 

models we performed to assess their suitability to our studies. 

2.2 Materials and Methods 

2.2.1 Materials 

CaCO2 cells, CL antibodies and DAPI mounting medium were obtained from Dr. 

Amar Singh’s lab, DSS (Mw 40,000) was obtained from TdB consultancy, DMEM, PBS and 
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methanol was purchased from Thermo Fisher Scientific Inc., NH4Cl and Triton X-100 was 

bought from Sigma, MPO and CXCR4 antibodies were purchased from Abcam. 

2.2.2 Immunofluorescent staining 

24 h prior to the experiment, CaCO2 cells were seeded in 8 well glass chambers 

(Thermo Fisher Scientific Inc.) at 200,000 cells/ well in 500 µl media overnight. The cells 

were then treated with 4% DSS in complete media for 24 h. After the treatment, the media 

was removed and the cells were washed with ice PBS and fixed in 4 % PFA for 30 min. 

The cells were washed with PBS between each step. The cells were then incubated with 

50 µM NH4Cl for 10 min and washed. The cells were treated with chilled methanol for 10 

min and washed before being treated with blocking buffer (0.01 % TritonX-100) for 1 h. 

Post blocking, primary antibodies for CL1, CL2, CL3 and CL7 were added and the cells 

were incubated on a shaker at 4°C overnight. On the following day, the cells were washed 

and treated with the appropriate fluorescently labeled secondary antibody for 1 h. The 

cells were then washed and then DAPI mounting media was added. The cells were 

visualized using Zeiss 710 confocal laser scanning microscope. 

2.2.3 Induction of DSS colitis  

Male Balb/c mice (6 weeks old, 18-20g) were obtained from Charles River 

Laboratories. All animal experiments were conducted according to the protocol approved 

by the University of Nebraska Medical Center Institutional Animal Care and Use 

Committee. Colonic inflammation was induced by substituting drinking water with 4 % 
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DSS solution. Animals were weighed before starting the DSS. The onset and progress of 

the disease was monitored by weighing the mice and presence of blood in the stool. 

2.2.4 Induction of C. rodentium induced colitis 

Male C57BL/6 mice (6 weeks old, 18-20g) were obtained from Charles River 

Laboratories and used for all in vivo studies. All animal experiments were conducted 

according to the protocol approved by the University of Nebraska Medical Center 

Institutional Animal Care and Use Committee. C. rodentium was used to induce colitis in 

mice as previously described [141]. Bacterial glycerol stock was streaked onto LB agar 

plates and the bacterial colonies were grown overnight at 37°C. A single colony was 

inoculated into 5 ml of 2% LB broth and incubated at 37°C, 280 rpm overnight to obtain a 

saturated primary culture. On the day of the experiment (Day 0), 2 ml of the primary 

culture was added into 300 ml of LB broth and the inoculum was placed on a shaker at 

37°C at 280 rpm for 6 hours. Bacterial optical density was measured at 600 nm. Bacteria 

were diluted with LB broth and delivered to mice (n=3) via oral gavage in a 100 µl volume 

containing either 5 x 108 or 10 x 108 colony forming units (CFU). Healthy control group 

(n=3) was orally administered 100 µl of LB broth. 

2.2.5 Tissue harvesting and processing 

On the day 7 for DSS model and Day 14 for the bacterial model, the mice were 

sacrificed and the colons were harvested. For the DSS model, the fecal content was added 

to a pre-weighed tube and the tubes were placed in an oven at 50°C for 48 h. The weight 

of the dried feces was measured and the difference in the weights was used to calculate 
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the water content. For animals from both the models, the colons were opened 

longitudinally and excised into two parts along the length, which were stored accordingly 

for determination of cytokine mRNA levels by RT-PCR and histological analysis. 

2.2.6 RT-PCR 

Colon samples were stored in RNAlaterTM (Thermo Fisher Scientific Inc.) at 4°C for 

48 hours to allow sufficient time for tissue penetration followed by removal of excess 

solution. The tissues were then stored at -80°C until further processing. Stored frozen 

tissues were homogenized in TRIzolTM (Thermo Fisher Scientific Inc.) reagent using 

TissueLyser II (Qiagen) and mRNA was isolated from the homogenized tissues according 

to manufacturer’s protocol. The extracted mRNA was quantified using Nanodrop Onec 

UV-Vis spectrophotometer (Thermo Fisher Scientific Inc.). The cDNA was synthesized 

from the mRNA using High-Capacity cDNA Reverse Transcription Kit with RNase 

Inhibitor per the manufacturer’s protocol (Thermo Fisher Scientific Inc.). A volume 

corresponding to 1 µg of RNA as determined by UV spectrometer was used for cDNA 

synthesis. Synthesized cDNA was stored at -20°C until further use. RT-PCR was carried 

out using the synthesized cDNA from colon tissue samples to determine the levels of 

mRNA of the target genes. Healthy and untreated colons were used as controls. cDNA 

was mixed with 0.2 µM of primer pair of gene of interest and iTaqTM Universal SYBR® 

Green Supermix (Biorad) into an optical reaction tube (Qiagen). The RT-PCR reaction was 

carried out in Rotor-Gene Q 2plex thermal cycler (Qiagen) using the following cycle 
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program: 95°C for 3 minutes; 40 cycles 60°C for 30 seconds. Results obtained from the RT-

PCR were analyzed by Ct method to determine the fold change in gene expression. 

2.2.7 Histological studies 

The part of the colon was rolled in a swiss roll fashion from distal to proximal end. 

The rolls were fixed for 24 h in 4% paraformaldehyde, embedded in paraffin, sectioned 

and stained with H&E. For other markers, the colon sections were stained with MPO (for 

DSS treated colon tissue) and CXCR4 antibodies. 

2.2.8 Spleen bacterial load 

For the bacterial model, the spleens were harvested, weighed and stored on ice. 

The spleens were homogenized in PBS and centrifuged at 15,000×g for 15 min at 4°C. The 

supernatant was streaked onto LB agar plates and the plates were incubated at 37 °C for 

24 h. After 24 h, the plates were visually inspected and the number of colonies was 

counted. 

2.2.9 Cytokine expression panel 

Colitis was induced in male C57BL/6 mice using 5 x 108 CFU of C. rodentium as 

described in the previous sections (n=15). Five mice were sacrificed at each time-point 

(day 1, 10 and 14 after oral gavage of the C. rodentium). The colons were excised, cleaned, 

and their weight and length recorded. The entire colon was frozen and stored at -80°C. 

The colon was homogenized in 1.5 ml RIPA buffer using TissueLyserII (Qiagen) and the 

homogenates centrifuged at 15,000×g for 15 min at 4°C. The supernatant was analyzed for 

cytokine levels using ProcartaPlexTM Multiplex Immmunoassay (Invitrogen) following the 
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manufacturer’s protocol. Briefly, magnetic beads coated with different cytokine 

antibodies were added at the required dilution to 96-well plate. Supernatants from the 

tissue homogenates and supplied fluorescent standards were added to the respective 

wells. The cytokines were detected by adding a detection antibody followed by addition 

of Streptavidin-PE. The beads were read on LuminexTM LX 200 Analyzer. The data 

obtained were analyzed using ProcartaPlexTM Analyst software to obtain cytokine 

concentrations. 
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2.3 Results and Discussion 

2.3.1 In vitro effect of DSS on tight junction proteins 

We assessed the effect of DSS on claudins which are the tight junction proteins in 

the colonic epithelium. The epithelial junctions in the colon represents one of the most 

effective barriers in the body which regulates the transport of nutrients, electrolytes as 

well as preventing luminal bacteria from infiltrating the colon tissue. Dysregulation of the 

epithelial barrier leading to leakage of the luminal contents into the tissue results in the 

immune response which causes inflammation. We tested the effect of DSS on tight 

junction proteins in vitro in CaCO2 cell line which is an epithelial cell line. We assessed 

the effect of DSS on expression of CL1, CL2, CL3 and CL7 in this cell line. We observed a 

decrease in the expression of CL1 and CL7 which were located at the cellular junctions. 

Post DSS treatment, these proteins appeared more punctate rather than at the tight 

junctions. Similar pattern was observed for CL2 which are seen both at the junctions as 

well as punctate. Post DSS treatment, CL2 showed a reduced expression overall. These 

experiments showed that DSS had an effect on the tested tight junction proteins and 

reduced their expression, thus affecting the integrity of the cell barrier. 

We used two animal models for all the in vivo studies – DSS mouse model and C. 

rodentium mouse model of colitis. Before utilizing the models in our studies, it was 

important to confirm the suitability of the models to our experiments. It was essential to 

characterize the model to make sure that they exhibited the histological as well as the 

biochemical changes that commonly occur in human IBD. The following section will 
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discuss the studies and the analysis carried out to make sure that the models were suited 

to our studies. 

2.3.2 DSS mouse model of colitis 

One of the most commonly used animal models of colitis is a chemical injury 

model using dextran sodium sulfate (DSS) [142]. The mechanism by which DSS induces 

colitis is not entirely clear. However, it is postulated that the inflammation is likely due to 

the damage caused to the epithelial monolayer allowing dissemination of luminal colonic 

contents into the underlying tissue [143]. The DSS model is reproducible and the severity 

of the colitis can be controlled by adjusting the dose and frequency of DSS administration. 

One of the main advantages of the DSS-induced colitis is its histological similarity to 

human colitis.  
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Scheme 1. Timeline for the DSS model of colitis 
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2.3.2.1 Macroscopic observations 

The results of mice weight measurements are shown in Fig 3a. The DSS treated 

group did not show any appreciable weight loss for the first five days of the experiment. 

On the sixth day all the mice in the DSS group lost almost 10 % of their original body 

weight. The weight loss continued the following date. On Day 7, the DSS group had lost 

close to 20 % of their body weight. No weight loss was observed in the healthy control 

group. Beginning day 3 most of the DSS treated mice began to show presence of blood in 

the stool (not shown). On the day of the sacrifice, the feces were collected and the weight 

before and after drying was determined (Fig. 3c). This allowed us to have an estimate of 

the diarrhea. Diarrhea is a very common symptom of IBD and usually persists throughout 

the course of the disease. We observed that the DSS group showed greater loss in fecal 

weight post drying indicating the presence of more water in the feces. This showed that 

the mice in the DSS group had diarrhea over the 7 days of DSS treatment. After sacrificing, 

we measured the length and the weight of the colons. We observed that the length of the 

DSS treated colon reduced significantly, however, the weight went up. As shown in Fig. 

3b, the DSS group showed significantly higher weight by length ratio compared to the 

healthy group. In human as well as murine IBD, the weight of the colon increases because 

of the edema, immune cell infiltration and swelling which in turn also causes the colon to 

reduce in length. These observations proved that the DSS treated mice were showing 

symptoms as well as macroscopic parameters which are commonly observed in human 

IBD.   
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Figure 3. Macroscopic characteristics of DSS induced colitis. (a) Change in weight; (b) 

Change in the weight by length ratio of the colon; (c) Loss in fecal weight on drying. 

Results expressed as mean ± SD (n=5). 
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2.3.2.2Histology and immune cell markers 

In the H&E stained colon sections, we observed major histological changes in the 

DSS treated group compared to the healthy controls (Fig. 4a). The colons of the DSS 

treated mice exhibited inflammation-associated evidenced by crypt fall out, presence of 

apoptotic cells and significant immune cell infiltrate. These changes correlated well with 

the changes which occur in the histology in human IBD.  

We also stained the tissue sections for MPO (Fig. 4b). MPO is an enzyme which is 

specifically expressed by neutrophils which are the first immune cells in infiltrate the 

inflamed tissue. As a result, MPO is commonly used as a marker for neutrophil 

infiltration. We observed significantly higher MPO expression in the colons of the DSS 

treated group. This showed that DSS-induced inflammation was resulting in higher 

immune cell infiltration into the tissue compared to healthy control.  
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Figure 4. Histological features of DSS induced colitis. (a) Representative images of H&E 

stained control and DSS treated colon sections at various magnifications; (b) MPO stained 

control and DSS treated colon sections 20X magnification (n=3.) 
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2.3.2.3 CXCR4 expression 

We also stained the colon sections for CXCR4 (Fig. 5). We observed higher 

expression of CXCR4 in the damaged crypts which were a part of the epithelium. CXCR4 

plays an important role in inflammation, however, its exact role in the pathophysiology 

of IBD is unknown. CXCR4 is highly expressed on the peripheral T cells in patients with 

IBD [144]. Normal intestinal epithelial cells have been reported to express CXCR4. 

However, the expression of CXCR4 and CXCL12 is upregulated and more diffused in DSS 

induced colitis with the epithelial cells as well as the infiltrating immune cells expressing 

CXCR4 [145]. Our observations agree with previous studies. These studies point out that 

CXCR4 is responsible in migration of immune cells into the inflamed colonic tissue. 

Multiple reports have also pointed out the anti-inflammatory effect of CXCR4 blockade 

either by antibodies or AMD3100 in human IBD as well as animal model of colitis [146]. 

Our findings confirm the presence of CXCR4 expression in DSS model of colitis as well as 

draw confidence from reports that it can be a viable target to test our system discussed 

further. 
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Figure 5. CXCR4 expression in DSS induced colitis. (a) Representative images of control 

and DSS treated colon sections stained for CXCR4 at 20X magnification (n=3). 
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2.3.3 C. rodentium model of colitis 

As a second model of colitis, we decided to study and see whether C. rodentium 

induced colitis was suited for out studies. DSS model is a chemical induced injury model 

which gives a robust and replicable colonic inflammation in mice. However, the most 

characterized aspect of IBD pathophysiology involves immune response to bacterial 

infiltration from the lumen into the colonic mucosa. The DSS model fails to capture that 

aspect of the disease. C. rodentium is bacteria which is very similar to E. coli which is the 

major bacteria involved in the development of human IBD. It attaches to the apical side of 

the colon epithelium and invades the colon wall, thus eliciting an immune response [141]. 

As a result, C. rodentium colitis mimics the immune response to luminal bacteria which is 

one of the explanations in IBD pathogenesis, thus making it a biorelevant model. Unlike 

DSS which requires continuous administration at least for 7 days, C. rodentium model only 

necessitates single dose of bacteria which places relatively less stress on the animals. Other 

than the mentioned advantages, C. rodentium induced colitis also shows less interference 

with RT-PCR as well as testing of delivery systems which are commonly observed with 

DSS induced colitis [147]. We did a few characterization experiments to assess the 

suitability of this model to our studies. 
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Scheme 2. Timeline for C. rodentium model of colitis 
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2.3.3.1 Macroscopic observations 

Over the 14 days of the induction, we weighed the mice every day. As opposed to 

the DSS model, weight reduction as well as presence of blood in stool are not significant 

characteristics of this model. Mice from both the groups which received bacteria did not 

exhibit any significant weight loss (~5% weight loss) (Fig. 6a). 

Post sacrifice, we observed significant reduction in colon length for the mice which 

received the bacteria. In contrast, the weight of the colons from the bacteria group was 

significantly higher compared to healthy control (Fig. 6b). The increase in colon weight 

was the indication of inflammation in edema induced by C. rodentium. The increase in the 

colon weight was found to be bacterial dose dependent (Fig. 6c). 
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Figure 6. Macroscopic characteristics of C. rodentium induced colitis. (a) Change in weight; 

(b) Representative images of the colon; (c) Colon weight. Results expressed as mean ± SD 

(n=3). 
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2.3.3.2 Weight change and bacterial load in the spleen 

We harvested the spleen and carried out further analysis. We observed a 

significant and dose dependent increase in the weight of the spleen (Fig. 7b). After 

infiltration into the colonic mucosa, the bacteria usually translocate to spleen which in the 

main organ involved in clearing of the infection. This results in the enlargement and 

subsequent increase in spleen weight (Fig 7a). We also measured the bacterial spleen load 

by plating the spleen homogenate on agar plates and counting the colonies that grew 

overnight (Fig. 7c). The healthy control spleens did not show any colonies after 24 h. 

However, spleens from both the bacteria treated groups showed bacterial growth 

confirming the translocation of the bacteria from the colon to the spleen. 
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Figure 7. Changes in the spleen of C. rodentium infected mice. (a) Representative images 

of the spleens; (b) Weight of the spleen; (c) Bacterial load in the spleen. Results expressed 

as mean ± SD (n=3). 
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2.3.3.3 Histology 

Histologically, colons of the infected mice exhibited inflammation-associated 

epithelial changes evidenced by crypt elongation, crypt fall out, presence of apoptotic 

cells, and significant inflammatory cell infiltration (Fig. 8). Distal colon showed more 

pronounced changes than the proximal colon, which was consistent with previous 

findings suggesting that C. rodentium preferentially colonizes the distal colon. The 

observed parameters correlate well with the inflammatory changes, which occur during 

the development of human IBD. 
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Figure 8. Histological changes in the colons of C. rodentium infected mice. Representative 

images of H&E stained colon sections. 
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2.3.3.4 Cytokine expression 

It involves an erratic immune response to the gut microbiota and luminal contents 

which leak into the tissue when the epithelial barrier is broken. As a result, upregulation 

of pro-inflammatory cytokines is a hallmark of IBD. Cytokine dysregulation is a common 

aspect across all the animal models of IBD. The network of cytokines involved in IBD is 

which a variety of chemokines and growth factors are involved. However, most of the 

studies are restricted to individual cytokines. Many studies indicate the diagnostic value 

of cytokine profiling in IBD to design cytokine-based therapies [148]. As a result, we 

carried out a time dependent profiling analysis of local colonic cytokine levels in C. 

rodentium infected mice and observed many changes in the colon cytokine levels. Many 

cytokines of the IL family play a role in many autoimmune disorders [149]. We observed 

a time dependent increase in the colon levels of IL-1β, IL-6, IL-13 (Fig. 9). The main source 

of IL-1β in IBD are the monocyte and macrophages which release IL-1β into the colonic 

mucosa [150]. IL-6 was the cytokine which showed highest upregulation in colon levels. 

IL-6 signaling plays an important role in IBD pathogenesis via activation of STAT3 and 

has been commonly observed to be upregulated in IBD patients [151]. Not only 

mononuclear cells but also intestinal epithelial cells have been reported to be involved in 

producing IL-6 in lamia propria [152]. IL-13 has been reported to be an important cytokine 

in UC which is traditionally considered as a Th2 mediated disorder [153]. IL-13 mRNA 

levels are increased not only in UC affected mucosa, but also in lamia propria cells from 

patients cultured ex vivo [154]. We also observed a time dependent increase in the levels 

of TNFα. TNFα is heavily involved in the pathogenesis of IBD [155]. It has been reported 
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to exert pleiotropic effects as well as increase the production of IL-1β, IL-6 [156, 157]. The 

levels of TNFα have been shown to correlate with the disease activity index of IBD [157]. 

As a result, the most successful therapy for IBD are the TNFα antibodies [158]. The 

increase in the levels of all the cytokines results in over production of chemokines which 

involve majority of MCPs, MIPs and MMPs. These molecules play a major role in the 

recruitment and the migration of circulating immune cells [159]. We observed an 

upregulation in the levels of MCP-1, MCP-3, MIP-α, MIP-β in the colons of the infected 

mice (Fig. 10). Overall, the profiling of the cytokines in model revealed a time dependent 

increase in the levels over the 14 days of the model. The upregulation in these cytokines 

correlated with the histological changes we observed in this model.  
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Figure 9. Changes in cytokine levels in C. rodentium infected mice. Colon cytokine levels 

were measured using Luminex cytokine panel (a) IL-1β; (b) IL-6; (c) IL-13; (d) TNFα; (e) 

MCP-4; (f) MCP-3; (g) MIP-α; (h) MIP-β. Results expressed as concentration in pg/ml 

(n=5). 
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Figure 10. Changes in cytokine levels in C. rodentium infected mice. Colon cytokine levels 

were measured using Luminex cytokine panel (a) MCP-4; (b) MCP-3; (c) MIP-α; (d) MIP-

β. Results expressed as concentration in pg/ml (n=5). 
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2.3.3.5 CXCR4 expression 

We also assessed the mRNA levels of CXCR4 in the colon of C. rodentium infected 

mice (Fig. 11). We observed that CXCR4 mRNA levels were upregulated two-fold right 

from Day 2 post infection. Maximum fold increase in mRNA levels compared to healthy 

control was observed on Day 10, almost 5-fold. CCR4 mRNA levels decreased slightly on 

Day 14 compared to Day 10. A four-fold increase in CXCR4 mRNA levels was observed 

on Day 14 compared to healthy control. 
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Figure 11. Changes in CXCR4 expression in C. rodentium infected mice. Colon CXCR4 

mRNA levels over the course of the model measured using RT-PCR. Results are expressed 

as fold change in mRNA levels relative to healthy controls (n=3). 
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2.4 Conclusion 

Our characterization of revealed the both the models gave a robust inflammation 

which was mainly localized in the colon. Both the models showed macroscopic 

characteristics, histological characteristics and the biochemical parameters similar to 

changes which occur in human IBD. All these factors can be used to compare the efficacy 

of our treatments.  In conclusion, both the models are suitable for our planned studies. 
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Chapter 3: Polymeric chloroquine as an oral therapeutic for treatment of IBD 

3.1 Introduction 

Polymers have been as therapies since a long time. PDC involve conjugating 

macromolecular polymers with drugs and have been applied as a promising drug 

delivery platform. In the last few years, the use of PDC in novel therapeutic applications 

is increasing. The first PDC reported conjugated mescaline with poly (vinyl pyrrolidine) 

in 1955. Following that, many PDCs have been synthesized and reported. Most common 

aim behind synthesizing a PDC is to change the characteristics of the free drug. Few 

common advantages a PDC may offer over a free drug involve increased water solubility, 

control of the release pattern of the drug, protection of the drug against degradation under 

physiological conditions, improved bioavailability in the target tissue. For a considerable 

time, only the physical properties of the drug were considered in designing a PDC. As a 

result, not all drugs were appropriate to be modified as PDCs. However, eventually the 

consideration of the route of administration became important as it has an impact on the 

accessibility of the drugs to their target site. With oral route of administration intended 

for drug delivery to the colon, it is important that the drug remains conjugated when 

during the transit as it encounters various pH and enzymatic conditions. There are 

numerous reports of PDCs synthesized with various goals have been synthesized for oral 

administration. Budesonide was conjugated with dextran for improving its aqueous 

solubility as well as reduce premature release in the upper GIT. A colon specific release 

of the drug obtained by degradation of the dextran backbone by dextranase, an enzyme 

present specifically in the colon. Another example was conjugation of Dexamethasone to 
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pDMAEMA to improve its mucoadhesive properties in the GIT and provide an enhanced 

anti-inflammatory effect. A commercial example of PDC is NKTR-118, a PEGylated form 

of naloxol which is currently under Phase III trials as an oral tablet for opioid-induced 

bowel disorders.  

Chloroquine (CQ) is commonly used to prevent and treat malaria. In recent years, 

CQ has also found growing anti-inflammatory application in the treatment of 

autoimmune disorders like rheumatoid arthritis and lupus erythematosus [160]. Several 

reports indicate the promise of CQ in treating IBD [161]. However, the long-term use of 

CQ can result in severe ocular side effects including blurred vision and retinopathy [162]. 

We have previously synthesized a polymeric form of CQ (pCQ), which showed 

unexpected ability to safely inhibit cell migration.  The epithelial tight junctions in the 

colon is one of the most regulated barriers in the body. It promotes the transport of 

nutrients and small molecules from the lumen into the systemic circulation, but 

macromolecules are virtually prevented from passing through. With pCQ being a 

macromolecule, we hypothesized that restricting it to the colon and minimizing systemic 

absorption could be a promising strategy to enhance its local anti-inflammatory effect in 

IBD (Scheme 3). We hypothesize that pCQ will have enhanced anti-inflammatory activity 

in IBD. In our current study, we analyzed the oral pharmacokinetics and evaluated 

therapeutic efficacy of pCQ using a widely used mouse model of IBD induced by oral 

administration of C. rodentium. 
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Scheme 3. Proposed mechanism of pCQ 
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3.2 Materials and methods 

3.2.1 Materials. Hydroxychloroquine (HCQ) sulfate (98%), triethylamine, DMSO-d6 

(99.8%) and chloroform-d (99.8%) were obtained from Acros Organics (Fisher Scientific). 

Methanol, acetonitrile (HPLC grade) were purchased from Fisher Scientific. pCQ (Fig. 1) 

with 16.7 mol % of CQ and weight average molecular weight 60 kDa was synthesized and 

characterized as previously reported [163].  

3.2.2 Pharmacokinetics and biodistribution. The pharmacokinetics and biodistribution 

of single dose pCQ was evaluated in a mouse model of IBD. Colitis was induced using C. 

rodentium as described above and on day 14, the mice were given single dose of HCQ or 

pCQ in 200 µl of deionized water via oral gavage equivalent to 30 mg/kg HCQ. Blood was 

collected from the submandibular vein at 0.5, 1, 2, 4, 8, and 24 h post-administration. The 

animals were sacrificed and organs harvested at 0.5, 2, 8, and 24 h post-administration 

and stored at -80°C until further use. The mice were randomized to selected sampling 

times so that three blood samples and one terminal tissue collection were obtained from 

each.  We have previously reported the single dose intra venous pharmacokinetics of HCQ 

in mice [164]. 

Blood, tissue and fecal samples were processed by two methods to determine free HCQ 

and total HCQ. For the first method, HCQ was isolated by a simple extraction from the 

organs as previously described [164]. The second method utilized base hydrolysis to 

release HCQ covalently bound to pCQ and subsequent HCQ extraction using solid phase 

extraction (SPE). Tissues and feces were homogenized in water prior to loading to the SPE 
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cartridge. The calibration and quality control samples were separately prepared for HCQ 

and pCQ by spiking 10 µl of appropriate calibration stock of HCQ and pCQ, in 100 µl of 

blank biomatrix, and 10 µl of internal standard solution (1.0 µg/ml) was added. For the 

study, 25 µl of blood and 100 µl of tissue homogenate were used. 400 µl of 1 M NaOH, 

600 µl water and 100 µl methanol were added and the samples were incubated at 50 ºC 

for 1 h to hydrolyze HCQ from the pCQ. Subsequently, 400 µl 2% formic acid was added 

and the samples were vortexed for 30 s and centrifuged at 1300 x g for 10 min. The SPE 

was carried out using Oasis HLB 3cc, 60 mg extraction Cartridge (Waters). Cartridges 

were pre-conditioned with 1 ml acetonitrile followed by 1 ml water.  Samples were loaded 

to the cartridges and washed with 2 ml of aqueous 15 % methanol and dried at high 

vacuum for 15 min. Analytes were eluted with 2 ml of acetonitrile. The eluents were 

collected in glass tubes and dried under nitrogen in water bath at 50C. The dry residues 

were reconstituted in 400 µl 0.1% formic acid:methanol mixture (60:40) and centrifuged at 

13000 x g and 10 µl supernatant was injected into the HPLC. The LC-MS/MS conditions 

used were according to our previous report [164]. The assay was linear over the range of 

1 to 2000 ng/mL. 

The pharmacokinetic parameters of HCQ and pCQ in blood and tissues were calculated 

using non-compartmental analysis with Phoenix WinNonlin 6.3 (Pharsight Corporation). 

The maximum concentration (Cmax) and time to Cmax (Tmax) were obtained from visual 

inspection of the concentration-time plot. The area under the curve (AUC0-) was 

estimated using the linear trapezoidal method from 0-tlast and extrapolation from tlast to 

infinity based on the observed concentration at the last time point divided by the terminal 
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elimination rate constant (). The elimination half-life (t1/2) was calculated as 0.693/k. 

Apparent clearance (Cl/F) and the apparent volume of distribution of the elimination 

phase (Vd/F) were calculated as dose/AUC0- and dose/k*AUC0-, respectively. The mean 

residence time (MRT) was calculated as AUMC0-/ AUC0-. Mean tissue concentrations 

were calculated and expressed as ng/g tissues. The absolute bioavailability was calculated 

as: 

 

3.2.3 Therapeutic efficacy. Colitis was induced as stated above and mice were randomly 

assigned to healthy, HCQ, and pCQ treatment groups (n=5) and untreated group (n=8). 

Starting day 1, the mice received oral gavage of either HCQ or pCQ every other day (30 

mg/kg HCQ equivalent in 200 µl sterile deionized water). Untreated controls were 

administered 200 µl sterile deionized water. On day 14, the mice were sacrificed and the 

colons were harvested. The colon was opened longitudinally, cleaned of fecal matter, and 

excised into two parts along the length, which were stored accordingly for determination 

of cytokine mRNA levels by RT-PCR and histological analysis. 

3.2.4 Real-time PCR (RT-PCR). Colon samples from the therapeutic study were stored in 

RNAlaterTM (Thermo Fisher Scientific Inc.) at 4°C for 48 hours to allow sufficient time for 

tissue penetration followed by removal of excess solution. The tissues were then stored at 

-80°C until further processing. Stored frozen tissues were homogenized in TRIzolTM 

(Thermo Fisher Scientific Inc.) reagent using TissueLyser II (Qiagen) and mRNA was 
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isolated from the homogenized tissues according to manufacturer’s protocol. The 

extracted mRNA was quantified using Nanodrop Onec UV-Vis spectrophotometer 

(Thermo Fisher Scientific Inc.). The cDNA was synthesized from the mRNA using High-

Capacity cDNA Reverse Transcription Kit with RNase Inhibitor per the manufacturer’s 

protocol (Thermo Fisher Scientific Inc.). A volume corresponding to 1 µg of RNA as 

determined by UV spectrometer was used for cDNA synthesis. Synthesized cDNA was 

stored at -20°C until further use. RT-PCR was carried out using the synthesized cDNA 

from colon tissue samples to determine the levels of mRNA of the target genes. Healthy 

and untreated colons were used as controls. cDNA was mixed with 0.2 µM of primer pair 

of gene of interest (Table 1) and iTaqTM Universal SYBR® Green Supermix (Biorad) into an 

optical reaction tube (Qiagen). The RT-PCR reaction was carried out in Rotor-Gene Q 

2plex thermal cycler (Qiagen) using the following cycle program: 95°C for 3 minutes; 40 

cycles 60°C for 30 seconds. Results obtained from the RT-PCR were analyzed by Ct 

method to determine the fold change in gene expression. 
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Table 2. Primer sequences for RT-PCR 

mRNA targets Primer sequence (5’-3’) 

TNF-α 
F CATGAGCACAGAAAGCATGATC 

R CCTTCTCCAGCTGGAAGACT 

IL-6 
F ATGGATGCTACCAACTGGAT 

R TGAAGGACTCTGGCTTTGTCT 

IL-1β 
F CAACCAACAAGTGATATTCTCCATG 

R GATCCACACTCTCCAGCTGCA 

IL-2 
F TGAGCAGGATGGAGAATTACAGG 

R GTCCAAGTTCATCTTCTAGGCAC 
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3.2.5 Histological evaluation. The longitudinally opened colons were rolled into a Swiss 

roll from distal to proximal end. The rolls were fixed for 24 h in 4% paraformaldehyde, 

embedded in paraffin, sectioned and stained with hematoxylin and eosin (H&E). The 

stained sections were evaluated by a pathologist without the knowledge of the identity of 

the samples using a light microscope. Histopathological scores were assigned based on 

criteria as previously described [165]. Scoring was performed based on severity of 

epithelial injury (graded 0-3, from absent to mild including superficial epithelial injury, 

moderate including focal erosions, and severe including multifocal erosions), the extent 

of inflammatory cell infiltrate (graded 0-3, from absent to transmural), and goblet cell 

depletion (0-1). For each tissue, a numerical score was assigned in a blinded manner to 

prevent bias. Scores from each tissue section group were averaged to obtain a mean 

histopathological score. Crypt heights were measured using ImageJ software, with 10 

measurements taken in distal colons of each mouse. Only well-oriented and intact crypts 

were measured. Tissue sections were stained for cleaved caspase 3 (CC3) and macrophage 

infiltration (CD68). CC3 positive cells in the entire colon roll were counted at 20x 

magnification. Results were expressed as mean CC3 positive cells per entire colon roll. 

CD68 positive cells were counted in five randomly chosen areas in the colon roll at high 

power field (HPF). Results were expressed as mean of CD68 positive cells per HPF. 

Statistics. Mann-Whitney test was used for statistical analysis of mean differences 

between treatment groups for biodistribution studies. One-way ANOVA followed by 

Tukey multiple comparison test was used for statistical analysis of mean differences 

among multiple groups. A value of p < 0.05 was considered statistically significant. All 
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statistical analysis was performed using Graphpad Prism v5 (ns = not significant, * = p ≤ 

0.05, ** = p ≤ 0.01, *** = p ≤ 0.001) 
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3.3 Results and discussion 

The main hypothesis of this study was that the macromolecular nature of pCQ will 

significantly restrict oral bioavailability of chloroquine and thus allow us to test how local 

colon effects contribute to the overall anti-inflammatory activity of HCQ. Based on our 

prior studies, we further hypothesized that pCQ will act as a polymeric drug with 

pronounced ability to inhibit inflammatory cell infiltration in the colon. We have 

synthesized pCQ by copolymerization of N-(2-hydroxypropyl)methacrylamide (HPMA) 

with methacryloylated HCQ as reported in our previous studies (Fig. 12) [166].   
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Figure 12. Structures of HCQ, pCQ and main HCQ metabolites 

 

 

 

 

 

 

 

 

 

 

 



75 
 

3.3.1 Pharmacokinetics 

pCQ contains HCQ attached by a potentially hydrolyzable ester linker and it was 

thus important to be able to distinguish between polymer-conjugated HCQ and free HCQ 

released from pCQ (Fig. 12). We achieved this goal by using two LC-MS/MS analytical 

methods. First, we quantified HCQ using a simple extraction from blood and tissues to 

determine the amount of HCQ that was released from pCQ by hydrolysis in the GI tract, 

blood, or liver. In the second method, we included an alkaline hydrolysis step that was 

optimized to fully hydrolyze the ester linker between HCQ and the polymer, thus 

providing us with the information on the total (polymer bound + hydrolyzed) HCQ. The 

difference in the HCQ amount obtained from the two methods was used to calculate the 

percent of HCQ in the tissues that remained bound to the polymer. We have found that 

the HCQ amount quantified by both methods was similar in blood and tissues from 

animals treated with HCQ alone.  

The blood concentration vs. time profile for the HCQ and pCQ after oral 

administration is shown in Fig. 13. The PK parameters of pCQ were determined from the 

total HCQ content in the blood and thus represent a combined PK of polymer-bound and 

hydrolyzed HCQ (Table 3).  The drug reached a maximum concentration in blood (Cmax) 

of 2342.6 ± 46.3 and 12.2 ± 1.7 ng/mL for HCQ and pCQ treatment, respectively. The value 

of area under curve (AUC0-∞) were determined as 28182.4 ± 1475.8 and 231.3 ± 48.8 

hr×ng/mL for HCQ and pCQ treatment, respectively. In comparison to HCQ, the pCQ 

formulation exhibited a significant reduction of Cmax (~192 fold) and AUC0–∞ (~122 fold) 

indicating that modifying HCQ into pCQ dramatically reduced its absorption. The 
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absolute bioavailability (oral to IV), was found to be 0.4% for pCQ compared to 80% for 

HCQ indicating that the pCQ formulation substantially reduced HCQ bioavailability and 

maintained drug in the gastrointestinal tract.  One pharmacokinetic disadvantage of 

chloroquine and its metabolites is their exceptionally long residence time in the blood 

leading to severe side effects. In pCQ treatment group, HCQ levels were substantially 

lower in the systemic circulation, suggesting that prolonged exposure to HCQ and 

metabolites will not be a major systemic toxicant. This is an important finding for a small 

molecule drug like chloroquine which has high systemic bioavailability resulting in high 

non-specific tissue exposure. Reduction in systemic absorption and bioavailability is 

important for local therapy and reduction of systemic toxicities and our pCQ formulation 

resulted in very different blood PK profile compared to HCQ. 
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Figure 13. Blood concentration vs. time profile. Mice with C. rodentium induced colitis 

were orally administered with HCQ and pCQ equivalent to 30 mg/kg CQ dose, 

respectively. Results are expressed as HCQ blood concentration ± SD. 

 

Table 3. Non-compartmental blood pharmacokinetic analysis in colitis mice 
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Pharmacokinetic 

parameter 
HCQ pCQ 

Cmax (ng/ml) 2,343 ± 46 12.2 ± 1.7 

t1/2 (h) 5.6 ± 1.9 11.7 ± 3.6 

tmax (h) 3.3 ± 1.2 4.7 ± 3.1 

AUC0-last (h×ng/ml) 26,446 ± 507 161 ± 8 

AUC0- ∞ (h×ng/ml) 28,182 ± 1476 231 ± 49 

Cl/F (L/h/kg) 1.1 ± 0.1 134 ± 27 

MRT (h) 6.8 ± 0.6 9.9 ± 0.7 



78 
 

3.3.2 Colon and liver distribution 

There have been numerous reports indicating that conjugating small molecule 

drugs with polymers can change their PK and pre-dispose them to preferential 

accumulation in specific tissues. We next analyzed how the differences in blood PK affect 

relative distribution of pCQ and HCQ to the colon and liver following oral administration 

in the C. rodentium colitis model. The colon and liver PK and distribution results are shown 

in Table 3 and Fig. 14. HCQ and pCQ reached a Cmax of HCQ in colon of 10,304 ± 746 and 

7,121 ± 2,984, respectively. The colon AUC0–∞was 208,917 ± 55,806 for HCQ and 94,515 ± 

35,363 hr×ng/mL for pCQ treatment.  HCQ appeared to show higher colon concentrations 

than pCQ probably due to faster transit time but the difference did not reach statistical 

significance. Both HCQ and pCQ showed increasing accumulation in the colon from the 

time of administration until at least 8 h, with subsequent decline by 24 h (Fig. 14). Both 

pCQ and HCQ showed similar colon PK behavior. The Tmax for HCQ and pCQ occurred 

at 8 h.  However, major differences were observed in the hepatic PK parameters of pCQ 

and HCQ. As expected from the very low bioavailability, pCQ had much lower hepatic 

accumulation than HCQ with the liver Cmax for pCQ  58-times lower than the HCQ Cmax 

and ~110-times lower AUC0–last compared to HCQ.  It was noteworthy, that pCQ 

concentrations in the liver declined from the first measured time point and were at all 

times lower than the liver levels of HCQ. These PK differences contributed to the 

preferential localization of pCQ in the colon as suggested by the calculated colon-to-liver 

ratios in Fig. 14. The pCQ colon:liver ratio was higher at all measure time points compared 
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to HCQ treatment.  Fecal pCQ concentrations were higher than HCQ levels (data not 

shown). These observations reinforce the applicability of pCQ as a local colonic treatment. 

Having established the local colon accumulation of pCQ, we then focused on the 

analysis of pCQ hydrolysis in the GI tract and the extent of release of free HCQ. We have 

analyzed the content of polymer-bound HCQ and the extent of pCQ hydrolysis using the 

two different sample preparation methods described above. As shown in Fig. 15, we have 

found that the vast majority (~97%) of the HCQ was polymer-bound until at least 24 h 

post-administration. The released (i.e. free) HCQ levels in the colon decreased, whereas 

the polymer-bound HCQ levels increased over time. While the released HCQ 

concentrations were highest in the colon at 1.5 h, the polymer-bound HCQ achieved 

maximum concentrations at 8 h. Calculating the hydrolyzed fraction at 8 h, only 1.2% of 

free HCQ was present in the colon tissue. This indicated that the hydrolyzed HCQ was 

being systemically absorbed while the polymer-bound HCQ had a higher transit time to 

localize in the colon before clearance at 24 h. Estimate of the colon AUC0-last showed about 

37-fold difference between the polymer-bound HCQ and HCQ hydrolyzed from pCQ, 

suggesting that most of the therapeutic effects described below result from the activity of 

pCQ and not released HCQ.  
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Figure 14. Biodistribution of HCQ and pCQ. Animals were sacrificed at pre-determined 

timepoints and tissues were harvested and homogenized. HCQ levels were measured in 

liver and colon. Results are expressed as concentration of HCQ in tissues ± SD. 

 

Table 4. Liver and colon pharmacokinetics in colitis mice. 

Pharmacokinetic 

parameter 

Liver Colon 

HCQ pCQ HCQ pCQ 

Cmax (ng/ml) 12,807±3703 220.2±102.7 10,304 ± 746 7,121 ± 2,984 

tmax (h) 2.0±0.0 0.5±0.0 8.0±0.0 8.0±0.0 

AUC0-last 

(h×ng/ml) 
167,944 ± 19,302 1,547 ± 100 166,377 ± 14,873 93,088 ± 34,403 

AUC0- ∞ (h×ng/ml) 175,852 ± 18,362 1,659 ± 78 208,917 ± 55,806 94,515 ± 35,363 
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Figure 15. GI hydrolysis of pCQ. HCQ extracted with (polymer-bound) and 

without base hydrolysis (released) was measured in colon. Results are expressed 

as concentration of HCQ in colon ± SD. 
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3.3.3 HCQ and pCQ metabolism 

To address tissue accumulation and subsequent metabolism of HCQ and pCQ, we 

measured the concentrations of HCQ metabolites in colon and liver at serial time points 

following oral administration. HCQ is metabolized in the liver by dealkylation into three 

major metabolites (Fig. 12): desethylchloroquine (DCQ), bisdesethylchloroquine (BDCQ) 

and desethylhydroxychloroquine (DHCQ) [167]. It was previously shown that DCQ has 

similar antimalarial activity as HCQ. All the N-dealkylated metabolites have been 

implicated in heart failure and retinopathy, with BDCQ being more cardiotoxic than HCQ 

[168]. Importantly for chronic use in IBD, HCQ and its metabolites have extremely long 

biological half-lives and thus their monitoring is important. 

As expected, pCQ significantly decreased the extent and rate of HCQ metabolism 

due to the covalent bond formed between the polymer and the hydroxyl in HCQ. The 

metabolite concentration results in liver and colon are shown in Fig. 16. In the liver (Fig. 

16a), which is the main organ for HCQ metabolism, both DCQ and BDCQ concentrations 

were 10-100-fold higher in the HCQ treated group as compared to the pCQ group. Both 

DCQ and BDCQ liver concentrations peaked at 8 h. DHCQ liver levels were undetectable 

in the pCQ group. Analysis of blood metabolite concentrations revealed similar trend as 

most metabolites were either undetectable or significantly lower in the pCQ group as a 

result of the very low bioavailability (data not shown).  

Data in Fig. 16b suggest that HCQ metabolism occurs in the colon. In agreement 

with the liver metabolism findings, we observed that metabolite concentrations were 
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about 10-100-fold lower in the pCQ group than in the HCQ group. Calculating the percent 

of metabolites in colon at Cmax (8 h), we observed that pCQ was metabolized to a lower 

extent than HCQ. While the major metabolite DCQ accounted for 16.5% in the HCQ 

group, only 4% of pCQ was metabolized to DCQ in the colon. BDCQ (4% of HCQ vs. 0.4% 

of pCQ) and DHCQ (8% of HCQ vs. 1% of pCQ) showed similar differences. This finding, 

coupled with the observation of elevated fecal pCQ concentrations, further support pCQ 

localization in the colon as opposed to systemic absorption. The covalent conjugation of 

HCQ in pCQ not only reduced its oral absorption due to its macromolecular nature but it 

also decreased accessibility to metabolic enzymes, thus preventing generation of toxic 

HCQ metabolites. Such a low systemic exposure to HCQ and its metabolites may result 

in reduction of adverse systemic side effects commonly observed with HCQ.   
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Figure 16. Metabolite levels of HCQ and pCQ in (a) liver and (b) colon. Tissue 

homogenates were analyzed for metabolites. Data are represented as mean metabolite 

concentration in ng/g of tissue. 
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3.3.4 Therapeutic efficacy  

The local colon accumulation, limited systemic exposure, and low liver 

distribution of pCQ provided strong rationale for the testing of its anti-inflammatory 

activity in colitis. We conducted a therapeutic efficacy study designed to assess whether 

restricting the distribution of pCQ to the GI tract preserves the activity of HCQ. The mice 

with colitis were treated (every other day) with oral gavage of pCQ and HCQ. Histological 

changes in the colon were examined following animal sacrifice on day 14. As shown in 

Fig. 17, untreated animals showed superficial epithelial damage, marked reduction in the 

goblet cell population, mucin depletion, inflammatory cell infiltration and crypt 

hyperplasia [141]. Treatment with both, pCQ and HCQ, reduced the colon inflammation 

and eased the epithelial injury (Fig. 17a). Statistically significant reduction of the 

histological damage score was observed in animals treated with pCQ (Fig. 17c). Both 

treatments significantly reduced the colon crypt length when compared with the 

untreated group (Fig. 17b). Our findings support previous reports showing the efficacy of 

chloroquine in DSS-induced model of colitis and human patients [157, 161, 169]. 
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Figure 17. Effect of HCQ and pCQ on C.rodentium-associated colonic inflammation. Mice 

with C.rodentium induced colitis were orally administered with 7 doses at 30mg/kg CQ 

dose over 14 days. (a) Representative images of H&E stained colon tissue slides; (b) colon 

crypt length; (c) histopathological scores. Data are represented as mean ± SD. 
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To assess the immunohistochemical changes that occur during inflammation, we 

determined the effect of pCQ treatment on the expression of two markers (CD68, CC3) 

that are commonly measured in reported in vivo IBD studies. CD68 is a transmembrane 

glycoprotein specifically expressed by monocytes and macrophages. CD68 plays an 

important role in macrophage homing to tissues and is used to study macrophage 

infiltration in the inflamed colon. Colon sections from patients with active IBD have 

significantly higher macrophage infiltration than healthy subjects [170]. We observed 

elevated infiltration of CD68+ macrophages in the colons of untreated mice with colitis 

(Fig. 18a). Treatment with pCQ and HCQ showed statistically significant reduction in the 

macrophage infiltration, with pCQ outperforming HCQ (Fig. 18b). CD68+ macrophages 

have different roles in UC and CD, but they massively infiltrate throughout the inflamed 

colon [171] and targeting CD68 to reduce macrophage infiltration is a potential 

therapeutic strategy in IBD [172]. Based on our prior work which showed a broad ability 

of pCQ to inhibit migration and invasion of cells, we propose that reduction of 

macrophage infiltration could be a possible mechanism by which pCQ is exerting its anti-

inflammatory activity. We next evaluated apoptosis as a marker for epithelial cell injury. 

CC3 immunostaining was used assess the apoptotic cells in the colon epithelium and we 

found that pCQ treatment showed statistically significant reduction in the number of 

apoptotic epithelial cells when compared with the untreated group (Fig. 18d). This 

observation combined with the decrease in the crypt length demonstrates the 

amelioration of epithelial cell injury by pCQ. 
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Figure 18. Effect of HCQ and pCQ on colonic macrophage infiltration and epithelial cell 

apoptosis. (a) Representative images of CD68 stained colon tissue slides; (b) quantitative 

results of CCD68 positive cells. Data are represented as mean CD68 positive cells per HPF 

± SD. (c) Representative images of CC3 stained colon tissue slides; (d) quantitative results 

of CC3 positive cells. Data are represented as mean CC3 positive cells/ colon section ± SD. 
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3.3.5 Mechanism of action 

Following histological evaluation, we sought to explore possible mechanisms for 

the anti-inflammatory activity of pCQ. Upregulation of pro-inflammatory cytokines is a 

hallmark of IBD and lowering local levels of cytokines has been shown to reduce colon 

inflammation. To investigate how pCQ treatment changes the cytokine expression profile, 

we measured the mRNA levels of selected pro-inflammatory cytokines in the colons after 

oral administration of seven doses of pCQ over 14 days. Although inhibition of TNFα is 

a well-established approach in the treatment of IBD and TNFα expression was 5-times 

higher in the untreated group, we observed no significant reduction in the colon TNFα 

expression after treatment with pCQ (Fig. 19a). We then measured expression levels of IL-

6, IL-1β and IL-2 in the colon. Our initial studies indicated that IL-6 was highly 

upregulated in the C. rodentium model. Here, we have observed statistically significant 

reduction of IL-6 expression by both pCQ and HCQ (Fig. 19b). We have observed similar 

effect of pCQ and HCQ treatments on the expression of IL-1β (Fig. 19c).  

In contrast to IL-6 and IL1β, both treatments resulted in upregulated IL-2 

expression (Fig. 19d). Statistically significant difference was observed between IL-2 levels 

in untreated control and pCQ group. IL-2 knockout mice are an often-used animal model 

of IBD  and there has been a reported clinical trial which investigated subcutaneously 

administered IL-2 as a way of enhancing regulatory T cells in IBD patients to reduce 

inflammation [173]. Based on these findings, upregulation of IL-2 may represent an 

interesting direction in the mechanistic studies of pCQ anti-inflammatory activity.  
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IL-6 has been the target of many mechanistic as well as clinical and preclinical studies 

[174]. The IL-6 downstream pathways promote immune response by increasing the CD4+ 

T-cell migration into the inflamed colon, which consequently increases the migration of 

other immune cells to the inflamed areas [175]. Accumulated evidence suggests that 

activation of IL-6 is an important inflammatory event in the development of IBD. Hence, 

inhibiting IL-6 signaling pathways represents a possible mechanism for the observed anti-

inflammatory activity of pCQ [176]. Overall, our observations pointed out that the 

therapeutic activity of pCQ seemed to be an effect of restoring the colonic immune 

imbalance that occurs in IBD. 
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Figure 19. Effect of HCQ and pCQ on murine colonic cytokine levels. Fold change in 

colonic mRNA expression relative to healthy control (a) TNF-α; (b) IL-6;(c) IL-1β; (d) IL-

2. Data are represented as mean ± SD. 
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3.4 Conclusions 

This is the first report on the local anti-inflammatory effect of non-absorbable 

polymeric form of HCQ. We have demonstrated promising therapeutic efficacy of pCQ 

in murine model of colitis induced by infection with C. rodentium. Unlike epithelial injury 

models of IBD, this model captures the immunological and microbiological aspects of IBD, 

making it more relevant to human disease. Despite comparable colon accumulation as 

HCQ, pCQ showed significant reduction in colon inflammation. Further improvement of 

pCQ accumulation in the inflamed colon is likely to enhance the effect. We identified 

several putative mechanisms of action for pCQ as an anti-inflammatory agent. Imbalance 

of the immune system plays a major role in IBD and our investigation suggests that pCQ 

may restore the homeostasis between the pro-inflammatory and anti-inflammatory 

aspects of the immune system in the colon. The exact mechanism of how pCQ exerts its 

therapeutic activity is beyond the scope of this report and will be a topic for future 

investigations. Our findings are important for the development of safer local IBD 

therapies. 
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Chapter 4: Development of CXCR4 antagonist TNFα siRNA nanoparticles as an oral 

treatment for IBD 

4.1 Introduction 

Traditional IBD therapy includes palliative medication like systemically given 

anti-inflammatory and immunosuppressant drugs. Available evidence shows that IBD 

arises from aberrant immune response and concurrent upregulation of pro-inflammatory 

cytokines such as TNFα, IL-6 and IL-8. Success of treatments based on systemic 

administration of anti-TNFα antibodies confirms that TNFα plays a prominent role in the 

pathogenesis of IBD. However, TNFα inhibition exhibits a range of complications related 

to the cost of the treatment and systemic immune suppression leading to a risk of 

opportunistic infections and development of cancer. Chemokine receptor CXCR4 and its 

ligand CXCL12 have also been implicated in the IBD pathology. The CXCR4/CXCL12 axis 

is involved in regulating trafficking and invasion of inflammatory cells in the GI tract and 

its inhibition is known to exert therapeutic effect in experimental IBD animal models. 

Thus, both TNFα and CXCR4 are upregulated in IBD mucosa and represent an exciting 

combination target for local IBD therapy. There is a great need for novel local treatments 

of IBD as potentially safer alternatives to the current systemic treatments.  

To better treat IBD, we sought to develop and test novel dual-function particles for 

combination oral treatment designed to safely reduce colonic inflammation. The particles 

are based on a recently developed polymeric CXCR4 antagonists (PCXA) designed to 

encapsulate, protect, and orally deliver small interfering RNA (siRNA). We believe is that 
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this combined approach will result in improved treatment of IBD as a result of decreased 

inflammation due to TNFα siRNA (siTNF) and inhibition of CXCR4 by PCXA. 
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Scheme 4. Proposed mechanism of CS-PCXA-siRNA NPs. 

 

 

 

 

 

 

 

 

 

 



96 
 

4.2 Materials and Methods 

4.2.1 Materials 

DSS (Mw 40,000) was obtained from TdB consultancy, DMEM, PBS, NaAc were 

purchased from Thermo Fisher Scientific Inc., Cy5.5 labeled siRNA was bought from 

Sigma Aldrich, Trizol reagent was purchased from Invitrogen, siTNFα and siSCR were 

obtained from Dharmacon, CXCR4 redistribution assay kit was purchased from Thermo 

Fisher Scientific Inc., CS was a kind gift from the lab of Dr. Kenneth Howard, Aarhus 

University, Denmark, RAW 264.7 cells were obtained from the lab of Dr. Yuri 

Lyubchenko. 

4.2.2 Biodistribution of PCXA/siRNA particles in healthy mice 

Mice were orally administered with PCXA/siRNA NPs. Cy5.5 labeled siRNA was 

used with every mouse receiving 4 µg siRNA. The mice were sacrificed 24 h post 

administration and the organs were harvested. Organs were visualized for fluorescence 

using IVIS.  

4.2.3 Therapeutic activity of PCXA 

Colitis was induced in mice using 5% DSS solution. Mice were divided into 

healthy controls, Untreated controls, PCXA i.p. and PCXA oral.  After DSS treatment for 

5 days, PCXA was administered either orally or i.p. three times a day for 3 days. The 

longitudinally opened colons were rolled into a Swiss roll from distal to proximal end. 

The rolls were fixed for 24 h in 4% paraformaldehyde, embedded in paraffin, sectioned 

and stained with hematoxylin and eosin (H&E). The stained sections were evaluated by a 
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pathologist without the knowledge of the identity of the samples using a light microscope. 

Histopathological scores were assigned based on criteria as previously described. The 

sections were graded based on ulceration, inflammation, crypt damage and edema. For 

each tissue, a numerical score was assigned in a blinded manner to prevent bias. Scores 

from each tissue section group were averaged to obtain a mean histopathological score. 

4.2.4 Preparation and physical characterization of CS-PCXA-siRNA NPs 

CS-PCXA-siRNA NPs were prepared by mixing CS, PCXA and siRNA solutions 

(40:4:1) in 200mM NaAc buffer, pH 5.5 and vortexing for 30 seconds. This was followed 

by incubation at room temperature for 20 minutes to stabilize the NPs before further use. 

siRNA complexation in the NPs was studied by agarose gel electrophoresis. The prepared 

NPs were loaded onto a 2% agarose gel containing 0.5 µg/ml ethidium bromide. Gels were 

run in an assembly at 75 V in 0.5x Tris/Borate/EDTA (TBE) buffer for 45 minutes and 

imaged under UV light using Kodak imager. The hydrodynamic radius of the NPs in 

200mM NaAc buffer was measured using DLS. The results were expressed as mean ± SD 

of three measurements. 

4.2.5 Resistance to simulated fluids 

To study the resistance of CS-PCXA-siRNA NPs against RNase I, 20 µl of NP 

formulation containing a total amount of 0.2 µg siRNA were incubated with 2.5 units of 

RNase I at 37 °C for 30 minutes. The mixture was further incubated at 90 °C for 30 minutes 

to inactivate the enzyme. Heparin (200 µg/ml) was added to the samples and the mixtures 
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were incubated at room temperature for 30 minutes to dissociate the siRNA. Agarose gel 

electrophoresis was used to evaluate the siRNA integrity. 

Resistance to SGF and SCF with bile salts was evaluated in a similar way. 20 µl of 

NP formulations were incubated with 20 µl of either SGF or SCF respectively. The 

mixtures were incubated at 37 °C for 30 minutes. Heparin was added and the mixtures 

were incubated at room temperature for 30 minutes to dissociate the siRNA. Agarose gel 

electrophoresis was used to evaluate the siRNA integrity. 

4.2.6 CXCR4 inhibition assay 

CXCR4 antagonism of the polycations and polyplexes was measured by CXCR4 

redistribution assay using a high-contact fluorescence microscopy analysis. U2OS cells 

stably expressing functional EGFP-CXCR4 fusion protein were seeded at a density of 8,000 

cells/well in 96-well black plates with optical bottom 24 h before the experiment. On the 

day of the assay, cells were washed twice with 100 µL assay buffer (DMEM supplemented 

with 2 mM L-glutamine, 1% FBS, 1% Pen-Strep, and 10 mM HEPES) and incubated with 

PCXA/siRNA, CS/siRNA, CS-PCXA/siRNA NPs or 300nM AMD3100 in triplicates in the 

assay buffer containing 0.25% DMSO at 37 °C for 30 min. Then, 10 nM SDF-1 was added 

to each well and the cells were incubated at 37 °C for 1 h. Cells were fixed with 4% 

paraformaldehyde at room temperature for 20 min, washed 4 times with PBS and stained 

in 1 µM Hoechst 33258 solution for 30 min before imaging (EVOS fl microscope). 

4.2.7 Cellular uptake of CS-PCXA-siRNA NPs 
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Cellular uptake of NPs was studied in RAW 264.7 mouse macrophage cell line. 

Cells were seeded in 24-well plate at a density of 20,000 cells per well 24 h prior to the 

study. 6-FAM labeled fluorescent siRNA (Sigma-Aldrich) was used. On the day of the 

study, the cells were incubated with PCXA/siRNA, CS/siRNA and CS-PCXA/siRNA NPs 

in serum free media at an siRNA concentration of 100nM. After 4 h incubation, the media 

was removed. The cells were washed using cold PBS and scraped off using a cell scraper. 

The cells were resuspended in PBS containing 10% FBS and analyzed for fluorescence 

using flow cytometry. The results were processed using flow cytometry data analysis 

software Flowjo and expressed as % 6-FAM positive cells ± SD. 

RAW 264.7 cells were seeded in a 23-mm glass-bottom dish (Nioptechs Inc.) at a 

density of 100,000 cells 24 h prior to study. 6-FAM labeled fluorescent siRNA was used. 

On the day of the study, the cells were incubated with PCXA/siRNA, CS/siRNA and CS-

PCXA/siRNA NPs in serum free media at an siRNA concentration of 100nM. After 4 h 

incubation, the media was removed. washed twice with PBS, fixed with 4% 

paraformaldehyde, washed with PBS for additional 4 times and stained in 1 µM Hoechst 

33258 solution. All the images were taken using Zeiss 710 confocal laser scanning 

microscope equipped with a 63x oil objective and 4 lasers (Blue Diode 405 nm, Argon 

458/488/514 nm, DPSS 561 nm and He-Ne 633 nm). 

4.2.8 Mechanism of cellular uptake of CS-PCXA-siRNA NPs 

Cells were seeded in 24-well plate at a density of 20,000 cells per well 24 h prior to 

the study. On the day of experiment cells were pre-incubated for 30 minutes with various 
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endocytotic inhibitors including chlorpromazine (10 µg/ml), genistein (200 µg/ml) and 

wortmannin (50 nM). 6-FAM labeled fluorescent siRNA (Sigma-Aldrich) was used. On 

the day of the study, the cells were incubated with CS-PCXA/siRNA NPs in serum free 

media at an siRNA concentration of 100nM. After 4 h incubation, the media was removed. 

The cells were washed using cold PBS and scraped off using a cell scraper. The cells were 

resuspended in PBS containing 10% FBS and analyzed for fluorescence using flow 

cytometry. The results were processed using flow cytometry data analysis software 

Flowjo and expressed as % 6-FAM positive cells ± SD. 

4.2.9 Selection of siRNA sequence 

TNFα siRNA smartpool containing four different siRNA sequences from 

Dharmacon was used. RAW 264.7 cells were seeded on 24-well plates at 5×104 cells/well 

and cultured for 24 hours. Cell transfection was performed using Polyplyus 

INTERFERIN® transfection reagent. For each well, 0.6 pmol of siRNA was diluted and 

mixed in 100 µl serum-free DMEM. 2 µl of the transfection reagent was added to the 

diluted siRNA and the mixture was homogenized by vortexing for 10 seconds. Similar 

procedure was carried out to prepare complexes with scrambled siRNA. All the siRNA 

sequences were used individually to form the transfection complexes. The complexes 

were incubated at room temperature for 10 minutes to stabilize them. During this period, 

500 µl of fresh DMEM containing 10 % FBS was added to the well having seeded cells. 100 

µl transfection complexes were added to the wells and the plate was swirled gently to 

allow homogenization. The final volume in the well was 600 µl with the siRNA 
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concentration 1 nM. The plate was incubated at 37 °C for 24 hours before LPS stimulation 

(100 ng/ml) for 6 h. TNFα mRNA levels were measured using RT-PCR and the fold 

difference was calculated by ∆∆Ct method.  

4.2.10 Biodistribution of CS-PCXA-siRNA NPs in mice 

Male C57Bl6 mice, 6 weeks old were obtained from Charles river laboratories. 20 

mice were kept as healthy mice. Colonic inflammation was induced using DSS or C. 

rodentium as described below (20 mice in each group). NPs were prepared and 200 µl 

formulation containing 30 µg Cy 5.5 labeled siRNA was administered to the mice. At pre-

determined timepoints, 5 mice from every group were sacrificed and the colon was 

harvested, cleaned of feces and snap frozen in liquid nitrogen. The colons were 

homogenized in RIPA buffer containing RNase inhibitor. The homogenate was 

centrifuged for 15 minutes and 17,000 x g. 100 µl supernatant was pipetted into a 96-well 

plate and fluorescence was measured using a 96-well plate reader comparing by standard 

curve generated by diluting a known amount of siRNA with colon homogenate obtained 

from control animals. 

4.2.11 Effect of DSS on stability of CS-PCXA-siRNA NPs 

CS-PCXA-siRNA NPs were prepared as previously described. The NPs were 

incubated with varying concentrations of DSS for 30 minutes. The samples were run using 

agarose gel electrophoresis and visualized under UV light to assess dissociation of siRNA 

from the particles. 

4.2.12 Efficacy of CS-PCXA-siRNA NPs in C. rodentium mouse model of colitis 
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Inflammation was induced in male C57BL/6 mice, 6 weeks old using bacteria as 

described before. Mice were divided into healthy controls, untreated controls (n=8), CS-

PCXA-siTNF and CS-PCXA-siSCR treated (n=5). Respective treatments were orally 

administered to mice every other day over the 14 days of the model. On day 14, the mice 

were sacrificed and the colons were harvested. On day 14, the mice were sacrificed and 

the colons were harvested. The colon was opened longitudinally, cleaned of fecal matter, 

and excised into two parts along the length, which were stored accordingly for 

determination of cytokine mRNA levels by RT-PCR and histological analysis. 

4.2.13 RT-PCR 

Colon samples from the therapeutic study were stored in RNAlaterTM (Thermo 

Fisher Scientific Inc.) at 4°C for 48 hours to allow sufficient time for tissue penetration 

followed by removal of excess solution. The tissues were then stored at -80°C until further 

processing. Stored frozen tissues were homogenized in TRIzolTM (Thermo Fisher Scientific 

Inc.) reagent using TissueLyser II (Qiagen) and mRNA was isolated from the 

homogenized tissues according to manufacturer’s protocol. The extracted mRNA was 

quantified using Nanodrop Onec UV-Vis spectrophotometer (Thermo Fisher Scientific 

Inc.). The cDNA was synthesized from the mRNA using High-Capacity cDNA Reverse 

Transcription Kit with RNase Inhibitor per the manufacturer’s protocol (Thermo Fisher 

Scientific Inc.). A volume corresponding to 1 µg of RNA as determined by UV 

spectrometer was used for cDNA synthesis. Synthesized cDNA was stored at -20°C until 

further use. RT-PCR was carried out using the synthesized cDNA from colon tissue 
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samples to determine the levels of mRNA of the target genes. Healthy and untreated 

colons were used as controls. cDNA was mixed with 0.2 µM primer pair for TNFα and 

iTaqTM Universal SYBR® Green Supermix (Biorad) into an optical reaction tube (Qiagen). 

The RT-PCR reaction was carried out in Rotor-Gene Q 2plex thermal cycler (Qiagen) using 

the following cycle program: 95°C for 3 minutes; 40 cycles 60°C for 30 seconds. Results 

obtained from the RT-PCR were analyzed by Ct method to determine the fold change in 

gene expression. 

4.2.14 Histological evaluation 

The longitudinally opened colons were rolled into a Swiss roll from distal to 

proximal end. The rolls were fixed for 24 h in 4% paraformaldehyde, embedded in 

paraffin, sectioned and stained with hematoxylin and eosin (H&E). The stained sections 

were evaluated by a pathologist without the knowledge of the identity of the samples 

using a light microscope. Histopathological scores were assigned based on criteria as 

previously described [165]. Scoring was performed based on severity of epithelial injury 

(graded 0-3, from absent to mild including superficial epithelial injury, moderate 

including focal erosions, and severe including multifocal erosions), the extent of 

inflammatory cell infiltrate (graded 0-3, from absent to transmural), and goblet cell 

depletion (0-1). For each tissue, a numerical score was assigned in a blinded manner to 

prevent bias. Scores from each tissue section group were averaged to obtain a mean 

histopathological score. 
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4.3 Results and Discussion 

The overall goal of this study was to develop NPs, made up of PCXA, CS and 

siRNA. The particles should exhibit stability in the GIT and have improved uptake in the 

colon when delivered orally.  

4.3.1 Therapeutic activity of PCXA in DSS mouse model of colitis 

Recently, the involvement of CXCR4 and its ligand CXCL12 in inflammation has 

attracted significant interest. CXCR4 and its ligand CXCL12 were thought to be 

exclusively involved in regulation of normal leukocyte recirculation and hematopoiesis. 

However in recent years their involvement in inflammation has been realized [177]. 

CXCR4 and CXCL12 are expressed by cells in the normal intestinal mucosa, contributing 

to cell migration. However, recently their presence has been extended to CXCR4+ lamina 

propria T cells and pathogenesis of IBD [178, 179]. CXCR4 is overexpressed in inflamed 

colons in humans as well as murine IBD models. Despite its important role in mediating 

homeostasis, CXCR4 blockade has been attributed to reduction in inflammation in the 

colon and intestinal tissue resurrection [180]. The ubiquitous expression of CXCR4 in the 

inflamed intestines makes the CXCR4/CXCL12 axis blockade a promising therapeutic 

strategy [144]. Unfortunately, chronic systemic administration of the only commercially 

available CXCR4 antagonist AMD3100 has been associated with significant cardiotoxicity 

thereby limiting its use as systemic IBD therapy [181, 182]. We have synthesized PCXA 

which is a polymer of AMD3100 and shown its benefits in as a dual activity polymer 
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which not only can inhibit CXCR4 but also complex nucleic acids. It was important to 

assess whether the synthesized PCXA shows any therapeutic promise in IBD. To test that, 

we conducted a preliminary study to investigate whether the anti-CXCR4 effect of PCXA 

reduced inflammation in the DSS mouse model of colitis. Higher dose of orally delivered 

PCXA was chosen to account for first pass metabolism. The results of the study are 

represented in figure 20. As expected, the mice which received no treatment showed 

significant inflammation and colon tissue damage elicited by the chemical injury due to 

DSS. There was significant crypt damage, edema and infiltration by immune cells. As 

opposed to the untreated controls, the groups which were administered PCXA showed 

an improvement in the disease severity. The reduction in inflammation was evidenced 

with higher number of intact crypts, presence of regular shaped goblet cells and 

significantly less immune cell infiltration into the colon tissue. The histopathological 

scores assigned to the H&E stained sections by a pathologist without the knowledge of 

identity of samples are shown in figure. All the groups which received DSS showed a 

significant increase in the inflammatory scores. However, the PCXA treated groups 

showed a reduction in the inflammatory scores compared to the untreated group. This 

indicated that the anti-CXCR4 activity of PCXA was reducing the colon inflammation. A 

significant reduction in the inflammatory score was observed with the group where PCXA 

was administered i.p. The group which received oral gavage of PCXA did not show a very 

appreciable reduction in the inflammation. We attribute this poor effect with less colon 

retention time for the orally administered PCXA. The PCXA administered i.p was 

delivered directly at the site of inflammation and thus, showed a better therapeutic effect. 
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In order to improve the GI retention time, we proposed the use of a mucoadhesive 

polysaccharide, CS in the PCXA-siRNA NP formulation. 
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Figure 20. Treatment of IBD with PCXA. Acute IBD was induced by 5% DSS in drinking 

water and the mice were treated with i.p. or oral administration of PCXA (n=5). (a) 

Representative H&E stained images of colon sections; (b) Histopathological scores. 

 

 

 

 

 

 

 

 

 

 

 

 

 



108 
 

4.3.2 Biodistribution of PCXA/ siRNA particles in mice 

After demonstrating the therapeutic promise of PCXA in a mouse model of IBD, 

we investigated whether PCXA/siRNA NPs could deliver siRNA to the colon when 

administered orally in healthy mice. Mice were gavaged with NPs and organs were 

visualized ex vivo post-sacrifice using IVIS for signal from fluorescently labeled siRNA 

(Fig. 21). Fluorescent signal for siRNA was observed in the colon 24 h post gavage. 

Systemic organs like liver and spleen did not show any fluorescent signal. These results 

gave us initial confidence that PCXA could deliver the siRNA to the colon via the oral 

route and there was less systemic absorption of siRNA. 
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Figure 21. Biodistribution of orally administered PCXA/siRNA NPs in mice. (1 – stomach, 

2 – small intestine, 3 – large intestine, 4 – liver, 5 – kidneys, 6 – spleen, 7 – lung). 
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4.3.3 Preparation of CS-PCXA-siRNA NPs 

PCXA by itself can complex and condense siRNA into NPs. However, from our 

previous studies, PCXA-siRNA NPs did not show significant delivery of siRNA in the 

colon, probably due to stability issues as well as less retention time in the GIT. 

Additionally, oral administration of PCXA did not show significant therapeutic effect in 

a mouse model of colitis. These findings effected the need to modify the PCXA-siRNA NP 

system to make it more compatible with oral administration. Various cationic carriers 

have been investigated for the delivery of siRNA. Of all these CS has attracted 

considerable research interest, especially in the oral delivery of siRNA. CS can bind to the 

negatively charged siRNA to form NPs which can adhere to the negatively charged cell 

membrane and be taken up via endocytosis. This helps to restrict the action of siRNA to 

the colon which is desirable in a disease like IBD. Secondly, CS is available in a variety of 

molecular weights and degrees of deacetylation. Based on our preliminary studies and 

literature, we chose to use CS with molecular weight of 50 KDa and 80% degree of 

deacetylation.  However, CS is insoluble at neutral and alkaline pH. Hence, CS was 

dissolved in 200 mM NaAc buffer, pH 4 at a concentration of 10 mg/ml and diluted further 

to required concentrations in 200 mM NaAc buffer, pH 5.5. 

CS, PCXA were used to complex siRNA resulting in the formation of NPs via 

electrostatic interactions. This method prevents the use of heating or sonication, which 

avoids interaction of siRNA with toxic organic solvents and maintains its biological 

activity.    



111 
 

 

4.3.4 Physical characterization of CS-PCXA-siRNA NPs 

Based on preliminary experiments, NPs were prepared from CS: PCXA: siRNA in 

the weight ratio of 40: 4: 1. Agarose gel electrophoresis was used to study the siRNA 

complexation of the NPs. As shown in the figure 22a, CS-PCXA could completely complex 

siRNA as evidenced by the absence of any free siRNA. This was expected at PCXA by 

itself could complex siRNA at the concentration used. CS by itself does not possess 

enough positive charge to completely complex siRNA. As a result, CS-siRNA showed 

presence of some amount of free siRNA as seen in the figure. 

The particles sizes and the zeta potentials of various NPs prepared were measured 

using DLS and the results are expressed in figure 22b. All the NPs had diameters ranging 

from 150 to 200 nm. The zeta potentials for all the particles were positive which was 

expected because of all the cationic components used (not shown). 
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Figure 22. Physicochemical characterization of NPs. (a) siRNA complexation in CS-PCXA-

siRNA NPs by agarose gel electrophoresis; (b) Particle sizes in nm 
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4.3.5 CXCR4 antagonistic activity 

CXCL12 is the downstream signaling ligand for CXCR4. After binding it induces 

downstream processes through multiple pathways line RAS and PI3 kinase. CXCR4 

antagonists not only blocks the CXCL12-induced downstream signaling but also inhibits 

endocytosis of the receptor [183]. To evaluate CXCR4 antagonism and to ensure that using 

CS as such high concentrations would not hamper the anti-CXCR4 activity of PCXA, 

CXCR4 redistribution assay was performed. The assay utilizes U2OS cells stably 

expressing human CXCR4 receptor tagged to the N-terminal of enhanced GFP. The assay 

monitors the cellular translocation of the GFP-CXCR4 receptors in response to stimulation 

with human CXCL12. The cells received appropriate treatments followed by stimulation 

with human CXCL12. As seen in figure 23, untreated cells exhibited the internalization of 

CXCR4 receptors into the endosomes, as suggested by the punctate distribution of the 

GFP fluorescence. On the contrary, treatment with AMD3100, a commercially available 

CXCR4 antagonist blocked the internalization of the receptor as evidenced by no punctate 

GFP fluorescence within the cells.  

Next, we explored whether the NPs themselves exhibit CXCR4 antagonism. As 

expected PCXA-siRNA NPs exhibited CXCR4 antagonism (Figure 23). On the other hand, 

CS-siRNA NPs did not show any inhibition of CXCR4. This does not come as a surprise 

as CS is not reported to have any anti-CXCR4 activity. The CXCR4 antagonism of CS-

PCXA-siRNA NPs was evaluated to make sure that CS which was at a concertation 10 
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times higher than PCXA, did not affect the anti-CXCR4 activity of PCXA in any way. It 

was observed that the CXCR4 inhibition for CS-PCXA-siRNA NPs was similar to the 

inhibition observed with PCXA-siRNA NPs. 
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Figure 23. CXCR4 inhibition of NPs. U2OS cells having GFP-tagged CXCR4 receptor were 

treated with NPs followed by stimulation with SDF-1. Cells were observed under 

fluorescence microscope. Untreated cells (0% CXCR4 antagonism), cells treated with 300 

nM AMD3100 (100% CXCR4 antagonism). 
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4.3.6 Resistance to biorelevant conditions 

The structural integrity of NPs is important for the effective protection of their 

payload. Orally delivered delivery systems face a lot of hurdles before they can reach the 

colon. Few important factors include the volume of the digestive fluids, gastric juices, as 

well as the alterations in the pH and the ionic strength which can result in damage to the 

particle structure. Thus, assessing the stability of NPs against all these conditions forms 

an important consideration for orally delivered therapeutics. Hence, we investigated the 

effect of conditions which orally delivered systems usually encounter. We assessed the 

effect of SGF and SCF on particle integrity using agarose gel electrophoresis after 

incubating the NPs with SCF or SGF for 30 minutes. As seen from figure 24, siRNA 

showed degradation in the SGF which is strongly acidic in nature. No effect on free siRNA 

was observed in SCF which is close to a neutral pH. However, looking at all the NP 

formulations, no change in the particle stability was observed as evidence in almost no 

difference in the agarose gel bands compared to NP in formulation in buffer. No presence 

of free siRNA was observed when the NPs were treated with either SCF or SGF indicating 

no release of the siRNA cargo because of the conditions. This observation proved that the 

particles maintained their structural conditions under the diverse pH as well as the salt 

conditions commonly encountered in the GIT during transit. 

 

 



117 
 

 

 

Figure 24. Stability of polyplexes to simulated gastric fluid (SGF) and simulated colonic 

fluid (SCF). Formulations were incubated for 30 minutes with 30 µl SGF or SCF at 37oC. 

Particle integrity was visualized using 2% agarose gel containing EtBr. 
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The GIT is not only a diverse environment in terms of pH and ionic gradients, but also 

in nucleases and other digestive enzymes. As a result, degradation of NP cargo is a 

common concern. Degradation of siRNA results in loss of activity and to ensure 

efficiency in vivo via oral delivery, siRNA must be protected from degradation either 

by nuclease or by the ionic and pH conditions in the GIT. Upon confirmation that the 

NPs maintained their structural integrity, we turned our attention to assessing the 

integrity of the complexed siRNA under RNase, SGF and SCF conditions (Fig. 25). 

Free siRNA and NPs were incubated with RNase, SGF and SCF, respectively for 1 

hour. Post-incubation, heparin was to dissociate siRNA from the NPs and agarose gel 

electrophoresis was used to assess the siRNA integrity. As seen from figure, free 

siRNA treated with RNase and SGF was completely degraded, whereas clear siRNA 

band was observed after incubation with SCF. This suggested that siRNA was mainly 

degraded in the stomach due to the gastric juices and in presence of RNase while 

remaining comparatively intact in the colon. siRNA loaded into PCXA-siRNA NPs 

showed faint bands compared to free siRNA indicating partial degradation. On the 

contrary, CS-siRNA and CS-PCXA-siRNA NPs showed bright bands which were 

comparable in intensity to free siRNA bands suggesting that they provided good 

protection for their payload which correlated with the results of structural stability of 

NPs. No degradation of complexed siRNA was observed in the SCF which was 

expected from the fact that even free siRNA did not show any degradation under 

those conditions. These results might suggest that PCXA was not bulky compared to 
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chitosan which could prevent nucleases and other potential degradants from 

approaching siRNA via steric hindrance. This study proves the utility of both our 

cationic components where PCXA acts as a strong complexing agent as opposed to 

chitosan which provides complexation, in addition to making the NP system more 

amenable to oral delivery of siRNA by providing protection. 
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Figure 25. siRNA protection ability of NPs. Formulations were incubated for 30 minutes 

with 20 µg/ml RNase, 30 µl SGF or SCF at 37oC. siRNA was displaced by heparin and its 

integrity was visualized using 2% agarose gel containing EtBr. 
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4.3.7 Cellular uptake of NPs 

Efficient cellular uptake is a pre-requisite for the therapeutic effect of siRNA. To 

determine the uptake of the NPs, RAW 264.7 cells were incubated with PCXA-siRNA, CS-

siRNA and CS-PCXA-siRNA NPs containing fluorescent siRNA in serum free conditions, 

respectively. RAW 264.7 cells are a mouse derived macrophage cell line and are relevant 

to this study as our target cells for siRNA delivery are the immune cells which infiltrate 

the colonic epithelium. After 4 hours, the percentage of cells expressing fluorescence was 

quantified by flow cytometry. Binding of particles to the cell surface and giving a 

fluorescence signal is always a concern with NP uptake with flow cytometry. This results 

in a false positive fluorescence signal. To overcome this limitation, the cells were 

resuspended in flow buffer containing trypan blue to quench the fluorescence from the 

particles binding to the cell surface as well as eliminating any dead cell population from 

the uptake analysis (Fig. 26a). As seen from figure, cells incubated with free siRNA did 

not show a significant fluorescent signal. Similarly, PCXA-siRNA NPs did not show a 

significant increase in the uptake as compared to free siRNA. The inclusion of CS in the 

formulation significantly increased the uptake of NPs. Almost 40 % of the cells treated 

with CS-siRNA NPs showed a fluorescent signal. However, CS-PCXA-siRNA NPs, 

showed the highest signal with approximately 60 % of the cells showing fluorescence.  

We visualized the uptake of CS-PCXA-siRNA NPs using confocal microscopy (Fig 

26b). Our observations on the confocal microscope images correlated with the findings 
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with flow cytometry. The cellular uptake is shown in figure. We also took Z-stack images 

at various depths within the cells and observed that majority of the particles were 

internalized by the cells and not stuck to the cell surface (Fig. 27). This proved that our 

formulation not only possessed the physicochemical properties to complex and protect 

siRNA in the GIT on oral delivery, but also could deliver siRNA inside the macrophages 

which are the target cells for most of the anti-inflammatory IBD therapies. 
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Figure 26. Cellular uptake of NPs. RAW 264.7 mouse macrophages were treated in serum-

free media with polyplexes containing siRNA labeled with 6-FAM. Uptake was quantified 

by (a) flow cytometry and visualized by (b) confocal microscopy. Flow cytometry results 

expressed as percent 6-FAM positive cells ± SD (n=6). 
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Figure 27. Z-stack images of cellular uptake of CS-PCXA-siRNA NPs. Image slices were 

taken at various depths in the cells to ensure internalization of particles. 
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4.3.8 Mechanism of cellular uptake of CS-PCXA-siRNA NPs 

Upon confirmation of enhanced uptake of CS-PCXA-siRNA NPs by macrophages, 

we turned our attention to the mechanism for the uptake of the NPs. An efficient uptake 

of NPs is essential for the intracellular delivery of cargo [184]. RAW 264.7 cells are 

reported to express CXCR4 receptor [185]. Hence, the first goal was to identify if the 

uptake we observed was because of the ability to target CXCR4 receptor. We incubated 

RAW 264.7 cells with various concentrations of AMD as well as PCXA (not shown) for 30 

minutes before quantifying for cellular uptake by flow cytometry. We observed no 

significant decrease in the uptake of the NPs after incubation with AMD (Fig. 28a). We 

also incubated cells with free PCXA, however, did not observe any reduction in the uptake 

of NPs. This proved that the uptake was not CXCR4 mediated and some other endocytosis 

mechanism was involved in the NP uptake by the cells. 

To explore other mechanisms, we incubated RAW 264.7 cells with inhibitors of 

various endocytotic processes (Fig. 28b). It was made sure that the inhibitors were not 

toxic to the cells in the used concentrations (not shown). After incubation for 30 minutes, 

the cells were treated with CS-PCXA-siRNA NPs having 6-FAM labeled siRNA. The 

uptake was quantified using flow cytometry. We observed no decrease in the NP uptake 

for cells treated with CPZ and WRT. CPZ and WRT inhibit caveolin and clathrin-mediated 

endocytosis, respectively. Hence both these processed did not seem to be involved in the 

uptake of the NPs. However, a significant decrease in the uptake was observed for GEN 

treated cells. GEN is a specific inhibitor of micropinocytosis. Almost 30 % reduction in the 
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uptake was observed when micropinocytosis was inhibited which points out that it might 

be involved to a considerable degree in the uptake of these particles by macrophages. 
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Figure 28. Mechanism of cellular uptake. Cells were treated for 30 minutes serum-free 

media with (a) AMD3100 and (b) various endocytic inhibitors and then with NPs 

containing 6-FAM-siRNA. Uptake was quantified by flow cytometry. Results expressed 

as percent 6-FAM positive cells (n=3). 
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4.3.9 Selection of siTNFα sequence 

We used the smartpool siRNA commercially available from Dharmacon to choose a 

sequence which could efficiently silence TNFα. Four individual sequences and a mixture 

of the four siRNAs was used for the screening. We carried out our experiments in RAW 

264.7 mouse macrophages which were treated with the respective siRNAs and then 

stimulated with LPS to induce TNFα 24 h later. Fold change in TNFα mRNA expression 

results determined by RT-PCR are shown in figure 29. As compared to the control cells, 

the cells treated with LPS showed almost 30-fold increase in TNFα expression. This 

proved that the LPS stimulation was working and upregulating the TNFα levels. The cells 

treated with the scrambled siRNA sequence showed TNFα mRNA levels similar to the 

untreated control cells indicating that the scrambled siRNA or the formulation 

components by itself did not affect the expression of TNFα in anyway. The cells treated 

with the siRNA mixture showed 20-fold increase in the expression as opposed to 30-fold 

upregulation seen in the untreated cells indicating that some sequence in the mixture was 

silencing TNFα. On testing individual sequences, we observed that sequences 1 and 2 did 

not show any downregulation of TNFα. However, sequences 3 and 4 showed significant 

TNFα silencing compared to untreated control. Sequence 3 was the best performing 

amongst the four siRNAs. Hence, we chose that sequence for our further experiments. 
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Figure 29. Selection of TNFα siRNA sequence. RAW 264.7 cells were treated with Polyplus 

transfection reagent-siRNA complexes. Different sequences of siRNA obtained from 

Dharmacon were used. 24h post treatment, cells were stimulated with LPS. TNFα mRNA 

levels were measured using RT-PCR. Results expressed as fold change in TNFα mRNA 

levels ± SD (n=6). 
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4.3.10 Biodistribution of CS-PCXA-siRNA NPs in mice 

We assessed the biodistribution of our NPs to make sure that the particles were 

stable in vivo and were delivering the siRNA to the colon (Fig. 30). We evaluated the 

siRNA biodistribution in healthy as well as both the mouse models described in this 

dissertation. When assessed for biodistribution, the healthy mice showed fluorescence 

signal from 0.5 h post administration with about a 50 % reduction in signal at 12 h (Fig. 

30a). In the C. rodentium model, the fluorescence signal was observed at 30 minutes (Fig. 

30b). However, it diminished significantly within 2 h. This may probably be due to the 

presence of diarrhea and the formulation might be lost due to the less transit time. We 

were surprised to find that in the DSS model, no signal was observed. This finding might 

indicate that DSS which is a strong polyanion might be interacting with the NPs causing 

the dissociation and degradation of siRNA in the GIT. Secondly, it has been reported that 

DSS is deposited onto the mucosal surfaces resulting in formation of barrier that might 

interfere with the interaction of the delivery system with the tissue. Although, 

fluorescence is not a very quantitative method to quantify siRNA in vivo, this study gave 

us confidence that the NPs were delivering siRNA to the colon in sick animals. As a result, 

we proceeded to test the efficacy of these particles in vivo in C. rodentium mouse model of 

colitis. 
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Figure 30. Biodistribution of siRNA in vivo. Mice were gavaged with CS-PCXA-siRNA 

NPs containing 30 µg Cy5.5 labeled siRNA and fluorescence signal in colon supernatant 

was measured at different timepoints in (a) Healthy mice; (b) Mice with C. rodentium 

induced colitis. Results are expressed as µg siRNA/ g of tissue ± SD (n=5). 
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4.3.11 Effect of DSS on stability of CS-PCXA-siRNA NPs 

Looking at the mouse biodistribution data, we assessed the effect of DSS on the 

stability of NPs in vitro (Fig. 31). The results for the stability studies are represented in 

figure. We observed that with increasing concentrations of DSS, the particles began to lose 

their integrity. We observed displacement of siRNA from DSS concentration as low as 50 

µg/ml. Complete dissociation of siRNA from the NPs was observed at a DSS concentration 

of 500 µg/ml. This correlated with our biodistribution studies in vivo where the particles 

did not show any signal in the colon of mice which were on DSS. The DSS concentrations 

at which the siRNA was being displaced were significantly lower than the concentrations 

that would be found in mice which were having DSS in their water. This confirmed our 

hypothesis that DSS because of its strong polyanionic nature was destabilizing the 

particles leading to premature release and degradation of siRNA in the GIT leading to no 

therapeutic effect. DSS is reported to exert its action by forming lipid vesicles with fatty 

acids in the GI lumen indicating its potential to interact electrostatically [143]. Also, DSS 

colon deposition studies have shown that DSS is deposited on the epithelium surface 

essentially forming a barrier between the delivery systems and the inflamed tissue [186]. 

All these factors make the use of DSS model of colitis an important consideration, 

especially when charge based delivery systems are involved.   
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Figure 31. Effect of DSS on stability of NPs. CS-PCXA-siRNA NPs were incubated for 30 

minutes with increasing concentrations of DSS. siRNA was visualized using agarose gel 

electrophoresis. 
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4.3.12 Efficacy of CS-PCXA- siTNFα NPs in C. rodentium mouse model of colitis 

Encouraged by the colonic delivery of siRNA, we tested the efficacy of our NPs in 

colitis. We assessed the therapeutic efficacy of CS-PCXA-siTNF particles in vivo. The mice 

affected with colitis were treated with oral gavage of CS-PCXA-siTNF or CS-PCXA-siSCR 

NPs every other day. Histological changes in the colon were observed post animal 

sacrifice on day 14. 

We also assessed the TNFα silencing in the colon using RT-PCR (Fig. 32). 

Upregulation of pro-inflammatory cytokines is a hallmark of IBD. TNFα plays a major 

role in inflammatory response and has been successfully explored as a major therapeutic 

target in IBD. TNFα plays a prominent role in IBD due to its contribution to the 

recruitment of immunocompetent cells that amplify the inflammatory response in T cells, 

macrophages, and mucosal cells [187, 188]. TNFα also has damaging effects on tight 

junctions, impairing barrier function, and enhancing the immune challenge by luminal 

antigens [189]. TNFα levels are increased in both serum and mucosa of IBD patients as 

well as in mouse models of IBD [190-192]. Consequently, blockade of TNFα can 

significantly improve or even prevent inflammation in both humans with IBD and animal 

IBD models. In addition to the successful use of systemic TNFα neutralization with 

antibodies [193], local TNFα gene silencing in the inflamed mucosa with antisense 

oligonucleotides and siRNA represents a promising alternative to attenuate IBD [194-199]. 

On day 14, we assessed the levels of TNFα mRNA in colon. Colons of untreated mice 

showed almost six-fold upregulation in TNFα as compared to healthy control mice. Not 
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much difference was observed between untreated group and the group which was treated 

with CS-PCXA-siSCR NPs. However, a significant difference was observed between the 

mRNA levels between the untreated and the CS-PCXA-siTNF treated group. The 

difference translated to almost a 40% TNFα silencing. However, the difference in mRNA 

levels between the CS-PCXA-siTNF and CS-PCXA-siSCR treated group was not found to 

be significant. 

We assessed the histopathology of colons from the NP treated mice (Fig. 33). We 

found a significant reduction in the crypt length in the colons of mice who were treated 

with CS-PCXA-siTNF NPs compared to untreated as well as the mice treated with the 

NPs having the siSCR control (Fig. 33b). Significant reduction was observed in the 

histopathological scores for the NP treated mice compared to the sick control (Fig. 33c). 

However, no significant difference was observed in the scores between mice treated with 

NP containing siTNF versus those containing siSCR.  

As a result, although we were able to deliver siRNA as well as saw reduction in 

the TNFα mRNA levels, the silencing was probably not significant enough to contribute 

to reduction in the inflammation. The observed reduction in the inflammatory scores 

seemed to be majorly due to CXCR4 inhibition by PCXA. 
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Figure 32. Effect of CS-PCXA-siTNF NPs on murine colonic TNFα mRNA levels. Fold 

change in colonic TNFα mRNA expression relative to healthy control. Data are 

represented as mean ± SD. 
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Figure 33. Therapeutic effect of CS-PCXA-siTNF NPs in C. rodentium model of colitis. (a) 

Representative H&E stained colon section images; (b) colon crypt length; (c) Histological 

scores.  
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4.4 Conclusion 

We have demonstrated that CS-PCXA-siRNA particles are amenable to oral 

administration and subsequent delivery to the colon. We showed this by proving that 

these particles protect the siRNA from degradation in the GIT. Our biosdistribution 

studies point out the ability of these particles to deliver siRNA into the colon. We have 

shown in vivo that CXCR4 inhibition by PCXA has a therapeutic advantage in treating 

inflammation in the colon as well as shown gene silencing. Future efforts are needed to 

improve the formulation and enhance the anti-inflammatory effect. 
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CHAPTER 5: SUMMARY 

IBD is a chronic inflammatory disorder which necessitates the patient to be on 

therapy almost life-long. Due to limitations like severe systemic side effects, current IBD 

therapy faces many hurdles. As the inflammation in IBD is local and confined to the GI 

tissue, therapies which can deliver drugs safely and locally are preferred. However, there 

is a lack of delivery systems that can achieve high local bioavailability of drugs. We tried 

to address this problem in this dissertation by developing delivery systems that can show 

preferential accumulation in the colon and improve therapeutic outcomes in IBD. 

PDCs have been reported a lot in the treatment of many diseases. The advantage 

of a PDC is that it can change the properties of the drug to make it more suited to a 

particular physiological environment. Most of the reported PDCs for delivery to the colon 

have been synthesized with a goal of specific dissociation of drug under colonic pH. 

Although this strategy works for protecting the drug in the gastric environment, once 

released in the colonic environment, the drug still shows high systemic absorption which 

is not desirable from in treating local inflammation as well as from a safety perspective 

for some drugs. We selected CQ which is a widely used drug and has been in the clinics 

for a very long time. It has limited application as an anti-inflammatory agent and is an 

example of drug which shows high systemic absorption and long term side effects when 

administered orally. We synthesized a non-cleavable PDC of CQ to form pCQ. We 

showed that pCQ not only accumulates specifically in the GIT showing similar anti-

inflammatory effects at HCQ, but also shows almost 1000-fold reduction in systemic 

absorption which is an indication of improved safety profile. We proved that by utilizing 
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this strategy we can make CQ amenable to multiple dosing which is difficult with the 

small molecule drug as it shows side effects like retinopathy after long term use. We 

proved all these findings in an animal model of colitis. 

Secondly, we also investigated combination delivery of siRNA and a polymeric 

inhibitor of CXCR4 using mucoadhesive NPs. We found that although PCXA could 

deliver siRNA to the colon, it did not exert significant anti-inflammatory effect when 

administered orally. In order to increase the retention of PCXA-siRNA NPs, we included 

mucoadhesive polysaccharide CS to prepare CS-PCXA-siRNA NPs. We have shown that 

these nanoparticles were stable in simulated GI fluids as well as could protect siRNA 

against these fluids and RNase. Lastly, we have shown that we could achieve therapeutic 

effect through CXCR4 inhibition by PCXA and gene silencing by TNFα in a mouse model 

of colitis. 

All these findings take a step in the direction of development of systems that can 

deliver therapeutics locally to the colon to treat inflammation. Our on-going efforts are 

focusing on improving both the above described formulations. We plan to formulate pCQ 

as particles and have performed preliminary testing which shows improved uptake into 

the colonic tissue for pCQ particles. Future efforts for CS-PCXA-siRNA particles will 

involve improving the inflamed tissue specificity as well as exploring novel targets. 
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