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my mentor who truthfully cares about my work, my life and my future. He is always willing to 

share his knowledge, listen to my idea, discuss my results and inspire me to resolve the problems. 

His passion, professional attitude and dedication to pharmaceutical sciences encourage me to be a 

great scientist. I appreciate his mentorship during the past 4 years. 

 I would also like to sincerely thank my graduate supervisory committees, Dr. Martin 

Conda-Sheridan, Dr. Rongshi Li and Dr. Maneesh Jain for their guidance, valuable suggestions, 

encouragement, as well as their help with my career development throughout my study in UNMC. 

 My special gratitude goes to my group members. I would like to thank Dr. Jing Li for her 

endless help with animal study, thank Dr. Zhenghong Peng for his help with synthesis, thank Dr. 

Yan Wang, Ying Xie, Dr. Yazhe Wang, Yu Hang for their help with biological assays. I also want 

to thank Yi Chen, Richard Lee Sleightholm, Lee Jaramillo, Shrey Kanvinde, Suthida Boonsith, 

Weimin Tang and Ao Yu for their help in and out of the lab. I want to thank Daniela Machová for 

her help.  I really enjoy the time we spent together. 

I would like to express my gratitude to Ed Ezell from UNMC NMR Facility for all his help 

with chemical structure determination and equipment operation. I also want to thank UNMC 

Advanced Microscopy Core Facility and Tissue Facility. I would like to thank Dr. Amar Natarajan 

and Dr. David Kelly for their help with high-throughput screening. I would also like to thank Dr. 

DJ Murry, Dr. Jered Garrison, and Dr. Wei Fan and Wenting Zhang in Dr. Garrison’s lab for their 

endless help with LC-MS. I also want to thank the Department of Pharmaceutical Sciences, 

Graduate Study for helping me finish my study. 



ii 

 

I would like to thank Graduate Assistantship/Fellowship, Program of Excellence of UNMC 

Graduate Study and Presidential Graduate Fellowship of University of Nebraska Foundation for 

their financial support and encouragement. I would also like to thank Berndt Travel Award for their 

generous support. 

Last but not least, I would like to thank all my family. I would like to thank my parents, 

Haifang Wang and Chuanyi Yu for their concern and support. I want to thank my husband, Bin 

Yang, who is a very good chemist, for his endless love and support. I am very lucky to have him 

listen to me all the time and talk about my study.   

I appreciate all the help from everybody that makes me a better person.  

   

  



iii 

 

Abstract 

Development of Chloroquine-containing HPMA Copolymers for Drug Delivery 

Fei Yu, Ph.D. 

University of Nebraska Medical Center, 2018 

Supervisor: David Oupický, Ph.D. 

Synthetic polymers have been extensively explored for improved delivery of anticancer 

agents. Polymers can be designed as either carriers of existing drugs or as polymeric drugs with 

intrinsic pharmacological activity. Advantages of such polymeric drugs include common positive 

features of polymer-drug conjugates, such as targeted delivery of drugs, altered pharmacokinetic 

and biodistribution, improved drug safety, but also favorable pharmacological activities due to 

multivalent receptor-ligand interactions. 

Chloroquine (CQ) and hydroxychloroquine (HCQ) are safe drugs that have been in clinical 

use for longer than six decades. In addition to their antimalarial and antirheumatoid use, CQ and 

HCQ are known to synergistically enhance the activity of multiple anticancer drugs via 

complementary mechanisms of action so that they are applied in numerous clinical trials. In this 

study, we proposed that using the polymeric drug concept in the development of CQ-containing 

polymers will allow us to improve the pharmacological activity.  

We first synthesized copolymers based on N-(2-hydroxypropyl)methacrylamide (HPMA) 

and methacryloyl-hydroxychloroquine (MA-CQ) as pCQ that exhibited lowered cytotoxicity, 

enhanced inhibition of cancer cell migration and invasion, improved antimetastatic activity in vivo, 

and prolonged animal survival when compared with parent HCQ. These results suggest the 

potential of pCQ used for combination anticancer therapy to achieve simultaneous antimetastasis 

effect. Therefore, we then developed reduction-responsive camptothecin (CPT)-pCQ copolymers 

as pCQCPT that were used for codelivery of CPT and pCQ. The in vivo study showed that pCQCPT 



iv 

 

exhibited significantly enhanced inhibitory activity on tumor growth and antimetastasis activity 

when compared to CPT. In addition, we investigated the role of the linkage between CQ and 

polymer backbone by using ester in pCQ and a stable amide and triazole ring by copolymerization 

of HPMA and methacrylamido methyl triazole chloroquine (MA-tCQ) as NpCQ. NpCQ showed 

similar inhibitory activity of pCQ on cancer cell migration, suggesting that pCQ functions as a 

pharmacologically active polymer drug that does not require the release of the small molecule 

HCQ. Overall, this study provides clear impetus for further development of pCQ as a new class of 

antimetastatic polymer agents with possibly unique mechanism of action that is not found in HCQ.        
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1 Introduction 

Polymers have played an irreplaceable role in pharmaceuticals for spatiotemporal delivery 

of therapeutics. Polymers contribute not only in conventional drug formulations, but also in drug 

delivery systems to meet the demand of emergence of potent and specific therapeutics [1]. Polymers 

are used as excipients to compress, coat, and encapsulate bioactive agents in traditional 

pharmaceutical industry. Drug delivery systems request specific targeting, precise intracellular 

transport, tunable pharmacokinetics and pharmacodynamics to maintain drug concentration at 

expected concentration for certain period of time [2, 3]. Since the extensive study of enhanced 

permeability and retention (EPR) effect, polymers have been widely applied in cancer therapy as 

materials of nanocarriers or polymeric conjugates [4]. Polymers tethered therapeutics can be either 

polymeric drugs with intrinsic pharmacological activities to provide their own therapeutic benefits 

or biodegradable polymer-drug conjugates to improve release kinetics [5, 6]. There are several 

successful polymeric conjugates/nanomedicines of anticancer therapeutics that have been approved 

by the FDA and a lot of products are under clinical trials, such as Doxil (liposomal doxorubicin 

(DOX)), Abraxane (albumin-bound paclitaxel (PTX)), Myocet (liposome-encapsulated DOX, 

approved in Europe and Canada), Eligard (poly(D,L-lactide-co-glycolide) encapsulated leuprolide), 

DaunoXome (liposome-encapsulated daunorubicin), DepoCyt (liposomal cytarabine), Oncaspar 

(Pegylated asparaginase), Marqibo (liposome-encapsulated vincristine), Onivyde (liposomal 

irinotecan), Genexol-PM (PTX-loaded polymeric micelle, approved in Europoe and Korea) and 

Ontak (engineered protein combining IL-2 and diphtheria toxin) [7]. Moreover, polymer-based 

combination anticancer therapy draws more and more attention for treatment of advanced cancer. 

Versatile combinational anticancer strategies, such as chemotherapeutic combination, nucleic acid-

based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns can achieve 

synergistic effect through multiple-target therapy [8]. This introduction will include synthetic 

polymers for anticancer drug delivery system with the focus on application of N-(2-Hydroxypropyl) 
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methacrylamide (HPMA) polymers to anticancer drug delivery, polymeric drugs and chloroquine 

(CQ) for cancer treatment.          

1.1 Synthetic polymers for anticancer drug delivery system 

Both natural and synthetic polymers have been extensively studied in drug delivery system. 

Natural polymers, especially carbohydrates, are widely used not only for nanoformulation, but also 

as excipients [9]. However, synthetic and semi-synthetic polymers are more flexible to be tuned in 

physical, chemical and biological properties to meet the requirements of specific application [10]. 

To release drugs, polymers are destructible in certain spatiotemporal circumstance. Biodegradable 

synthetic polymers request hydrolytical or proteolytical labile bonds in their backbone or 

crosslinker to release encapsulated or conjugated drugs after cleavage [1]. Synthetic biodegradable 

polymers include poly(α-hydroxy acids), poly(lactones), poly(orthoesters), poly(phospho esters), 

poly(carbonates), poly(anhydrides), poly(urethanes), poly(phosphazenes), poly(alkyl cyano 

acrylates), and poly(amino acids) [11]. Moreover, the requirement for delivery of therapeutic agents 

to specific intracellular organelles accelerates development of stimuli-responsive polymeric 

materials [12]. The following introduction will focus on advances in biodegradable and stimuli-

responsive synthetic polymers for anticancer drug delivery.   

1.1.1 Degradable synthetic polymers for anticancer drug delivery 

Degradable synthetic polymers assist anticancer drug delivery through diverse forms, such 

as polymer-agents conjugates, polymeric nanoparticles, polymeric micelles, polymerosomes, 

polyplexes, polymer-lipid hybrid, etc. As all the delivery system, polymeric delivery system for 

anticancer drugs aims to alter the pharmacokinetic (PK) and pharmacodynamic (PD) profiles, 

improve drug release in targeted tissue and subcellular organelles, and minimize systemic side 

effects [13]. Examples of synthetic biodegradable polymers for anticancer drug delivery will be 

provided and I will focus on most widely investigated poly(α-hydroxy acids) and poly(lactones). 
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1.1.1.1 Poly(α-hydroxy acids) 

Poly(α-hydroxy acids) are the most common biocompatible and biodegradable polymers 

in clinical medicine [14]. Poly(glycolic acid) (PGA), poly(lactic acid) (PLA) and poly(lactic-co-

glycolic acid) (PLGA) are most widely explored in this class. FDA has approved PLGA 

encapsulated leuprolide as Eligard, which further inspired the development of PLGA formulation 

[11]. Except for delivery of small molecule, PLGA nanoparticles can be used for protein delivery, 

such as trastuzumab, to improve the target efficiency, PK profile and tumor penetration [15]. For 

theranostic purpose, hollow CuS nanoparticles and PTX were encapsulated in PLGA microspheres 

and labeled with radioiodine-131, which resulted in higher antitumor efficacy compared to 

monotherapies and guidance of near-infrared laser irradiation [16].     

Nowadays, this class of polymers are often copolymerized or functionalized with 

hydrophilic moieties to achieve targeted delivery or specific purpose for challenging cancer 

treatment. Zhao et al. synthesized triblock poly(ethylene glycol)-poly(ʟ-lactide)-poly(3(S)-methyl-

morpholine-2,5-dione) (mPEG-PLLA-PMMD) that presented lower critical micelle concentration 

(CMC), positive-shifted zeta-potential, better drug loading efficiency and stability compared to the 

diblock mPEG-PLLA (Figure 1.1). The elimination half-life for Taxol, PTX-loaded mPEG-PLLA 

nanoparticle, and PTX-loaded mPEG-PLLA-PMMD nanoparticle were 1.194 h, 1.547 h, and 1.941 

h, respectively, due to the stabilization of triblock polymeric micelles by the hydrogen bonding of 

PMMD. This further revealed the potential of triblock copolymer mPEG-PLLA-PMMD as a 

promising carrier for targeted chemodrug delivery [17]. 
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Figure 1.1. Chemical structure of mPEG-PLLA-PMMD and PTX-loaded nanoparticle. 

(Reproduced from [17].)  

Poly(α-hydroxy acids) are also used in combination delivery of anticancer agents. Wang et 

al. applied methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) mPEG-PLA based 

nanoparticles for co-delivery of hydrophilic DOX and hydrophobic PTX, which showed synergistic 

effect on suppression of cancer cell growth compared to DOX or PTX alone [18]. Zhang et al. 

applied PLGA-PEG for co-delivery of cisplatin and wortmannin to synergistically enhance 

chemoradiotherapy and reverse resistance in platinum resistant ovarian cancer [19]. PEG-PLGA 

was also used to covalently conjugate Pt(IV) and co-delivery PTX by micelles (Figure 1.2), which 

further exhibited as gel for sustained release of Pt and PTX. The PTX-loaded Pt-gel showed a well-

controlled sustained release profile for 2.5 months and synergistic anticancer effect [20].  
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Figure 1.2. Illustration of PTX-loaded Pt-gel. (Reproduced from [20].) 

1.1.1.2 Poly(lactones) 

The most commonly studied poly(lactones) is poly-ε-caprolactone (PCL), which exhibits 

ester link hydrolysis but with a slower rate of degradation than poly(hydroxy acid) [11].  

Similar to PLA and PLGA, PCL is also modified with hydrophilic block to form self-

assembled nanoparticles or micelles, or novel delivery strategy. PCL-PEG was deposited on 

biocompatible substrates by plasma deposition with cis-platinum incorporated for local delivery of 

anticancer agent [21]. Garg et al. prepared poly(ethylene oxide)-b-poly(ε-caprolactone-grafted-

spermine) (PEO-b-(CL-g-SP)) micelles modified with cholesterol group in the core and with 

RGD4C peptide on the shell for delivery of MCL-1 siRNA to breast cancer [22]. Liu et al. 

synthesized chondroitin sulfate-g-poly(ε-caprolactone) (CP) copolymers via atom transfer radical 

addition (ATRA), which exhibited self-assemble to micelle for encapsulation of camptothecin 



6 

 

(CPT) (Figure 1.3). CPT-loaded micelles showed CD44 targeted delivery that was promising for 

lung cancer treatment [23].  

 

Figure 1.3. Synthesis of CP. (Reproduced from [23].) 

PCL copolymers are also widely used in combination delivery of multiple therapeutic 

agents. PEG-b-PCL micelles were loaded with PTX, cyclopamine and gossypol, which enhanced 

tumor growth inhibition by intraperitoneal (IP) combination delivery for ovarian cancer treatment 

[24]. Docetaxel, everolimus and LY294002 were loaded in PEG-PCL nanoparticles tailored for 

lymphatic uptake and metastatic melanoma [25]. Stefan’s group developed histone deacetylase 
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inhibitor conjugated PCL copolymers to prepared DOX loaded micelles for combination cancer 

therapy [26, 27].   

Xie et al. developed a series of biodegradable poly(lactone) copolymers possessing 

photostable and intrinsic photoluminescence without conjugation or encapsulation of fluorescent 

dyes or quantum dots, which were promising for in vivo imaging and theranostic study. This 

biodegradable photoluminescent polylactones (BPLALs) were copolymerized with lactide to form 

BPLP-PLLA. The resulting BPLP-PLLA remained intrinsic photoluminescence and was further 

fabricated to nanoparticle, which retained detectable fluorescence for 4 weeks and was able to be 

monitored for the degradation in mice [28].  

 

Figure 1.4. Schematic illustration of biodegradable photoluminescent polylactide (BPLPL-Cys-

PLLA) synthesis and its applications in scaffold imaging and nanoparticle tracking in vivo. 

(Reproduced from [28].) 

Yang et al. developed an implantable active-targeting micelle-in-nanofiber device by usage 

of folate-conjugated poly(ε-caprolactone)-poly(ethylene glycol) (FA-PCL-PEG) copolymers for 



8 

 

encapsulation of DOX, which resulted in micelles that was embedded in electrospun fibers. The 

folate receptor targeted micelles were sustained released from the fiber and accumulated around 

the tumor. The tumor suppression rate and survival of animals of the DOX-loaded nanofiber were 

higher than DOX alone or blank nanofibler [29]. 

 

Figure 1.5. Synthesis route of mPEG-PCL and FA-PCL-PEG. (Reproduced from [29].) 

Other than PCL, poly(p-dioxanone) was another type of poly(lactones) being investigated. 

Saltzman’s group synthesized poly(ω-pentadecalactone-co-p-dioxanone) using Candida antarctica 

lipase B as the catalyst instead of metal catalysts that were difficult to remove during the polymer 

purification processes. These copolyesters were used for both drug and gene delivery [30]. 

1.1.2 Stimuli-responsive synthetic polymers for anticancer drug delivery 

There have been increasing numbers of studies on development of stimuli-responsive 

polymers over the past decades. The strategies of development of most stimuli-responsive polymer-

based systems depend on abnormal tumor microenvironment or variable properties of cancer cells 
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[31, 32]. Stimuli-responsive polymers can be applied with various bioactive molecules by chemical 

conjugation or physical mixing. The stimuli can be physiological and externally applied, which 

hinge on the intention of design. Moreover, the polymer can be responsive to more than one 

stimulus. The environmental stimuli that the polymers are respond to include (1) physical change, 

such as temperature, pH, ionic strength, solvents, radiation, electric field, mechanical stress, 

pressure, sonic radiation and magnetic field, (2) biochemical change, such as redox, hypoxia, 

enzyme substrate and affinity ligand [12, 32]. The following introduction will cover some of the 

recent reports on stimuli-polymer based drug delivery systems with focus on redox-responsive 

systems. 

Development of redox-sensitive polymers for cancer therapy achieves remarkable progress 

for cytoplasmic drug and gene delivery based on the fact that redox potential in the cytoplasm of 

tumor cells is 2-3 orders magnitude higher than that in the blood circulation [32-34]. Disulfide 

linker is the most frequently used redox responsive moiety in polymers. Disulfide moieties in 

polymers exhibit fast breakage to intracellular reducing environment through thiol-disulfide 

exchange reaction, while rather stable property under extracellular conditions and during workup 

[33]. Disulfide bonds can exist in monomers, between polymers and therapeutic agents, and 

between blocks of polymers. In addition, boronates, sulfides, thioethers and thioketals are reactive 

oxygen species (ROS) responsive functional groups that are sensitive to superoxides, hydrogen 

peroxide, hydroxyl radicals, and peroxyl radicals [35, 36].  

Zhang’s group developed micelles fabricated by poly(amido amine)-g-PEG (PAA-g-PEG) 

copolymer containing disulfide linkages through the backbone (Figure 1.6), which was used for 

delivery of DOX. The in vitro study showed that the drug release of the micelles was less than 25% 

within 24 h in normal condition, compared to 100% release within 10 h in presence of 1,4-

dithiothreitol (DTT). The in vivo study showed that the DOX micelles showed stronger 

accumulation and better anticancer effect than DOX·HCL [37, 38].  
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Figure 1.6.   Synthetic scheme of reduction-degradable PAA-g-PEG amphiphilic graft copolymer. 

(Reproduced from [37].) 

Zhong’s group developed series of reduction-sensitive polymers and dual-stimuli 

biodegradable polymers for targeted delivery of anticancer therapeutics, including reduction-

responsive PEG-ss-PCL [39], PCL-g-ss-PEG [40], dextran-SS-PCL (Dex-SS-PCL) [41], PEG-b-

poly(dithiolane trimethylene carbonate) (PEG-b-pDTC) [34], cRGD functionalized cRGD-PEG-

P(CL-DTC) [42], cNGQGEQc-functionalized cNGQ-PEG-poly(trimethylene carbonate-DTC) 

(cNGQ-PEG-P(TMC-DTC)) [43], cRGD-PEG-P(TMC-g-SS-mertansine) [44], dual-responsive 

PEG-SS-poly(2-(diethyl amino)ethyl methacrylate) (PEG-SS-PDEA) [45],   PEG-SS-poly(2,4,6-

trimethoxybenzylidene-pentaerythritol carbonate) (PEG-SS-PTMBPEC, Figure 1.7) [46], and 

thiolated derivative of PEG–PAA–PDEA, PEG-PAA(SH)-PDEA [47]. These polymers were used 
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for fabrication of redox-responsive micelles for delivery of PTX, DOX and other therapeutics for 

cancer treatment and achieved targeted delivery.  

 

Figure 1.7. Synthesis of PEG-SS-PTMBPEC. (Reproduced from [46].) 

Photo-sensitive moieties and targeting molecules are also combined with redox-responsive 

strategy. Gao developed polymeric micelles based on diblock mPEG-poly(β-benzyl-ʟ-aspartate) 

(mPEG-PBLA) copolymers consisting of DOX by acid-labile hydrazine linker and zinc(II) 

phathalocyanine (ZnPc) by redox-responsive disulfide linker [48]. Conte et al. developed 

PEGylated nanoparticles using PLGA-SS-PEG polymers for enhancing lung cancer cell uptake 

[49]. Liu et al. synthesized diblock folate-PEG-PCL-SS-CPT for targeted delivery of CPT by 

micelle [50]. Gulfam et al. combined mPEG-PCL with click chemistry by clicking a redox-

responsive bis(alkyne) to mPEG-PCL-azidoPCL to form the crosslinked core for encapsulation of 

drugs [51]. Future developments of stimuli-responsive polymers will lead to intelligent materials 

that communicate with biological systems in a manageable manner [52].  

1.2 HPMA copolymers for anticancer drug delivery 

The HPMA polymer is a very unique synthetic polymer in biomedical applications. 

Developed by Dr. Kopeček and colleagues at the Czech Academy of Sciences in the mid-1970s, 

HPMA copolymer was the first synthetic polymer-based drug conjugate to enter clinical trial. 
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HPMA has been developed as both hydrogel and therapeutic conjugates due to its excellent water-

solubility, non-immunogenicity and non-toxicity [53]. With insight of EPR effect, HPMA 

copolymers are extensively studied for cancer drug delivery with the goal of altering drug PK and 

cellular trafficking, enhancing tumor uptake and in vivo anticancer activity [54]. The following 

introduction will bring up the classic HPMA-drug conjugates, as well as the advances of 

development of HPMA carriers. 

1.2.1 Traditional HPMA-drug conjugates in clinical trials 

There were 6 HPMA copolymer conjugates that have entered clinical trials as anticancer 

agents (Figure 1.8) [55]. Different from most of the polymers discussed above, backbone of HPMA 

polymer is non-degradable carbon-carbon bond. All of the conjugates exhibited molecular weight 

less than 40 kDa to guarantee eventual renal elimination, while fit in the size range required by 

EPR effect at the same time [55]. Both PK1 and PK2 were referred as P-DOX, and DOX was 

released by cathepsin B through enzymatic cleavage of GFLG. Addition of galactosamine to PK2 

was to create active targeting towards liver hepatocytes, however, the level of the conjugate 

accumulated in liver tumor was lower than that in healthy tissues. PK1 and PK2 did show lower 

systemic toxicity and improved efficacy as expected, but the clinical trials discontinued in 2008 

due to lack of improvement of anticancer activities [56].    

PNU166945 was HPMA copolymer conjugated PTX that was cleavable by hydrolysis. The 

clinical trial was discontinued due to the neurotoxicity that was commonly caused by free PTX. 

The free PTX was from ester bond breakage and impurities (unreacted PTX) from manufacturing 

process [57]. PCNU166148, also known as MAG-CPT, was developed to overcome the low 

solubility and high toxicity of free CPT. The linker of MAG-CPT was different from the GFLG 

linker used in the previous polymer conjugates. CPT was modified by glycine, which was reacted 

with glycylaminohexanoyl spacer on HPMA polymers. Unfortunately, MAG-CPT showed serious 
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bladder toxicity but did not show clinical antitumor activity, which may be resulted from the 

excretion of MAG-CPT from kidney, as well as the inappropriate release rate [58]. 

AP5280 and AP5346 were HPMA polymer conjugated with carboplatinum analogue and 

oxaliplatin analogue, respectively. AP5280 showed longer half-live time and minimized renal 

toxicity and myelosuppression in patients that were typically observed with cisplatin and 

carboplatin in clinical [59-61]. However, there is no further report on the clinical results of these 

two drugs. 

These unsuccessful examples revealed that the polymer conjugates have to process long 

circulation time and certain serum stability [55]. Thus, studies on the new generation of HPMA 

copolymer-drug conjugates were carried out.  
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Figure 1.8. First-generation HPMA polymer-anticancer drug conjugates used in clinical trials. 

(Reproduced from [55].) 

1.2.2 New generation of HPMA copolymer-drug conjugates 
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To break out the limitation on circulation time of the traditional HPMA copolymers, 

researchers have designed macromolecular therapeutics with diverse architectures and 

morphologies. Furthermore, responsive spacers/linkers to cancer cell or tumor microenvironment 

were applied to accomplishing the controlled release/activation of anticancer drugs. The spacers 

can be in the backbone or between polymers and drugs to achieve long circulation and targeted 

activation of drugs. 

1.2.2.1 pH-triggered degradable HPMA copolymer-drug conjugates 

The fact that the pH of tumor microenvironment and the intracellular pH in endosome and 

lysosome is lower than the pH of normal tissue and blood circulation is well established. In fact, 

the final destination of polymer conjugates are endosome and lysosome after internalization into 

tumor cells. Therefore, several linkers/spacers that are liable to hydrolysis in acidic environment 

are designed [54].  

Hydrazone is the most widely used pH-triggered linker used in the HPMA copolymer 

conjugates. Hydrazone bond is stable at physiological pH and the hydrolysis rate increases at low 

pH. Of course, the stability depends on the chemical structure tethering to hydrazone bond. 

Compared to the traditional HPMA copolymer conjugates using GFLF as spacer, conjugates with 

hydrazone showed higher DOX loading ratio and better water solubility. Release of DOX was no 

more than 8% at pH 7.4 for 48 h, compared to 50% release at pH 5 for 4 h. Moreover, the in vivo 

anticancer effect of the hydrazone conjugates was better than that of GFLG conjugates [62, 63]. 

Except for DOX, 2-pyrrolinodoxorubicin and pirarubicin (THP) were also conjugated to HPMA 

copolymer by hydrazone bond (Figure 1.9). THP showed similar release profile to DOX conjugates, 

targeted accumulation and enhanced uptake in tumor tissue [64, 65].    



16 

 

 

Figure 1.9. Chemical structure of HPMA copolymer-2-pyrrolinodoxorubicin (left) and HPMA 

copolymer-THP (right). (Reproduced from [64, 65].) 

 Other than DOX, docetaxel was also bound to HPMA copolymer by hydrazone bond [66]. 

Furthermore, two or more therapeutic agents were tethered to HPMA copolymers simultaneously 

for combination drug delivery, such as DOX with dexamethason (DEX) [67], and DOX with 

Mitomycin C (MitC) [68]. Another pH sensitive linker used in HPMA polymer conjugation is cis-

aconityl (Figure 1.10), which showed faster release of DOX than DOX conjugates with hydrazone 

[69, 70].  
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Figure 1.10. Structure of HPMA copolymer-N-cis-aconityl-ADR conjugate (P-aconityl-ADR). 

(Reproduced from [69].) 

1.2.2.2 Reductively degradable HPMA copolymer-drug conjugates 

To minimize the off-target release of anticancer drugs and systemic toxicity, reductive-

responsive linker disulfide bond is extensively applied. Kopeček’s group conjugated 

photosensitizer mesochlorin e6 (Mce6) to HPMA copolymer by disulfide bond (P-SS- Mce6) (Figure 

1.11). Degradation of the polymer was time dependent and an increase in the quantum yield of 

singlet oxygen generation upon exposure to DTT was occurred at the same time [71]. 

 

Figure 1.11. Synthesis of P-SS-Mce6. (Reproduced from [71].) 
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Kopeček’s group also developed HPMA copolymer-9-aminocamptothecin (9-AC) 

conjugates for colon-specific delivery using peptide-aromatic azo bonds as reductive-degradable 

linker (Figure 1.12). By oral administration, the conjugates were stable to gastrointestinal enzymes 

due to the steric hindrance so that the release and absorption were minimized in the small intestine. 

The azido bond was cleaved in presence of azoreductase in colon to release 9-AC. As a result, 

antitumor efficacy was enhanced due to the prolonged colon tumor exposure to higher localized 

drug concentration [72-75].  

 

Figure 1.12. Structure of HPMA copolymer-9-AC with azo linker. (Reproduced from [73, 74].) 

1.2.2.3 Other spacers used in HPMA copolymer-drug conjugates 

The cleavable linkers/spacers are normally located between polymer and drug to carry the 

therapeutic agents to the desired sites and release them. To elongate the circulation time of the 

polymers, linkers are also applied to increasing the size of the HPMA conjugates. The goal of 
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synthesis of macromolecular HPMA copolymer is on the basis of the correlation of the molecular 

weight and drug accumulation in tumor. By addition of glycylphenylalanylleucylglycine side chain 

and the N2, N5-bis(N-methacryloylglycylphenylalanylleucylglycyl)ornithine crossliner, Kopeček’s 

group prepared conjugates with molecular weight up to 1230 kDa (Figure 1.13a). The drug 

accumulation of 160 kDa conjugates was more than 2 times higher than that of the 22 kDa 

conjugates [76]. 

Thanks to the advances of Reversible Addition-Fragmentation chain Transfer (RAFT) 

polymerization, HPMA polymers can be synthesized in a well-defined way and with flexible end-

group modification. Kopeček’s group developed a series of functional chain transfer agents (CTA) 

for conjugation of the HPMA backbone by different chemistry. GLFG was included in the CTA as 

enzymatic cleavable Peptide2CTA. After polymerization by Peptide2CTA, free thiol group was 

exposed and conjugated to bismaleimide by thiol-ene chemistry (Figure 1.13b). The molecular 

weight of the conjugates was up to 260 kDa with Cathepsin B responsive cleavage [77]. Dialkyne 

CTA was synthesized for preparation of alkyne terminated HPMA copolymers, which were clicked 

with diazide terminated GFLG linker by azide-alkyne click chemistry (Figure 1.13c). The resulted 

multi-block polymer had the molecular weight of 290 kDa [78]. Moreover, CTA with one alkyne 

end and another azide-transferrable end was designed and applied to HPMA copolymerization. The 

resulted heterotelechelic HPMA copolymers underwent click chemistry and obtained 

macromolecules larger than 200 kDa (Figure 1.13d) [79]. These studies significantly enhanced the 

plasma half-life of the conjugates. Click chemistry is widely explored for macromolecule 

conjugation due to its high specificity.        
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Figure 1.13. Structure of macromolecular HPMA copolymer conjugates. (Reproduced from [76-

79].) 
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1.3 Polymeric drugs for cancer treatment 

Instead of inert drug carriers, polymeric drugs are polymers that exhibit pharmacological 

activities that do not need to release small therapeutic agents [5]. The most significant difference 

between polymeric drug and polymeric conjugate is that polymeric drug has intrinsic bioactivity, 

but polymer of conjugate is an inactive carrier for delivery of conjugated molecules. The 

development of synthetic polymeric drug started several decades ago, additionally, some polymeric 

carriers are found to be biologically active instead of being inert in recent studies [80]. One of the 

biggest advantages of the polymeric drug versus the small molecule is that polymeric drug fits the 

size range of protein so that the repeating units can bind to the targets by complex set of multivalent 

interactions, which results in enhanced activation or inhibition of related signaling pathways [81]. 

Traditional examples of polymeric drugs include sequestrants to bind and remove harmful 

substances from the organism [82, 83]. Recent examples include polymeric drugs aimed at treating 

cancer, modulating hemostasis, or using as antiviral agents [84-89]. Polymeric drugs with activities 

towards cancer will be discussed briefly. 

1.3.1 Polymeric drugs with anticancer activities 

The first anticancer polymeric drug in clinical trials was a copolymer of divinyl ether and 

maleic anhydride (DIVEMA) (Figure 1.14), which was known for its wide variety of biological 

activities including induction of cancer cell apoptosis and interferon release, and to activate 

macrophages to promote the killing of tumor cells. However, DIVEMA failed in the early clinical 

trials due to the severe systemic toxicity [90].  

Inspired by DIVEMA, polycations, polyanions, poly(amido amine)s and polysaccharides 

have been studied for their direct anticancer activity, immune-stimulation activity, and synergistic 

antineoplastic activity. Polyethylenimine (PEI) showed agglutination activity on kidney tumor cells 

in vitro and remarkable antitumor activity in vivo. PEI is the most widely used carrier for gene 
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delivery, however, its systemic toxicity is still noteworthy [91]. End carboxyl-trithiocarbonate 

functionalized poly(maleic anhydride) (ECT-PMA) (Figure 1.14) showed higher and selective 

cytotoxicity, apoptotic and necrotic effects on HeLa cells at relatively low concentrations [92]. Our 

group developed series of polymer of AMD3100 (PAMD), which is a multivalent CXCR4 

antagonist as well as a cationic gene carrier (Figure 1.14) [93]. 

 

Figure 1.14. Structure of DIVEMA, ECT-PMA and PAMD. (Reproduced from [90, 92, 93].) 

HPMA copolymers are also harnessed as polymeric drugs. Kopeček’s group developed 

polymeric drugs that contained peptide CCK that formed antiparallel coiled-coil heterodimers in 

presence of peptide CCE. By treatment of Fab’-CCE with human Burkitt’s NHL Raji B cells, CCE 

was present on the cell surface due to the attachment of Fab’s to CD20. After treatment of CCK-

polymer, CD20 antibody (Fab’s) was crosslinked via recognition of CCK and CCE followed by 

formation of heterodimeric coiled coils, which induced apoptosis of human Burkitt’s NHL Raji B 

cells by crosslinking antigens on the cell surface (Figure 1.15) [84]. The in vivo study showed that 

intravenous injection of Fab’-CCE followed by CCK-polymer improved survival in SCID mice 

bearing human B cell NHL xenografts [94]. CXCR4 is a chemokine receptor highly related to 

cancer metastasis. Kopeček’s group designed multivalent HPMA copolymer containing CXCR4 

inhibiting peptide BKT140 and showed remarkably higher inhibitory activity than free peptide [95].  
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Figure 1.15. Induction of apoptosis in human Burkitt’s NHL Raji B cells by crosslinking its CD20 

antigens mediated by antiparallel coiled-coil formation at the cell surface. (Reproduced from [84].) 

1.3.2 Pharmaceutical ingredients with newly discovered bioactivities  

When we talk about biomaterials, we always emphasize that the materials used as drug 

carriers are biocompatible polymers with non-immunogenicity, which means the materials have 

minimized interaction with tissues and no unwanted immune response [80]. However, with the 

comprehensive investigation of the materials, the activities of biomaterials that used to be 

unintentionally ignored have emerged. The natural polymers and chemically modified natural 

polymers, such as chitosan and its derivatives, hyaluronic acid and its derivatives, chondroitin 

sulfate are known for their activities towards cancer treatment including delay of tumor progression 

and interaction with chemokine receptors [80]. The most well-known synthetic polymeric 

biomaterial exhibiting anticancer activities is Pluronic block copolymers. Pluronics are triblock 

copolymer developed by Kabanov’s group consisting of hydrophilic ethylene oxide (EO) and 
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hydrophobic propylene oxide (PO) with the order of EO-PO-EO (Figure 1.16) [96]. Pluronic block 

copolymers were found to dramatically sensitize the multidrug-resistant cancer (MDR) tumors to 

various anticancer agents. The mechanism of sensitization includes inhibition of drug efflux 

transporters, diminution drug sequestration in acidic vesicles, inhibition of glutathione/glutathione 

S-transferase detoxification system, and enhancement of pro-apoptotic signaling and mitigate anti-

apoptotic cellular defense [96, 97].  

 

Figure 1.16. Structure of Pluronic.        

1.4 CQ for cancer treatment 

CQ and HCQ are 4-aminoquinoline drugs that have been in clinical use for more than 60 

years (Figure 1.17) [98]. CQ was discovered as an antimalarial drug, to which a hydroxy group was 

added generating HCQ with decreased toxicity [99]. Both CQ and HCQ are currently used for the 

treatment of inflammation and autoimmune disease including rheumatoid arthritis, discoid lupus 

erythematosus and amoebic hepatitis [100, 101].  

 

Figure 1.17. Chemical structures of CQ, HCQ and 4-aminoquinoline. 

CQ and HCQ have been extensively studied for cancer treatment in vitro and in vivo. 

Numbers of clinical trials have been carried out using CQ or HCQ, alone or in combination with 

other cancer treatment because CQ and HCQ are known to synergistically enhance activity of 

multiple treatments [102-105]. Although the mechanism of action is not fully understood, the 
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preclinical studies show evidence that CQ and HCQ have multiple mechanisms of action that may 

complement each other, which include inhibition of autophagy, inhibition of cancer cell signaling 

pathways, and modulation of tumor microenvironment [106]. The in vivo preclinical and clinical 

cases of CQ and HCQ for cancer treatments, and the mechanism studies will be discussed as follows. 

1.4.1 CQ/HCQ monotherapy 

A lot of in vivo studies showed promising anticancer activity by using CQ/HCQ alone in 

various cancer types. Back in 1960s, Hiraki’s group applied CQ to experimental animal tumors of 

Brown-Pearce cancer and Yoshida sarcoma. CQ inhibited growth of tumor and increased survival 

rate of rabbits bearing Brown-Pearce cancer by daily administration of chloroquine diphosphate of 

10 mg/kg [107]. Zheng et al found that CQ (25 or 50 mg/kg) reduced tumor volume and prolonged 

survival time in CT26-bearing mice via induction of apoptosis [108]. Kim et al. showed CQ 

suppressed growth of glioma in an orthotopic human glioblastoma mouse model by activation of 

p53 and induction of apoptosis [109]. CQ was reported to inhibit SK-MEL23 melanoma growth in 

NOD-SCID mice by the dose of 25 mg/kg [110]. Maes discovered that CQ normalized tumor vessel 

structure via autophagy-independent mechanism and reduced melanoma tumor growth [111]. 

Not only on primary tumor, CQ also showed effect on metastasis. Jiang et al applied CQ 

(25, 50 mg/kg) to 4T1 tumor implanted mice and found that CQ significantly inhibited growth of 

primary tumor and improved the survival. Moreover, the metastasis of tumor cells to lungs was 

inhibited [112]. 

The most extensively studied mechanism of CQ related to cancer is autophagy inhibition. 

Yang et al. discovered that autophagy was required for pancreatic cancer growth. Inhibition of 

autophagy by chloroquine resulted in robust tumor regression and prolonged survival in pancreatic 

cancer xenografts [113]. Song et al. observed that CQ impaired the clonogenic capacity of CD133+ 

liver cancer stem cell by inhibition of autophagy and reduced the tumor volume [114]. Jutten et al. 



29 

 

discovered there was correlation between expression of epidermal growth factor receptor (EGFR) 

and autophagy. CQ (60 mg/kg) reduced the glioblastoma tumor size [115]. It was also proven that 

CQ improved survival of animal bearing autophagy-dependent breast tumor MDA-MB-231 but not 

autophagy-independent breast tumor MCF-7 [116].  

Other than the above, a very recent paper revealed that CQ (75 mg/kg) worked as an 

anticancer immune modulator that ameliorate tumor immune microenvironment and enhanced 

antitumor T-cell immunity, which suggested a new anticancer mechanism of CQ [117]. 

However, there are different opinions towards the effects of CQ/HCQ. Also back in 1960s, 

CQ were found to have more infiltrating tendency in transplantable mouse tumors (a spontaneous 

mammary carcinoma, Bashford carcinoma 63 and Ehrlich ascites tumor) with the dose of 0.2 mg/2 

days [118]. Dutta et al. showed CQ (45 mg/kg) enhanced the tumor growth of R3230AC mammary 

adenocarcinoma in rats pre-treated with CQ for 7 days, followed by 18 days treatment of CQ after 

implantation of tumor [119]. It is not surprising that different mechanisms are involved in the 

activity of CQ. Loehberg et al. found that CQ (3.5 mg/kg) significantly reduced the incidence of 

N-methyl-N-nitrosourea-induced mammary tumors in the animal models, however, CQ had no 

effect in BALB/c p53-null mammary epithelium model, which indicated the connection of function 

between p53 and CQ [120]. The relationship between p53 and CQ was further proven by Maclean 

et al that CQ impaired spontaneous lymphoma development in Atm-deficient mice but not in p53-

deficient mice [121].   

Autophagy and lysosome function are highly related to tumor progression. However, it was 

reported that disruption of lysosome function by CQ resulted in promoted tumor growth and 

metastasis in Drosophila [122]. Sun et al. found that CQ inhibited hepatocarcinoma growth in the 

tumor-forming stage but promoted hepatocarcinogenesis in its early stage called dysplastic stage, 

which were resulted from the interaction of the activity of autophagy and reactive oxygen species 

(ROS) [123]. Rosenfeldt et al. reported that HCQ significantly promoted tumor formation in mice 
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containing oncogenic Kras but lacking p53, which emphasized the consideration of types of 

malignant disease when targeting autophagy by HCQ [124].   

There are several clinical trials using CQ/HCQ alone, including CQ on small cell lung 

cancer, HCQ on B-cell chronic lymphocytic leukemia, HCQ on prostate cancer, HCQ on pancreatic 

cancer, and HCQ on breast cancer. But no exciting results have been disclosed yet.     

1.4.2 Combination therapy with CQ/HCQ 

Cancer is a disease involving a combination of interconnected disease pathways, dynamic 

changes in the genome, and sophisticated tumor microenvironment [31, 125, 126]. Due to the 

cellular and molecular complexity of cancer and tumor microenvironment, a single drug therapy 

strategy is not sufficient for effective treatments [127]. Combination chemotherapy for cancer was 

developed to increase response and tolerability and overcome drug resistance [128, 129]. Current 

research focusing on combining anticancer drugs aims at maximizing efficacy while minimizing 

systemic toxicity through the delivery of lower drug doses [130-132]. Drug resistance and clinical 

relapse are normally the result of complicated cellular pathways with multiple redundancies or 

alternative routes activated in response to the activation or inhibition of a pathway, which promotes 

the emergence of resistant cells [133]. The rationale underlying combination chemotherapy is to 

co-administer drugs with different molecular mechanisms to shut down the targeted cellular 

pathways, thus increasing the activity of killing cancer cells while reducing the likelihood of drug 

resistance and minimizing overlapping toxicity [134]. Over 3,700 clinical trials aimed at 

developing drug combination therapies were approved by the FDA from 2008 to 2013 and the 

number is increasing [135]. 

Almost all cancer therapies have been applied in combination with CQ/HCQ, which consist 

of small molecules of chemotherapeutic agents, antibodies, hormones and radiotherapy. There are 
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thousands of papers about preclinical combination research and some studies consisting of in vivo 

work with the FDA approved therapies are summarized here (Table 1.1). 

Table 1.1. Preclinical in vivo research combining anticancer drugs with CQ/HCQ. 
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Cancer type CQ/HCQ Intervention Year of publication 

Glioma CQ Bevacizumab 2012 [136] 

CQ Vandetanib 2013 [137] 

CQ Temozolomide 2014 [138] 

CQ 

Temozolomide 

(+curcumin) 2015 [139] 

Neuroblastoma CQ Hyperthermia 1990 [140] 

Neuroendocrine 

neoplasms CQ Everolimus 2018 [141] 

Melanoma CQ Cyclophosphamide 1971 [142] 

CQ Radiotherapy 1971 [142] 

CQ Caloric restriction 2012 [143] 

HCQ Temsirolimus 2013 [144] 

Breast cancer CQ 5-FU 1978 [145] 

CQ 

5-FU 

(+6-propyl-thiouracil) 1979 [146] 

CQ Everolimus 2012 [147] 

CQ Panobinostat 2012 [148] 

CQ 

Nelfinavir 

Celecoxib 2012 [149] 
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CQ Rapamycin 2013 [150] 

HCQ Gefitinib 2013 [151] 

CQ Trastuzumab 2013 [152] 

CQ Radiotherapy 2013 [153] 

CQ 

Cyclophosphamide 

(+Adriamycin) 2014 [154] 

HCQ Tamoxifen and faslodex 2014 [155] 

CQ Carboplatin 2016 [156] 

Lymphoma CQ Cyclophosphamide 2007 [157] 

CQ Crizotinib 2015 [158] 

Oesophageal carcinoma CQ Cisplatin 2014 [159] 

Gastric carcinoma CQ Cisplatin 2015 [160] 

Hypopharyngeal 

carcinoma CQ Cisplatin 2015 [160] 

Hepatocarcinoma CQ Oxaliplatin 2011 [161] 

CQ Sorafenib 2011 [162] 

CQ 5-FU 2012 [163] 

CQ Bortezomib 2012 [164] 

CQ Sorafenib 2012 [165] 
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CQ 

Transcatheter arterial 

chemoembolization 2013 [166] 

CQ Doxorubicin 2018 [167] 

Colon cancer CQ Bortezomib 2009 [168] 

CQ Vorinostat 2010 [169] 

CQ 5-FU 2012 [170] 

CQ High dose interleukin-2 2012 [171] 

CQ 

Oxaliplatin 

(+Bevacizumab) 2013 [172] 

CQ 

Bevacizumab 

(+oxaliplatin) 2013 [172] 

CQ Temsirolimus 2014 [173] 

CQ Photodynamic therapy 2014 [174] 

Pancreatic cancer CQ Gemcitabine 2014 [175] 

Leukemia CQ Imatinib 2009 [176] 

CQ Daunorubicin 2010 [177] 

Ascitic tumor CQ Etoposide 1982 [178] 

CQ Sunitinib 2014 [179] 

Renal carcinoma CQ Temsirolimus 2012 [180] 

CQ Sunitinib 2018 [181] 
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Lung cancer HCQ Erlotinib 2013 [182] 

CQ 

Gefitinib 

(+akt inhibitor) 2014 [183] 

CQ Crizotinib 2014 [184] 

HCQ Crizotinib 2015 [185] 

CQ Gefitinib 2015 [186] 

CQ Afatinib 2017 [187] 

Ovarian cancer CQ Cisplatin 2017 [188] 

Myeloma CQ Carfilzomib 2016 [189] 

There are more than 16 clinical trials of CQ combination therapy and over 49 clinical trials 

of HCQ combination therapy for primary tumor, cancer metastasis and refractory or relapsed tumor, 

which consist of glioma, myeloma, pancreatic cancer, ductal carcinoma, lung cancer, breast cancer, 

neoplasm, prostate cancer, renal cell carcinoma, lymphoma, leukemia, colon cancer, melanoma, 

hepatocellular carcinoma, etc. The summary can be found in reference [106]. CQ/HCQ is very 

promising for cancer treatment, especially as combination treatment with other therapies. 

1.4.3 Mechanism of action 

It is increasingly accepted that the anticancer activity of CQ/HCQ includes multiple 

mechanisms of action that may complement each other. According to the preclinical studies, these 

mechanisms include autophagy inhibition, inhibition of signaling pathways (TLR9/NF-ĸB, 

CXCL12/CXCR4, p53), inhibition of cholesterol metabolism, immunomodulation, normalization 

of tumor vasculature and disruption of the cancer cell interplay [106, 190].  

1.4.3.1 Inhibition of autophagy 
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CQ and HCQ are weak bases with pKa 10.18, 8.38 for CQ, and 9.67, 8.27 for HCQ [191]. 

As lysosomotropic agents, they are often used to enhance the transfection of non-viral gene delivery 

vectors in vitro [192]. In red blood cells infected with malaria, CQ enters digestive vacuole (pH4.7) 

by simple diffusion and gets protonated. Then protonated CQ accumulates in food vacuole and 

inhibits polymerization of heme to hemozoin, resulting in toxic heme accumulation and oxidative 

damage in parasite, and finally leads to parasite death.  

Autophagy inhibition is the most well studied anticancer activity of CQ. Autophagy 

controls cellular homeostasis by lysosomal degradation of cytoplasmic components, including 

invading pathogens, cytotoxic protein and damaged organelles to ensure cell survival under 

stressful conditions such as hypoxia, starvation and organelle damage [193]. The progress of 

autophagy is shown in Figure 1.18 [103]. Initially, components needed to be recycled in cytoplasm 

are engulfed within a vesicle called autophagosome. Fusion of autophagosome and lysosome 

generates autolysosome, where the components are degraded by various lysosomal hydrolytic 

enzymes. Degradation generates energy and nutrients that are recycled for macromolecular 

synthesis. CQ inhibits autophagy by neutralization of the acidic lysosomal compartment and 

inhibition of lysosomal hydrolytic enzymes.  

Autophagy actually suppresses tumor in early carcinogenesis because it protects the cell 

by sequestering and eliminating defective cellular components such as abnormal mitochondria 

[194]. In advanced stages of cancer, pro-survival autophagy is induced in response to stressful 

conditions including starvation, hypoxia, even anticancer treatment. Therefore, inhibition of 

autophagy is a promising anticancer strategy. 

Inhibition of autophagy by CQ or shRNA-mediated knockdown of ATG5 or ATG7 

suppressed the proliferation of cancer lines [113, 195]. Autophagy is also known to be associated 

with therapeutic resistance so that CQ can resensitize tumor cells to chemotherapy and radiation. 
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Although CQ and HCQ were initially tested in cancer treatment owing to their ability to inhibit 

autophagy, it is known that their therapeutic effects also involve other mechanisms [196-198].  

 

Figure 1.18. Process of autophagy. (Reproduced from [103].) 

1.4.3.2 Inhibition of CXCL12/CXCR4 signaling pathway 

The ability of CQ and its derivatives like HCQ to inhibit CXCR4 has been also recognized 

and successfully utilized in the treatment of several types of solid tumors [175, 199]. For example, 

CQ and HCQ inhibited CXCL12-mediated pancreatic cancer cell invasion and proliferation in vitro 

and contributed to the inhibition of pancreatic cancer stem cells via reduced phosphorylation of the 

extracellular signal regulated kinase (pERK) and signal transducer and activator of transcription 3 

(STAT3). The CXCR4 inhibition by CQ translated into potent anti-metastatic effect in vivo when 

combined with a chemotherapeutic gemcitabine [175].  

1.4.3.3 Effects on tumor microenvironment 

Maes et al. found that CQ normalized tumor vessels, resulting in reduced tumor hypoxia, 

cancer cell invasion, intravasation, and spreading and improved the delivery and efficacy of 

chemotherapeutics. The fact that CQ did not sensitize tumor cells to cisplatin in vitro but only in 

vivo proved that the anticancer effect was autophagy-independent but due to the cancer vessel 

normalization that improved the delivery of cisplatin to the tumor core because of improved 

perfusion and decreased interstitial fluid pressure in tumor [111].  
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More recently, Chen et al. reported that CQ (75 mg/kg) worked as an anticancer immune 

modulator that ameliorate tumor immune microenvironment and enhanced antitumor T-cell 

immunity, which suggested a new anticancer mechanism of CQ [117]. 

It may be still too early to conclude the effect of CQ/HCQ in cancer treatment, however, 

the clinical trials encourage the explore of application of CQ/HCQ. By taking advantage of 

polymeric drugs, we designed several CQ-containing copolymers for cancer treatment. The 

synthesis, characterization, and biological activities will be introduced in the following chapters.  
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2 Synthesis and characterization of CQ-containing HPMA polymers 

The pharmacological activity of CQ has been illuminated by different mechanisms of 

action on various types of cancer, which makes CQ promising for cancer therapy. However, CQ is 

a poor inhibitor or modulator (mM). In this study, we proposed using the concept of polymeric 

drugs to synthesize CQ-containing polymers for improvement of activities.  

We designed several CQ-containing polymers from methacrylate and methacrylamide 

derivatives of HCQ. We firstly proposed methacryloyl-hydroxychloroquine (MA-CQ) with ester 

bond connecting CQ and polymer backbone as pCQ. But ester bond made pCQ susceptible to 

degradation in vivo, which meant that we were unable to unequivocally dissect the therapeutic 

contribution of the polymeric versus small molecule form HCQ. Therefore, we designed non-

cleavable CQ-containing polymers NpCQ from methacrylamido methyl triazole chloroquine (MA-

tCQ) utilizing click chemistry and RAFT polymerization. Moreover, to achieve codelivery of 

cytotoxic CPT and pCQ, we synthesized a pCQ polymer containing reduction-cleavable CPT for 

combination cancer therapy. In addition, a diblock pCQ-PLA copolymer was synthesized and used 

for physically encapsulation of PTX. 

The methods of preparation of small molecules and polymers will be demonstrated, and 

the results will be discussed in each subsection of this chapter. All the characterization including 

nuclear magnetic resonance (NMR), mass and gel permeation chromatography (GPC) spectrums 

will be interpreted as well. 

Hydroxychloroquine sulfate, methacrylic acid (MAA), methacryloyl chloride, chloroform-

d (CDCl3), and dimethyl sulfoxide-d6 (DMSO-d6) were purchased from ACROS Organics (Fair 

Lawn, NJ). Propargyl amine (PPA), diphenylphosphoryl azide (DPPA), copper (II) sulfate 

(CuSO4), sodium ascorbate (NaAs), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC·HCl), triethylamine, 2-cyano-2-propyl dodecyl trithiocarbonate (CPDT), 

azobisisobutyronitrile (AIBN), 4-dimethylaminopyridine (DMAP), sodium sulfate, sodium 
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carbonate, sodium chloride, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) were 

purchased from Sigma-Aldrich (St. Louis, MO). 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was 

purchased from Alfa Aesar (Ward Hill, MA). HPMA was purchased from Polysciences 

(Warrington, PA). Disodium dihydrogen ethylenediaminetetraacetate (EDTA), magnesium sulfate 

(MgSO4) 1,4-dioxane, chloroform, dichloromethane (DCM), methanol, ethyl acetate, 

tetrahydrofuran (THF) and hexane were obtained from Fisher (Fair Lawn, NJ) without further 

purification.  

NMR was performed by Bruker-Avance-III HD 500 MHz or 600 MHz and the data was 

processed by TopSpin 3.5 (Bruker). The mass spectrum was obtained by a Waters e2695 system 

equipped with a Waters 2489 absorption detector and a Waters Qtof Micro electrospray ionization 

mass spectrometer, or a Shimadzu liquid chromatograph mass spectrometer. For all the water 

soluble cationic polymers, the molecular weight of each sample was tested by GPC with 0.1 M 

sodium acetate buffer (pH 5.0) as running eluent, using Agilent 1260 Infinity LC system equipped 

with a miniDAWN TREOS multi-angle light scattering (MALS) detector and an Optilab T-rEX 

refractive index detector from Wyatt Technology (Santa Barbara, CA). The column TSKgel 

G3000PWXL-CP (Part No. 0021873, Tosoh Bioscience LLC, King of Prussia, PA) was used at a 

flow rate of 0.5 mL/min, 25 °C. Results were analyzed using Astra 6.1 software from Wyatt 

Technology. For all the hydrophobic polymers, the molecular weight was tested by gel permeation 

chromatography with 10 mM LiBr DMF as eluent, using the same Agilent 1260 Infinity LC system 

equipped with MALS detector and an Optilab T-rEX refractive index detector from Wyatt 

Technology (Santa Barbara, CA). The column PLgel 5 μm MIXED-C (Part No. 1110-6500, 

Polymer Laboratories, UK) was used at a flow rate of 0.5 mL/min, 45 °C. Results were analyzed 

using Astra 6.1.  

2.1 Synthesis of MA-CQ 
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Scheme 2.1. Synthesis of MA-CQ. 

DCM (20 mL) was added to aqueous solution (20 mL) of hydroxychloroquine sulfate (3.0 

g, 6.9 mmol). Ammonium hydroxide (30% aq., 2.5 mL, 21 mmol) was added dropwise to the 

mixture with vigorously stirring for 30 min. The mixture was then transferred to a separatory 

funnel. DCM layer was drained and another 10 mL of DCM was added to extract the HCQ. The 

DCM layers were combined and washed with brine (20 mL). After drying with anhydrous sodium 

sulfate, DCM was evaporated by rotavap and viscous colorless paste was obtained (1.38 g, 59%). 

1H NMR (500 MHz, Chloroform-d) δ 8.45 (d, J = 5.4 Hz, 1H), 7.90 (d, J = 2.1 Hz, 1H), 7.73 (d, J 

= 8.9 Hz, 1H), 7.28 (dd, J = 9.0, 2.2 Hz, 1H), 6.36 (d, J = 5.4 Hz, 1H), 5.17 (d, J = 7.7 Hz, 1H), 

3.65 – 3.68 (m, 1H), 3.61 (s, 1H), 3.55 (t, J = 5.6, 1.2 Hz, 2H), 2.47 – 2.59 (m, 6H), 1.68 – 1.71 (m, 

1H), 1.52 – 1.61 (m, 3H), 1.27 (d, J = 6.4 Hz, 3H), 0.98 (t, J = 7.1 Hz, 3H). 13C NMR δ 151.58, 

149.23, 148.98, 134.57, 128.09, 124.78, 121.59, 117.22, 98.91, 77.37, 77.11, 76.86, 58.49, 54.83, 

53.37, 52.96, 48.21, 47.42, 34.04, 23.84, 20.07, 11.51. 
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Figure 2.1. 1H NMR and 13C NMR of HCQ in CDCl3. 

The desalted HCQ (2.0 g, 5.95 mmol) and triethylamine (1.92 g, 2.4 mL, 19 mmol) were 

dissolved in anhydrous chloroform (100 mL) and cooled down in the ice bath. Methacryloyl 

chloride (1.99 g, 1.84 mL, 19 mmol) was dissolved in anhydrous chloroform (100 mL) and added 

to the HCQ dropwise with vigorously stirring at 0 °C. The mixture was stirred overnight while the 

temperature rising to room temperature. The reaction mixture was washed with saturated sodium 
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carbonate (2 × 50 mL) and brine (50 mL). The resulted organic layer was concentrated and purified 

by silica gel chromatography with DCM:methanol (10:1) as eluent to give the MA-CQ (0.96 g, 

40%) as a light yellow paste. The mass [M+H]+ of MA-CQ was found at 404.03 (calcd. 404.21).1H 

NMR (500 MHz, CDCl3) δ 8.48 (d, J = 5.5 Hz, 1H), 7.92 (d, J = 2.2 Hz, 1H), 7.69 (d, J = 9.0 Hz, 

1H), 7.32 (dd, J = 8.9, 2.2 Hz, 1H), 6.39 (d, J = 5.6 Hz, 1H), 6.06 (s, 1H), 5.50 (s, 1H), 5.16 (d, J 

= 7.4 Hz, 1H), 4.20 (td, J = 6.1, 2.1 Hz, 2H), 3.69 (m, 1H), 2.73 (t, J = 6.2 Hz, 2H), 2.56 – 2.48 (m, 

4H), 1.89 (s, 3H), 1.74 – 1.51 (m, 4H), 1.29 (d, J = 6.3 Hz, 3H), 0.99 (t, J = 7.1 Hz, 3H). 13C NMR 

δ 167.45, 151.32, 149.52, 148.66, 136.23, 135.02, 127.97, 125.61, 125.11, 121.56, 117.21, 99.06, 

77.37, 77.11, 76.86, 62.76, 53.71, 51.43, 48.44, 48.20, 34.15, 24.14, 20.19, 18.28, 11.68. 
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Figure 2.2. 1H NMR and 13C NMR of MA-CQ in CDCl3. 

 MA-CQ was prepared by direct acylation of hydroxyl of HCQ with methacryloyl chloride. 

MA-CQ was purified by silica column chromatography using DCM and methanol as eluents and 

characterized by 1H NMR, 13C NMR and mass spectrometry. Selective substitution of the hydroxyl 

group and the absence of substitution of the secondary alkyl/aryl amine in HCQ were confirmed 

by NMR analysis. Chemical shifts of the aromatic quinoline protons and protons adjacent to the 

secondary amine were identical in HCQ and MA-CQ. In contrast, the chemical shifts of the 

methylene protons adjacent to the hydroxyl group changed from 3.55 to 4.20 ppm as a result of the 

esterification of the hydroxyl group in HCQ. The chemical shifts at 6.06 and 5.50 of the methylene 

protons, as well as the integration ratio of the protons indicated the formation of methacrylate. 

Moreover, 13C NMR signals at 167.45 further supported the conclusion of methacrylate formation.  

2.2 Synthesis of pCQ by free radical polymerization 
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Scheme 2.2. Synthesis of pCQ by free radical polymerization. 

Polymers with different CQ content were obtained by changing the monomer ratio of MA-

CQ to HPMA in the reagents. Typically, MA-CQ (40 mg, 0.099 mmol), HPMA (57 mg, 0.4 mmol) 

and AIBN (4 mg, 0.025 mmol) were dissolved in methanol (1 mL) and purged by nitrogen for 30 

min. After stirred at 55 °C overnight, the polymer was precipitated out by adding the mixture to 

cold diethyl ether under vigorous stirring. The precipitates were collected and re-dissolved in 

methanol. The precipitation step was repeated twice and the polymers were dialyzed against water 

(MWCO: 8,000) for 2 days. The pCQ polymers were obtained by lyophilization. The pHPMA 

polymer with CQ content as 0% was synthesized as control. The molecular weight of the polymers 

was tested by GPC as water soluble cationic polymers. The content of CQ in polymer pCQ16.7 

was calculated by the integration ratio of protons on CQ (δ 8.38, 7.77, 6.53) and HPMA (δ 4.70, 

3.68, 2.91) using pHPMA as reference: 

mol% of CQ=[(1.66+1+0.99)/4]/[(1.66+1+0.99)/4+(4.59+5.26+8.50)/4]×100%=16.7%. 
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Figure 2.3. 1H NMR of pHPMA in DMSO-d6. 

 

Figure 2.4. 1H NMR of pCQ in DMSO-d6. 
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 The MA-CQ and HPMA were copolymerized by free radical polymerization using AIBN 

as the initiator. By changing the molar ratio of MA-CQ and HPMA in the feed, we were able to 

obtain pCQ copolymers with different MA-CQ content from 0-20% (mol%). Considering the 

pharmacological activity and solubility, we picked pCQ10.0 and pCQ16.7 for further study. 

Negative control pHPMA with no expected pharmacologic activity was synthesized and used for 

further study. The properties were summarized in Table 2.1. 

Table 2.1. Characterization of pCQ polymers. 

 

CQ content (mol%) 

Mn (kDa) Mw/Mn Pn 

In feed In copolymer 

pHPMA 0 0 33.9 1.6 235 

pCQ10.0 9.1 10.0 18.4 1.5 109 

pCQ16.7 20.0 16.7 18.9 1.8 101 

2.3 Synthesis of RpCQ by RAFT polymerization 

 

Scheme 2.3. Synthesis of RpCQ by RAFT polymerization. 

 To obtain better controlled CQ-containing polymers, we applied RAFT polymerization to 

synthesis by using CPDT as chain transfer agent (CTA). The procedure of preparing RpCQ was 

very similar to pCQ. Typically, MA-CQ (80.8 mg, 0.2 mmol), HPMA (143.0 mg, 1.0 mmol), CPDT 

(4.1 mg, 4.2 μL, 0.012 mmol) and AIBN (0.5 mg, 0.003 mmol) were dissolved in the 1:1 mixture 

of 1,4-dioxane and DMSO (100 mg/ mL) and purged by argon for 30 min. After stirred in a flame 
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sealed ampule at 70 °C for 16 h, the reaction was terminated in liquid nitrogen and the polymer 

was precipitated out by adding to cold diethyl ether under vigorous stirring. The precipitates were 

collected and re-dissolved in dimethylformamide (DMF). The precipitation step was repeated twice 

and the polymers were dialyzed against water (MWCO: 3,500) for 2 days. The RpCQ polymers 

were obtained by lyophilization. The RpHPMA polymer with CQ content as 0% was synthesized 

using the same CTA as control. The molecular weight of the polymers was tested by GPC as water 

soluble cationic polymers. The content of CQ in polymer pCQ-16.7 was calculated by the 

integration ratio of protons on CQ (δ 8.38, 7.77, 6.54) and HPMA (δ 4.71, 3.68, 2.91) using 

RpHPMA as reference: 

mol% of CQ=[(1.74+0.95+1)/4]/[( 1.74+0.95+1)/4+(4.77+5.99+9.60)/4]×100%=15.3%.  

 

Figure 2.5. 1H NMR of RpHPMA in DMSO-d6. 
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Figure 2.6. 1H NMR of RpCQ in DMSO-d6. 

 RAFT polymerization resulted in well-defined RpHPMA and RpCQ polymers with low 

polydispersity (PDI) compared to pCQ. As shown in Table 2.2, RpHPMA and RpCQ possessed 

lower PDI and better controlled CQ content than pCQ polymers, indicating the successful 

application of RAFT polymerization.  

 Synthesis and characterization of pCQ copolymers with ester bond between CQ and 

backbone of the polymers were discussed in section 2.1-2.3. Our initial studies showed that pCQ 

copolymers demonstrated unexpectedly enhanced inhibitory activity of cancer cell migration and 

experimental lung metastasis as polymeric drugs when compared to HCQ. However, the ester bond 

between CQ and backbone made pCQ susceptible to degradation in vivo, which meant that we were 

unable to unequivocally dissect the therapeutic contribution of the polymeric versus small molecule 

form HCQ. The goal of the following study (section 2.4-2.9) was to synthesize non-degradable 

CQ-containing polymer (NpCQ) and to compare its pharmacologic activity with the degradable 

pCQ. 

Table 2.2. Characterization of RpCQ polymers. 
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CQ content (mol%) 

Mn (kDa) Mw/Mn Pn 

In feed In copolymer 

RpHPMA 0 0 10.7 1.1 75 

RpCQ 16.7 15.3 17.7 1.1 97 

2.4 Synthesis of N-propargyl methacrylamide (PPMA) 

 

Scheme 2.4. Synthesis of PPMA. 

MAA (20 mmol, 1721 mg, 1687 µL) and EDC·HCl (30 mmol, 5751 mg) were dissolved 

in anhydrous chloroform (60 mL) and stirred at room temperature for 30 min. The mixture was 

cooled down in ice bath followed by addition of propargyl amine (PPA, 13.33 mmol, 734 mg, 854 

µL) dissolved in chloroform (15 mL). After stirring overnight, the resulting product was 

concentrated and purified by column chromatography with DCM as eluent. The final product was 

white solid with the yield of 55%. 1H NMR (500 MHz, CDCl3) δ 1.95 (s, 3H), 2.22 (t, J = 2.52 Hz, 

1H), 4.08 (dd, J = 2.52, 5.25 Hz, 2H), 5.35 (s, 1H), 5.71 (s, 1H), 6.20 (s, 1H). 13C NMR δ 18.63, 

29.48, 71.69, 79.64, 120.32, 139.45, 168.09. 
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Figure 2.7. 1H NMR and 13C NMR of PPMA in CDCl3. 

 We first attempted PPMA synthesis using methacryloyl chloride and PPA with 

triethylamine as a base but 90% of the product was an undesired Michael addition byproduct. 

Instead, coupling of MAA and PPA with EDC·HCl was performed to obtain PPMA with the yield 

of 55%. The signals at 5.71 and 5.35 confirmed the existence of methylene protons. The amide 

proton was shown at 6.20 as a broad peak. PPMA exhibited two functional groups, methacrylamide 
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for polymerization and alkyne for click chemistry, which benefited the non-cleavable modification 

of polymers. 

2.5 Synthesis of CQ-N3 

 

Scheme 2.5. Synthesis of CQ-N3. 

HCQ (360 mg, 1.07 mmol) and DPPA (338.5 mg, 1.23 mmol, 265 µL) were dissolved in 

dimethylformamide under argon (Ar). Then DBU (190 mg, 1.23 mmol, 186 µL) was added and 

stirred for 48 h. The resulting product was diluted by DCM (50 mL) and washed by deionized water 

(50 mL) twice and brine (50 mL). The organic phase was dried through sodium sulfate and 

evaporated by rotavap. The final product was purified by column chromatography with 

DCM:methanol (10:1) as eluent. CQ-N3 was light yellow solid with yield of 70%. The mass 

[M+H]+ of CQ-N3 was found to be 361.28 (calcd 361.19). 1H NMR (500 MHz, CDCl3) δ 8.45 (d, 

J = 5.5 Hz, 1H), 7.91 (d, J = 2.2 Hz, 1H), 7.79 (d, J = 9.0 Hz, 1H), 7.28 (dd, J = 8.9, 2.2 Hz, 1H), 

6.40 (d, J = 5.6 Hz, 1H), 5.42 (d, J = 7.6 Hz, 1H), 3.70 (hept, J = 6.5 Hz, 1H), 3.22 (td, J = 6.1, 1.7 

Hz, 2H), 2.60 (t, J = 5.9 Hz, 2H), 2.51 (q, J = 7.1 Hz, 2H), 2.44 (t, J = 6.9 Hz, 2H), 1.79 – 1.69 (m, 

1H), 1.69 – 1.49 (m, 3H), 1.30 (d, J = 6.4 Hz, 3H), 0.98 (t, J = 7.1 Hz, 3H). 13C NMR δ 151.31, 

149.50, 148.71, 135.03, 128.08, 125.18, 121.60, 117.23, 99.13, 53.39, 52.76, 49.38, 48.53, 47.61, 

34.21, 24.12, 20.28, 11.57. 
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Figure 2.8. 1H NMR, 13C NMR of CQ-N3, COSY Expansion 1, COSY Expansion 2, COSY 

Expansion 3, COSY Expansion 4, COSY Expansion 5, HSQC, HSQC Expansion 1, HSQC 

Expansion 2, HSQC Expansion 3, 13C HMBC Expansion 1, 13C HMBC Expansion 2, 13C HMBC 

Expansion 3, 13C HMBC Expansion 4, 15N HMBC 1, 15N HMBC 2, 15N HMBC Expansion 1, 

15N HMBC Expansion2, and 15N HMBC Expansion 3 in CDCl3. 
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Instead of the traditional alcohol-tosylate-azide route that gave very low yield of the 

product (<10%), DPPA was used for conversion of HCQ to CQ-N3 in a single step and yield of 

70%. The conversion of hydroxyl group to azido group was confirmed by 1H NMR from the 

chemical shifts of the methylene protons adjacent to the hydroxyl group from 3.55 to 3.22. Still, 

the proton and the 13C signals of the aromatic ring kept identical, which meant the aromatic structure 

was preserved during reaction.  

To further confirm the substitution of the azido group, we performed 2D NMR to support 

the chemical structure of CQ-N3. All the chemical shifts and multiplicity of coupled peaks allowed 

us to start our H spectrum assignments using the two-dimensional homonuclear correlation 

spectroscopy (COSY) spectrum. COSY Expansion 1 of the aromatic region showed the fused ring 

system with the more downfield H6 due to proximity to N1 and correlation to H5. Meta coupling 

between H7 and H9, and H9 COSY correlations to H10 further supported the assignment of the 

aromatic ring. In the continuing upfield, we can see amine H12 coupling to H13, with further COSY 

correlations of H13 to H15 and H14 in COSY Expansion 2. H15 and H16 generated a crowded but 

discernable COSY cluster, which helped the assignment of H17 in COSY Expansion 3. 

Characteristic triplet and quartet coupling patterns allowed us to pick out H20 and H19. That leaves 

the two downfield multiplets as H22 and H21. Assignment of these two protons was determined 

by data from the 13C heteronuclear multiple bond correlation (HMBC) experiment as follows.  

The 13C Heteronuclear single quantum correlation (13C HSQC) 2D spectrum allowed us 

to use the proton assignments to label the carbon atom they are covalently bonded to. In HSQC 

spectrum, there was no carbon correlation for the H12 at 5.43 ppm, which further confirmed it was 

the amine proton. Carbon peaks were assigned in HSQC Expansion 1 according to the correlation 

to proton peaks. From HSQC Expansion 2, we can see that aliphatic carbons covalently bonded to 

N were chemically shifted downfield. In HSQC Expansion 3, it was notable that steric constraints 

resulted in magnetically non-equivalent H15.  
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The 13C HMBC was optimized at 8 Hz coupling for 3-bond coherence transfer. HMBC 

Expansion 1 showed 3-bond H correlations to aromatic quaternary C4 from H6, H10 and most 

important identifier, H13. External projection in carbon dimension was Attached Proton Test (APT) 

experiment, phased with methylene/quaternary peaks as positive and methyl/methane as negative. 

HMBC Expansion 2 showed quaternary C2 3-bond correlations to H6 and H10, with a much 

weaker vicinal 2-bond correlation to H7. Similarly, HMBC Expansion 3 showed strong 3-bond 

correlation of C8 to H10, as well as weaker 2-bond vicinal coupling of C8 to H7 and H9. From 

HMBC Expansion 4, we can see the well connected bridgehead Carbon, C3, with 3-bond 

correlations to H5, H7, H9 and H12, as well as weaker vicinal 2-bond to H10 and unexpected 4-

bond to H6 resulted from enhanced correlation intensity of duplicity of coupling pathways. 

15N HMBC was optimized for expected strength of long range J-coupling. However, the 

geometry influenced by the lone pair of electrons means that 3-bond is not always the strongest 

correlation observed. As shown in 15N HMBC 1, the coupling of vicinal N1/H6 was stronger than 

that of 3-bond N1/H7 and N1/H5. The 15N HMBC 2 showed a strong 3-bond correlation from N24 

to H22, which confirmed its assignment. The 15N HMBC Expansion 1 clearly showed the very 

well connected H12 as note of the observed doublet due to direct ~90 Hz J-coupling to H, and weak 

4-bond correlation back to H6. The 15N HMBC was an “inverse” detected experiment in that we 

detected the 15N nucleus through its magnetic coupling to the more sensitive nearby H isotope. 

Strong 3-bond response from N23 to H21 and a weaker vicinal 2-bond to H22 were observed in 

15N HMBC Expansion 2. N18 with its expected 3-bond correlations to H22, H16 and H20, and 

weaker 2-bond to H19 were also detected in 15N HMBC Expansion 3. N15 has a large chemical 

shift range, with two prevalent reference points, CH3-NO2 and liquid NH3. We expanded 15N 

HMBC observation sweep width, doubled indirect dimension digitization, increased number of 

acquisitions, optimized long range delay to 2.75 HZ and started looking for a long range correlation 

to N25. A very weak 4-bond correlation was detected to the closest H22. Strength of detection 
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depended on how close the J-optimized delay was to the actual strength of coupling and residual 

magnetization remaining after the requisite delay time. Small coupling requireed a longer delay 

between polarization transfer pulses with attendant decrease in signal remaining to be detected. We 

were only able to observe the chemical shift of our supposed N25 as shown in 15N HMBC 

Expansion 3. 

2.6 Synthesis of methacrylamido methyl triazole chloroquine (MA-tCQ) 

 

Scheme 2.6. Synthesis of MA-tCQ by click chemistry. 

CQ-N3 (343 mg, 0.95 mmol) and PPMA (185 mg, 1.5 mmol) were dissolved in DMF (2.5 

mL). CuSO4 (8 mg, 0.05 mmol) was dissolved in deionized water (0.4 mL) and added into the DMF 

solution. After the reaction mixture was degassed for 30 min, NaAs (40 mg, 0.2 mmol) dissolved 

in deionized water (0.4 mL) was added to the above reaction mixture under N2. The reaction was 

taken at 40 °C for 2 h and at room temperature overnight with stirring. The resulting mixture was 

diluted by DCM (50 mL) and washed by EDTA aqueous solution (50 mM, 50 mL) twice, water 

(50 mL) and brine (50 mL). The organic phase was dried through sodium sulfate and evaporated 

by rotavap. The final product was purified by column chromatography with DCM:methanol (10:1) 

as eluent. The final yield was 65%. The mass [M+H]+ of MA-tCQ was found at 484.12 (calcd 

484.26). 1H NMR (500 MHz, CDCl3) δ 8.38 (d, J = 5.6 Hz, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.85 (d, 

J = 2.2 Hz, 1H), 7.65 (s, 1H), 7.41 – 7.34 (m, 1H), 7.24 (dd, J = 9.0, 2.2 Hz, 1H), 6.33 (d, J = 5.7 

Hz, 1H), 6.03 (d, J = 7.8 Hz, 1H), 5.69 (s, 1H), 5.25 (s, 1H), 4.53 (dd, J = 15.1, 6.0 Hz, 1H), 4.40 

(dd, J = 15.1, 5.7 Hz, 1H), 4.26 (qt, J = 13.6, 6.0 Hz, 2H), 3.60 (p, J = 6.5 Hz, 1H), 2.76 (qt, J = 
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13.4, 5.9 Hz, 2H), 2.43 (q, J = 7.1 Hz, 2H), 2.36 (dt, J = 10.6, 5.0 Hz, 2H), 1.88 (s, 2H), 1.52 – 1.31 

(m, 3H), 1.19 (d, J = 6.3 Hz, 3H), 0.84 (t, J = 7.1 Hz, 3H). 13C NMR δ 168.65, 151.41, 148.30, 

145.72, 144.49, 139.45, 136.42, 125.80, 125.40, 123.82, 123.29, 120.40, 116.85, 98.52, 77.32, 

77.07, 76.81, 53.27, 53.08, 49.27, 48.82, 47.31, 35.18, 33.82, 24.31, 19.98, 18.69, 11.56.  

 

 

Figure 2.9. 1H NMR and 13C NMR of MA-tCQ in CDCl3. 
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Once PPMA and CQ-N3 were obtained, we approached the synthesis of NpCQ by two 

strategies, either by direct copolymerization or post-polymerization conjugation. To directly 

polymerize the noncleavable CQ monomer, MA-tCQ was synthesized by copper (I)-catalyzed 

azide-alkyne cycloaddition (CuAAC) reaction between PPMA and CQ-N3. We used CuAAC 

reaction instead of the copper-free click chemistry for two main reasons. First, copper-free click 

chemistry needs to introduce a cyclooctyne into the structure, which may decrease the water 

solubility of the polymer. Second, we wanted to keep the impact on the structure as low as possible 

so that CuAAC generating triazole ring was applied. The 1H NMR spectrum confirmed the 

formation of the monomer as evidenced from the presence of the proton signal at δ 7.65, which 

indicated the formation of the triazole ring. Moreover, the proton signals at δ 5.69 and 5.25 of the 

methylene protons, as well as the ratio of integration confirmed the successful cycloaddition. 

Furthermore, 13C NMR signals at 120.40 and 123.81 indicating the carbons in the triazole ring 

further supported the conclusion of the click product formation. 

2.7 Synthesis of non-degradable CQ-containing polymers by free radical polymerization 

(FNpCQ) 

 

Scheme 2.7. Synthesis of FNpCQ. 

Polymers with different CQ content were obtained by changing the monomer ratio of MA-

tCQ to HPMA in the reagents, which was similar to the preparation of pCQ. Typically, MA-tCQ 

(70 mg, 0.145 mmol), HPMA (103 mg, 0.72 mmol) and AIBN (2.85 mg, 0.017 mmol) were 

dissolved in methanol:1,4-dioxane (1:1, 100mg/mL) and purged by nitrogen for 30 min. After 
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stirred in a sealed ampule at 70 °C overnight, the polymer was precipitated out by adding the 

mixture to cold diethyl ether under vigorous stirring. The precipitates were collected and re-

dissolved in methanol. The precipitation step was repeated twice and the polymers were dialyzed 

against water (MWCO: 3,500) for 2 days. The FNpCQ polymers were obtained by lyophilization. 

The content of CQ in FNpCQ was calculated by the integration ratio of protons on CQ (δ 8.37, 

7.42, 6.92, 6.50) and HPMA (δ 4.72, 3.68) using pHPMA as reference:  

mol% of CQ =[(1.78+1.04+1.18+1)/5]/[(1.78+1.04+1.18+1)/5+(4.77+5.35)/2]×100%=16.5%. 

 

Figure 2.10. 1H NMR of FNpCQ in DMSO-d6. 

2.8 Synthesis of non-degradable CQ-containing polymers by RAFT polymerization of 

HPMA and MA-tCQ (RNpCQ) 
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Scheme 2.8. Synthesis of noncleavable RNpCQ by RAFT polymerization. 

Procedure of Synthesizing RNpCQ was the same as RpCQ. MA-tCQ (70 mg, 0.15 mmol), 

HPMA (103 mg, 0.72 mmol), CPDT (3.0 mg, 3.03 μL, 0.0087 mmol) and AIBN (0.36 mg, 0.0022 

mmol) were dissolved in DMSO and 1,4-dioxane and followed the same protocol as RpCQ. The 

content of CQ in RNpCQ was calculated by the integration ratio of protons on CQ (δ 8.38, 7.44, 

7.16, 6.52) and HPMA (δ 7.16, 4.71) using RpHPMA as reference:  

mol% of CQ =[(1.85+1.13+1.24+1)/5]/[(1.85+1.13+1.24+1)/5+(5.28+5.94)/2]×100%=15.7%. 

 

Figure 2.11. 1H NMR of RNpCQ in DMSO-d6. 

 The properties of FNpCQ and RNpCQ were summarized in Table 2.3. RAFT 

polymerization obviously gave better control of polymers than free radical polymerization with the 

polydispersity value of 1.1 versus 1.4. Despite of that, NpCQ possessed closer CQ content of in 

feed and in copolymer than that of RNpCQ. The CQ content in both polymers can be adjusted by 

changing the ratio of HPMA and MA-tCQ in feed with the CQ content less than 25%.  

Table 2.3. Characterization of F/RNpCQ polymers. 
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CQ content (mol%) 

Mn (kDa) Mw/Mn Pn 

In feed In copolymer 

FNpCQ 16.7 16.6 22.9 1.4 115 

RNpCQ 16.7 15.7 20.3 1.1 103 

2.9 Synthesis of non-degradable CQ-containing polymers from clickable poly(HPMA-co-

PPMA) (pHP) copolymers 

2.9.1 Investigation of CTA for polymerization of pHP copolymers 

 

Scheme 2.9. Synthesis of pHP by RAFT polymerization. 

RAFT polymerization was applied to synthesizing clickable pHP copolymers. Due to 

different monomer compatibility of RAFT agents, four CTAs were tested in the polymerization of 

pHP with PPMA content as 20% (mol%) [200]. One dithiobenzoate and three trithiocarbonates 

CTAs were chosen due to their reported compatibility to methacrylamides (Table 2.4). The molar 

ratio of HPMA/PPMA/CTA/initiator was fixed at 80/20/1/0.25. HPMA, PPMA, AIBN and the 

CTAs were dissolved in 1,4-dioxane/DMSO (1/1, v/v, 100 mg/mL) and transferred to prescored 

ampules. The ampules were flame sealed after purged with nitrogen for 30 min. The polymerization 

was conducted at 70 °C for 16 h and terminated in liquid nitrogen. The polymers were precipitated 

in cold diethyl ether for three times and dried under vacuum. The composition of each polymer was 

analyzed by 1H NMR. The molecular weight of the polymers was tested by GPC as water soluble 

cationic polymers. 

As shown in Table 2.4, 4-cyano-4-(phenyl-carbonothioylthio) pentanoic acid resulted in 

lowest yield and the product was not enough for characterization. Polymers prepared by CPDT 
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demonstrated highest yield, closest theoretical molecular weight (Mth) and Mw of the copolymer, as 

well as acceptable PDI and PPMA content. One thing needed to be noticed was that the yield, 

instead of conversion rate was shown here and some polymers were lost during precipitation. Based 

on these results, we used CPDT for further PPMA polymerization.    

Table 2.4. Characterization of pHP polymer with different chain transfer agent. 

CTA 
[HPMA]0/[PPMA]0/ 

[CTA]0/[I]0 

Mth 

(kDa) 

Mw 

(kDa) 
PDI 

PPMA 

in feed/ 

in 

polymer 

(mol%) 

Yield 

(%) 

 

80/20/1/0.25 13.9 - - 20/- 11 

 

80/20/1/0.25 13.9 7.5 1.1 20/19.7 21 

 

80/20/1/0.25 13.9 9.3 1.2 20/20.0 37 

 

80/20/1/0.25 13.9 13.6 1.2 20/19.7 44 

2.9.2 Synthesis of pHP 

The pHP copolymers were prepared using CPDT as CTA reagent and AIBN as initiator. 

The copolymers were synthesized with a range of molecular weights of 7-56 kDa and different 

PPMA contents of 0-40 (Table 2.5). The procedure was the same as shown in 2.9.1. Typical 1H 

NMR spectrum was shown in Figure 2.12. The properties of pHP were summarized in Table 2.5 

and GPC spectrums were shown in Figure 2.13. 
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Figure 2.12. Typical 1H NMR spectrums of pHP polymers in DMSO-d6. 

The 1H NMR spectrums of PPMA, pHP40 and pPH0 were stacked in Figure 2.12 to 

quantify the alkyne content. Integration ratio of proton d* from HPMA and proton a* from PPMA 

were applied for calculation of alkyne content. From pHP0 to pHP40, the PDI was increasing, the 

difference of PPMA in feed and in copolymer was increasing, yet the yield was decreasing. These 

may due to the influence of PPMA on the activity of CTA. And the copolymers were well-

controlled when the PPMA content was not more than 20%. By comparing pHP20L, pHP20, 

pHP20M, pHP20H, we found that the yield was decreasing, PDI, and the difference between Mth 

and Mw were increasing, which suggested that we were able to better control the copolymer within 

the molecular weight probably less than 20 kDa. The GPC spectrums showed pHP20H and 

pHP20M with broader peaks and earlier retention time than the other peaks, which were 

corresponding to their higher molecular weight and larger PDI than the other polymers. The 

spectrums of pHP0, pHP5 and pHP10 showed that the three polymers had similar size but 
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increasing PDI, which were in agreement with the data reported. The only problem was that the 

calculated molecular weight of pHP20L was smaller than that of pHP40, however, retention time 

of pHP20L was earlier than that of pHP40, which may be caused by the different interaction 

between the columns and polymers with different hydrophilicity.    

Table 2.5. Synthesis and characterization of pHP. 

Sample 

[HPMA]0/[PPMA]0/ 

[CTA]0/[I]0 

Mth 

(kDa) 

Mw 

(kDa) 

PDI 

PPMA in feed/ 

in copolymer 

(mol%) 

 

Yield 

(%) 

pHP0 100/0/1/0.25 14.3 14.8 1.1 0/0  62 

pHP5 95/5/1/0.25 14.2 16.7 1.2 5/4.3  60 

pHP10 90/10/1/0.25 14.1 14.3 1.2 10/9.9  58 

pHP20 80/20/1/0.25 13.9 13.6 1.2 20/19.7  44 

pHP40 60/40/1/0.25 13.5 11.3 1.4 40/24.4  26 

pHP20L 80/20/2/0.5 7.0 7.8 1.2 20/16.5  58 

pHP20M 80/20/0.5/0.125 27.8 23.8 1.4 20/19.5  39 

pHP20H 80/20/0.25/0.0625 55.6 38.1 1.4 20/20.6  33 
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Figure 2.13. GPC spectrums of pHP polymers. 

2.9.3 Synthesis of non-degradable CQ-containing HPMA copolymers (CNpCQ) by click 

reaction of CQ-N3 and pHP 

 

Scheme 2.10. Synthesis of CNpCQ. 

Except for direct polymerization of MA-tCQ and HPMA, non-degradable pCQ was also 

able to be synthesized by click reaction of pHP and CQ-N3 to obtain CNpCQ. To conduct click 

reaction, pHP, CQ-N3 (1.1 equiv. of alkyne amount in pHP) and CuSO4 (0.1 equiv. of CQ-N3) were 

dissolved in water containing 10% DMF under nitrogen in Schlenk tube. The reaction mixture was 

purged by nitrogen for 30 min. NaAs (0.4 equiv. of CQ-N3) was added before the tube was merged 

in 40 °C oil bath. The reaction mixture was stirred at 40 °C for 2 h and cooled down to room 

temperature (r.t.) overnight. The resulting product was washed by 50 mM EDTA aqueous solution 
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twice and water once to remove the copper ion, followed by dialysis against water (MWCO: 3,500) 

for 3 days. The final product was obtained by lyophilization. The molecular weight was obtained 

by GPC and CQ content was calculated by 1H NMR as previously described. 

The CQ content was mainly in accordance with the corresponding alkyne content as shown 

in Table 2.6 except for pHP5-CQ, which was possibly due to the limitation of the characterization. 

By comparing each pHP copolymers before and after click reaction in GPC, we were able to 

confirm that the molecular weight of each pHP-CQ was higher than that of corresponding pHP, 

which further verified the successful of click chemistry. The pHP-CQ copolymers exhibited 

broader peak than corresponding pHP, which may due to the difference in charge and 

hydrophilicity.   

Table 2.6. Summary of CNpCQ. 

Sample 

Mw 

(kDa) 

PPMA in 

polymer (mol%) 

CQ content (mol%) 

pHP0 14.8 0 - 

pHP5-CQ 16.7 4.3 1 

pHP10-CQ 14.3 9.9 9.0 

pHP20-CQ 13.6 19.7 20.0 

pHP40-CQ 11.3 24.4 26.8 

pHP20L-CQ 7.8 16.5 16.5 

pHP20M-CQ 23.8 19.5 21.7 

pHP20H-CQ 38.1 20.6 23.6 
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Figure 2.14. GPC spectrums of pHP-CQ polymers and comparison of pHP to the corresponding 

pHP-CQ.  
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2.9.4 Synthesis of poly(hydroxypropyl methacrylate-co-PPMA) (pHPte) copolymers by 

RAFT polymerization 

To explore the application of clickable polymers, we studied the polymerization of PPMA 

and hydroxypropyl methacrylate (HPMAte) by RAFT polymerization with 4-cyano-4-

[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CTPA) as CTA. The investigation was taken 

out followed the similar principle of pHP. Typical 1H NMR spectrum was shown in Figure 2.15. 

The properties of pHPte were summarized in Table 2.7 and GPC spectrums were shown in Figure 

2.16. 

 

Scheme 2.11. Synthesis of pHPte by RAFT polymerization. 

 

(a) 
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Figure 2.15. Typical 1H NMR spectrums of pHPte polymers in DMSO-d6. 

Table 2.7. Synthesis and characterization of pHPte. 

Sample 

[HPMAte]0/[PPMA]0/ 

[CTA]0/[I]0 

Mth 

(kDa) 

Mw 

(kDa) 

PDI 

PPMA in 

feed/ 

in polymer 

(mol%) 

Yield 

(%) 

pHPte0 100/0/1/0.25 14.4 17.6 1.1 0/0 52 

pHPte5 95/5/1/0.25 14.3 19.2 1.1 5.0/4.8 94 

pHPte10 90/10/1/0.25 14.2 19.9 1.1 10.0/8.3 94 

pHPte20 80/20/1/0.25 14.0 20.5 1.1 20.0/15.3 95 

pHPte40 60/40/1/0.25 13.6 16.9 1.2 40.0/28.0 71 

(b) 
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pHPte20L 80/20/2/0.5 7.2 9.0 1.1 20.0/16.7 89 

pHPte20M 80/20/0.5/0.125 28.0 32.9 1.2 20.0/16.7 79 

pHPte20H 80/20/0.25/0.0625 55.9 51.2 1.1 20.0/15.3 74 
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Figure 2.16. GPC spectrums of pHPte copolymers. 

The 1H NMR spectrums of PPMA, pHPte40 and pPHte0 were stacked in Figure 2.15 to 

quantify the alkyne content. Proton signals C’ from 4.5 to 5.0 belonged to HPMAte, and according 

to the 1H NMR of HPMAte, the integration ratio of these protons to each methylene proton was 

1.2:1 because HPMAte used here was mixture of two monomers. Therefore, the proton a’ and b’ 

from PPMA and proton signals C’ from HPMAte were applied for calculation of alkyne content. 

PDI of all the polymers were similar. And the copolymers were well-controlled when the PPMA 

content was not more than 20%. By comparing pHPte20L, pHPte20, pHPte20M, pHPte20H, we 

found that the yield trended decreasing. PDI, and the difference between Mth and Mw were 

controllable. The GPC spectrums showed pHPte20H and pHPte20M with broader peaks and earlier 

retention time than the other peaks, which were corresponding to their higher molecular weight 

than the other polymers. The spectrum of pHPte20L showed it had smallest molecular weight, 
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which was also in accordance with the results. The spectrums of pHPte5, pHPte10 and pHPte20 

showed very close retention time and similar size, which were in agreement with the data reported.  

2.9.5 Synthesis of non-degradable CQ-containing HPMAte copolymers (pHPte-CQ) by 

click reaction of CQ-N3 and pHPte 

 

Scheme 2.12. Synthesis of pHPte-CQ by click chemistry. 

Click reaction of pHPte and CQ-N3 was also investigated similar to CNpCQ. The pHPte 

polymer, CQ-N3 (1.2 equiv. of alkyne amount in pHPte) and CuSO4 (0.1 equiv. of CQ-N3) were 

dissolved in DMF under nitrogen in Schlenk tube. The reaction mixture was purged by nitrogen 

for 30 min. NaAs (0.4 equiv. of CQ-N3) dissolved in water was added before the tube was merged 

in 40 °C oil bath. The reaction was taken out at 40 °C for 2 h and cooled down to room temperature 

(r.t.) overnight. The resulting product was dialyzed against DMF containing 50 mM EDTA aqueous 

solution (20%) for 1 day and against DMF for 2 days (MWCO: 3,500). The final product was 

obtained by precipitated in cold diethyl ether for twice. The molecular weight was obtained by GPC 

and CQ content was calculated by 1H NMR as previously described. 

In addition, pHPte40-CQ1, pHPte40-CQ2 and pHPte40-CQ3 were pHPte40 polymers 

click with CQ-N3 as 1.2, 0.5, 0.25 equiv. of alkyne to study the reactivity of click chemistry of CQ-

N3 and alkyne polymer. 

Table 2.8. Summary of pHPte-CQ. 
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Sample 

Mw 

(kDa) 

PPMA in 

polymer (mol%) 

CQ content (mol%) 

pHPte0 17.6 0 - 

pHPte5-CQ 19.2 4.8 3.2 

pHPte10-CQ 19.9 8.3 6.7 

pHPte20-CQ 20.5 15.3 11.6 

pHPte40-CQ1 16.9 28.0 29.4 

pHPte40-CQ2 16.9 28.0 20.1 

pHPte40-CQ3 16.9 28.0 11.7 

pHPte20L-CQ 9.0 16.7 14.8 

pHPte20M-CQ 32.9 16.7 14.8 

pHPte20H-CQ 51.2 15.3 11.8 
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Figure 2.17. GPC spectrums of pHPte-CQ polymers and comparison of pHPte to the corresponding 

pHPte-CQ. 

The CQ content was mainly in accordance with the corresponding alkyne content as shown 

in Table 2.8. However, the clicked CQ content was less than alkyne content. Polymers pHPte40-

CQ1, pHPte40-CQ2 and pHPte40-CQ3 were pHPte40 reacted with different ratio of CQ-N3. The 

final CQ content were proportional to the quantity of CQ-N3 reagent, which proved that the CQ 

content can be controlled. We were unable to compare each pHPte copolymers before and after 

click reaction in GPC spectrums in this case, which may due to the GPC column efficiency.   

2.10 Synthesis of CQ- and CPT-containing HPMA copolymers 

 The CQ- and CPT-containing HPMA copolymer (pCQCPT) was created to achieve co-

delivery of pCQ and CPT to inhibit cancer metastasis and progression. CPT was linked to the 
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backbone of the polymer via reduction-responsive disulfide bond that was able to be cleaved in 

cytoplasma.  

 MA-SS-CPT was synthesized according to the protocol reported by Liu et al [201]. Briefly, 

dithiodiethanol was selectively methacrylated on one hydroxyl group, followed by the connection 

of CPT by carbonate bond (Scheme 2.13). To synthesize the mono-methacrylated dithiodiethanol 

(MA-SS-OH), 2,2’-dithiodiethanol (3.08 g, 20 mmol) and triethylamine (3.04 g, 4.19 mL, 30 

mmol) were dissolved in THF (100 mL) and cooled down to 0 °C in ice-water bath, to which 

methacryloyl chloride (2.09 g, 1.95 mL, 20 mmol) in THF (50 mL) was added dropwise under 

vigorous stirring. The reaction mixture was warmed up to room temperature and stirred overnight. 

After filtration and evaporation of all the solvents, the resulting product was dissolved in ethyl 

acetate (50 mL) and washed by water (20 mL × 2) and brine (20 mL × 1). The organic layer was 

dried over MgSO4 and concentrated. The final product was obtained by column chromatograph 

using ethyl acetate/hexane (1/2, v/v) as eluent.  The 1H NMR of MA-SS-OH (Figure 2.18) 

confirmed the structure. 1H NMR (500 MHz, CDCl3) δ 6.12 (s, 1H), 5.58 (s, 1H), 4.40 (q, J = 7.1 

Hz, 2H), 3.88 (dt, J = 11.6, 5.8 Hz, 2H), 2.96 (t, J = 6.7 Hz, 2H), 2.87 (t, J = 5.8 Hz, 2H), 2.30 (d, 

J = 3.7 Hz, 1H), 1.93 (s, 3H). The reduction-responsive CPT monomer (MA-SS-CPT) was prepared 

by esterification of CPT and MA-SS-OH. Typically, CPT (0.1 g, 0.287 mmol) and DMAP (0.106 

g, 0.865 mmol) was dissolved in anhydrous DCM (2.5 mL) under argon. Triphosgene (28.3 mg, 

0.096 mmol) was added and stirred for 30 min at room temperature. MA-SS-OH (70 mg, 0.316 

mmol) in anhydrous THF (0.75 mL) was added dropwise to CPT and stirred overnight in dark. The 

reaction suspension was filtered and concentrated by rotavap, which was then dissolved in ethyl 

acetate (5 mL) and washed by HCl (1 M, 2.5 mL × 2), water (2.5 mL × 1) and brine (2.5 mL × 1). 

The organic layer was dried over MgSO4 and concentrated. The final product was obtained by 

column chromatograph using ethyl acetate as eluent. 1H NMR (500 MHz, Chloroform-d) δ 8.40 (s, 

1H), 8.23 (d, J = 8.5 Hz, 1H), 7.94 (dd, J = 8.2, 1.5 Hz, 1H), 7.84 (ddd, J = 8.4, 6.8, 1.5 Hz, 1H), 
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7.71 – 7.64 (m, 1H), 7.35 (s, 1H), 6.07 (t, J = 1.3 Hz, 1H), 5.69 (d, J = 17.2 Hz, 1H), 5.54 (t, J = 

1.6 Hz, 1H), 5.39 (d, J = 17.1 Hz, 1H), 5.32 – 5.27 (m, 2H), 4.40 – 4.30 (m, 4H), 2.93 (q, J = 7.1, 

6.5 Hz, 4H), 2.28 (dq, J = 14.8, 7.4 Hz, 1H), 2.15 (dq, J = 14.7, 7.5 Hz, 1H), 1.90 (t, J = 1.3 Hz, 

3H), 1.00 (t, J = 7.5 Hz, 3H).        

 

Scheme 2.13. Synthesis of MA-SS-CPT. 
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Figure 2.18. 1H NMR of MA-SS-OH and MA-SS-CPT in CDCl3. 

 CQ- and CPT-containing polymers were synthesized by RAFT polymerization using 

CTPA as CTA. Typically, HPMA (175 mg, 1.22 mmol), MA-CQ (49 mg, 0.122 mmol), MA-SS-

CPT (36.4 mg, 0.061 mmol), CTPA (3.7 mg, 0.01403 mmol) and AIBN (0.58 mg, 0.0035 mmol) 

were dissolved in DMSO/1,4-dioxane (1/1, 100 mg/mL) under argon in a brown ampule. After 

purged by argon for 30 min, the ampule was flamed sealed and reaction mixture was stirred at 70 

°C for 16 h in the dark. After terminated in liquid nitrogen, the resulting product was precipitated 

in cold diethyl ether and dialyzed against water for 2 days in the dark. The final product was 

obtained by lyophilization as pCQCPT. The content of CQ and CPT in the polymer was calculated 

by 1H NMR (Figure 2.19). Polymers with only CQ (pCQ_C) or CPT (pCPT) were prepared as 

control groups followed the same protocol. The characterization of pCQCPT, pCPT and pCQ_C 

polymers was summarized in Table 2.9.   
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Scheme 2.14. Synthesis of pCQCPT.  

 

Figure 2.19. 1H NMR of pCQCPT, pCPT, pCQ_C in DMSO-d6. 

Table 2.9. Summary of pCQCPT, pCPT and pCQ_C. 

Sample Mw (kDa) PDI 

CPT in polymer 

(w/w%) 

CQ in polymer  

(w/w%) 

pCQCPT 20.4 1.02 9.6 18.6 
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pCPT 23.1 1.20 10.0 - 

pCQ_C 15.4 1.05 - 19.7 

We synthesized polymers containing CQ and CPT, CQ alone and CPT alone with similar 

CQ or CPT content for further comparison of their anti-cancer activities. The content of CQ and 

CPT was obtained from 1H NMR. Signals representing CPT at 8.15, 7.88, 7.73, 5.54, 5.34, HPMA 

at 7.18, 4.70 were used to calculate the CPT content. Signals representing CQ at 8.40, 7.78, 6.56, 

HPMA at 7.19, 4.71 were used for CQ content quantification. Polymers with CPT content higher 

than 10% and CQ content higher than 20% were obtained but the water solubility was compromised 

due to the interaction between CPT and CPT, as well as CPT and CQ. We attempted to prepare the 

diblock pCQ-b-pCPT copolymers by RAFT polymerization, however, the reactivity of the macro-

pCQ or macro-pCPT was diminished so that we prepared the randomly-arranged pCQCPT.   

2.11 Synthesis of diblock PLA-pCQ copolymers 

 Besides chemical conjugation, anticancer drug can also be encapsulated in the pCQ-

containing diblock polymer to achieve co-delivery of cytotoxic drug and pCQ. To obtain diblock 

amphiphilic copolymers, we synthesized PLA-CTA by ring-opening polymerization with hydroxyl 

group functionalized chain transfer agent, 4-(dodecyl trithiocarbonyl)-4-cyano-1-pentanol, which 

was obtained by bis(dodecylsulfanyl thiocarbonyl) disulfide and 4,4’-azobis(4-cyano-1-pentanol) 

(Scheme 2.15).  

 Synthesis of 4-(dodecyl trithiocarbonyl)-4-cyano-1-pentanol was reported before [202]. 

Briefly, bis(dodecylsulfanylthiocarbonyl) (292 mg, 0.53 mmol) and 4,4-azobis(4-cyano-1-

pentanol) (200 mg, 0.79 mmol) were dissolved in ethyl acetate (10 mL) and heated under reflux for 

24 h. The resulting product was concentrated under reduced pressure and purified by column 

chromatography using ethyl acetate/hexane (4/6) as eluent. 1H NMR indicated the structure of the 

product as shown in Figure 2.20. 1H NMR (500 MHz, CDCl3) δ 3.71 (td, J = 6.1, 2.4 Hz, 2H), 3.32 
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(t, J = 7.5 Hz, 2H), 2.31 – 2.22 (m, 1H), 2.14 – 2.02 (m, 1H), 1.88 – 1.79 (m, 5H), 1.68 (p, J = 7.2 

Hz, 3H), 1.39 (p, J = 7.0 Hz, 2H), 1.32 – 1.25 (m, 5H), 1.25 (s, 11H), 0.87 (t, J = 6.8 Hz, 3H).  

 Preparation of PLA-CTA followed the same protocol reported by Du et al [203]. Briefly, 

ʟ-lactide (2.018 g, 14 mmol), 4-(dodecyl trithiocarbonyl)-4-cyano-1-pentanol (77.94 mg, 0.2 

mmol) were charged into a Schlenk tube containing anhydrous chloroform (10 mL) under argon. 

After merged in 40 °C oil bath with all the solid dissolved, DBU (60.9 mg, 60 μL, 0.4 mmol) was 

added. After stirring for 20 min, the reaction was terminated by adding benzoic acid (24.4 mg, 0.2 

mmol). The product was precipitated in cold methanol for 3 times. The degree of polymerization 

of PLA-CTA was calculated by the ratio of integration of proton next to the methyl group on PLA 

(δ 5.16) to the dodecyl protons on CTA (δ 1.26). 

 Diblock PLA-pCQ was synthesized by RAFT polymerization similarly as discussed above. 

A given amount of HPMA, MA-CQ, PLA-CTA and AIBN were dissolved in DMSO/1,4-dioxane 

(6/4, 100 mg/mL) and sealed in ampules under argon. After stirring at 70 °C for 16 h, the reaction 

was terminated by merged in liquid nitrogen. The product was obtained by precipitation in cold 

diethyl ether for 3 times and dried under vacuum. The content of HPMA, CQ, PLA, and the 

molecular weight was able to be calculated from 1H NMR according to the integration of protons 

as discussed before. By changing the ratio of monomers, we got 6 polymers summarized in Table 

2.10. The 1H NMR spectrum of PLA-pCQ10H was shown in Figure 2.20. GPC of all the PLA-pCQ 

was shown in Figure 2.21. 

Table 2.10. Summary of PLA-pCQ. 

Sample 

DP in feed DP in polymer 

LA HPMA CQ LA HPMA CQ Mw (kDa) 

PLA-pCQ0L 114 50 0 114 41 0 14.1 
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PLA-pCQ0H 114 100 0 114 86 0 20.5 

PLA-pCQ5L 114 50 2.5 114 43 2.4 15.3 

PLA-pCQ5H 114 100 5 114 88 4.4 22.6 

PLA-pCQ10L 114 50 5 114 34 5.5 15.3 

PLA-pCQ10H 114 100 10 114 111 9.3 27.8 

 

Scheme 2.15. Synthesis of 4-(dodecyl trithiocarbonyl)-4-cyano-1-pentanol, PLA-CTA and PLA-

pCQ. 
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Figure 2.20. 1H NMR of 4-(dodecyl trithiocarbonyl)-4-cyano-1-pentanol in CDCl3, PLA-CTA in 

CDCl3 and PLA-pCQ10H in DMSO-d6. 
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Figure 2.21. GPC spectrums of pCQ-PLA polymers. 

 The macro PLA-CTA was prepared by ring-opening polymerization and the molecular 

weight was decided by 1H NMR. Signals at 1.26 indicated 20 protons on the RAFT agents. Signals 

at 5.16 and 1.57 with the integration ratio of 1:3 indicated PLA. By setting the integration number 



92 

 

as 20 at 1.26, we were able to quantify the DP as 114. We fixed the molecular weight of PLA at 

8.2 kDa and changed the hydrophilic pCQ block by molecular weight and CQ content. Six polymers 

with CQ content from 0, 5 and 10% and molecular weight of 15 kDa (L) and 20 kDa (H) were 

prepared by RAFT polymerization utilizing macro PLA-CTA. 1H NMR of PLA-pCQ10H showed 

the proton signals of CQ (8.39, 7.78, 7.18), HPMA (4.70) and PLA (5.18), and the integration was 

applied to calculation of CQ content as described before. The GPC results clearly showed that PLA-

CTA had smallest molecular weight among the 7 polymers. PLA-pCQ0H, PLA-pCQ5H and PLA-

pCQ10H possessed similar molecular weights. PLA-pCQ0L, PLA-pCQ5L and PLA-pCQ10L 

exhibited similar molecular weights that were in between of 20 kDa and 8.2 kDa, which were 

corresponding to the molecular weight calculated from 1H NMR. We successfully synthesized 

diblock PLA-pCQ copolymers with controlled CQ content.    
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3 Effect of polymeric CQ on cancer metastasis 

CQ is a classic antimalarial drug that has been in clinical use for decades. CQ was 

developed from natural product quinine six decades ago and is still widely used for the control of 

malaria worldwide. Besides its antimalarial properties, a broad spectrum of pharmacological 

activities, including anti-inflammatory and anticancer activities have been discovered and explored 

over the years [98]. CQ and HCQ have been recognized as effective autophagy inhibitors that 

exhibit beneficial anticancer properties [102]. Autophagy controls cellular homeostasis by 

lysosomal degradation of cytoplasmic components, including invading pathogens, cytotoxic 

proteins and damaged organelles. In cancer, autophagy provides a survival mechanism to allow 

cancer cells to support proliferation during metabolic stress [193]. Inhibition of autophagy by CQ 

can reverse the process and suppress the proliferation of cancer cells. Although CQ and HCQ were 

initially tested in cancer treatment due to their ability to inhibit autophagy, preclinical studies show 

that CQ and HCQ have multiple complementary mechanisms of action, including inhibition of 

autophagy, inhibition of oncogenic signaling pathways such as TLR9/NF-ĸB and 

CXCL12/CXCR4, normalization of tumor vessels, and modulation of tumor micro-environment 

[111, 117, 198, 204, 205]. Taken together, CQ is a promising multi-functional agent that is well-

suited for development of novel combination anticancer strategies. 

In this chapter, we report the properties of polymeric CQ (pCQ) as a macromolecular 

inhibitor of cancer metastasis. We present data evaluating pCQ as inhibitor of cancer cell migration 

and invasion in vitro and its antimetastatic activity in vivo in experimental lung metastasis model 

of breast cancer. Inspired by the unexpected enhanced inhibitory activity of cancer cell migration 

and experimental lung metastasis of pCQ, we designed and synthesized pCQ polymers containing 

anticancer drug CPT for combinational treatment of breast cancer. The animal experiment 

demonstrated the anticancer and anti-metastasis activities of the polymers. 
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However, it was ester bond between CQ and backbone of copolymers, which made them 

susceptible to degradation in vivo. Therefore, we synthesized non-degradable pCQ (NpCQ) by 

RAFT polymerization and click chemistry, and compared its pharmacologic activity with the 

degradable pCQ. 

Materials used in this chapter are shown as follows. Phosphate-buffered saline (PBS), 

Dulbecco's Modified Eagle Medium (DMEM), sodium pyruvate, 1% Pen-Strep, G418, essential 

amino acids and non-essential amino acids were from Hyclone (Logan, UT). Fetal bovine serum 

(FBS) was from Atlanta Biologicals (Flowery Branch, GA). Gentamicin was purchased from Gibco 

(Life Technologies, Grand Island, NY). Eagle’s Minimum Essential Medium (EMEM) was 

obtained from ATCC (Manassas, VA). Nitrocellulose membrane, Novex 10% Tris-Glycine Midi 

Protein Gels and 12% Tris-Glycine Midi Protein Gels were purchased from Invitrogen (Carlsbad, 

CA). Gentamicin, enzyme-free cell dissociation buffer and F-12K medium were purchased from 

Gibco (Life Technologies, Grand Island, NY). Protease and phosphatase inhibitor cocktail, Pierce 

bicinchoninic acid (BCA) protein assay, RIPA buffer and Pierce ECL Western Blotting Substrate 

were purchased from ThermoScientific (Waltham, MA). LC3B antibody, phospho-p44/42 MAPK 

(pERK) rabbit antibody, p44/42 MAPK (ERK) rabbit antibody, GAPDH rabbit antibody and anti-

rabbit IgG, and HRP-linked antibody were purchased from Cell Signaling Technology (Beverly, 

MA). Allophycocyanin (APC) mouse B anti-human CD184 and APC mouse IgG2a, κ isotype 

control were purchased from BD Biosciences (San Jose, CA). Human and mouse CXCL12 were 

purchased from Shenandoah Biotechnology (Warwick, PA). Laemmli sample buffer and 2-

mercaptoethanol were purchased from Bio-rad (Hercules, CA). 

Results are presented as mean ± standard deviation (SD). The Student's t-test was used to 

determine the statistical significance of the results obtained in all the studies of this proposal when 

assessing differences between two groups; ANOVA was used to determine differences among 
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multiple groups. All statistical analysis was performed using Graphpad Prism v5. A value of p<0.05 

was considered statistically significant. 

3.1 Inhibition of cancer cell migration and experimental lung metastasis by polymeric 

chloroquine pCQ 

To investigate the properties of polymeric CQ on cancer metastasis, we synthesized pCQ 

with different CQ content pCQ10.0 and pCQ16.7 from MA-CQ and HPMA by free radical 

polymerization as reported in Section 2.2 and Table 2.1. Effect of pCQ on cancer cell migration 

and invasion in vitro and metastasis in vivo in experimental lung metastasis model of breast cancer 

was evaluated. Moreover, preliminary mechanism of action of pCQ was also elucidate. 

3.1.1 Cell culture 

Human epithelial osteosarcoma U2OS cells stably expressing functional EGFP-CXCR4 

fusion protein were purchased from Fisher Scientific and cultured in DMEM supplemented with 

2mML-glutamine, 1% Pen-Strep, 0.5 mg/mL G418 and 10% FBS. Mouse breast carcinoma 4T1 

was a kind gift from Dr. Fred Miller (Wayne State University) and cultured in DMEM 

supplemented with 2 mM L-glutamine, 1 mM sodium pyruvate, essential amino acids, non-

essential amino acids, gentamycin (0.2 mg/mL) and 10% FBS. Human hepatocellular carcinoma 

HepG2 cell line was purchased from ATCC (Manassas, VA) and cultured in EMEM with 10% 

FBS. A549 cells were from Dr. Hillman (Wayne State University) and cultured in F12-K medium 

with 10% FBS and 1% Pen-Strep. All cells were maintained in an incubator at 37 °C and 5% CO2. 

3.1.2 Cytotoxicity of the polymers 

Cytotoxicity was determined using CellTiter-Blue Cell Viability Assay (Promega, 

Madison, WI) in U2OS, 4T1 and HepG2 cells according to the manufacturer's protocol. Cells were 

seeded in 96-well plates 24 h prior to treatment at a density of 6000 cells/well for U2OS, 3000 
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cells/well for 4T1, and 4000 cells/well for HepG2. The medium was then replaced by 100 μL of 

serial dilutions of HCQ, pHPMA and pCQ in complete cell culture medium and the cells were 

incubated for 24 h. To measure cell viability, polymer/drug-containing medium was replaced with 

a mixture of 100 μL culture medium and 20 μL of CellTiter-Blue reagent and the cells were 

incubated for another 1 h. The fluorescence intensity [I] was measured using SpectraMaxM5e 

Multi-Mode microplate Reader (Molecular Devices, CA) at 560Ex/590Em. The relative cell viability 

(%) was calculated as [I]treated / [I]untreated × 100%. 

Before evaluating therapeutic activity of pCQ, we first examined its cytotoxicity in three 

different cell lines using CellTiter-Blue Assay. In addition to the breast cancer cell line 4T1 and 

osteosarcoma cell line U2OS, we also included human hepatocellular carcinoma cell line HepG2, 

which is a well-established and frequently used in vitro toxicity model for drug screening. As 

shown in Figure 3.1, HCQ exhibited cytotoxicity in all three cell lines, with IC50 of 22, 28 and 42 

μg/mL in 4T1, U2OS and HepG2 cells, respectively. The corresponding IC50 values expressed as 

molar concentrations were 70, 88 and 130 μM, respectively. In contrast to HCQ, both pCQ showed 

remarkably lowered cytotoxicity. pCQ16.7 had an estimated IC50 >2000 μg/mL in all three cell 

lines and the estimated IC50 for pCQ10.0 was >3000 μg/mL. pHPMA exhibited no toxicity in any 

of the cell lines within the tested concentration range. Considering the content of HPMA in pCQ, 

we also compared the cytotoxicity in terms of equivalent CQ concentrations. Both pCQ polymers 

demonstrated no toxicity at equivalent CQ concentration of 100 μM and IC50 was >1500 μM CQ 

equivalent in all three cell lines. Based on the cytotoxicity findings, we selected 20 μM HCQ as a 

safe dose for subsequent biological studies. Concentrations up to 100 μM CQ equivalent were 

considered as safe for the pCQ polymers. HPMA copolymers are known to be nontoxic and non-

immunogenic and have been widely applied as drug carriers for both small molecule drugs and 

biomacromolecules [206, 207]. Here we have shown that incorporation of CQ into HPMA 

copolymers greatly improves its safety in multiple cell lines. 
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Figure 3.1. Cytotoxicity of pCQ. Cell viability of pCQ, HCQ and pHPMA was determined using 

CellTiter-Blue Assay. Results are shown as mean cell viability ± SD (n=3).  

3.1.3 Inhibition of autophagy by polymers (This experiment was completed by Richard Lee 

Sleightholm, MD PhD student in Dr. Oupicky’s lab.) 

Western blot was used to test the effect of pCQ on autophagy in U2OS and 4T1 cells. Cells 

were treated with HCQ, pCQ10.0 or pCQ16.7 for 24 h, and then washed with cold PBS, and lysed 

in ice-cold lysis buffer containing protease and phosphatase inhibitors for 30min. The lysate was 

centrifuged at 15,000 rpm for 10 min at 4 °C to collect the supernatant. Total protein was extracted 

with Laemmli lysis buffer according to the suggested protocol and the protein concentration was 

quantified by the BCA assay. The samples were normalized to the same concentration, loaded and 

separated on SDS/PAGE gel, transferred to nitrocellulose membranes followed by probing with 
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LC3B antibody and incubation with anti-rabbit IgG HRP-linked antibody. GAPDH was used as a 

housekeeping control. Quantification of LC3B levels was performed by ImageJ. The results are 

shown as mean of duplicate experiment (n=2). 

With the goal of assessing possible differences in the mechanism of action between pCQ 

and CQ, we first evaluated the effect of pCQ on autophagy in U2OS and 4T1 cells. Autophagy is 

a cell survival mechanism that utilizes degradation and recycling of cellular proteins and 

cytoplasmic organelles. Damaged proteins or dysfunctional organelles are sequestered into 

autophagosomes, which then fuse with lysosomes to form autolysosomes where the contents are 

degraded and recycled. Autophagy is often upregulated in cancers because cancer cells use this 

mechanism to survive stress and starvation in the tumor microenvironment. Upregulation of 

autophagy promotes tumorigenesis and tumor aggressiveness [208, 209]. CQ is among several 

autophagy inhibitors that have been tested in combination with other anticancer drugs [102, 104, 

190]. Although the mechanism of action is still not fully understood, CQ is believed to inhibit 

autophagy in cancer cells by preventing the fusion of autophagosomes and lysosomes. To 

investigate the effect of pCQ on autophagy, we performed Western blot to quantify the levels of 

autophagy marker LC3 (microtubule-associated protein 1A/1B-light chain 3). The cytosolic form 

of LC3 (LC3-I) is converted into LC3-II, which is bound to the autophagosomal membrane, 

indicating autophagic activity [210]. Monitoring degradation of LC3-II serves as a convenient 

measure of autophagic activity [32]. The LC3-II degradation was blocked when cells are treated 

with CQ, which inhibited lysosomal acidification and lead to the accumulation of LC3-II in the 

cells (Figure 3.2A). Our results show that HCQ treatment resulted in substantial inhibitory activity 

indicated by the elevated levels of LC3-II in both cell lines. In contrast, pCQ showed only a modest 

autophagy inhibition in 4T1 cells and no inhibitory activity was observed in U2OS cells. The 

relative expression of LC3-II and total LC3 expression (i.e., LC3-I + LC3-II) were quantified from 

the Western blots (Figure 3.2B). HCQ treatment significantly increased LC3-II expression in both 
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cell lines, with a 4-fold increase observed in 4T1 cells. In contrast, only 1.7- and 1.9-fold increase 

in LC3-II expression was observed in 4T1 cells treated with pCQ10.0 and pCQ16.7, respectively. 

Because of the very low LC3-II expression in untreated cells, we have quantified total LC3 levels 

in the U2OS cells. HCQ treatment resulted in a 5-fold increase in the total LC3 expression, with 

majority of the increase attributed to the LC3-II. A small non-significant increase (~1.1-fold) in 

LC3 expression was seen in pCQ-treated U2OS cells. These results clearly suggest that 

incorporation of HCQ into a polymer resulted in a significant loss of the underlying autophagy 

inhibitory activity. 

 

Figure 3.2. Effect of pCQ on autophagy in U2OS and 4T1 cells. Cells were treated with HCQ (20 

μM), pCQ10.0, and pCQ16.7 (100 μM) for 24 h before Western blot analysis (A). The band 

intensities from two independent experiments were quantified by ImageJ (B). (*p<0.05, **p<0.01 

vs. HCQ; ANOVA with Tukey's multiple comparison test.) 
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3.1.4 pCQ effect on cell surface expression of CXCR4  

U2OS cells were seeded in T25 culturing flask 18 h prior to treatment. Cells were treated 

with different concentrations of HCQ, pHPMA and pCQ in HEPES-buffered low-serum medium 

(DMEM supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin, 1% FBS and 10 mM 

HEPES) for 90 min and 24 h before flowcytometry analysis. After washing with PBS, cells were 

dissociated by enzyme-free cell dissociation buffer and stained with allophycocyanin (APC) Mouse 

B Anti-Human CD184 and APC Mouse IgG2a, κ Isotype Control according to the suggested 

protocol. FACSCalibur was used to analyze the cells (10,000 events per sample), and data were 

processed using FlowJo software V7.6.1. 

CQ was suggested as a CXCR4 antagonist in various types of cancers only recently  [175, 

199]. Traditional CXCR4 antagonists like AMD3100 exert their function by specifically binding 

with the CXCR4 receptors located on the cell surface, thus preventing binding of the chemokine 

ligand CXCL12. This inhibition of CXCL12 binding then prevents CXCR4 receptor internalization 

and suppresses activation of the related downstream signaling cascades. CQ and HCQ on the other 

hand, appear to promote internalization of the surface CXCR4 receptors and their sequestration in 

the lysosomes, which then makes the receptors inaccessible for binding with extracellular CXCL12 

chemokine molecules [175, 211]. 

To investigate the effect of pCQ on CXCR4 inhibition, we used flow cytometry to quantify 

the changes in the surface expression of the CXCR4 receptor in U2OS cells after treatment with 

pCQ. The cells were treated with AMD3100, pCQ, HCQ, and pHPMA for 1.5 h and 24 h prior to 

incubation with anti-CXCR4 antibody. As shown in Figure 3.3, treatment with the CXCR4-binding 

compound AMD3100 resulted in a significant decrease in the amount of detectable CXCR4 

receptors on the cell surface. In contrast, HCQ (20 μM) did not cause any significant change in the 

levels of surface CXCR4 receptors. After 1.5 h of incubation, cells treated with pCQ10.0 exhibited 

no decrease in the levels of CXCR4 surface expression, while pCQ16.7 resulted in a significant 
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decrease even at this early time point. The reduction in surface CXCR4 receptor expression with 

both pCQ10.0 and pCQ16.7 became more pronounced after 24 h. In addition, higher concentrations 

of pCQ (100 μM HCQ equivalent) also resulted in a more pronounced decrease in the cell surface 

CXCR4 levels. As expected, pHPMA did not show any effect on the surface CXCR4 expression. 

All these data suggest that pCQ is considerably more effective in reducing cell surface CXCR4 

than HCQ and that its effect is dependent on the concentration, HCQ content, and time of incubation. 

 

Figure 3.3. Effect of pCQ on expression of surface CXCR4 receptors in U2OS cells. Cells were 

treated in the absence of CXCL12 with AMD3100, HCQ, pCQ or pHPMA for 1.5 h or 24 h before 

flow cytometry analysis. (*p<0.05, ***p<0.001, ****p<0.0001 vs. untreated; ANOVA with 

Tukey’s multiple comparison test, n=2.) 

3.1.5 pCQ effect on CXCR4 redistribution 
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Further analysis of how pCQ affects the decrease of cell surface CXCR4 expression upon 

stimulation with CXCL12 was conducted using CXCR4 redistribution assay (Figure 3.4A). U2OS 

cells stably expressing EGFP-CXCR4 were seeded at a density of 50,000 cells per confocal 

chamber (Lab-Tek Chambered #1.0 Borosilicate Coverglass 4 chamber System) 18 h prior to 

treatment. Cells were washed twice with 0.5 mL PBS and incubated with HEPES-buffered low 

serum medium with AMD3100 (300 nM) or pCQ16.7 (100 μM) for 30 min before 1 h exposure to 

CXCL12 (10 nM). Then cells were washed five times using PBS and fixed with 4% 

paraformaldehyde at room temperature for 20 min. Fixed cells were then washed four times with 

PBS and stained with 1 μM Hoechst 33258 solution for 30min before imaging. The images were 

obtained using Zeiss 800 Airyscan Microscope coupled with 63× oil objective and z-axis motor. 

U2OS cells expressing EGFP-CXCR4 allow easy tracking of the CXCR4 intracellular 

distribution. Incubation of the cells with the CXCR4 ligand CXCL12 causes redistribution of the 

receptor from plasma membrane into intracellular vesicles. This process is prevented by AMD3100 

as it binds CXCR4 expressed on the cell surface. The fact that AMD3100 restricts localization of 

the CXCR4 receptor to the cell surface suggests that the apparent decrease in cell surface expression 

of CXCR4 determined by flow cytometry in Figure 3.3 is simply a result of AMD3100 preventing 

binding of the staining anti-CXCR4 antibody to the receptor. In contrast, pCQ promoted CXCR4 

internalization into intracellular vesicles, which made the receptor inaccessible for binding with 

extracellular CXCL12. These results suggest that pCQ may inhibit CXCR4/CXCL12-mediated 

processes using a different mechanism of action than traditional CXCR4 antagonists like 

AMD3100. To further support this hypothesis, we also determined the cell surface expression of 

CXCR4 in the presence of CXCL12 (Figure 3.4B). Upon stimulation with CXCL12, a decrease of 

surface CXCR4 expression was observed, confirming the data in Figure 3.4A. Cells treated with 

CXCL12 and the antagonist AMD3100 showed enhanced CXCR4 surface expression when 

compared with CXCL12-treated cells and the levels were similar to those observed in Figure 3.3. 
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In contrast, treatment with CXCL12 and pCQ16.7 resulted in further reduction in surface CXCR4 

expression, confirming enhanced intracellular localization of the CXCR4 receptors. 

 

Figure 3.4. Effect of pCQ on redistribution of the CXCR4 receptors under stimulation with 

CXCL12. (A) U2OS cells overexpressing EGFP-CXCR4 were treated with AMD3100 (300 nM) 

or pCQ16.7 (100 μM) for 30 min before exposing to CXCL12 (10 nM) for 1 h. The cells were then 

fixed and imaged by confocal microscopy (63×). (B) Cell surface expression of CXCR4 in U2OS 

cells measured by flow cytometry. Cells were treated as described above in Figure 3.3. 

3.1.6 pCQ effect on the CXCR4/CXCL12 axis 

Cell migration assay was used to investigate the effect of pCQ on CXCR4/CXCL12 axis. 

Porous transwell inserts (pore size 8 μm, Falcon) were coated with 40 μL ice-cold diluted Matrigel 

(1:3 v/v with serum-free medium) and placed in 37 °C incubator for 2 h. U2OS cells were 

trypsinized and resuspended in serum-free medium containing HCQ, pCQ or AMD3100 for 15 min 

before adding to the inserts at a final concentration of 100,000 cells in 300 μL medium. Inserts 

were placed in a 24-well companion plate containing 20 nM CXCL12 in serum-free medium in 

each well. The cells were then incubated at 37 °C and allowed to invade through the Matrigel-

coated insert membrane for 18 h. The non-invaded cells on the upper side of the insert membrane 
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were removed by cotton swabs and the invaded cells attached on the bottom surface were fixed in 

100% methanol and stained with 0.2% Crystal Violet solution for 15 min at room temperature. Five 

different areas under 20× or 40× magnification were randomly selected and imaged using EVOS 

xl microscope. The number of invaded cells in each area was counted and the results were expressed 

as average number of invaded cells/imaging area ± SD (n=5). 

The important role of CXCR4/CXCL12 axis as a therapeutic target is often highlighted by 

its ability to promote migration and invasion of cancer cells as an important step in metastasis. Here, 

we evaluated in vitro activity of pCQ in transwell cell migration and invasion assays. We first 

applied CXCL12 as chemoattractant in cell invasion of the CXCR4-overexpressing U2OS cells 

through a layer of Matrigel (Figure 3.5). The results showed that both pCQ10.0 and pCQ16.7 were 

able to completely inhibit CXCL12-induced cell invasion at 100 μM concentration. The inhibitory 

activity was not only considerably higher than activity achieved with safe concentrations of HCQ 

(~28% inhibition), but even better than the activity of the positive control AMD3100 which showed 

about 77% inhibition. 



105 

 

 

Figure 3.5. Inhibition of CXCL12-induced cell invasion. (A) U2OS cells were treated with pCQ, 

HCQ or AMD3100 (300 nM) and allowed to invade through a layer of Matrigel upon stimulation 

with CXCL12 for 18 h. (B) The number of invaded U2OS cells was counted and results are shown 

as mean number of invaded cells/40× view ± SD (n≥3). (****p<0.0001 vs. HCQ; ANOVA with 

Tukey's multiple comparison test.)  

The effect of pCQ on inhibiting CXCL4/CXCL12 chemokine axis was also evaluated by 

examining the activity on downstream signaling targets of CXCR4. Western blot was used to 

evaluate the effect of pCQ on inhibiting the phosphorylation of ERK induced by CXCL12 in 4T1 

cells. The cells (5 × 106) were seeded 16 h prior to the treatment. The cells were washed with PBS, 

and incubated with AMD3100 (300 nM), HCQ, or pCQ in serum-free medium for 4 h before 20 

min incubation with mouse CXCL12 (100 ng/mL). Total protein was extracted as above and 
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separated by SDS-PAGE. The samples were transferred to nitrocellulose membrane, followed by 

probing with pERK antibody and incubation with HRP-linked secondary antibody. GAPDH and 

ERK were used as housekeeping controls. Quantification of the band intensities was performed by 

ImageJ. The results are shown as mean of duplicate experiment (n =2).  

ERK is one of the key downstream targets phosphorylated upon CXCR4 activation by 

CXCL12. Upregulation of pERK is directly associated with cancer cell migration and invasion 

[212]. Here, 4T1 cells were treated with AMD3100 (300 nM), HCQ (20 µM), or pCQ (100 µM) 

for 4 h followed by 20 min incubation with CXCL12 before Western blot analysis. As shown in 

Figure 3.6, pERK levels more than doubled after CXCL12 stimulation, and AMD3100 could inhibit 

the process. HCQ showed weaker inhibitory effect on pERK than AMD3100. In contrast, both 

pCQ10.0 and pCQ16.7 markedly decreased pERK levels, even more so than AMD3100. This 

finding provides supporting evidence that the mechanism of action of pCQ involves regulating the 

CXCR4/CXCL12 chemokine axis. The U2OS cells used in this study have impaired ERK signaling 

and were thus not used in this experiment. 

 



107 

 

Figure 3.6. Inhibition of pERK by pCQ. 4T1 cells were treated with AMD3100 (300 nM), HCQ 

(20 µM), or pCQ (100 µM) for 4 h followed by 20 min incubation with CXCL12 (100 ng/mL) 

before lysis (n=2). (*p<0.05, **p<0.01 vs. CXCL12+ untreated; ANOVA with Tukey’s multiple 

comparison test.) 

To further investigate if the inhibitory effect of pCQ on cancer cell motility observed in 

Figure 3.5 was specifically due to CXCR4 inhibition, we also performed a transwell migration 

assay using FBS as the chemoattractant. 4T1 cells were trypsinized, washed with PBS, and 

suspended in serum-free medium containing HCQ, pCQ or AMD3100 for 20 min before adding to 

the transwell inserts at a final concentration of 50,000 cells in 300 μL medium. Inserts were then 

placed in a 24-well companion plate containing medium with 10% FBS in each well. The cells 

were then incubated at 37 °C and allowed to migrate through the insert membrane for 8 h. The non-

migrated cells on the upper side of the membrane were removed by cotton swabs and the migrated 

cells attached on the bottom surface were fixed, stained, imaged and counted as described above. 

Results were expressed as average number of migrated cells/imaging area ± SD (n =6). 

FBS contains a complex mixture of proteins that serve as chemoattractants for cancer cells. 

4T1 cells were treated with pCQ, HCQ, and AMD3100 and allowed to migrate through the 

membrane inserts for 8 h (Figure 3.7). Specific CXCR4 inhibitor AMD3100 showed no inhibition 

of FBS-induced cell migration despite the high concentration (20 µM) used. In contrast, treatment 

with HCQ decreased cell migration by ~26%. Both pCQ10.0 and pCQ16.7 demonstrated even 

greater inhibition of the cell migration than HCQ. For example, pCQ10.0 decreased cell migration 

by 63% at 20 µM and by 86% at 100 µM. These results suggest that the inhibitory activity of pCQ 

in the cell migration and invasion studies is not CXCR4/CXCL12 specific. It appears that pCQ 

exerts its effect in a relatively non-specific and broad way that includes effects on other signaling 

pathways responsible for cancer cell motility. 



108 

 

 

Figure 3.7. Inhibition of FBS-induced cell migration. (A) 4T1 cells were treated with pCQ, HCQ 

or AMD3100 (20 µM) and allowed to migrate through porous membrane upon stimulation with 

FBS for 8 h. (B) The number of migrated 4T1 cells was counted and results are shown as mean 

number of invaded cells/20× view ± SD (n≥3). “Background” represents number of randomly 

migrating cells in the absence of any chemoattractant. “Untreated” represents the number of 

migrating cells in the presence of FBS. (****p<0.0001 vs. HCQ; ANOVA with Tukey’s multiple 

comparison test.) 

3.1.7 Antimetastatic activity in vivo (This work was completed by Dr. Jing Li, research 

instructor in Dr. Oupicky’s lab.) 
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All animal experiments followed a protocol approved by the University of Nebraska 

Medical Center (UNMC) Institutional Animal Care and Use Committee. Animals were placed in a 

facility accredited by the Association for Assessment and Accreditation of Laboratory Animal Care 

upon arrival. A total of 40 female Balb/c mice (8 weeks old) were randomly assigned into five 

groups (n = 8). Half a million 4T1 cells were treated with HCQ (20 μM), pCQ10.0 (100 μM) or 

pCQ16.7 (100 μM) for 4 h before intravenous injection via the tail vein (in 100 μL PBS). The 

animals were then intravenously administrated with HCQ (10 mg/kg or 30 mg/kg), pCQ10.0 (10 

mg/kg), or pCQ16.7 (10 mg/kg) on day 3, 5, 7 and 9 for a total of four doses. The animals were 

sacrificed on day 11, and the lungs were inflated with 30% sucrose followed by fixation in Bouin's 

solution for 18 h. The lungs were then stored in 70% ethanol before further tissue processing. Each 

of the five lobes was separated and all surface tumors were counted using dissecting microscope. 

After counting, the lungs were sectioned and stained with H&E at the UNMC core facility. Major 

other organs, including heart, liver, spleen and kidneys were also harvested, fixed in 4% 

paraformaldehyde, sectioned and stained with H&E. Blinded histological analysis of the tissues 

was conducted by a trained pathologist at the UNMC core facility. 

To investigate if the ability of pCQ to inhibit cancer cell migration and invasion in vitro 

translates into decreased metastasis in vivo, we used an experimental lung metastasis model of the 

4T1 breast cancer. In this model, cancer cells are injected intravenously (i.v.) to colonize the lung 

and form lung metastasis. After the cell injection, the treatments were given via tail vein i.v. 

injection. The following five experimental groups were tested: (i) untreated (saline), (ii) HCQ (low 

dose, 10 mg/kg body weight), (iii) HCQ (high dose, 30 mg/kg), (iv) pCQ10.0 (10 mg/kg HCQ 

equivalent), and (v) pCQ16.7 (10 mg/kg HCQ equivalent). The lung tumors were allowed to grow 

for 11 days and the mice were sacrificed. The total tumor burden in the lungs was quantified by 

counting total number of visible surface lung metastases (regardless of their size) and further 

analyzed by H&E staining of lung tissue sections. As shown in Figure 3.8A, treatment with low 
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dose HCQ exhibited no activity, while the high dose HCQ treatment resulted in a decreased number 

of surface lung metastatic lesions compared to the untreated group, however the difference was not 

statistically significant. The results with pCQ showed that pCQ16.7 had the highest antimetastatic 

activity even though only a low dose (10 mg/kg HCQ equivalent) was used. This antimetastatic 

inhibitory effect was higher even than the control HCQ used at the high dose. Interestingly, 

pCQ10.0 had no significant effect on the number of lung metastases but the size of the lung tumors 

in animals treated with pCQ10.0 was smaller than in the untreated animals. The low in vivo activity 

of pCQ10.0 was likely due to insufficient dose and less pronounced and slower effect on changes 

in the CXCR4 surface expression as suggested by the results in Figure 3.3. 

In addition to surface lung metastases, we also evaluated the tumor burden in the lungs by 

histopathological analysis (Figure 3.8B). H&E staining of the lung sections revealed that the 

number of metastases in the lungs correlated well with the number of surface lesions. Treatment 

with pCQ16.7 resulted not only in a decreased number of metastases in the lung, but also smaller 

sizes of the metastases. Untreated animals typically exhibit signs of mortality related to the tumor 

burden in the lungs around 14-18 days after injection of the 4T1 cells. We therefore expect the pCQ 

treatment may improve animal survival since we observed significantly reduced tumor burden in 

the lungs as late as day 11. These in vivo results provide important evidence for antimetastatic 

activity of pCQ16.7 in 4T1 lung metastatic model, which is one of the most aggressive cancer 

models in mice. The significant enhancement of antimetastatic activity of pCQ16.7 compared with 

HCQ was confirmed not only by the overall decrease in the lung metastases, but also by the ability 

to achieve such effect at a much lower dose than HCQ. 
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Figure 3.8. Antimetastatic activity of pCQ in experimental 4T1 lung metastasis model. 4T1 cells 

were injected i.v. in Balb/c mice, followed by 4 i.v. doses of pCQ or HCQ. L = low dose (10 mg/kg 

HCQ equivalent, H = high dose (30 mg/kg HCQ equivalent). (A) Total number of surface lung 

metastases. Results shown as average of total number of surface lung mets ± SD (n = 8) (**p<0.01; 

***p<0.001). (B) Representative images of the whole lung and H&E staining of the lung tissue 

sections (4× and 10×). 

Although exhibiting significantly lowered toxicity in vitro compared with HCQ, it was 

important to investigate the possible toxicity of pCQ in vivo. As illustrated in Figure 3.9A, no 
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apparent loss of body weight was observed in any of the treatment groups until the end of the 

experiment, indicating that pCQ is well tolerated when given systemically. To further explore the 

effect on major organs including heart, liver, spleen and kidney, a blinded histopathological 

examination on H&E stained tissue sections was performed by a pathologist (Figure 3.9B). No 

significant morphological differences or tissue damage were observed in any of the treatment 

groups when compared with the untreated controls. These results confirm safety of pCQ16.7 after 

multiple administered doses in vivo. 

 

Figure 3.9. Toxicity evaluation of pCQ in vivo. (A) Relative body weight. Results shown as % 

body weight relative to the body weight on day 0. (B) H&E staining of major organs in different 

treatment groups (heart 20×, liver 20×, spleen 20×, kidney 10×). 

3.1.8 Survival study (This work was completed by Dr. Jing Li, research instructor in Dr. 

Oupicky’s lab, and Dr. Oupicky’s lab in China Pharmaceutical University.) 

Animal experiments were performed following rules of Animal Use Committee of China 

Pharmaceutical University. A total of 24 female Balb/c mice (8 weeks old) were randomly assigned 
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into three groups (n = 8). Half a million 4T1 cells treated with HCQ (20 μM) or pCQ16.7 (100 μM) 

for 4 h were intravenously injected via the tail vein (in 100 μL PBS). The animals were then 

intravenously administrated with HCQ (10 mg/kg) or pCQ16.7 (10 mg/kg) on day 3, 5, 7 and 9 for 

a total of four doses. Animal body weight and survival were monitored.  
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Figure 3.10. (A) Survival curve of experimental lung metastasis model of the 4T1 breast cancer. 

(B) Body weight changes of the animals treated by PBS, HCQ and pCQ16.7. 

 Survival curves were shown in Figure 3.10A. All animals in control group treated with 

PBS died in day 19. The survival of HCQ treated group did not show significant difference 

compared to control group. The pCQ16.7 treated group prolonged the animal survival compared to 

control group, with p<0.005 by Logrank Test. However, there was no statistical difference between 
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the HCQ and pCQ16.7 groups. The body weight changes exhibited that animals in control and 

HCQ treated groups showed fast decrease after the treatment. However, there was no significant 

difference among the three groups. This preliminary result demonstrated the therapeutic potential 

of pCQ on cancer metastasis.      

In conclusion, we developed CQ-based polymeric drugs with antimetastatic activity. The 

pCQ exhibited lowered cytotoxicity, enhanced inhibition of cancer cell migration and invasion, and 

improved antimetastatic activity in vivo when compared with parent HCQ. The preliminary survival 

study showed that pCQ prolonged the survival of animals bearing experimental lung metastasis of 

4T1 breast cancer. Although not fully understood yet, our results revealed that pCQ mechanism of 

action involves, in part, inhibition of the CXCR4/CXCL12 chemokine axis. These results disclose 

pCQ for combination anticancer therapy to achieve simultaneous antimetastatic effect. 

3.2 Clicked CQ copolymers for inhibition of cancer cell migration 

We have reported synthesis of pCQ by copolymerization of HPMA and MA-CQ. The 

reported pCQ copolymers demonstrated unexpectedly enhanced inhibitory activity of cancer cell 

migration and experimental lung metastasis as polymeric drugs when compared to HCQ. However, 

CQ was conjugated to the pCQ copolymers through ester bonds, which made them susceptible to 

degradation in vivo, which meant that we were unable to unequivocally dissect the therapeutic 

contribution of the polymeric versus small molecule form HCQ. The goal of this study was to 

synthesize non-degradable pCQ (NpCQ) and to compare its pharmacologic activity with the 

degradable pCQ. The detailed synthesis methods were reported in 2.4-2.9. NpCQ copolymers were 

synthesized by a combination of click chemistry and RAFT polymerization. Two synthetic 

strategies were utilized for the preparation of NpCQ. First, direct RAFT polymerization of MA-

tCQ was used to obtain RNpCQ, in which R represented RAFT polymerization. Second, a post-

modification of alkyne-containing HPMA copolymer (pHP) was accomplished by click reaction of 

CQ-N3 to obtain CNpCQ, in which C represented click chemistry. Copolymers used in this study 
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are summarized in Table 3.1. RpCQ was copolymers synthesized from MA-CQ and HPMA by 

RAFT polymerization served as control. The inhibitory activity of NpCQ on breast cancer cell 

migration was investigated. 

Table 3.1. Summary of polymer characterization of NpCQ study. 

 

CQ content (mol %) Mw 

(kDa) 

Mw/Mn Pn 

in feed In copolymer 

RpHPMA - - 10.7 1.1 75 

RNpCQ 16.7 15.7 20.3 1.1 103 

CNpCQ - 16.7 21.4 1.2 107 

RpCQ 16.7 15.3 17.7 1.1 97 

pCQ 20.0 16.7 34.5 1.1 185 

3.2.1 Cytotoxicity of NpCQ polymers 

Cytotoxicity of CQ-containing copolymers was tested utilizing CellTiter-Blue Cell 

Viability Assay (Promega,Madison,WI) in 4T1 cells according to the manufacturer's protocol. Cells 

were seeded in 96-well plates at a density of 6000 cells/well. After 16 h incubation, the medium 

was replaced by 100 μL of treatments in complete cell culture medium. The cells were incubated 

for 24 h. Then the treatment media was replaced by 20 μL of CellTiter-Blue reagent and the cells 

were incubated for another 1 h. The fluorescence intensity [I] at 560Ex/590Em was measured by 

SpectraMaxM5e Multi-Mode microplate Reader (Molecular Devices, CA). The relative cell 

viability (%) was calculated as [I]treated / [I]untreated × 100%. 

HCQ exhibited highest toxicity at 30 µM in 4T1 cells. At 30 µM, cell viability of all the 

polymer-treated groups was higher than 90 % in 4T1 cells, when the cell viability in the HCQ-

treated group was 75 % in 4T1 cells (Figure 3.11). NpCQ showed similar cytotoxicity as pCQ, 
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which indicated that addition of triazole group between CQ and polymer backbone did not 

significantly influence the cytotoxicity of the copolymer.   

H
C

Q

R
p

H
P

M
A

p
C

Q

R
p

C
Q

C
N

p
C

Q

R
N

p
C

Q

0

5 0

1 0 0

C
e

ll
 v

ia
b

il
it

y
 (

%
)

0  M 3 0  M

 

Figure 3.11. Cytotoxicity of CQ-containing polymers in 4T1 cells at CQ concentration of 30 µM.  

3.2.2 Effect of NpCQ on 4T1 cancer cell migration 

4T1 cells were suspended in serum-free medium containing HCQ and copolymers after 

trypsinized and washed with PBS. After 20 min, the cell suspension was added to the transwell 

inserts at a final concentration of 50,000 cells in 300 μL medium. Inserts were then placed in a 24-

well companion plate containing complete culture media in each well. The cells were then 

incubated at 37 °C for 8 h. The non-migrated cells located on the upper side of the insert membrane 

were removed by cotton swabs. The migrated cells were attached on the bottom surface and fixed 

with 100% methanol followed by staining with 0.2% Crystal Violet solution for 15 min at room 

temperature. Three views/insert under 20× magnification were randomly selected and imaged using 

EVOS xl microscope. The number of migrated cells in each view was counted and the results were 

expressed as cell migration (%), which was the number of migrated cells in each group/average 

number of migrated cells in untreated group × 100% (n=3). 
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To evaluate the anti-migration effect of the CQ-containing copolymers, we first performed 

transwell assay using 4T1 cell with fetal bovine serum (FBS) as the chemoattractant. FBS 

comprises a complex mixture of proteins that provide the chemotactic signals. The cells were 

treated with HCQ, pHPMA, RNpCQ, CNpCQ, RpCQ and pCQ at equivalent CQ concentration of 

20 µM and allowed to migrate through the membrane inserts for 8 h. All the CQ-containing 

polymers demonstrated greater inhibition of 4T1 cell migration than HCQ (Figure 3.12). For 

example, noncleavable CNpCQ and RNpCQ decreased cancer cell migration by 51 % and 49 %, 

respectively. In comparison, cleavable pCQ and RpCQ decreased cell migration by 55 % and 67 %, 

respectively. Noncleavable polymers showed similar activity with no significant difference as pCQ, 

indicating that the introduction of triazole ring between CQ and polymer backbone had negligible 

impact on the activity of the polymeric drug. Interestingly, cleavable RpCQ prepared by RAFT 

polymerization showed better effect than pCQ, which may due to the well-defined polymer 

structure or the presence of different end groups. 
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Figure 3.12. Inhibition of FBS induced 4T1 migration. Inhibition of FBS-induced 4T1 cell 

migration utilizing transwell assay. The number of migrated 4T1 cells was counted in each 20× 

image (n≥3). Percentage of migrated cell in each treated group relative to the untreated group was 

shown. Background represented the number of randomly migrated cells in the absence of any 

chemoattractant. Untreated represented the number of migrated cells in the presence of FBS. 

(****p<0.0001 vs. Untreated; One-way ANOVA with Tukey’s multiple comparison test.) 

To further investigate the inhibitory activity of CQ-containing polymers on 4T1 cell 

migration, wound healing assay was conducted. 4T1 cells (2 × 105) were seeded in six-well plates 
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and cultured in complete media overnight to let the confluence reach around 70 %. An artificial 

wound was created in the monolayer with a micropipette tip (1000 µL) and the suspended cells 

were removed. After resting in complete media for 1 h, the wound of the cells were imaged using 

EVOS xl microscopy (10 ×). Then the cells were treated by HCQ, RpHPMA, CNpCQ, RpCQ and 

pCQ at equivalent of CQ concentration of 20 µM in complete media. After 48 h, the cells were 

rinsed with PBS. Pictures of the wounds were taken by using EVOS xl microscopy (10 ×) (n=3). 

Here, branched polyethylenimine (PEI, 25 kDa) was used as a control to exclude the possibility 

that the observed effect is simply a result of sequestration of the chemotactic signals by a polycation. 

The concentration of PEI applied in this experiment was calculated by the concentration of amine 

that can be protonated, which means the concentration of the ethylamine units was 40 µM. After 

48 h, the images of the wound were captured and the wound width were compared with the initial 

wound width. The wound recovery is a measure of the rate of cell migration. All the CQ-containing 

polymers showed greater inhibition of wound recovery than HCQ.  

As shown in Figure 3.13, wound recovery in the HCQ-treated group was 78%, which was 

not significantly different from untreated group of 75%. CNpCQ and RNpCQ inhibited wound 

recovery to 45% and 46%, respectively. By contrast, wound recovery of pCQ and RpCQ treated 

groups were 42% and 37%, respectively. RpCQ exhibited highest inhibitory activity on cancer cell 

migration. These results are in correspondence with the ones from transwell assay that the 

noncleavable polymers showed similar inhibitory activity of 4T1 cell migration with no significant 

difference from pCQ. Furthermore, PEI had no effect on cell migration. 
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Figure 3.13. Inhibition of 4T1 cell migration utilizing wound healing assay. The wound width was 

measured in each 10× image (n≥3). Percentage of wound recovery was shown.  (*p<0.05, **p<0.01 

vs. Untreated; One-way ANOVA with Tukey’s multiple comparison test.) 

In conclusion, an alkyne-containing methacrylamide was successfully synthesized and 

used as a universal precursor for polymer modification by CuAAC. We compared the antimigratory 

activity of the synthesized pCQ copolymers prepared by RAFT polymerization to previously 

reported pCQ in breast cancer cells using transwell and wound healing assays. The results showed 

that both cleavable and noncleavable pCQ copolymers exhibited enhanced inhibitory activity when 

compared with HCQ. These findings suggest that pCQ functions as a pharmacologically active 

polymer drug that does not require the release of the small molecule HCQ to achieve its anti-

migration effect on cancer cells. This study provides clear evidence for further development of pCQ 

as a new class of antimetastatic polymer agents with possibly unique mechanism of action that is 

not found in HCQ.      

3.3 CPT-containing reduction-responsive polymeric CQ for combinational treatment of 

breast cancer 

HPMA copolymer conjugates have been widely developed for anticancer drug delivery. 

The enhanced antimetastatic activity of pCQ makes it promising for combination treatment of 

cancer. CPT is a wide-broad anticancer agent, however, its application was restricted by poor water 

solubility and high systemic toxicity. CPT conjugated HPMA copolymers have been developed 

using a glycinecylaminohexanoyl spacer. Release of CPT was dependent on the pH. Unfortunately, 

the polymers showed bladder toxicity and no evidence of antitumor activity in clinical trial. Here, 

we designed CPT-containing HPMA copolymers with reduction-responsive linkage for targeted 

release of CPT in tumor tissue based on EPR effect and the fact that redox potential in the cytoplasm 

of tumor cells is 2-3 orders magnitude higher than that in the blood circulation. The hypothesis is 

the pCQCPT will achieve targeted delivery of CPT to the tumor site due to the reduction-responsive 
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release. Also, the combination of pCQ and pCPT will enhance the anticancer activity by inhibition 

of tumor growth and metastasis.     

 

Scheme 3.1. Chemical structure of pCQCPT, pCPT and pCQ_C used in combination delivery 

study.  

3.3.1 Cytotoxicity of polymers 

The cytotoxicity of pCQCPT, pCPT, pCPT+pCQ_C, CPT, and CPT+pCQ_C in 4T1 cells 

were tested using CellTiter-Blue Cell Viability Assasy following the manufacturer’s protocol. 4T1 

cells were seeded in 96-well plates 24 h prior to treatment at a density of 2000 cells/well. The 

medium was then replaced by 200 µL of serial dilutions of pCQCPT, pCPT, pCPT+pCQ_C, CPT, 

and CPT+pCQ_C in complete cell culture medium and incubated for 48 h. Because the ratio of 

CPT and CQ was fixed in pCQCPT, all the other groups used the same equivalent of CPT and CQ 

as the pCQCPT group. The medium was then replaced by 20 µL of CellTiter-Blue reagent and the 

cells were incubated for another 1 h. The fluorescence intensity (I) at 560ex and 590em was measured 

using SpectraMaxM5e Multi-Mode microplate Reader. The relative cell viability (%) was 

calculated as [I]treated / [I]untreated × 100 %.    
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Figure 3.14. Cytotoxicity of pCQCPT, pCPT, pCPT+pCQ_C, CPT and CPT+pCQ_C.  

 Cancer cell killing effects of CPT and CQ polymer, CPT polymer, physical mixture of CPT 

polymer and CQ polymer, CPT, and physical mixture of CPT and CQ polymer were first evaluated 

in vitro. As shown in Figure 3.14, CPT and CPT+pCQ_C showed higher cytotoxicity than the other 

groups with IC50 of 1.66 µg/mL and 1.24 µg/mL as CPT equivalent, respectively. At CPT 

equivalent of 1.24 µg/mL, the corresponding CQ concentration was 2.40 µg/mL, which should not 

show any toxicity in 4T1 cells according to our previous study in Section 3.1.1. The cytotoxicity 

of pCPT, pCPT+pCQ_C and pCQCPT was lower than CPT and CPT+pCQ_C, with the IC50 as 

13.3, 9.22 and 7.27 µg/mL, respectively. Addition of pCQ in pCPT polymers enhanced cell killing 

effect of pCPT by both physically mixing and presenting in the polymers. This may be explained 

by the fact that in both ways, CPT was inactive in the polymer but active after being released. 

Therefore, it was not very surprising that pCQCPT and pCPT+pCQ_C showed similar cell killing 

effect in vitro. However, the small molecule of CPT showed higher cytotoxicity than CPT polymer, 

which may be due to the uptake of the polymer and release of CPT from polymer took longer time 

than small molecule.      
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3.3.2 Anticancer effect in vivo (This work was completed by Dr. Jing Li, research instructor 

in Dr. Oupicky’s lab) 

The protocol of animal experiments was approved by the University of Nebraka Medical 

Center (UNMC) Institutional Animal Care and Use Committee. Orthotopic 4T1 tumors were 

established by injecting 4T1 cells (5 × 105) into the mammary fat pad of 8 weeks old female Balb/c 

mice. When the average tumor volume reached about 50 mm3, a total of 25 mice were randomly 

assigned into 5 groups (n=5) as untreated, CPT, pCPT, pCPT+pCQ_C and pCQCPT. On day 12, 

14 and 16, all the treatment groups were injected with 5% glucose containing CPT equivalent of 2 

mg/kg (CQ equivalent of 3.9 mg/kg). On day 18 and 20, the dose of CPT was increased to 4 mg/kg 

(CQ equivalent of 7.8 mg/kg). Tumor growth was monitored by digital calipers, and the volume 

was calculated as: tumor volume (mm3) = 0.5 × length × width2. Body weight of the animals were 

recorded every other day. All the mice were sacrificed on day 23 and tumors, lungs and spleens 

were collected. Tumors were weighed and used for H&E and Ki-67 staining. Blinded histological 

analysis of the tissues was conducted by a certified pathologist at the UNMC core facility. 

To investigate the anticancer activity of the polymers in vivo, we used an orthotopic 4T1 

mammary tumor model. As shown in Figure 3.15, untreated group showed fastest tumor 

development with the average tumor volume of 817 mm3 at day 23. CPT treated group showed 

smaller average tumor volume than untreated group after day 16, however, there was no statistical 

difference of the tumor volume between untreated and CPT groups at day 23. The pCPT, 

pCPT+pCQ_C and pCQCPT groups showed significantly smaller tumor volume than untreated 

group with the size of 590, 404 and 443 mm3. The pCPT+pCQ_C and pCQCPT groups also showed 

significantly smaller tumor volume than CPT group at the last day, which indicated better inhibitory 

activity on tumor growth.  
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Figure 3.15. Tumor growth curve of mice treated with CPT, pCPT, pCPT+pCQ_C, and pCQCPT. 

(*p<0.05, **p<0.01, ****p<0.0001, two-way ANOVA, n=5.) 

 Animal body weight was recorded to monitor the toxicity of the treatment. As shown in 

Figure 3.16, pCQCPT showed toxicity during the first three injections, and pCPT+pCQ_C showed 

toxicity after the dose increased to 4 mg/kg, which suggested the potential toxicity of the polymers.  
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Figure 3.16. Percentage of animal body weight compared to day 8 during treatment (n=5). 

 This orthotopic 4T1 model used in the therapeutic study also generated lung metastasis. 

Thus, we evaluated the antimetastatic activity of the polymers by comparing lung metastasis. As 

shown in Figure 3.17, pCQCPT treated group demonstrated significantly decreased number of 

surface lung metastatic tumor burdens, which indicated the therapeutic activity of pCQCPT on 

primary tumor and metastasis. 
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Figure 3.17. Average number of surface lung metastases. (*p<0.05, vs. untreated control, n=5.)  

 The H&E tumor section showed enhanced necrosis in the pCPT+pCQ_C and pCQCPT 

groups when compared to untreated group. The untreated group showed around 20% necrotic area, 

but the pCPT+pCQ_C and pCQCPT groups showed about 90% necrotic area. However, the 

immunohistochemical staining of the tumor sections for Ki67 antigen showed that pCPT+pCQ_C 

and pCQCPT groups did not decrease the Ki67 expression in the active tumor area. This suggested 

that the rate of cell turnover was higher, which may indicate that the treatment was pushing more 

cells to divide, which could contribute to the higher amount of necrosis in those lesions as most 

treatments go after actively dividing cells.  
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Figure 3.18. Representative images of histological analysis of tumor sections stained with H&E (4 

×) and Ki67 (40 ×). 

 In conclusion, we successfully synthesized reduction-responsive released pCPT and 

pCQCPT polymers that were used for codelivery of CPT and pCQ. The in vivo study showed that 

both pCQCPT and the mixture of pCPT+pCQ_C exhibited significantly enhanced inhibitory 

activity on tumor growth when compared to CPT. Moreover, pCQCPT showed enhanced 

antimetastasis activity on lung metastasis of breast tumor, which revealed the potential of pCQ in 

combination with other treatment for cancer therapy.  
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4 Conclusion 

Development of CQ-containing HPMA copolymers is reported in this dissertation. This 

work is inspired by broad application of CQ and HCQ in clinical trial for cancer treatment and fast 

development of polymeric drugs. As well-known 4-aminoquinoline antimalarial agents, CQ and 

HCQ have been proven to be effective in treatment of different cancer types when used alone or in 

combination with other drugs by potentiating the therapeutic activity of conventional anticancer 

treatments including radiation therapy, chemotherapy and immunotherapy. Remarkably, CQ and 

HCQ exhibit their effects on both cancer cells and tumor microenvironment through the multiple 

complementary mechanism of action. The most studied anticancer effect of CQ and HCQ is 

autophagy. Other than that, these drugs affect the TLR9, tumor suppressor p53 and 

CXCR4/CXCL12 signaling pathway axis that are related to tumor cell proliferation, survival, 

apoptosis and metastasis. In tumor microenvironment, CQ was shown to affect tumor vessel, 

cancer-associated fibroblasts and the immune cells. To reduce the toxicity and enhance the 

pharmacological activity of CQ, we transform the small molecules to polymeric drugs, which fits 

the size range of proteins so that the repeating units can bind to the targets by complex set of 

multivalent interactions.  

HCQ and CQ derivatives were synthesized for preparation of CQ-containing polymers. We 

first developed MA-CQ and obtained pCQ by free radical polymerization of HPMA and MA-CQ 

with an ester bond between CQ and the backbone. By comparing pCQ and HCQ, we found pCQ 

showed lower cytotoxicity, enhanced inhibitory effect of cancer cell migration and invasion, and 

improved antimetastatic activity in vivo. The preliminary survival study revealed that pCQ 

prolonged the survival of animals bearing experimental lung metastasis of 4T1 breast cancer. 

Although not fully understood yet, our results showed that pCQ mechanism of action was not 

exactly the same as HCQ, which involved, at least in part, inhibition of the CXCR4/CXCL12 

chemokine axis. These results disclosed pCQ for combination anticancer therapy to achieve 
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antimetastatic effect. Therefore, we developed the pCQ copolymers conjugating CPT by a 

reduction-responsive linker as pCQCPT to achieve codelivery of drugs and targeted release of CPT. 

The animal study showed that both pCQCPT and the mixture of pCPT+pCQ_C demonstrated 

significantly enhanced inhibitory activity on tumor growth when compared to CPT. In addition, 

pCQCPT showed enhanced antimetastasis effect on lung metastasis of orthotopic breast tumor. 

This work further confirmed the potential of pCQ for combination therapy. For further work, the 

content and ratio of CQ and CPT in polymers can be studied to obtain the optimized polymers that 

possess better water solubility and anticancer properties. Also, other chemodrugs, such as DOX 

and cisplatin can be applied to pCQ copolymers. Furthermore, instead of conjugation of anticancer 

drugs to pCQ polymers, we can physically encapsulate therapeutic agents, such as PTX, by PLA-

pCQ polymers as drug loaded nanoparticles. The core-shell structure of the nanoparticles will 

facilitate the interactions between pCQ and cell surface receptors, as well as targeted delivery of 

anticancer agents to tumor site through EPR effect. 

The pCQ polymers exhibited unexpectedly enhanced inhibitory activity of cancer 

metastasis, however, CQ was conjugated to the pCQ copolymers through ester bonds that made 

them susceptible to degradation in vivo, which meant that we were unable to unequivocally dissect 

the therapeutic contribution of the polymeric versus small molecule form HCQ. In this case, non-

degradable NpCQ was synthesized and its antimigratory activity was compared to pCQ. CQ 

derivatives as clickable CQ-N3 and polymerizable MA-tCQ were designed and synthesized to 

obtain NpCQ. The results showed that both pCQ and NpCQ copolymers exhibited enhanced 

inhibitory activity when compared with HCQ. These findings suggest that pCQ functions as a 

pharmacologically active polymer drug that does not require the release of the small molecule HCQ 

to achieve its antimigration effect on cancer cells. The pCQ mechanism of action still remains to 

be studied. We will study the effect of pCQ on signaling pathways that are related to cell motility 

and migration, such as Rho regulated stress fiber formation. We hope the application of pCQ will 
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be further explored by acknowledgement of the mechanism in treatment of cancer and other 

diseases.              
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