
University of Nebraska Medical Center University of Nebraska Medical Center 

DigitalCommons@UNMC DigitalCommons@UNMC 

Theses & Dissertations Graduate Studies 

Fall 12-14-2018 

Intra- and Inter-Molecular Signaling in a Cardiac Connexin: Role of Intra- and Inter-Molecular Signaling in a Cardiac Connexin: Role of 

Cytoplasmic Domain Dimerization and Phosphorylation Cytoplasmic Domain Dimerization and Phosphorylation 

Andrew J. Trease 
University of Nebraska Medical Center 

Tell us how you used this information in this short survey. 

Follow this and additional works at: https://digitalcommons.unmc.edu/etd 

 Part of the Cell Biology Commons, Molecular Biology Commons, and the Other Biochemistry, 

Biophysics, and Structural Biology Commons 

Recommended Citation Recommended Citation 
Trease, Andrew J., "Intra- and Inter-Molecular Signaling in a Cardiac Connexin: Role of Cytoplasmic 
Domain Dimerization and Phosphorylation" (2018). Theses & Dissertations. 322. 
https://digitalcommons.unmc.edu/etd/322 

This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It 
has been accepted for inclusion in Theses & Dissertations by an authorized administrator of 
DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu. 

http://www.unmc.edu/
http://www.unmc.edu/
https://digitalcommons.unmc.edu/
https://digitalcommons.unmc.edu/etd
https://digitalcommons.unmc.edu/grad_studies
https://unmc.libwizard.com/f/DCFeedback/
https://digitalcommons.unmc.edu/etd?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/10?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/7?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/7?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unmc.edu/etd/322?utm_source=digitalcommons.unmc.edu%2Fetd%2F322&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@unmc.edu


 

 

 

 

INTRA- AND INTER-MOLECULAR SIGNALING IN A CARDIAC CONNEXIN: ROLE OF 

CYTOPLASMIC DOMAIN DIMERIZATION AND PHOSPHORYLATION 

 

BY 

ANDREW J. TREASE 

 

A DISSERTATION 

 

Presented to the Faculty of  

The Graduate College in the University of Nebraska 

In Partial Fulfillment of the Requirements 

For the Degree of Doctor of Philosophy 

 

Department of Biochemistry and Molecular Biology 

 

Under the Supervision of Professor Paul L. Sorgen 

 

University of Nebraska Medical Center 

Omaha, Nebraska 

 

November, 2018 

 

Supervisory Committee

Paul L. Sorgen, Ph.D. 

Amarnath Natarajan, Ph.D. 

Justin L. Mott, M.D. Ph.D. 

Tahir H. Tahirov, Ph.D. 

 

  



ii 
 

INTRA- AND INTER-MOLECULAR SIGNALING IN A CARDIAC CONNEXIN: ROLE OF 

CYTOPLASMIC DOMAIN DIMERIZATION AND PHOSPHORYLATION 

Andrew J. Trease, Ph.D. 

University of Nebraska, 2018 

 

Supervisor: Paul L. Sorgen, Ph.D. 

ABSTRACT 

 

 As critical mediators of cell-to-cell communication, gap junctions (GJs) are comprised of 

membrane channels that directly link the cytoplasm of adjacent coupled cells thereby allowing for 

the passage of ions, small metabolites, and secondary messengers. Each channel is formed by 

the apposition of two connexons from adjacent cells, each composed of six connexin (Cx) proteins. 

Each GJ channel functions to promote signal propagation and synchronization of cells and tissues 

in organs. Furthermore, GJs are essential for proper propagation of cardiac action potentials from 

one cell to the next, leading to the coordinated contraction and relaxation of heart muscle powering 

circulation. In diseased human hearts, the organization and expression of Cxs in the working 

myocardium is remodeled leading to impaired impulse propagation and risk of lethal arrhythmias. 

Diverse post-translational modifications (e.g., phosphorylation) and protein partner interactions, the 

majority of which involve the carboxyl-terminal (CT) domain, serve to regulate Cx function.  

The CxCT domain serves a critical role in the regulation of all aspects of the Cx life cycle 

including trafficking, assembly, channel open states, as well as internalization and degradation. 

Importantly, the CT domain is the site at which the greatest degree of sequence divergence is 

observed between family members. A number of studies have highlighted that little conservation of 

regulatory mechanisms contained within the CT domain exists between family members. 

Furthermore, a clear understanding of the molecular determinants that influence different Cx 

channel properties between family members is lacking. Thus, investigation into the specific 
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mechanisms that regulate each family member is essential to develop a complete picture of Cx 

biology and to develop novel therapeutics with which to modulate Cx function. 

Previous work from our laboratory identified a novel feature of the Cx45CT domain, high-

affinity (KD ~ 100 nM) dimerization. Here using a combination of biophysical, biochemical, and 

cell/molecular biology approaches we demonstrate that dimerization is essential for proper Cx45 

turnover, localization, phosphorylation, and function. Additionally, we demonstrate that 

phosphorylation by three kinases that are dysregulated in heart disease alter the function of Cx45 

to promote cell coupling and consequently may contribute to the pathogenic phenotype. 
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1. Gap Junction Overview 

 At the heart of physiological function within an organism is a diverse network of coordinated 

cellular actions. This coordination is achieved by many diverse mechanisms, from the binding of 

ligand to a receptor, to changes in membrane potential elicited from the release or uptake of ions. 

These mechanisms categorized into four groups include endocrine, paracrine, juxtacrine, and 

autocrine signaling; defined as long distance, short distance, juxtaposed (contact dependent), and 

self-acting signals, respectively. Paracrine, juxtacrine, and autocrine signaling are mediated, in 

part, by the activity of the connexin (Cx) family of GJ proteins.  

GJs are composed of tetraspan integral membrane proteins that contain four 

transmembrane (TM1-4) domains, two extracellular loops (EL1 and EL2), a cytoplasmic loop (CL), 

amino-terminus (NT), and carboxyl-terminus (CT) [1-5]. Six Cx proteins (homomeric or 

heteromeric) oligomerize into connexons (hemichannels) that can further dock (homotypic or 

heterotypic) with connexons apposed from adjacent cells. Six conserved cysteines are present in 

the ELs (three in each) that are essential for proper docking and GJ formation [1-5]. GJs are semi-

crystalline arrays of 100s-1000s of individual GJ channels [6, 7]. Figure 1.1 illustrates this hierarchy. 

GJs consisting of Cx proteins are found only in vertebrates. Invertebrates possess a homologous 

family of GJ proteins known as the innexins (Inxs) [8, 9]. The homology between Cxs and Inxs is 

limited to topological and functional homology as they contain no sequence homology [8, 9]. In 

humans, there are 21 Cx proteins, while in mice there are only 20 (19 can be paired as orthologues) 

(reviewed in [10-12]). Two major nomenclature classifications for Cxs exist. The most commonly 

used system names Cx proteins for their apparent molecular weight (e.g., Cx45 is a Cx protein of 

45 kDa) [13]. The second system, based on evolutionary homology, names the Cx genes based 

on the extent of sequence similarity and the length of the CL domain [13]. This nomenclature based 

on homology, segregates Cxs into three major (α, β, or γ) and two minor (δ, or ε) classes and the 

names begin with Gj (for gap junction) and ends numerically for the order in which the specific 

family member was discovered [13]. For example, the gene for Cx43 is Gja1 as it was the first α-

Cx described.  
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Figure 1.1. Topology and organization of connexin proteins. 
A) Membrane topology of a Cx protein, having four transmembrane (TM) domains, two extracellular loops 
(EL1 and EL2), and a cytoplasmic loop (CL) as well as cytoplasmic amino- and carboxyl-termini (NT and 
CT respectively). B) Oligomerization of six Cx proteins into a connexon (hemichannel), each barrel shape 
represents a single Cx protein. C) Organization and docking of Cxs from two adjacent cells forms a single 
channel, channels cluster in semicrystalline arrays to form gap junctions, which can be of four distinct 
types (I-homomeric/homotypic, II-homomeric/heterotypic, III-heteromeric/homotypic, and IV-
heteromeric/heterotypic). Solid black lines represent the plasma membrane. 



4 
 

In general, GJs serve to allow the passage of small (≤1000 Da) cytoplasmic constituents 

including ions, small metabolites, and second messengers (e.g., cAMP) between the cytoplasm of 

coupled cells or with the extracellular space, thereby propagating and amplifying signals 

transduced from various initiating events [14]. The initiating stimuli can be in the form of growth 

factor receptor signaling, kinase cascades, ion release, cytokine stimulation, or mechanical stretch 

[15-30]. Each Cx isoform contributes a unique set of channel properties when homomeric 

homotypic channels are considered, for heteromeric and heterotypic channels there is often the 

development of novel channel properties not seen in either family member when homomeric 

(reviewed in [31]). This high degree of variability coincides with a high degree of differential Cx 

family member expression among different tissues and organs [32]. Furthermore, the Cx 

expression patterns for a given organ or tissue are regulated spatiotemporally [32]. Cxs are found 

in most tissues and organ systems in the adult under normal conditions with the exception of 

skeletal muscle and some mobile cells (e.g., sperm and red blood cells) [32]. Importantly, a given 

cell type can express multiple Cx family members simultaneously creating the possibility for the 

formation of heteromeric and/or heterotypic GJs (Fig. 1.1). This variable diversity allows Cxs to 

perform a number of highly specialized roles in various tissues and cell types.  

With widespread distribution and the high degree of interplay between family members, it 

follows that dysregulation or loss of function for a particular family member may pose deleterious 

for the host. Indeed, a number of pathologies have been attributed to dysregulation or loss of a 

particular Cx family member. For example, loss of Cx45 (genetic ablation or loss of function) results 

in death on approximately embryonic day 10 in mice due to a cushion defect in cardiogenesis [33]. 

Cx43 null mice survive throughout fetal development but suffer from perinatal lethality due to 

pulmonary outflow defects in the heart, and also exhibit anomalous lens development and germ 

line deficiency in both sexes [34-37]. Additionally, mutations within the Cx43 protein sequence 

cause oculodentodigital dysplasia (ODDD) [38-45]. Other Cxs have also been attributed to human 

maladies including Cx32 which is shown to be causal to X-Linked Charcot-Marie-Tooth disease 

(CMTX), or Cx26 for which a subset of mutations lead to non-syndromic hearing loss in humans 
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while homozygous null mice die around embryonic day 11 [46-55]. Furthermore, mutations in Cx46 

and Cx50, the dominant lens Cxs, have been associated with cataracts (reviewed in [56]). 

In the heart, GJs play a critical role in the propagation and amplification of impulses 

originating in the sinoatrial (SA) node [57]. There are specifically four Cxs known to function in the 

heart. In decreasing order of relative expression level, the four cardiac Cxs are: Cx43, Cx40, Cx45, 

and Cx30.2 [57-60]. The bulk of impulse propagation in the working myocardium is handled by 

Cx43 (atria and ventricles) and Cx40 (atria) [60-64]. Although Cx40 is of significant interest in the 

atria, it will not be discussed in detail. In the human heart Cx45 is the first Cx expressed during 

embryogenesis, but by the time of birth has been limited to the cells of the specialized conductance 

and pace making system [65]. Here the unique properties of Cx45 channels serve to prevent re-

entrant arrhythmia by slowing conduction velocity between the ventricles and atria thereby ensuring 

sequential contraction [66, 67]. Cx30.2 is expressed in the mouse heart in a similar localization 

pattern to Cx45, and its expression is stabilized by Cx45, however, in humans the orthologue 

Cx31.9 has not been detected in the heart [68-70]. Cx30.2 therefore likely plays a mouse specific 

role in the fine-tuning of impulse propagation in the special conductance system and for the 

purposes of this dissertation will not be discussed further [68, 69]. In diseased hearts Cx expression 

is altered. A number of studies have demonstrated a primary effect of cardiac remodeling 

subsequent to ischemic events or during end stage heart failure is loss of Cx43 expression at the 

intercalated disc (ID) (reviewed in [67, 71]). This loss of Cx43 is preceded by lateralization of Cx43 

away from the ID where internalization processes have been suggested to reduce overall Cx43 

expression and limit cell connectivity [72]. In addition to remodeling of Cx43, Cx40 and Cx45 are 

also remodeled [67, 71, 73-78]. Ischemic heart disease was shown to increase overall Cx40 

expression in the ventricles, where under healthy conditions its expression is absent, specifically 

localizing in a band of working myocytes adjacent to the conduction system [71, 79, 80]. It has been 

suggested that this may be a compensatory mechanism to the loss of Cx43 coupling in the ventricle 

[79, 80]. In the atria where Cx40 is the primary Cx, its expression was shown to increase in heart 

disease, leading to increased incidence of atrial fibrillation [81]. Cx45 similar to Cx40 is not 

appreciably expressed in the healthy adult ventricular myocardium and has been demonstrated to 
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be upregulated in various heart disease states [65, 82, 83]. In end stage heart failure, work from 

Yamada et al. have demonstrated upregulation of Cx45 localizing to the ID in ventricular myocytes 

[82]. This was observed in conjunction with the typical lateralization and downregulation of Cx43 

[82, 84]. Importantly, Yamada et al. also demonstrated Cx45 and Cx43 colocalized at the ID, 

suggesting the possibility for heteromeric channels to form [82, 83]. Channel properties of the 

primary cardiac Cxs differ such that they serve specific functions with little overlap. It therefore 

stands to reason that remodeling (alterations in localization, size, or composition of the GJ plaques) 

can have significant effects on conduction properties of the heart. This is especially the case for 

the formation of heteromeric channels (e.g., Cx43/Cx45) because the properties of these channels 

can be dominated by the properties of one of the family members, or they can take on new 

properties either intermediate or novel to either homomeric counterpart [83, 85, 86]. Indeed, using 

cell and molecular biology techniques a number of groups have substantiated the existence of 

Cx43/Cx45 heteromeric channels [86, 87]. Furthermore, studies have also shown Cx45 exerts a 

dominant negative effect on Cx43/Cx45 heteromeric channels such that channel properties are 

more similar to homomeric Cx45 channels than those of homomeric Cx43 channels; altering dye 

permeability, conductance, open probability, and plaque size [83, 86, 88]. In the heart, this is 

thought to be a potential substrate for lethal arrhythmias [82, 83, 86, 88]. Therefore, the formation 

and regulation of heteromeric channels is of significant clinical interest to the therapeutic and GJ 

community alike. 

2. Gap Junction Regulation 

With the diverse set of physiological functions carried out by GJs (e.g., cell-to-cell 

communication, hemichannel functions, etc.) it is essential that they are tightly regulated. The 

regulation of GJs occurs at a number of hierarchical levels. First, Cxs are regulated 

spatiotemporally. Not every Cx family member is expressed by all cell types, and in cell types where 

multiple family members are expressed they are not always expressed simultaneously. Several 

layers of regulatory mechanisms exist to ensure proper spatial (tissue type or subcellular 

localization) and temporal (developmental stage, cell cycle stage, or stimulus response) regulation 

of GJs including transcriptional, translational, trafficking, post-translational, assembly, or turnover 
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mechanisms. This is especially true for functional regulation of GJ intercellular communication 

(GJIC). GJ functions are regulated at the plaque by various factors including but not limited to: 

phosphorylation, voltage, Ca2+, pH, and association with binding partners. Here, we will discuss the 

various regulators of Cx proteins and GJs.  

2.1 Transcriptional Regulation of Cxs 

 Typical Cx gene structure involves two (or more) exons. The first exon normally includes a 

5’-untranslated region (UTR) which is separated from the second exon by an intron of variable 

length [89, 90]. The second exon for most Cxs includes the entire protein coding sequence and the 

3’-UTR (reviewed in [91, 92]). Deviations from this scheme have been described, including 

alternative/consecutive splicing of the 5’-UTR thought to function in alternate promoter usage, 

leading to changes in mRNA stability, or altered translation efficacy (reviewed in [91, 92]). 

Furthermore, the protein coding region of the second exon can be punctuated with one or more 

introns (e.g., mCx36, hCx36, mCx39, hCx40.1) leading to alternative splice variants.  

The gene structure for Cx43 (Gja1) in mice was originally thought to only contain the two 

canonical Cx exons, however, it was more recently shown that the gene for Gja1 contains four 

additional exons totaling six overall [93, 94]. Five of the six Gja1 exons are dedicated 5’-UTR 

regions (Exons 1A-1E) and the sixth (Exon 2) includes the remaining portion of the 5’-UTR, all of 

the Cx43 coding sequence, and the 3’-UTR [93, 94]. Additionally, the Gja1 gene in mice has been 

shown to have three promoters, two of which are downstream of the originally discovered Gja1 

promoter (P1). The first, P2, is located in Exon 1A, and P3 is located in the intron that precedes 

Exon 1C. Through combinations of differential promoter usage and intron splicing this leads to nine 

different Cx43 transcripts in mice [93].  

Similar to Cx43 in mice, Cx45 (Gja7; Gjc1), exceeds the traditional two exons with five total 

exons (1A-C, 2, and 3) [90, 95]. Contrary to Cx43, however, Exons 1A-C and 2 include only 5’-

UTR, while Exon 3 contains the remaining 5’-UTR, the Cx45 protein coding sequence, and the 3’-

UTR [90]. Cx45 transcripts observed in mice suggest that Exons 1A-C splice independently to E2-

E3, or alternatively a second transcription start site exists in Exon 2, resulting in four total mouse 

Cx45 transcripts [90, 95]. The transcripts produced have been found to be tissue specific. 
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Transcripts containing Exon 1A are present in nearly all cell types where Cx45 is expressed, 

however, expression of Exon 1B and 1C transcripts are less widespread. Exon 1B transcripts are 

found only in trace amounts in the colon, and Exon 1C transcripts are found in the heart, skeletal 

muscle, lung, bladder, colon, and ovary [90, 95]. Conservation of Exon 2 and 3 sequences was 

shown between mouse and human for Gja7 [96].  

 Promoter analysis for many Cxs has revealed the presence of multiple promoters 

(reviewed in [91]). For most Cx proteins P1 (the basal level promoter) is contained approximately 

300 base pairs upstream of the transcription start site contained in Exon 1 and includes the binding 

site for numerous ubiquitous and cell/stimulus dependent transcription factors (reviewed in [91]). In 

the following paragraphs, we will highlight a number of the transcription factors and the conditions 

(if applicable) that lead to the activation of the gene. 

 Transcription factor specificity protein 1 (Sp1) is a zinc-finger transcription factor that binds 

GC rich regions of promoters. Sp1 drives basal transcription for several Cxs including Cx26, Cx32, 

Cx40, and Cx43 (reviewed in [91]). Specifically, for Cx43 analysis revealed four potential Sp1 

binding sites that contributed to Cx43 promoter activity [96]. Another study found that disruption of 

histone deacetylases by trichostatin A (TSA) induced expression of Cx43 in a Creb binding protein 

dependent manner [97]. For Cx40, ablation of the Sp1 binding sites in the promoter region by 

mutation severely impaired promoter activity [96]. Another basal transcription factor found to 

activate Cx transcription is the AP-1 complex (reviewed in [91]). The AP-1 complex consists of 

heterodimers of the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein 

(JDP) protein families and binds to the consensus sequence [TGAC (T/G) TCA] [98].  In the 

proximal promoter for Cx43 there have been two identified AP-1 binding sites in rat while only one 

site has been identified in human and mouse [99].  Activation of AP-1 mediated transcription of 

Cx43 was stimulated by transforming growth factor β (TGF-β), mitogen activated kinase 4 (MKK4), 

and Erk1/2 signaling [100] [101] [102]. In addition to Sp1 and AP-1, Wnt signaling and cAMP 

mediated transcription have also been shown to regulate at least Cx43 transcription (reviewed in 

[91]).  
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 More critical to expression of GJs in the heart and cardiac pathology are the cell/stimulus 

dependent transcription factors. Tissue specific promoter usage occurs in virtually all organs and 

tissues of the body [103]. Despite the occurrence of GJs in the majority of organ systems and 

tissues, this section will focus solely on the cardiac specific transcription factors and some of the 

functions they serve. Regular development of the cardiac tissues requires the symphonious 

function of several transcription factors including Nkx2.5, Shox2, Homeodomain-only protein (Hop), 

Iroquois homeobox 3 (Irx3), T-box transcription factors (Tbx), and GATA family transcription factors 

(reviewed in [91]). Nkx2.5 is a transcription factor that is essential for proper cardiac development 

[104]. Indeed, mutations in Nkx2.5 interfering with its DNA binding function promote cardiac 

maladies such as conduction block [105]. Importantly, binding sites for Nkx2.5 have been detected 

in the promoters of Cx40, Cx43, and Cx45 [99, 106, 107]. Interestingly, while several studies have 

concluded that Nkx2.5 acts as a transcriptional activator for both Cx43 and Cx40, at least one study 

has identified a repressive role of Nkx2.5 for Cx43 expression [108, 109]. Specifically, exogenous 

expression of a constitutively active version of Nkx2.5 showed downregulation of Cx43 expression 

within 16 hr of transduction, suggesting that subsequent heart failure was not a contributing factor 

[109]. Dupays et al. demonstrated that day E9.2 Nkx2.5 null mouse embryos lacked significant 

expression of Cx43 in the heart as the result of poorly developed ventricular trabeculae as well as 

substantially reduced gene expression of Cx45 [106]. The same study concluded that mouse 

embryos heterozygous for Nkx2.5 developed normally [106]. Furthermore, ventricular loss of 

Nkx2.5 in mice resulted in no overt structural cardiac abnormality, however, slowed progressive 

atrioventricular conduction was observed [110]. The same study also showed that while mutant 

mice perinatally expressed Cx40 in the conduction system, its expression was essentially absent 

in the adult mutants, suggesting a Nkx2.5 was not essential for perinatal expression of Cx40 but 

was required for age related continuity [110].  

 Shox2, another homeobox type transcription factor is also essential for cardiac 

development.  Mice null for Shox2 display lethality at embryonic days E11.5-13.5 and die from heart 

defects such as abnormally slow beating rhythm, and underdeveloped sino-atrial node and valves 

[111, 112]. Interestingly, Shox2 functions upstream of a number of the important cardiac 
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transcription factors including Nkx2.5 and Tbx factors [112]. For Nkx2.5, Shox2 appears to be a 

transcriptional repressor ensuring genes activated by Nkx2.5 (Cx43 and Cx40) remain repressed 

in the area of the sino-atrial node [112]. Conversely, and consistent with known expression patterns 

of Cx45, Shox2 appears to activate Cx45 gene expression to facilitate differentiation of the pace-

making system [67, 71, 75, 113].  

 Similar to Nkx2.5 and Shox2, the Hop, Irx, Tbx, and GATA families of transcription factors 

function to regulate the expression of the cardiac Cxs. Hop for example, which is expressed in the 

developing heart, is essential to development of the mature conduction system (reviewed in [91]). 

Homozygous loss of Hop results in loss of Cx40 expression throughout the heart when 

homozygous, while heterozygous knock-out of Hop reduces Cx40 expression in the atrio-

ventricular node and associated conduction system [114]. Furthermore, overexpression of Hop 

reduced expression of Cx40 in the atria in models of ventricular hypertrophy that was restored by 

the addition of the HDAC inhibitor TSA [115]. The Irx family transcription factor Irx3 functions to 

repress Cx43 and induce expression of Cx40 [116]. The Tbx family of transcription factors, namely 

Tbx2, Tbx3, Tbx5, Tbx18 also function to regulate the expression of Cxs in the heart (reviewed in 

[91]).  Cx43 and Cx40, for example, are repressed transcriptionally by both Tbx2 and Tbx3 [117, 

118]. Interestingly, the expression of Cx45 does not seem to be affected by either Tbx2 or Tbx3 

[117]. Similar to Tbx2 and Tbx3, Tbx18 suppressed the expression of Cx43, however, unlike Tbx2 

and Tbx3 it does not appear to downregulate Cx40 or Cx45 [119]. In contrast to the other Tbx 

transcription factors noted here, Tbx5 appears to be the only transcriptional activator, activating the 

expression of Cx40 in a dose dependent manner [120]. Finally, of the GATA family of transcription 

factors, GATA4 has been observed to regulate both Cx40 and Cx30.2 in mice [107, 121]. 

 In addition to regulation by transcription factors, Cx gene expression can be regulated 

epigenetically. Similar to all genes, histone modification (and modulation thereof) affects the 

expression of Cx transcripts (reviewed in [122]). Two other mechanisms described also fine tune 

the expression of Cxs: DNA methylation and the expression of microRNAs that target Cx transcripts 

(reviewed in [122]). Although these mechanisms are important for the regulation of Cxs, discussion 

of their specific nature (beyond noting they occur) is beyond the scope of this dissertation. 



11 
 

2.2 Connexin Life Cycle 

 Temporally, all functional Cx family members follow a similar expression scheme that can 

be referred to as the Cx life cycle. The Cx life cycle is closely tied to both cell cycle as well as 

extracellular stimuli (e.g., cell surface receptor activation) and begins with transcription and ends 

with turnover/recycling. A number of factors contribute to the regulation of the Cx life cycle including 

transcription factors, the interactions with protein partners, and post-translational modifications 

((PTMs); e.g., phosphorylation). This section provides an overview of the Cx life cycle and explores 

some of the factors that regulate it. Since the control of Cx expression by transcription was 

addressed in Section 2.1 it will not be addressed in detail in this section. Additionally, since the vast 

majority of studies illustrating stages of the Cx life cycle focus on Cx43, the discussion in this section 

will have a similar primary focus. 

2.2.1 Connexin Biosynthesis 

Biosynthesis of Cxs begins in the nucleus of the cell with transcription of a Cx gene by 

transcription factors.  The degree to which the gene is transcribed is a function of the combinations 

of various transcription factors present. For example, one mechanism by which Cx43 transcription 

is initiated in cell culture is activation of Wnt signaling from cell-cell contact. This leads to the 

inhibition of GSK-3β, leading to stabilization of β-catenin which translocates to the nucleus where 

it promotes transcription of a number of genes including Gja1 (Cx43; [123-125]). There are a 

number of general and tissue specific conditions and transcription factors (e.g., general - SP1, 

cardiac specific - Nkx2.5) that regulate the transcription of GJ genes (reviewed in [91, 92]). To 

further increase the diversity of Cx family member expression as well as tissue specific levels of 

expression, not all Cx genes contain the same promoters (reviewed in [91, 92]). Once transcribed 

Cx mRNAs are exported from the nucleus to the endoplasmic reticulum (ER) for protein translation.  

 Cx protein translation, like that of all integral membrane proteins, occurs on ribosomes 

studding the surface of the rough ER. However, in contrast to most proteins, the mRNA structure 

of Cx transcripts (abnormally long 5’-UTR) favors cap-independent translation [90, 126]. In cap-

independent translation, specific sequences contained in the 5’-UTR promote ribosomal entry and 

translation initiation [127, 128]. This is important for the Cx family proteins because it allows their 
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expression to bypass cellular stress responses that impact cap-dependent translation thereby 

maintaining cell coupling [127, 128]. As integral membrane proteins Cx polypeptide chains are co-

translationally inserted into the membrane of the rough ER. This is accomplished by the translation 

of hydrophobic domains (likely the TM1) which are recognized and bound by the signal recognition 

particle (SRP), halting translation. The Cx peptide/ribosome/SRP complex then docks with ER 

translocons where translation proceeds [129]. The nascent polypeptide chain is retained in the 

lumen of the translocon until translation completes and the complete protein is inserted into the ER 

membrane (secretory proteins are released into the ER lumen) [130-134]. For Cx43 integration into 

the ER membrane and folding of the general topological features (i.e., four TM domains with 

cytoplasmic NT and CT domains) occurs simultaneously [135]. Additionally, studies have begun to 

demonstrate the importance of ER resident protein partners (chaperone proteins) in Cx synthesis 

(reviewed in [136]). One example is ER resident protein 29 (Erp29) which was shown to stabilize 

Cx43 as a monomer in the ER to prevent early oligomerization of Cx43 connexons [137]. An 

important caveat revealed by the Das et al. study was the saturable nature Erp29 and thus extreme 

overexpression systems may drive early channel oligomerization [137]. In addition to Erp29, the 

ER-associated cytosolic protein—Connexin interacting protein of 75 kDa (CIP75)—regulates 

expression and trafficking of Cxs [138-142]. For Cx43, CIP75 binds Cx43 over a large region of the 

CT domain (K264-Q317) where it mediates ejection from the ER lumen and transport of misfolded 

Cx43 to the proteasome via ER associated degradation (ERAD) [139-142]. It has been suggested 

that this is a mechanism of both quality control and fine tuning of expression levels [141].  

Supporting CIP75’s role in Cx quality control, treatment of cells with denaturing compounds 

increases the association of CIP75 with Cx43, and suggests that only Cx43 that is not bound by 

CIP75 escapes the ER and continues into the secretory pathway [141].  

2.2.2 Trafficking and Assembly of Gap Junctions 

Following successful translation of monomeric Cx protein, oligomerization of six Cx 

proteins into a connexon (hemichannel) and trafficking to the plasma membrane is essential for 

proper Cx function. The oligomerization of Cx channels has been described for Cx43, Cx46, Cx32, 

and Cx26 by several studies [129, 143-146]. In the studies characterizing Cx32 and Cx26, 
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oligomerization of both family members was observed to occur in ER membranes; however, an 

important caveat to the studies was the use of cell-free expression systems [129, 145, 146]. In 

contrast, Cx43 and Cx46 were demonstrated to oligomerize in the trans-Golgi network (TGN) using 

numerous methods [137, 143, 144]. In one study, a large panel of secretory pathway inhibitors 

were used to demonstrate that Cx43 requires export from the ER to successfully form connexons 

[144]. Another study examining the oligomerization of Cx43 and Cx46 in rat osteosarcoma (ROS) 

cells also used secretory pathway inhibitors and sucrose gradient density centrifugation to 

determine that Cx43 and Cx46 were both retained in the ER as well as cis-Golgi in a monomeric 

form [143]. A follow up study then used Cxs (Cx43 and Cx32) expressed with C-terminal retention 

tags for either ER and ER-Golgi intermediate compartment (ERGIC) retention (HKKSL or AKKFF, 

respectively) [147]. The results of that study confirmed that Cx43 indeed oligomerizes in the TGN, 

while it offered support to the work of Falk et al., as Cx32 was observed to oligomerize even when 

retained in the ER [129, 145-147]. Importantly, the study also demonstrated that Cx43 and Cx46 

could form heteromeric channels and this occurred in the TGN, as co-expression of tagged Cx43 

and untagged Cx46 led to Cx43 immunoreactivity present at the plasma membrane in structures 

consistent with GJ plaques [147].  

In addition to connexon oligomerization a critical step in the Cx life cycle is trafficking from 

the ER and/or Golgi to the plasma membrane. Interestingly, a study demonstrated an early 

phosphorylation event closely following translation for Cx43 using Brefeldin A ((BFA); blocks ER to 

Golgi transport in the ERGIC) and is likely essential for subsequent maturation steps [148]. Upon 

exiting the TGN Cx43 is contained in vesicles that are trafficked along the microtubule network to 

be delivered to the plasma membrane [149-152]. A number of phosphorylation events occur during 

trafficking that regulate the vast number and types of protein interactions that are critical for efficient 

transport to the plasma membrane and subsequent membrane insertion (reviewed in [153]). These 

phosphorylation events will be discussed in greater detail in a later section dedicated to regulation 

of Cxs by phosphorylation. Of note, delivery (and insertion) of connexon containing vesicles to the 

plasma membrane appears to be random (i.e., not targeted) [135, 154]. Although, further 

characterization is required to clearly define the mechanism by which Cxs are incorporated into the 
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plasma membrane, recent studies have begun to implicate roles for the cAMP-dependent protein 

kinase A (PKA)- and actin-binding protein Ezrin as well as 14-3-3 protein in the capture and 

insertion of Cx43 containing vesicles into the plasma membrane [155-164]. Once in the plasma 

membrane, lateral diffusion processes seem to direct the connexons to the periphery of the GJ 

plaque (perinexus) [154, 165, 166]. Conversely, an alternative mechanism has been suggested in 

cardiomyocytes where trafficking via microtubules target Cx43 containing vesicles directly to the 

adherens junctions in the ID [152, 167]. 

 The final step of GJ assembly is the docking of connexons (via the ELs) and incorporation 

into the GJ proper. As Cx43 connexons from apposed cells are retained in the perinexus, they are 

generally bound by interactions with ZO-1, and release from ZO-1 coincides with docking [166]. In 

addition to ZO-1, Ca2+-dependent cell adhesion proteins such as E- and N-cadherin are important 

for GJ formation, however, further investigation is required to clearly delineate the role as studies 

have produced conflicting results [168, 169].  In one study knock-down of N-cadherin was shown 

to reduce GJ formation in NIH3T3 cells and thereby impaired GJIC [170]. Conversely, another study 

using mouse L cells concluded that loss of cadherin increased GJ formation when stimulated with 

forskolin, while cells expressing cadherins showed decreased overall Cx43 expression [171]. A 

third study investigating the role of cadherins on Cx43 expression in hepatocytes demonstrated 

that expression of E-cadherin correlated with increased GJ assembly, while N-cadherin expression 

resulted in GJ disassembly [172]. Although, the exact roles for cadherins in GJ assembly remain 

unclear, it is clear that cadherins influence GJ assembly. Additionally, catenins (cadherin-

associated intracellular proteins) also influence GJ formation. Colocalization of α-catenin with Cx32 

and Cx26 in hepatocytes as well as Cx43 in cardiomyocytes has been demonstrated [173, 174]. 

This was also observed for β-catenin in cardiomyocytes, and authors subsequently demonstrated 

the association of β-catenin with Cx43 was essential to GJ formation [174]. Additionally, recently 

our laboratory took an NMR approach and demonstrated a direct interaction between the CT 

domain of Cx43 and β-catenin that can be modulated by phosphorylation of Cx43 residues (Y265 

and Y313) via Src [175] 
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2.2.3 Internalization and Gap Junction Turnover 

Completion of the Cx life cycle requires internalization and subsequent turnover (or 

alternatively recycling) of GJs. A process that is mediated by a number of normal and pathological 

cellular stimuli, including but not limited to cell division, response to growth factors, differentiation, 

apoptosis, wound healing, depletion of cellular metabolites, and preventing the spread of toxic 

factors (preventing the by-stander effect) (reviewed in [176, 177]). Similar to the diverse stimuli that 

promote GJ turnover, a diverse set of protein interactions are required for proper turnover of GJ 

channels.  

Although Cxs are membrane proteins they uniquely have relatively short half-lives (1-5 hr) 

[178, 179]. This is somewhat variable depending on the tissue and cell type, for example in the lens 

of the eye the predominant Cxs (Cx45.6 and Cx56) seem to be more static with half-lives 

approaching 90 hr under organ culture conditions [31]. However, in the same study when primary 

cells were isolated and cultured in vitro the stability was lost, and half-lives were more consistent 

with studies of other family members [31]. Although the molecular determinants resulting in this 

stability were not identified, the authors did observe differential phosphorylation of Cx56 between 

the organ and primary cultures [31]. Consistent with observations of relatively short half-lives, Cx26, 

Cx32, Cx37, Cx43, and Cx45 have all been shown to have half-lives ranging from 1-5 hr [148, 180-

197]. This was even true for Cx43 in isolated perfused hearts suggesting the difference seen with 

lens Cxs is likely tissue specific or as the authors suggested may have been the consequence of 

large non-synchronized pools of Cx45.6 and Cx56 in the lens [31, 188].  

Degradation of GJs has been shown to occur by multiple mechanisms. The primarily 

described mechanism is through the generation of annular GJs, which are double membrane 

vesicles containing intact GJ plaques that are internalized by one of the adjoined cells [198]. It is 

generally accepted that the EL interactions between docked connexons are of sufficient strength 

that separating them into connexons is not possible [66, 86, 199, 200]. This is supported by 

evidence from immunogold labeled electron microscopy studies [66, 86, 199, 200]. Despite the 

general acceptance of this model of internalization, other groups have suggested mechanisms by 

which the GJ are disassembled into pools of connexons and then internalized by endocytic 
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mechanisms. In one study, hepatic GJs immunogold labeled appeared to disaggregate and the 

authors speculated this may represent undocking and internalization, however, were unable to 

provide concrete evidence [173]. More recent studies have provided evidence that Cx43 GJs 

partially turnover by through internalization of central connexons as new connexons are integrated 

into the GJ at the periphery [154, 201]. Exactly how this occurs remains to be determined.  

Degradation of Cx43 has been shown to involve both proteasomal and lysosomal 

pathways. In their study of perfused rat hearts Beardslee et al. used inhibitors of proteasomal and 

lysosomal degradation and determined that in both circumstances Cx43 expression levels were 

increased [188]. Interestingly, they showed that phosphorylation of Cx43 may be a critical 

determinant of which pathway was utilized. They observed increased Cx43 phosphorylation when 

lysosomal degradation was inhibited and conversely accumulation of non-phosphorylated Cx43 

when the proteasomal pathway was inhibited [188]. This was in contrast to a previous study 

demonstrating both increased Cx43 phosphorylation and GJIC following blockade of proteasomal 

degradation, suggesting the existence of cell type specific mechanisms [202].  

Additionally, Cx ubiquitination has been suggested as a contributor to GJ turnover. For 

Cx43, specific phosphorylation events have been linked to increased ubiquitination and turnover. 

Specifically, phosphorylation of key Ser residues (addressed in detail in the section on 

phosphorylation) creates a high affinity binding site for the E3 ubiquitin ligase neuronal expressed 

developmentally downregulated protein 4 (Nedd4) [203, 204]. Ubiquitination of Cx43 by Nedd4 

recruits adapter protein 2 (AP2) and clathrin to mediate internalization and transport to the 

lysosome (reviewed in [205]). In addition to AP2 and clathrin, 14-3-3 has been shown to play a role 

in the internalization and degradation of Cx43 [164, 206]. 

2.3 Channel Gating  

 Cell-cell communication via GJs is controlled by various mechanisms in the cell. A primary 

control mechanism for coupling is expression and turnover as described in the previous section. 

Additional mechanisms include phosphorylation and channel gating, the latter being an important 

control of when and to what degree channels are open.  This is important as communication must 
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be regulated for proper tissue synchronization and to control the spread of ions and metabolites. In 

this section, the three major types of channel gating will be discussed in detail. 

2.3.1 Voltage Gating 

 One of the three major types of GJ channel gating is voltage gating. Voltage gating works 

to modulate channel openness by translating changes in electrical potential surrounding the GJ 

channel into a conformational change which leads to channel closure [207]. Similar to other voltage 

regulated channel proteins, GJ proteins contain a series of charged amino acid residues that 

constitute a “voltage sensor” [208-210]. In vertebrate GJs, voltage gating can be derived from either 

the transjunctional voltage (Vj; ubiquitous, albeit to variable degrees) or transmembrane voltage 

(Vm; less common) [211]. 

In vertebrates, all GJ family members to a degree are gated by changes in Vj indicated by 

the ability of generating junctional conductance (gj) by either hyperpolarizing or depolarizing one 

cell of the coupled pair [207]. Furthermore, early studies indicating the presence of two types of Vj 

dependent gating, fast-gating and slow-gating [212]. All three of the intracellular domains are 

involved to some degree in voltage gating. The NT domain was shown to contribute to Vj 

dependence using mutational approaches abolishing key charged residues on Cx26 and Cx32 

channels [208-210]. Studies on Cx43 and Cx32 revealed a role for the CT domain in fast Vj-gating. 

Where truncation of Cx32 at residue 222, or Cx43 at residue 257 resulted in a disruption of fast 

conductance, and led to voltage gating mostly of the slow-gating type [213]. Based on the studies 

investigating the mechanisms of fast-gating the current model (“ball-and-chain”) posits the CT 

domain physically moves into proximity of the channel pore sterically blocking the conductance 

[207].  

  In contrast to Vj dependent gating, Vm dependent gating is much less common amongst 

Cx family members. Three Cxs that are gated in a Vm dependent manner are Cx43, Cx45, and 

Cx57 [214-216]. Interestingly, for Cx45 channels it was shown that Vm dependence was the result 

of two separate gates, one in each hemichannel [214]. It is suggested that Vm dependence is likely 

cell type or species specific, as Cx43 channels exhibit strong Vm dependence in oocyte expression 

systems, but rather limited Vm dependence in HeLa cells [216, 217]. It has been speculated that 
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Vm dependent gating may serve to prevent the spread of excess charge from damaged cells to 

healthy neighboring cells. 

2.3.2 pH Gating 

 In addition to voltage gating, GJ channels are also gated by changes in pH. Specifically, 

intracellular acidification, such as what occurs during ischemia, has been identified as a mechanism 

by which GJ channels close [218-221]. Similar to voltage gating during membrane depolarization 

this may be a protective mechanism by which cells suppress the by-stander affect [222]. 

Additionally, like the “ball-and-chain” model proposed for voltage gating one proposed model 

describing how intracellular acidification leads to channel closure is a “particle receptor” model, 

again involving CT-CL interactions [223, 224]. Several electrophysiological studies support the 

notion that a CT-CL interaction mediates pH gating [225-228]. For pH gating in Cx43 there is a 

clear dependence of the CT domain, as truncation of the CT domain rendered Cx43 channels pH 

insensitive and co-expression of a soluble Cx43CT domain restored pH sensitivity of the truncated 

Cx43 channels [223]. Furthermore, soluble Cx43CT increased the pH sensitivity Cx32 channels 

when co-expressed [223]. Although a similar effect was also shown for Cx40, the model may not 

apply to all Cx family members as similar truncations of Cx26 and Cx45 failed to prevent pH 

mediated channel closure suggesting alternative mechanisms may also be involved [229]. 

Interestingly, for Cx45 homotypic and Cx45/Cx43-enhanced green fluorescent protein (eGFP) 

heterotypic channels a relationship between voltage gating and pH gating has been observed [230]. 

Specifically, it was observed that as pH increased, open probability and the gj-Vj dependence 

increased, while acidification conversely had the opposite effect resulting in more channel closure 

and a decreased gj-Vj dependence [230].  In addition to the “particle receptor” interactions, a 

number of studies have shown that pH dependent changes in Cx CT domain structure occur, which 

may lead to altered affinity for the CL or other protein partners [204, 231]. For Cx43, a decrease in 

pH from 7.5 to 5.8, as would occur in ischemia, results in an increase in helical content from 

essentially 0% at pH 7.5 to 7% at pH 5.8 [231]. Increasing helical content was also detected for the 

CT domains of Cx32 and Cx45 under acidic conditions [204]. Cx hemichannels also appear to be 

pH gated as reported by a number of studies [232-235]. Trexler et al. suggested that the pH sensor 
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for Cxs is likely contained on a domain near the pore as a result of two observations [234]. First, 

intracellular application of acidic solution led to rapid long-term channel closure, while extracellular 

application resulted in closure that rapidly returned to the open state [234]. Second, extracellular 

application of weak membrane permeable acids prevented hemichannel openings under positive 

membrane potentials, while strong acids (membrane impermeable) had little effect on opening, but 

rapidly closed open hemichannels [234].  

2.3.3 Ca2+ Gating 

 Another form of GJ channel gating is Ca2+ dependent gating. Ca2+ dependent gating is an 

important effect of cellular Ca2+ signaling, and likely plays an important role in cardiac tissue where 

Ca2+ signaling is critical for proper myocyte function [236]. Ca2+ dependent gating has been 

suggested to occur via two primary mechanisms, directly via Ca2+ ion binding to Cx hemichannels 

and indirectly through the action of the Ca2+ binding protein Calmodulin (CaM) [237, 238]. The 

direct mechanism of Ca2+ ion binding is a mediator of Cx hemichannel closure [237]. In this 

mechanism Ca2+ ions bind to charged residues disrupting a salt bridge between the hemichannel 

subunits in the extracellular portion of the pore resulting in a conformational change [237]. CaM 

mediated Ca2+ gating serves to close GJ channels through Ca2+ dependent interaction of CaM with 

the cytoplasmic domains of Cx family members [238]. Ca2+ regulation has been reported for several 

Cxs including Cx32, Cx36, Cx43, Cx44, Cx45, and Cx50 [239-245]. In this mechanism increased 

levels of intracellular Ca2+ enhance the affinity of CaM for the cytoplasmic domains and the binding 

of CaM has been observed to alter secondary structure [243]. Specifically, for Cx43 CaM has been 

shown to interact with both the CL and CT domains, and induces significant helical structure in the 

Cx43CL domain [246, 247]. The induction of secondary structure may occlude the pore to ions 

[243, 246]. A similar increase in helical content was observed for the Cx32CT, however, unlike 

Cx43, Cx32 also has a CaM binding domain present on the NT where W3 has been shown to be 

critical for the interaction [248-250]. CaM was recently shown to interact directly with Cx45 via the 

CL domain, mediating channel closure [251]. Interestingly, when interacting with the Cx45CL, CaM 

was not observed to adopt a more compact structure in contrast to what was observed for Cx50 

[245, 251]. This was noted to be similar to the binding of CaM to non-Ca2+ dependent targets like 
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myosin, however, similar to other Cxs the binding of CaM to the Cx45CL was greatly enhanced by 

Ca2+ [251, 252]. In addition to the CL, CaM was also recently shown to interact with the CT domain 

of Cx45, albeit the functional implications were not explored [247]. This significance of this 

observation remains to be determined.   

2.4 Importance of the CT Domain 

 The CT domain of Cx proteins has long been understood as an important regulatory 

domain. It is a hub for protein-protein interactions, and a plethora of PTMs. Importantly, although 

significant homology of the extracellular and transmembrane domains of Cxs exist, the cytoplasmic 

domains have a large degree of divergence between family members. The CT domain containing 

the highest degree of divergence amongst the three cytoplasmic domains, and thus has long been 

hypothesized to be a determinant of differences in channel properties and regulation between Cx 

family members. In this section, we will highlight the importance of the CT to Cx function and 

regulation.  

2.4.1 Intrinsically Disordered Proteins 

 The majority of expressed proteins are folded into well-structured arrangements to carry 

out specific functions and can often be categorized by their folding.  Kinases for example contain a 

conserved kinase fold domain where the side chains of specific key residues are oriented in a 

manner which supports the catalytic activity required to attach a phosphate to a target (reviewed in 

[253, 254]). For many biochemical reactions or protein interactions, a specific 3D conformation is 

essential, and often loss of 3D structure correlates with decreased or abolished function (reviewed 

in [253, 254]). For proteins that contain stretches of contiguous residues (30 or more) that do not 

adopt structure, known as intrinsically disordered proteins, the regions of disorder are often 

essential to function (reviewed in [255]). Intrinsically disordered regions of proteins are now well 

understood to be good substrates for promiscuous protein-protein interactions. Intrinsically 

disordered regions of proteins tend to adopt secondary structure as a function of protein partner 

binding or PTM, allow for overlapping protein partner binding motifs, and provide large surface area 

for interactions to occur (reviewed in [255]). Combined these features allow intrinsically disordered 
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proteins to be highly dynamic. For Cxs, the cytoplasmic domains often adopt an intrinsically 

disordered arrangement (reviewed in [256]). 

2.4.2 Connexin Cytoplasmic Domains 

 The cytoplasmic domains of Cxs consist of the NT, CL, and CT domains and are important 

for channel gating, channel formation, and regulating channel function. These domains contain 

sites for the interactions with protein partners as well as PTMs. While the cytoplasmic domains are 

less homologous between family members than the transmembrane and extracellular domains, the 

degree of divergence between family members is greatest for the CT domain. 

 The NT domain of Cxs is the most well conserved intracellular domain between family 

members in size (reviewed in [257, 258]). For the α-type Cxs the NT is 22 residues in length, while 

for the β-type Cxs the NT is 23 residues long (reviewed in [1, 258]). Two exceptions to this are 

Cx36 and Cx47, which have 24 and 25 NT residues, respectively [259]. Despite similarity in length, 

the NT domains of different family members have been shown to adopt differing secondary 

structure [258]. The structure of the NT domains of Cx32 and Cx26 were solved by solution NMR, 

and Cx32NT was determined to be disordered, however, the Cx26NT was observed as helical in 

structure [260, 261]. Importantly, for the Cx26NT a critical bend was detected at residues 11 and 

12 which allow the first 10 residues to swing into the pore [210]. Indeed, crystallographic studies 

modeling Cx26 similarly observed the NT domain lining the vestibule of the pore where it 

contributes to ion selectivity and voltage gating [262]. Furthermore, the high-resolution crystal 

structure presented by the Maeda et al. study was that of the open Cx26 channel, and it provided 

evidence for the notion that interactions between the NT and the transmembrane helices maintain 

the open pore [262]. Specifically, a ring of hydrogen bonds formed between residues D2 and T5 of 

adjacent protomers at the narrowest point of the pore, and hydrophobic contact between W3 and 

a hydrophobic patch of TM1 on the adjacent protomer [262]. Importantly, studies investigating 

mutations in the NT domain have illustrated its importance in plaque formation, and proper channel 

function (reviewed in [258]). Furthermore, NT domain mutations of many family members have 

been linked to diseases (Cx26, Cx30, Cx30.2/Cx31.3, Cx31, Cx32, Cx43, Cx46, and Cx50) 

(reviewed in [258]). Interestingly, the effects of these mutations are diverse with some mutations 
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causing impaired trafficking and plaque assembly, others rendered channels nonfunctional, while 

still others induced cell death when exogenously expressed [168, 263-273]. Using mass 

spectrometry (MS), PTMs of the NT domain have been detected; among those are phosphorylation, 

acetylation, and hydroxylation, the functional effects of which will be addressed in more detail in 

Section 3.2 [274, 275]. 

 In contrast to the NT domain, the CL domain of Cxs has a larger degree of size variability. 

Family members can be clustered into 3 groups by the length of the CL domain (and total sequence 

homology): small (30-35 residues; α; e.g., Cx43, Cx40), medium (50-55 residues; β; e.g., Cx26, 

Cx32), and large (80-105 residues; γ; e.g., Cx45, Cx47) [12]. Similar to the NT domain, the CL also 

plays a role channel formation and gating [212]. Unfortunately, due to the dynamic and disordered 

nature of the CL domain, crystallographic studies have been unable to resolve the CL domain [262, 

276]. Meaningful structural studies have therefore been limited to the use of solution NMR and 

circular dichroism (CD) and suggest the domain is primarily disordered with a tendency to adopt 

helical character [277]. For the Cx43CL, the structure was solved in solution by NMR and revealed 

the presence of two small α-helical regions that are induced by acidification or the interaction with 

CaM [246, 277]. Analysis of CL domain peptides of Cx43, Cx32, and Cx36 using CD spectroscopy 

revealed the CL of all three family members had a tendency to form α-helices when samples were 

supplemented with the secondary structure stabilizer trifluoroethanol (TFE) [278]. Notably, this was 

attributed to the distal half of the loop (where CaM binds), the proximal portion of the loop yielded 

complex results that were difficult to interpret [278]. Despite the lack of a crystal structure of the CL 

domain, truncation studies have demonstrated the importance of the CL domain in Cx trafficking 

and channel formation [279, 280]. Cx43 synthetic mutants harboring deletion of CL residues were 

shown to be non-functional suggesting a critical role for the CL in channel function [279, 280]. 

Interestingly, while both the Cx43 Δ130-134 and Cx43 Δ130-137 were non-functional, only the 

Cx43 Δ130-134 properly trafficked to the plasma membrane [279, 280]. This finding suggested that 

a portion of the CL domain may also be critical for trafficking [279, 280]. Deletion of a similar region 

of the Cx32CL impaired GJIC measured by dye transfer suggesting the importance of the CL to 

channel function is a general feature of Cxs [281]. The CL domain is an important factor of gating 
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in both the “ball-and-chain” and “particle receptor” models of voltage and pH gating respectively, 

as well as Ca2+ gating. Critical to the function of the CL in gating, is interactions with other proteins 

(or domains; see section 2.3). The Cx43CL for example functions as the receptor in the “ball-and-

chain” and “particle receptor” models of channel gating [207, 223, 224]. Similarly, the CL of several 

Cx family members serve as a target for CaM in Ca2+ gating (reviewed in [282]).  The CL domain, 

like the NT, has been detected to be post-translationally modified by phosphorylation and 

carboxylation [274, 275, 283]. The importance of these modifications will be discussed in greater 

detail in Sections 3.1 and 3.2.  

 The CT domain of Cxs is the most variable domain between family members in both length 

and primary sequence [1]. Cx26 for example has a CT containing only 10 residues while the CT of 

Cx62 is 310 residues in length [1]. Like the NT and CL domains, the CT domain is important for 

trafficking, channel gating, and regulation, and similarly to the CL domain the CT is dynamic and 

unstructured, thus not amenable to crystallographic studies [1, 262, 276]. Solution NMR and CD 

studies have revealed the CT domain of several Cxs as primarily disordered [231, 247, 284-286]. 

While they are primarily disordered, structural studies of the CT domains of Cx43 and Cx45 

revealed they contain α-helical regions [247, 286]. The helical domains of the Cx43CT are involved 

in the dimerization of Cx43CT domains and are important for the CT-CL interaction in pH dependent 

gating [277, 286]. Interestingly, the NMR structure of transmembrane tethered Cx43CT protein 

(TM4-Cx43CT) suggested that a total of 7 helical domains were present [287]. Of the 7 helical 

domains, the two detected when the CT domain is expressed without TM4 were contained within 

slightly longer helical domains when tethered [287]. For the Cx45CT, the helical region (A331-

N361) mediates high affinity (KD ~100 nM) homodimerization and will be covered in greater detail 

in the next section [247]. The functional implications of the Cx45CT α-helical domain are a key 

portion of this dissertation and will be discussed in Chapter Two. In addition to Cx43 and Cx45, 

helical propensity was also reported for the CT domains of Cx32 and Cx36 [278]. Worth noting in 

the case of Cx32 and Cx36, the secondary structure had to be stabilized by the addition of TFE 

[278].  
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2.4.3 Connexin CT Dimerization 

 An additional feature that has been attributed to the CT domains of Cxs is homo- and 

heterodimerization [231, 247, 286]. To date, the phenomenon has been reported for Cx43 and 

Cx45 [247, 286]. For Cx43, dimerization between the two CT domains was revealed by a 

combination of NMR, in vitro crosslinking, and analytical ultracentrifugation (AUC) sedimentation 

equilibrium experiments [286]. Crosslinking of recombinant Cx43CT at various pH values 

suggested formation of a pH-dependent dimer when analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) [286]. Western blot of the same SDS-PAGE gel 

suggested the presence of even higher order oligomers [286]. Further analysis of the recombinant 

protein by AUC sedimentation equilibrium suggested that at physiological pH only 12% of the total 

Cx43CT was in dimer conformation, however, acidification to pH 6.5 and 5.8 yielded 84% and 86% 

dimer conformations, confirming the pH dependence suggested by the crosslinking experiments 

[286]. Use of NMR revealed the residues likely involved in the dimerization to be M281–N295, 

R299–Q304, S314–I327, and Q342–A348 [286]. Although dimerization of the Cx43CT was 

revealed, the affinity of the interaction was not determined [286]. Based on previous reports, our 

laboratory examined the ability of the CT domain of other primary cardiac Cxs (Cx40 and Cx45) to 

dimerize [231, 247, 286]. For the Cx40CT AUC sedimentation equilibrium suggested that very little 

Cx40CT was present as a dimer conformation regardless of pH (pH 6.0 – 5.2% and pH 7.4 – 2.3%) 

[231]. Interestingly, for the Cx45CT dimerization was detected at both physiological and ischemic 

pH [247].  Furthermore, the calculated affinity of the interaction (KD) at both physiological and 

ischemic pH were comparable, albeit slightly weaker at ischemic pH (141 nM at pH 5.8 and 97 nM 

at pH 7.5) [247]. Interestingly, this observation is in contrast to the effect of pH on the dimerization 

of the Cx43CT [247, 286]. NMR analysis revealed a number of resonance peaks that broadened 

beyond detection when 15N-labeled Cx45CT was titrated with unlabeled Cx45CT suggesting a self-

interaction [247]. Assignment of the Cx45CT resonances, identified the peaks that broadened 

beyond detection as residues A333-N361 [247]. Subsequently, residues A333-N361 were 

expressed alone and characterized by AUC sedimentation equilibrium and CD spectroscopy to 1) 

confirm these residues mediate Cx45CT dimerization and 2) determine if a structural component 
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was present [247]. AUC analysis of the A333-N361 peptide indicated it sedimented with a mass of 

approximately 13 kDa, suggesting a tetrameric complex and the calculated KD for the dimer species 

was 74 pM confirming the identity of A333-N361 as the dimerization domain of the Cx45CT [247]. 

Structural analysis of both the full length Cx45CT and Cx45CT A333-N361 were done using CD 

spectroscopy. For the full length Cx45CT the spectra revealed, similar to several other Cxs, a 

predominance of disorder, however, a small contribution of helical character was also detected 

[247]. Interestingly, the CD spectra of Cx45CT A333-N361 suggested the peptide was nearly 

entirely helical in structure, indicating it was the region contributing the helical character to full 

length Cx45CT [247]. The study also suggested that the Cx45CT dimerization was mediated by 

hydrophobic contacts between the two helices [247]. Several lines of evidence supported this: first 

molecular modeling of the energy conformers predicted the greatest number of intermolecular 

contacts to be between key hydrophobic residues along one of the α-helical faces [247]; second, a 

large buffer screen was conducted to test buffer conditions that would either disrupt hydrophobic 

or electrostatic interactions, and only buffer conditions that disrupted hydrophobic interactions also 

inhibited dimerization [247]. Confirming the hydrophobic nature of the interaction, replacement of 

the predicted key hydrophobic residues with charged residues resulted in a Cx45CT mutant that 

was dimerization incompetent [247].  

 In addition to homodimerization between CxCT domains, the propensity to form 

heteromeric channels suggests an opportunity for heterodimerization between CT domains of 

different Cxs. Indeed, these interactions have been described for Cx40CT-Cx43CT as well as for 

Cx43CT-Cx45CT [231, 247]. Although these interactions have been detected in vitro, whether or 

not they occur in the context of a GJ as well as their functional significance remain to be determined. 

Furthermore, recent unpublished work in our laboratory has suggested the detected interaction 

between the Cx45CT and Cx43CT was the result of pH differences between samples, and not likely 

a true representation of heterodimerization. However, this does not preclude the possibility the 

interaction occurs in the context of a GJ and will require further investigation. 
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3. Post-Translational Regulation of Connexins 

 Like many proteins, GJ proteins are regulated post-translationally by a number of detected 

modifications. Those described in the literature to date include phosphorylation, acetylation, 

hydroxylation, γ-carboxylation, palmitoylation, ubiquitination, SUMOylation, and nitrosylation. The 

effects of the PTMs are diverse and complex, and often specific to not only the modification but 

also the Cx family member. In this section, currently known PTMs of Cx proteins and their functional 

impacts are reviewed. 

3.1 Connexin Phosphorylation 

 The most common and well-studied PTM of Cx proteins is phosphorylation. To date 

phosphorylation has been detected on the majority of the Cx family members including Cxs 26, 32, 

36, 37, 43, 45, 46, 50, and 56 (reviewed in [288]). The Cx domain most commonly reported to be 

modified by phosphorylation has been the CT domain; however, for Cx36 and Cx56 CL 

phosphorylation has been detected, and Cx26 expressed in HeLa cells NT phosphorylation was 

also detected [274, 283, 289, 290]. Notably, Cx26NT phosphorylation has not yet been detected 

from endogenous expression systems [182, 274, 289]. The lack of detectable phosphorylation of 

Cx26 and the short nature of its CT domain has been suggested as evidence that phosphorylation 

of Cxs is not essential for channel formation (reviewed in [291]). Therefore, it is suggested that 

phosphorylation of Cxs serves to modify Cx function, either by enhancing or impairing some aspect 

of Cx regulation. Indeed, phosphorylation of Cx proteins has been linked to the regulation of virtually 

every stage of the Cx life cycle, as well as altering channel properties such as selectivity or 

conductance states (reviewed in [288, 292]).  

3.1.1 Introduction to Connexin Phosphorylation 

 Landmark studies identifying Cxs as phosphoproteins were carried out in the 1980’s and 

have laid the foundation for countless studies [293, 294]. Since those early studies, many Cx 

phosphorylation sites have been identified and characterized (e.g., 23 sites for Cx43 alone 

(reviewed in [288, 295]). A predominance of identified phosphorylation sites for Cxs are Ser/Thr 

residues. Congruent with this observation many Ser/Thr kinases have been identified that 
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phosphorylate Cx proteins (see Section 3.1.3). In addition to Ser/Thr residues phosphorylation of 

Tyr residues has also been detected for Cx proteins (reviewed in [288]). Although, a number of 

phosphorylated Tyr residues have been identified for Cxs, the number of kinases identified is rather 

low (reviewed in [288]). To date the only confirmed Tyr kinases that phosphorylate Cxs are Src, 

Fps, and epidermal growth factor receptor (EGFR) [296-298]. In the following subsections, we will 

review the methods that have been used to study phosphorylation of Cxs, the functional impacts of 

phosphorylation and identified kinases, the relationship of Src and Cx43, the significance of 

phosphorylation sites that overlap binding motifs, and finally phosphorylation of other Cx45. 

3.1.2 Methods for Studying Connexin Phosphorylation 

 Early studies investigating phosphorylation of Cxs relied on the use of radiolabeled [32P] 

orthophosphate to label proteins. Since the standard 20 amino acids do not contain phosphorus 

atoms, any protein labeled with [32P] orthophosphate, consequently must be phosphorylated. A 

drawback to this approach for identifying phosphoproteins is the requirement for highly specific 

(preferentially monoclonal) antibodies that were competent for immunoprecipitation (IP). 

Successful IP of Cx proteins from [32P] labeled cells can then be resolved by SDS-PAGE and 

detected by autoradiography [299]. While this method is useful for identifying phosphoproteins, it 

does not identify the number of phosphorylated residues nor their identity (type [pSer vs. pThr vs. 

pTyr] or specific residue). A similar approach has been used to approximate the number of 

phosphorylated residues and detect changes in phosphorylation of a Cx protein between basal 

conditions and some stimulus yielding a “phosphorylation fingerprint” for the condition, called 

phosphopeptide analysis.  The major difference between this approach and the previous is use of 

tryptic digests of the [32P] labeled proteins captured by IP, followed by 2D electrophoresis on thin 

layer cellulose [299]. A caveat of this method, is the potential for partial digests, and thus 

interpretation of the data should be conservative [299]. Finally, the classical method for determining 

the identity (pSer vs. pThr vs. pTyr) and the relative percentages of phosphorylated residues is 

phosphoamino analysis and follows a similar scheme as phosphopeptide analysis [299]. The main 

difference in these two techniques is the method of fragmentation and size of fragments, for 

phosphopeptide analysis tryptic digests are used to produce peptides of variable size, while for 
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phosphoamino analysis acid hydrolysis is utilized to generate free amino acids [299]. Following 

acid hydrolysis, the sample is resolved by 2D electrophoresis, and detected by autoradiography. 

Another difference between the phosphopeptide analysis and phosphoamino analysis are the 

conditions used in the 2D electrophoresis [299]. Major drawbacks to all of the classical methods of 

detecting Cx phosphorylation are the need for large amounts of starting material and the inability 

to identify residue specific phosphorylation and then associate that site with a specific functional 

outcome. Initial methods to identify site specific phosphorylation of Cxs were site-directed 

mutagenesis and Edman degradation (e.g., Cx43 pS368 and pS255/279/282) [300-302]. A 

drawback to Edman degradation is the limitation of “read length”. One benefit of the classical 

methods of detecting phosphorylation is the assays are amenable to using recombinant CxCT 

domains that are in vitro phosphorylated to ensure enough starting material is available. This has 

also reduced the need for excessive amounts of radioactive waste. 

 Some Cx proteins show patterns of banding consistent with slower electrophoretic mobility 

that collapse (or disappear) upon phosphatase treatment [291]. Multiple migratory bands have been 

observed for Cx32, Cx40, Cx43, Cx45, Cx46, and Cx50 [248, 303-307]. For Cx32, this consisted 

of a doublet of bands that were reactive to both general pTyr and pSer antibodies that collapsed 

into a single band of immunoreactivity only to antibodies against Cx32 [248]. Cx40 and Cx45 were 

similarly observed as a doublet when extracted from atrial tissue and HeLa cells, respectively [304, 

306]. Cx50 was also shown to migrate as a doublet, with a phosphatase sensitive slower migrating 

band extracted from mouse or mink seminiferous tubules [305]. A second study which used in vitro 

phosphorylation of GST-Cx50CT by PKA similarly observed the appearance of a slower migrating 

band after incubation with PKA, however, activation of PKA in cells did not result in the appearance 

of a second slower migrating band [307]. The study by Pelletier et al. also showed Cx46 was 

detectable as a pair of migratory bands, however, upon phosphatase treatment both bands 

decreased in intensity [305]. The authors speculated this was an indicator that Cx46, when non-

phosphorylated, was rapidly degraded although they did not explore this further [305]. Unlike the 

previous examples, Cx43 resolves into several electrophoretic bands ranging in number from three 

to five depending on the study and conditions of phosphorylation, however three are most often 
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observed (reviewed in ([308, 309]). These bands are referred to as the P0 (slow migrating; 

~42kDa), P1 (slow migrating; ~44kDa), and P2 (slower migrating; ~46kDa) bands [310]. Notably, 

Musil and Goodenough demonstrated the P2 form was present in communication competent 

normal rat kidney (NRK) cells, primarily in a detergent insoluble fraction corresponding to GJ 

plaques [144]. Furthermore, in two communication deficient cell lines (S180 and L929) neither 

insoluble Cx43 nor the P2 isoform were detected [144]. This study was the first to connect a 

potential functional role to one of the Cx43 migratory forms. Subsequently, work from our group 

and others focused on determining the identities of the Cx43 contained within each migratory band 

[311, 312]. The work of Cooper et al. demonstrated that phosphorylation of Cx43 by Casein kinase 

1 (CK1) corresponds to the P2 isoform and requires residues S325/328/330 [311]. Grosely et al. 

used a biophysical in vitro approach with phosphomimetic mutants of several known kinase 

phosphorylation sites of the Cx43CT [312]. Confirming the work of Cooper et al., the soluble and 

TM-tethered CK1 phosphomimetic (S325,328,330D) Cx43CT mutants both resulted in slowed 

electrophoretic mobility similar to what was observed for the P2 isoform [311, 312]. 

Phosphomimetic mutants corresponding to PKA, PKC, Mitogen activated protein kinase (MAPK), 

Src, and cyclin-dependent kinase 1 (CDK1, also cdc2) phosphorylated Cx43CT were also analyzed 

and only PKA and MAPK were found to result in the P1 slower migrating form [312]. Importantly, 

single substitution of only one of the residues targeted (regardless of which) for kinases that 

phosphorylate multiple sites, failed to induce an electrophoretic mobility shift [312]. The slower 

migration of phosphorylated proteins compared to their non-phosphorylated counterparts has been 

attributed to disruption of the sodium dodecyl sulfate (SDS) to protein binding ratio from the 

negatively charged phosphate as well as structural changes (kinks) induced by phosphorylation 

sites adjacent to proline residues [313, 314]. 

 To begin to unravel the functional effects of phosphorylation, site specific methods of 

identification are essential. Two modern methods have begun to help discern the effects of site 

specific phosphorylation of Cxs: MS and the development of quality phosphorylation specific 

antibodies. The current gold standard for the identification of site specific phosphorylation of 

proteins is MS. The benefits of which are the ability to reliably detect quantities of phosphoprotein 
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in the femtomole range, as well as the lack of need for radiolabeled samples [315]. Furthermore, 

MS samples can be processed and analyzed rapidly with relatively low cost. Studies using MS to 

pinpoint the locations of site specific phosphorylations have relied on instruments capable of 

tandem MS/MS (reviewed in [316]). Although this has been relatively successful, several factors 

complicate analysis.  These are the relative abundance of phosphorylated protein compared to the 

non-phosphorylated form, phosphopeptides generally produce lower signal that the non-

phosphorylated peptides, observed MS/MS properties of phosphopeptides generated by collision 

induced decay can be difficult to analyze (reviewed in [316]). As a result, enrichment of the 

phosphospecies is usually to the advantage of the investigator. Several recent technological and 

chemical advancements have been aimed at doing just this. The simplest method of enrichment 

has proven to be IP of phosphopeptides using general pTyr, pSer, or pThr antibodies [317]. While 

a number good antibodies exist for the enrichment of pTyr containing peptides, quality IP competent 

pSer and pThr antibodies are lacking [317]. A more reliable form of enrichment commonly used is 

immobilized metal affinity chromatography (IMAC) [318]. In IMAC, a solid phase utilizing various 

immobilized metal ions separates proteins to variable degree based on affinity for the metal ions, 

a classical example being the use of Ni2+ to bind His-Tag containing proteins [318, 319]. 

Specifically, phosphopeptides have noted affinity for Fe3+, and thus columns with chelated Fe3+ are 

most commonly used for enrichment of phosphopeptides [318]. Notably, acidic residues have also 

been noted to bind to Fe3+ leading to some non-phosphorylated background, however, this can be 

overcome with the conversion of the carboxylic acid moieties to their corresponding methyl esters 

(reviewed in [316]). In addition to column based enrichment, chemical alteration of the phosphate 

group to stable thiol by β-elimination and Michael addition allows for the capture of the thiol by 

column chromatography (reviewed in [316]). A final method of enrichment follows a similar work 

flow, where, after β-elimination, the resulting residue is converted to an aminoethylcysteine that 

can be recognized by Lys targeting proteases such as trypsin (reviewed in [316]). The latter method 

improves analysis of the peptides because it places the phosphorylated residue at the CT, creating 

a unique y1 ion (reviewed in [316]). Technological advances in instrumentation such as the 

employment of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) have 



31 
 

improved the detection limit of phosphopeptides and helped to simplify analysis and offer a 

quantitative method of detecting phosphorylation [320]. The high sensitivity and overall reliability of 

the technique have yielded dividends in the identification of specific phosphoresidues of Cxs 

(reviewed in [288, 316]). Indeed, a number of studies on Cx proteins have successfully used MS to 

pinpoint site specific phosphorylations from both in vitro and in vivo samples [274, 321-323].  

 In addition to MS, the development and use of phosphospecific antibodies has been crucial 

in the identification of site specific functions of phosphorylation (reviewed in [308, 309]). A number 

of studies since the mid-2000s have described the development of phosphospecific Cx antibodies 

and used them to characterize site specific functions both in vitro and in vivo [312, 324, 325]. Use 

of phosphospecific Cx43 antibodies have helped reveal (partially) the identity of the multiple 

electrophoretic bands, specifically phosphorylation of residues S325/328/330 (understood to be 

phosphorylated by CK1) contributes to the P2 form [311, 324]. Although the use of phosphospecific 

antibodies has helped to define the source of the multiple electrophoretic bands observed for Cx43, 

the picture is not as clear as one would expect. Tyr phosphorylation of Cx43 (pY265 and pY247), 

for example, was observed in the P0, P1, and P2 bands of Cx43, suggesting the nature of the 

altered mobility by phosphorylation is complex [325].  A current drawback to the use of 

phosphospecific antibodies is the lack of commercial availability for family members other than 

Cx43. Although, labs have developed phosphospecific antibodies to other family members (e.g., 

Cx37, Burt laboratory unpublished data) the efficacy and applications of use have yet to be 

determined. Important to the studies contained herein, no phosphospecific Cx45 antibodies have 

been developed to date. 

3.1.3 Serine/Threonine Phosphorylation 

 Phosphorylation of Cx proteins is an important regulatory feature. Currently, the Cx protein 

that is most well characterized in terms of the regulation by phosphorylation is Cx43, although 

phosphorylation of other family members is beginning to be unraveled (reviewed in [288, 308, 309]). 

As mentioned in the introduction for this section to date Cx31, Cx32, Cx36, Cx37, Cx40, Cx43, 

Cx45, Cx46, Cx50, and Cx56 have all been demonstrated to be phosphoproteins, through direct 
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[32P] incorporation, MS, or phosphatase sensitive electrophoretic mobility shifts (reviewed in [288, 

309]). However, since Cx43 is the best characterized it will be the primary focus of this section.   

The primary sequence of Cx43 contains a total of 39 residues that can be phosphorylated 

(intracellular, 23 Ser/7 Thr/9 Tyr). Of those 39 sites, at least 22 of the residues have been detected 

as phosphorylated by one or another detection method, including 19 Ser residues, Thr residues, 

and 3 Tyr residues [295, 308, 326-328]. Although, Thr phosphorylation of several residues has 

been detected in a human, rat, and mouse Cx43, the studies were not focused on Cx43 specifically, 

utilized shotgun approach MS, and the functional effects were not explored [329-336]. Therefore, 

Thr phosphorylation will not be discussed in further detail, and the importance of Tyr 

phosphorylation will be discussed in Section 3.1.4.  

Ser phosphorylation of Cx43 has been well described with respect to the phosphorylated 

residues, the functional effect of phosphorylation, and in many cases the kinase for the site(s) has 

been identified (reviewed in [288, 309]). Functional outcomes of Ser phosphorylation ranges from 

channel forward trafficking, channel opening and closure, and priming for internalization; ultimately 

leading to changes in cell-cell coupling [288, 308, 309]. A current list of Ser phosphorylation sites 

and their functional effects on GJIC, and the kinase (if known) are summarized in Table 1. Generally 

speaking, early phosphorylation by kinases such as PKA, Protein Kinase B (PKB/Akt), and CK1 

are associated with forward trafficking, GJ assembly, and channel opening [153, 311, 337, 338]. 

While mid- and late-stage phosphorylation by kinases including MAPK, PKC, Akt, Ca2+/Calmodulin-

dependent kinase II (CaMKII), and CDK1 promote GJ channel closure and prime Cx43 for 

internalization [153, 288, 301, 323, 339, 340]. A study by Laird et al. detected phosphorylation on 

newly synthesized Cx43 when it was blocked in the ERGIC by BFA, however the specific site and 

kinase involved were not identified [148]. The authors did note that a number of casein proteins are 

phosphorylated in the Golgi, which may suggest CK1 as the potential kinase involved [148]. Indeed, 

work from Cooper and Lampe, characterized CK1 phosphorylation of Cx43 and demonstrated 

phosphorylation of three key Ser residues (S325/328/330) regulated GJ assembly and were 

associated with fully open channels [311]. Two other Ser residues that promote forward trafficking 

of Cx43 are S373 and S364/365, phosphorylated by Akt and PKA, respectively [157, 160, 341, 
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342]. Specifically, in the perimembrane region an interaction of Cx43 with Ezrin promotes the 

phosphorylation of Cx43 S365 and S364 (and S369) by PKA, and likely primes Cx43 to interact 

with ZO-1 [343]. The interaction with ZO-1 is thought to hold Cx43 at the perinexus of the GJ where 

it can be quickly incorporated into the GJ proper when needed [166]. Interestingly, phosphorylation 

of S365 and S369 does not affect the binding of either Ezrin or ZO-1 to Cx43 [160, 343]. Importantly, 

phosphorylation of S365 is reported as a “gate keeper” site, when phosphorylated it maintains 

channels in the open state by preventing PKC phosphorylation of S368 [344]. Capture of Cx43 

containing vesicles at the plasma membrane has been reported to be facilitated by 14-3-3 [161]. 

Notably, phosphorylation of Cx43 S373 by Akt modulates the affinity of 14-3-3 and ZO-1 for Cx43. 

Specifically, it promotes dissociation of ZO-1 and association of 14-3-3, which likely coordinates 

incorporation into the GJ proper [158, 159, 164]. Once incorporated into the GJ, several protein 

interactions serve to stabilize GJs, these will be covered in detail in Section 3.1.4 focusing on Tyr 

phosphorylation. Finally, another set of Ser phosphorylation events regulate the closure and 

priming for internalization of Cx43. 

Priming of Cx43 GJ junctions for internalization begins with activation of Src kinase (will be 

addressed in Section 3.1.4.1) and downstream effectors [153]. Mid stage activation of MAPK 

(downstream of Src) leads to increasing phosphorylation of S255/262/279/282 [292, 309, 312, 345-

348]. Phosphorylation of S279/282 results in partial channel closure and the recruitment of Nedd4, 

the E3 ubiquitin ligase for Cx43, which ultimately leads to recruitment of the clathrin machinery 

[203, 349, 350]. Around the same time, loss of phosphorylation at S365 allows PKC access to 

S368, and phosphorylation of S368 leads to subcondunctance states of Cx43 and contributes to 

channel closure [344, 351]. From a structural standpoint, the study by Solan et al. suggested that 

phosphorylation of S365 by PKA, induced a structural change in the Cx43CT that restricted the 

access of PKC to the S368 site using a S365D phosphomimetic [344]. Complete channel closure 

requires S262 phosphorylation by MAPK and likely occurs simultaneously to PKC phosphorylation 

of S368 [153]. In one study, phosphorylation of Cx43 S255/262/279/282 were observed to occur at 

the same time as S368 phosphorylation when cells were treated with vascular endothelial growth  
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Table 1. Kinases that phosphorylate Cx43 Ser residues and their effect on GJIC. 
Table derived from Sorgen et al. (2018)[153]. 

Ser Phosphorylation of Cx43 

Kinase Effect on GJIC Residue(s) Phosphorylated 

PKA Promote (forward trafficking) S364/365/369/373 

PKB 
(AKT) 

Promote (forward trafficking)/Impair 
(Internalization) 

S369/S373 

PKC 
Impair (Channel closure/sub-

conductance) 
S368 

CaMKII S306 Promote 
S244/255/257/296/306/314/325/328/330

/364/365/369/372/373 

CK1 Promote S325/328/330 

CDK1 Impair (Closure/Internalization) S255/262/279/282 

MAPK Impair (Closure/Internalization) S255/262/279/282 
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factor (VEGF) [345].  Surprisingly, when cells were treated with a PKC inhibitor, decreased 

phosphorylation was observed for the MAPK sites (S255/262/279/282) and the PKC site (S368) 

suggesting that PKC phosphorylation may precede MAPK phosphorylation, at least in the context 

of VEGF stimulated cells [345]. A number of other studies reported similar results in other kinase 

programs [352-354]. Similar to forward trafficking and assembly, phosphorylation of Cx43 by Akt 

and an interaction with 14-3-3 also occurs during turnover to promote ubiquitination and 

internalization [164]. Two other kinases also phosphorylate Cx43 during the late stage of its life 

cycle, these are CDK1 and CaMKII [355-357]. CDK1 is likely a mediator of GJ turnover in response 

to cell cycle, and like MAPK phosphorylates S255/262 [355, 356]. The role of CaMKII in the 

regulation of Cx43 is unclear and the sites phosphorylated slightly ambiguous (15 Ser detected as 

phosphorylated) [357]. Prediction software only identifies four canonical CaMKII consensus 

sequences [153, 358]. Interestingly, experimental evidence of one CaMKII site (S306) has been 

shown, however, S306 phosphorylation correlated with increased cell-cell coupling [359]. 

To this point our description of Cx43 phosphorylation has been over simplified as an all-or-

none type situation to focus on the functional outcome of a specific site. In cell and tissues, 

however, the situation is much more complex as both the kinases involved and the Cxs are 

regulated spatiotemporally [338, 349].  Furthermore, it is unlikely that single phosphorylation events 

exist in isolation, almost certainly the functional outcome is a combinatorial effect of several 

phosphorylation events [338, 349]. An important caveat to this notion is that until we are able to 

follow a single connexon and resolve the contributions of each Cx subunit we must derive our 

observations from a pool of Cx proteins that may be in different stages of the life cycle or 

accomplishing different tasks. In the study by Solan and Lampe, a chronological approach to 

detecting phosphorylation events was taken. Using the PKC activating phorbol ester phorbol 

myristate acetate (also 12-tetra-decanoyl phorbol acetate; PMA) to stimulate cells they observed 

phosphorylation by Akt (S373) ranging from 5-30 min, which peaked at 5 min following addition of 

PMA and then tapered off. Phosphorylation by MAPK (S279/282) was the next phosphorylation 

site to be detected, and began to rise after 10 min and peaked around 30 min, but was detectable 

out to 60 min. Phosphorylation of S368 (PKC) began to rise gradually at around 10 min and had 
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not begun to taper off by the 60 min. They also monitored phosphorylation of the well described 

Src site Y247 which followed a trend similar to S368 [338]. Since Akt phosphorylation has been 

attributed to increased GJ plaque size stemming from enhanced forward trafficking, its seems 

counterintuitive that phosphorylation of S373 has been observed as a precursor to GJ turnover via 

internalization of annular GJs, however, the authors suggest this may be the result of two 

mechanisms (that are not likely mutually exclusive). First the enhanced forward trafficking may 

deplete the cells of intracellular Cx43 pools, and second the rapidly increasing GJ size may result 

in lower energetic requirements of internalization of the annular GJ due to reduced need for 

membrane invagination [338]. Although treatment of cells with PMA offers a good model for 

observing the effects of a specific kinase program on Cx43 turnover, the question is: How reflective 

of a physiological process is it? As it turns out, treatment with PMA closely reflects the process of 

Cx43 GJ shutdown and turnover as occurs in wound healing [338, 360]. Notably, in studies 

investigating wound healing, Cx43 phosphorylation was observed to follow the same trends; S373 

(Akt) at 5-30 min, S279/282 (MAPK) and S368 (PKC) at 15-60 min, and Y247 (Src) 30 min to 24 

hr [158, 361-363].  

Despite the breadth of knowledge we have obtained regarding the regulation of Cx43 by 

Ser phosphorylation, we have only begun to scratch the surface and a number of questions remain 

to be answered. First, and perhaps most important: How are other Cx family members regulated 

by Ser phosphorylation? It is tempting to use Cx43 as the model Cx due to its near ubiquitous 

expression and the degree to which it is characterized with respect to phosphorylation, however, 

as noted in the coming section on Cx45 phosphorylation a number of opposite effects have been 

observed between Cx43 and Cx45 (see Section 3.1.5 on Cx45 phosphorylation). Furthermore, 

several notable differences have been seen between Cx43 and other family members also, 

including Cx32 (see chapter 6), Cx37 [364], and Cx36 [290]. This leads to a second important 

question: When multiple Cxs are expressed and heteromeric channels are present what happens 

to the regulation of these channels by phosphorylation? An example is in the working myocytes of 

the ventricle when Cx45 is expressed in the failing heart [82]. Since both Cx43 and Cx45 are 

expressed in the same cell and exposed to the same kinase programs, what determinants maintain 
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Cx45 containing (homomeric and Cx45/Cx43 heteromeric) connexons at the ID? The latter 

question is one of the focuses of this dissertation. 

3.1.4 Tyrosine Phosphorylation 

 Tyr phosphorylation of Cxs is of significant current interest. While Ser phosphorylation has 

been very well characterized for Cx43, Tyr phosphorylation has not. Interestingly, Tyr 

phosphorylation appears to have a more dominant effect on channel function than Ser [288, 309]. 

Only a small number of Tyr kinases have been identified that modulate Cx43 function (Src, EGFR, 

Tyk2, Ephrin receptors B1 and B4) [296-298, 323, 365, 366]. In this subsection, we will discuss the 

importance of Tyr phosphorylation to Cx43 highlighting the special case of Src kinase. 

3.1.4.1 Role of Src with Cx43 

One of the most notable (and well-described mechanistically) kinases that phosphorylates 

Cx43 is pp60-Src (Src) [293, 367, 368]. The Src family of kinases, are segregated into 3 

subfamilies: SrcA (Src, Yes, Fyn, and Fgr), SrcB (Lck, Hck, Blk, and Lyn), and Frk in its own 

subfamily [369].  Structurally the Src family of kinases consist of a highly conserved NT region that 

contains residues which are modified by lipid moieties (myristoylation - all members; palmitoylation 

- subset) which confer plasma membrane anchoring [369]. Additionally, they all contain SH2, SH3, 

Tyr kinase, and C-terminal domains [370]. For the canonical member, c-Src, activation of the kinase 

requires phosphorylation of a key Tyr residue (Y416) and loss of autoinhibitory phosphorylation of 

another Tyr residue (Y527) [370]. Constitutively active Src (v-Src) lacks the autoinhibitory Y527 

and thus does not require dephosphorylation for activity and consequently has been a tool 

frequently used to study the regulation of Cx43 by Src [325, 371]. To date phosphorylation of three 

key Tyr residues of Cx43 by Src have been identified (Y247, Y265, and Y313) [295, 325]. The 

mechanism by which Src phosphorylates Cx43 has been well described [72, 372-374]. The general 

scheme is once active, Src associates with the Cx43CT on its proline rich region (P274-P284, 

containing a PXXP motif), through the Src SH3 domain facilitating phosphorylation of Cx43 Y265, 

this in turn creates an SH2 binding site [372-374]. Subsequent binding of the Src SH2 domain to 

pY265 then allows for the phosphorylation of Y247 and Y313 [295, 373, 374]. Notably, a Cx43 

mutant (Y265F) drastically reduced Y247 phosphorylation and failed to co-immunoprecipitate (co-
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IP) v-Src when cotransfected into HEK293 cells, experimentally demonstrating the importance of 

Y265 phosphorylation to phosphorylation of Y247 [372]. Recent work from our laboratory confirmed 

these results using co-transfection of v-Src and Cx43 (Y265F) into HeLa cells, and additionally 

demonstrated a similar effect on Y313 phosphorylation [295].  

Several studies investigating the relationship of Src and Cx43 (in numerous systems) have 

come to the same conclusion: Src phosphorylation of Cx43 disrupts GJIC by promoting GJ turnover 

[295, 325, 340, 375].  Recent studies have demonstrated indirect effects on GJIC mediated by 

activation of Src including increased phosphorylation by MAPK and PKC, as well as decreased 

phosphorylation by PKA [325, 373, 374]. When Lin et al. studied the effect of site specific mutations 

of Cx43 on GJIC in a Cx43-KO mouse cell line, they observed Cx43 mutants Y247F, Y265F, and 

Y247F/Y265F to be resistant to effects of v-Src co-transfection [373, 374]. Similarly, work from our 

laboratory noted resistance to v-Src mediated GJ disassembly in HeLa cells expressing mutants of 

Cx43 (Y247F, Y265F, Y313F, Y247F/Y265F, and Y247F/Y265F/Y313F), however contrary to the 

Lin study, only the triple mutant was completely resistant to the effects of Src [295, 373, 374]. 

Contrary to both of these studies, in oocytes, injection of v-Src was still capable of downregulating 

gj for the Cx43 Y247F, Y265F, and Y247F/Y265F mutants [376]. Whether this reflects the effect of 

Src on activating the MAPK and PKC pathways, or the requirement of phosphorylation on Y313 

was not determined. Based on the studies by Zheng et al. and Solan and Lampe it is likely a 

combination of these [295, 325].  

 The phosphorylation of Cx43 by Src has both direct and indirect effects on GJIC. The 

indirect effects as mentioned above, include the activation of parallel pathways (MAPK and PKC) 

that lead to GJ closure and turnover [328]. The direct effects of Src are mediated specifically by the 

phosphorylation of Y247, Y265, and Y313 (reviewed in [153]). Although, this will be covered in 

detail in the following section a brief synopsis is: Src phosphorylation sites (Y247, Y265, and Y313) 

occur in the binding motifs for proteins understood to stabilize GJ plaques (β-Tubulin and 

Developmentally regulated brain protein 1 (Drebrin)) [295, 377, 378]. Furthermore, Src directly 

titrates ZO-1 binding away from Cx43 [72, 286]. 
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3.1.4.2 Phosphorylation in Binding Motifs 

 Regulation of Cx43 by phosphorylation can be the result of a number of mechanisms: the 

addition of the negative charge can alter secondary structure, influence pore size and selectivity, 

or alter the affinity of protein partners. In this section, our focus is on describing the role of 

phosphorylation in various binding motifs on the Cx43CT. A number of phosphorylation sites on 

the Cx43CT overlap with the binding motifs of protein partners and thus could be expected to (at 

least in part) influence the binding of the protein partner (see Figs. 1.2 and 1.3) [153]. This section 

will be broken up into two primary focuses where phosphorylation sites overlap binding motif: 1) 

interactions involved in forward trafficking and GJ assembly, and 2) interactions involved in 

disassembly, internalization, and turnover of GJs.  

During forward trafficking phosphorylation influences a number of key interactions. First 

phosphorylation of S373 by Akt (or PKA) disrupts the binding of ZO-1 to the far CT of Cx43 and 

promotes the binding of 14-3-3 [158, 159, 341, 343]. In a nearby region of Cx43, the minimal binding 

motif for Ezrin (enhances PKA mediated phosphorylation of S373) was identified by using a peptide 

scanning approach (366RASSR370), notably this contains S368 (PKC) and S369 (PKA) and S365 

(PKA) directly precedes the sequence [160, 309, 341]. Surprisingly, however, phosphorylation of 

these sites did not affect the binding of Ezrin to Cx43 [160]. Similarly to Ezrin, ZO-1 which binds 

over S364-I382 was not affected by the phosphorylation of either S364 or S369 [341]. Whether 

S368 affects the binding of ZO-1 remains to be determined. 

In GJ disassembly and turnover, the influence of both Ser phosphorylation and Tyr 

phosphorylation has been noted [153]. A number of important interactions with cytoskeletal 

anchoring proteins (β-Tubulin, Drebrin, and ZO-1) are all required to stabilize GJ plaques [153]. A 

commonality between these interactions is the ability of all three to be modulated by the activity of 

Src. For β-Tubulin, which interacts with Cx43 in a region covering Y247, use of non- and 

phosphorylated (Y247) Cx43 peptide (K234–D259) via NMR demonstrated that phosphorylation of 

this site directly inhibited the binding of β-Tubulin to Cx43 [377]. Similarly, Drebrin which interacts 

with three regions of the Cx43CT (K264-T275; S282-T290; and R299-G321; over Y265 and Y313)   
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Figure 1.2. Protein partners that directly interact with the Cx43CT domain to promote intercellular 
communication.  
The black line represents Cx43CT domain residues 234-382. Provided for each Cx43CT protein partner (circle) is its diameter (in 
Å) as estimated from their molecular weight, and number of amino acids (aa), and the Cx43CT residues affected as a result of the 
interaction (lines). If the protein partner is a kinase or phosphatase, the Cx43CT residues affected are labeled on the Cx43CT 
(circle or triangle). Abbreviations are as follows: β-tubulin (β-tub), T-cell protein Tyr phosphatase (TC-PTP), Connexin interacting 
protein 75 kDa (CIP75), Ubiquitin-associating domain (UBA), Casein kinase 1 (CK1), Protein kinase A (PKA), Zonula Occludens 
1 (ZO-1), and Protein kinase B (AKT). Kinases have been highlighted (shaded circle). Reprinted from Sorgen et al., (2018).  
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Figure 1.3. Protein partners that directly interact with the Cx43CT and Cx43CL domains to impede intercellular 
communication.  
The black lines represents Cx43CT domain residues 234–382 and Cx43CL domain residues 100–158. Provided for each Cx43 CT 
and CL protein partner (circle) is its diameter (in Å) as estimated from their molecular weight, and number of amino acids (aa), and 
the Cx43CT residues affected as a result of the interaction (lines). If the protein partner is a kinase, the Cx43CT residues affected 
are labeled on the Cx43CT (circle). Abbreviations are as follows: Calmodulin (CaM), Src homology 3 domain (SH3), Tyr kinase 2 
(Tyk2), Mitogen-activated protein kinase (MAPK), Neural precursor cell expressed developmentally down-regulated protein 4 
(Nedd4), Cyclin-dependent kinase 1 (CDK1), Tumor susceptibility gene 101 protein (Tsg101), Ubiquitin E2 variant domain (UEV), 
Protein kinase B (AKT), Protein kinase C (PKC), matrix metalloproteinase-7 (MMP7), and Ca2+/calmodulin-dependent protein 
kinase II (CaMKII). Kinases have been highlighted (shaded circle). Reprinted from Sorgen et al., (2018) 
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is inhibited by phosphorylation of these residues [295, 378].  The initial study by Ambrosi et al. 

reported phosphorylation of Y265 (through the use of a Y265D mutant) was sufficient to disrupt 

Drebrin binding, however, recent work from our laboratory suggests complementary 

phosphorylation of Y313 is also required [295, 378]. Notably, when Drebrin is depleted in cells, 

Cx43 is internalized and degraded resulting in impaired cell-cell coupling [379].  In addition to 

phosphorylation by Src, MAPK phosphorylation of S279/S282 occurs in the binding motifs for both 

AP2 (of the clathrin complex) and the E3 ligase Nedd4 [153]. Nedd4 primarily interacts with Cx43 

residues P283-Y286 (PPXY motif) via its WW2 domain and phosphorylation of the nearby MAPK 

sites (S279/S282) was demonstrated to increase the affinity of Nedd4 for the Cx43CT by 

approximately two-fold (KD pS279/S282 = 585 µM vs. npS279/S282 = 1064 µM) in two independent 

studies [203, 204]. In addition to Nedd4, both AP2 and Tumor-susceptibility gene 101 (TSG101) 

interact with the Cx43CT nearby the PPXY motif and are important for the internalization of Cx43 

[380, 381]. Interestingly, the Cx43 PPXY motif includes Y286, a site that has been identified to be 

phosphorylated by both MS and low through-put methods (Sorgen Laboratory, unpublished data; 

[382, 383]). Although a connection to the binding of protein partners was not investigated, the 

possibility exists that phosphorylation of this site may modulate the affinities of one or more protein 

partners. Another noted outcome of phosphorylation by MAPK is the priming for phosphorylation 

of S368 by PKC although an exact mechanism was not determined [325]. Speculatively, the 

phosphorylation of S279/S282 (or other sites by Src) may recruit a phosphatase which 

dephosphorylates S365, to allow PKC to phosphorylate S368. Finally, the association of AP2 with 

Cx43 is mediated by Tyr-based sorting motifs, of which Cx43 contains three (S1-230YVFF233, S2-

265YAYF268, and S3-286YKLV289) [196, 381]. The proximity of S1 to the plasma membrane makes 

this site unfavorable for protein interactions. Notably, S2 overlaps the PPXY motif recognized by 

the WW2 domain of Nedd4, suggesting that both Nedd4 and AP2 likely cannot interact at the same 

time, suggesting that clathrin mediated endocytosis and ubiquitin mediated degradation may be 

alternate pathways for Cx43 internalization [196]. Whether S2 and S3 both function as AP2 binding 

sites remains unclear, however, a recent study demonstrated using the yeast two-hybrid system, 

that a Cx43CT mutant with a YA mutation in S3 (Y286A) no longer functioned as bait for AP2 
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[354]. Similar to the speculative note above, it is likely that phosphorylation of either Cx43 Y265 or 

Y286 would inhibit the interaction with AP2, as Tyr phosphorylation of other proteins within Yxxψ 

tyrosine-based sorting motifs inhibits the binding of AP2 [384]. Since Src phosphorylates Cx43 on 

Y265 it is likely, Src modulates the association of Cx43 and AP2. 

3.1.5 Phosphorylation of Cx45 

 Despite how well phosphorylation of Cx43 is described, information regarding the 

phosphorylation of Cx45 is quite limited. Early phosphoamino analysis of Cx45 revealed 

phosphorylation of Ser, Thr, and Tyr residues, although the bulk of the phosphorylation was 

attributed to Ser residues [189]. It was suspected that Ser phosphorylation was contributed heavily 

by the enrichment of Ser residues in the far Cx45CT domain, experimentally this was supported by 

the observation that either deletion of the last 26 residues or mutation of the 9 most C-terminal Ser 

residues reduced the detectable phosphorylation by 90% [189]. The remaining phosphorylation, 

however, was independent of the presence of the 9 Ser residues in the last 26 residues of the CT 

[189]. This was supported by an earlier study, which identified several phosphorylation sites for 

chicken Cx45 present in both the CL and CT domains [385]. While mutation of the Ser residues did 

not impair GJ assembly or dye transfer by neurobiotin (NB) injection, deletion of the last 26 residues 

impaired both [189]. Furthermore, loss of the Ser residues correlated with decreased stability as 

indicated by pulse chase experiments measuring the half-life of Cx45 and mutants, however, the 

truncation mutant did not have significant decreases in its half-life [189]. Interestingly, mutation of 

certain Ser residues (e.g., Cx45 3Ser mutant; Cx45 S374A/S376A/S378P, Cx45 Ser381,382 

mutant; Cx45 S381G/S382A) reduced the overall Ser phosphorylation to a greater degree than 

would be expected (3Ser - 33% remaining; S381,382 – 22% remaining), suggesting that these sites 

are prerequisites for other phosphorylation sites [189].  

 Another study focusing on the effect of Cx45 phosphorylation on the electric properties of 

the channel noted conductance was modulated by phosphorylation [306]. Activation of PKC by the 

addition of PMA resulted in an increase in the gj of Cx45 HeLa cell pairs from 2.0 to 4.9 nS while 

the biologically inactive analogue 4α-Phorbol 12,13-didecanoate (4α-PDD) had no effect on gj 

[306]. Conversely, activation of the cAMP dependent kinase, PKA, by addition of cAMP reduced gj 
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from 27.3 nS to 18.2 nS, while addition of cGMP had no effect [306]. Similarly, treatment with 

pervanadate, which increases Tyr phosphorylation indirectly by inhibiting Tyr phosphatases, 

reduced gj from 10.5 nS to 4.5 nS [306]. Interestingly, none of the treatments significantly altered 

single channel conductance states, suggesting that phosphorylation was impacting open 

probability [306]. Contrary to the results of the van Veen et al. study, a study by Martinez et al. 

reported treatment of HeLa cells expressing Cx45 by PMA reduced gj to approximately 30% of 

control [86, 306]. However, in the same study the authors observed no change in the transfer of 

microinjected NB dye after PMA, suggesting activation of PKC alters the permselectivity of Cx45 

channels, although this remains to be determined [86]. Finally, a recent study from our laboratory 

using NMR observed a direct interaction between the Cx45CT and the SH3 domain of c-Src, 

suggesting that c-Src may regulate Cx45, although this was not validated nor were the functional 

effects explored [247]. Investigating these aspects is the focus of Chapter Four. 

3.2 Other Connexin Post-translational Modifications 

 In addition to phosphorylation, a number of other PTMs modulate Cx protein function 

through a number of mechanisms. These modifications include the addition of carbon moieties, 

ubiquitin, small ubiquitin modifier (SUMO) protein, and reactive nitrogen species. In the current 

section, these PTMs and their effect on Cx proteins are summarized. 

3.2.1 Connexin Carbon-based Modifications 

 Primary PTMs involving carbon-based moieties include methylation, acetylation, and 

glycosylation among others. For Cxs, the primary relevant carbon based modifications are 

methylation, acetylation, and γ-carboxylation [326]. While methylation and acetylation of histones 

(and DNA methylation) play critical roles in the epigenetic control of gene expression they also can 

directly modify proteins besides histones [326].  

 Cxs have been shown to be modified post-translationally by methylation, acetylation, γ-

carboxylation, and in one case palmitoylation [326]. Cx26 and Cx32 were among the first identified 

by MS to be modified post-translationally by carbon-based moieties [274, 289]. For Cx26 

methylation was found on five sites. Of note one of the five methylation sites R75 when mutated 

(R75W or R75Q) results in non-syndromic deafness suggesting the methylation of this site may be 
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important to Cx26 function [289]. Other studies characterizing the R75W mutant have indicated 

that although it suffers no trafficking problems, the channels are non-functional and exert a 

dominant negative effect on wild type Cx26 and the co-expressed Cx30 [49, 52, 265, 386-388].  

Acetylation of Cx26 was identified on six residues, two of which, K15 and K102, are 

deafness mutations (K15T, K102del). Each of these two mutations abolishes a positive charge from 

the lysine side chain. K15 is in the hinge region of the NT where it flips into the pore to aide in 

formation of the voltage gate [262, 389]. In Cx32 this residue is an Arg and a R15Q mutation—also 

abolishing positive charge—causes peripheral neuropathy, and although functional, the channels 

have altered voltage sensitivity [268, 390]. It is possible that a similar mechanism leads to the 

deafness seen in Cx26 K15T mutants. K102 in Cx26 is present in the CL which functions in pH 

gating and is a site for protein partner interactions [391, 392]. Similarly, to K15, the residue 

corresponding to Cx26 K102 in Cx32 is also charged (Glu in this case) that when mutated to Gly, 

abolishing the charge, results in changes in Cx32 pH sensitivity and mild neuropathy [391]. Colussi 

et al. described a functional role for Cx43 acetylation [393]. In the Duchenne muscular dystrophy 

mdx mouse model it was demonstrated that Cx43 was acetylated and improperly localized and 

mutants mimicking acetylation at the three predicted sites (K9, K234, and K264) phenocopied the 

improper localization seen in mdx mice [393].  

Glutamate γ-carboxylation is a vitamin K dependent PTM carried out by γ-glutamyl 

carboxylase and was originally discovered in coagulation proteins and converts the sidechain of 

Glu residues to a dicarboxylic acid [394-397]. Importantly, γ-carboxylation creates a high affinity 

Ca2+ coordination site [396, 398]. To date, γ-carboxylation has been demonstrated on Cx26 and 

Cx32 by MS [274, 289]. Glutamate γ-carboxylation was identified on E42 and E47 in the EL1 of 

Cx26 as well as E114 of the CL [289]. Both of the EL1 Glu residues when mutated cause deafness 

and E114 is a site involved in the Ca2+ dependent loop gating mechanism which maintains 

undocked connexons in the closed state [387, 399-402]. Interestingly, E114 in the CL of Cx26 is 

conserved in Cx32 where it was also determined to be γ-carboxylated [274]. With the Ca2+ 

coordinating function of γ-carboxylglutamate it is possible that γ-carboxylation of E114 of Cx26 and 

E110 of Cx32 is involved in imparting Ca2+ sensitivity [274, 289]. Furthermore, with potential roles 
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in Ca2+ sensitivity it is likely that other Cx family members (e.g., Cx43) regulated by intracellular 

Ca2+ may also be γ-carboxylated. 

3.2.2 Connexin Ubiquitination 

 Ubiquitin, a 76-residue polypeptide that is found ubiquitously, is a key PTM for protein 

degradation and turnover [326]. Ubiquitination is an enzymatic process that requires the transfer of 

ubiquitin in a cascade manner. Ubiquitin is initially bound to the ubiquitin activating enzyme (E1 

family of ubiquitin ligases) then shuttled to a ubiquitin carrier (E2 family of ubiquitin ligases) which 

associates with a final ubiquitin ligase (E3 family of ubiquitin ligases). The E3 family of ubiquitin 

ligases provide substrate specificity and transfer the ubiquitin covalently via an isopeptide bond 

from G76 of the ubiquitin to Lys residues on the target protein [403]. Further ubiquitination of the 

target can occur via ubiquitin-to-ubiquitin linkages. These linkages can be on any Lys residue in 

the ubiquitin, however, K48 polyubiquitination chains destine the target for proteasomal 

degradation [403]. Cxs are substrates for ubiquitination [404]. 

 Ubiquitination is an important quality control mechanism that couples with ERAD (with the 

assistance of CIP75). For Cx43 and Cx32 as much as 40% of newly synthesized protein undergoes 

ERAD, a feature that is correlated with levels of cellular stress. Interestingly, a mutation in Cx32 

conferring CMTX results in nearly 100% of Cx32 being destined for ERAD. Cellular stress 

counteracts the ERAD, reducing the degree of polyubiquitination allowing improperly folded Cx32 

to accumulate in the ER and oligomerizes with the remaining wild type Cx32 altering function and 

contributing to the disease phenotype [194, 405]. Once incorporated into the GJ plaque, Cxs are 

ubiquitinated by Nedd4, promoting internalization through endocytosis and trafficking to the 

lysosome for degradation [406].  

3.2.3 Connexin SUMOylation 

 In addition to ubiquitin a small family of structurally and functional similar proteins known 

as SUMO proteins exist. In humans, the family is made up of three members (SUMO1-3) [407]. 

Despite structural similarity to ubiquitin little sequence conservation between the two exist. Like 

ubiquitin, SUMO proteins are conjugated to Lys residues in ψKX(D/E) motifs, where ψ is a bulky 

hydrophobic residue (F, L, I, W) and X is any residue [408]. Similar to ubiquitin, the conjugation of 
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SUMO moieties to targets is achieved in a cascade manner [409]. First cleavage of a C-terminal 

peptide from SUMO results in the exposure of a di-glycine motif. SUMO then associates with the 

E1 (SUMO activating enzyme) and is passed to the E2 which can directly conjugate the SUMO to 

proteins with a canonical SUMO acceptor motif. For a subset of targets without the canonical motif 

SUMO can be shuttled to one of several E3 that, similar to ubiquitin, serve the role of target ligase 

[409]. Additionally, SUMO conjugates are removed, similar to the process of dephosphorylation 

and deubiquitination, by sentrin-specific proteases [409]. Differing from ubiquitination SUMOylation 

does not lead to target degradation, but is involved in various housekeeping processes such as 

regulation of transcription, stabilizing targets, stress response, and cell cycle progression [410]. 

 Cx43 is the only Cx to date demonstrated to be SUMOylated [411]. However, the 

SUMOylated Lys residues detected, K144 and K237, are evolutionarily conserved among many 

mammalian species, and K144 is conserved among several of the Cx family members including 

Cx26 and Cx32 [411]. This suggests other Cx family members may be SUMOylated as well. 

SUMOylation of Cx43 is by any of the three human SUMO proteins. SUMO1 and SUMO2 were 

found on Cx43 only as mono-SUMOylation modifications, while SUMO3 was found as both mono- 

and poly-SUMOylation (both multisite mono-SUMOylation and chains of poly-SUMOylation). 

SUMOylation of Cx43 appears to regulate Cx43 expression levels, as when SUMO1 or SUMO2 

were cotransfected into HeLa cells with Cx43, the Cx43 levels doubled. Additionally, co-expression 

of SUMO3 with Cx43 in HeLa cells resulted in increased GJIC, suggesting that SUMOylation plays 

a role in modifying Cx43 function as well [411]. Interestingly, the bulk of SUMOylated Cx43 was 

found in the Triton X-100 (TX-100) soluble fraction, suggesting it was not incorporated into 

functional plaques [411, 412]. However, it has been shown that plaques become soluble just prior 

to internalization, and inhibition of degradation pathways (both lysosomal and proteasomal) in 

myocytes resulted in both an increase in soluble Cx43 and communication [413, 414]. Additionally, 

K144R, K237R mutations in Cx43 reduced expression levels and plaque formation, suggesting that 

SUMOylation may play a vital role for proper GJ maintenance [411]. 
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3.2.4 Connexin S-nitrosylation 

 S-Nitrosylation is a reversible covalent medication to Cys residues of proteins where nitric 

oxide (NO) is added to the thiol group [415, 416]. Nitrosylation is carried out and regulated by the 

activity of nitrosylases and denitrosylases [417]. Despite most targets of nitrosylation containing 

multiple accessible Cys residues, only a subset are detected as nitrosylated suggesting there is 

likely a recognition motif [417]. Nitrosylation of proteins alone can alter protein function, or 

alternatively can influence other PTMs on the target thereby indirectly affecting function [417]. 

Nitrosylation is an important regulator of vascular functions [418]. 

 Studies providing clear evidence of a functional effect of nitrosylation on Cxs are limited. 

However, Cx43 was found to be constitutively nitrosylated in the myoendothelial junctions where 

endothelial cells are coupled to vascular smooth muscle cells [419]. Additionally, it was determined 

that when treated with phenylephrine, which activates denitrosylases, Cx43 GJ permeability to IP3 

was reduced and correlated with a reduced degree of nitrosylation on Cx43 residue C271 [419]. 

Addition of NO donors resulted in decreased permeability to small molecules in vascular endothelial 

cells and reduced coupling of Cx37 channels [420, 421]. Nitrosylation also likely plays a regulatory 

role for Cx hemichannels. In astrocytes hypoxia and ischemia, which are associated with increased 

NO generation, also increased hemichannel permeability of the astrocytic GJ proteins, Cx43 and 

Cx46 [422]. This effect was reproduced by addition of S-nitrosoglutathione and reversed by 

subsequent treatment with reducing agents. Additionally, mutants of Cx46 abolishing the Cys 

residues in the CT domain prevented increased hemichannel permeability by NO donors [423]. 

4. Objective 

 Regulation of GJ function is achieved through alterations in phosphorylation and 

modulation of protein partner interactions within the CT domain of individual Cx proteins. Although 

a significant body of work exists characterizing these features for Cx43, little information exists 

about other Cx family members.  

 The objective of this dissertation is to identify the functional significance of protein 

interactions and phosphorylation of the Cx45CT domain. Chapter Two includes studies focused on 

determining how Cx45CT domain dimerization affects channel properties including expression, 
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localization, plaque formation, channel function (GJIC and hemichannel), basal phosphorylation, 

and interactions with protein partners. In Chapter Three, we use chimeric Cx45 proteins to further 

support our studies in Chapter Two, namely the importance of sequence specific regulatory roles 

of the Cx45CT dimerization domain (A333-N361). For Chapter Four, we change focus to delineate 

the regulation of Cx45 function by three kinases (PKC, Pyk2, and Src) that are active downstream 

of the Angiotensin II (AngII) type 1 receptor (AT1R) and identify key Cx45 residues phosphorylated 

by these kinases. Chapter Five, follows up on Chapter Four by investigating cross-regulation of 

Cx43 and Cx45 in both acute and chronic activation of the kinases from Chapter Four. Chapter Six 

contains a study on another Cx family member (Cx32) and its regulation by Ephrin receptor kinases 

and TC-PTP. Finally, Chapter Seven is a summary all of my projects and I propose future directions 

for the continuation of these studies. 

 The importance of GJs and intercellular communication to the homeostasis of humans 

makes Cxs attractive potential therapeutic targets. A clear understanding of the molecular 

determinants (protein partners, PTMs, etc.) that make each family member unique is essential for 

a solid foundation from which to develop novel therapeutic interventions.  
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5. Introduction 

 GJs are plaques comprised of tens of 1,000s of passive membrane channels that directly 

adjoin the cytoplasm of neighboring cells. The channels allow for the direct exchange of ions, 

metabolites, and second messengers (cAMP, ATP, IP3, etc.) [14]. The resulting electrical and 

metabolic coupling is essential to several physiological processes including: organization and 

synchronization of cells in organs and tissues, development, and impulse propagation in some 

excitable tissues [14]. Each channel is formed from the apposition of two connexon hemichannels, 

one contributed from each coupled cell. The connexon contributed from each cell is composed of 

six Cx proteins. Cx nomenclature is derived based on the molecular weight of the given family 

member (e.g., 45 kDa isoform is Cx45; Cx45), of which there are 21 human family members. Cxs 

family members share common structure from primary to tertiary. In terms of membrane topology, 

all Cx proteins contain four transmembrane domains, two extracellular loops (EL), a cytoplasmic 

loop (CL), and cytoplasmic N- and C-terminal domains (NT and CT respectively). Between Cx 

family members the transmembrane and extracellular domains retain the highest degree of 

conservation, including six critical Cys residues in the extracellular domains (three in each loop) 

that are essential for proper channel formation and subsequent docking. The intracellular domains, 

however, show sequence divergence, the greatest of which occurs in the CL and CT domains. The 

CT domain is of particular significance because it serves a regulatory role in all stages of the GJ 

life cycle including trafficking, localization and turnover. Furthermore, the CT domain has been 

shown to regulate intercellular communication via a number of PTMs and protein partner 

interactions [14, 425]. Additionally, the CT domain is an important regulator of channel properties 

such as junctional conductance, open probability, and voltage sensitivity [223, 426, 427]. The 

importance of the CT domain to Cx function lends itself to being a potentially useful therapeutic 

target that could differentiate between Cx family members [428-430]. 

 Cxs have been found in nearly all cell types and organs, where their expression is often 

regulated spatiotemporally [32]. One example is in the heart, where the primary family members 

expressed are Cx43, Cx40, and Cx45. Cx43 is expressed throughout most of the working 

myocardium. While Cx45 expression in the adult is restricted to cells of the specialized conductance 
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and pace making system, however, this is altered compared to embryonic expression where Cx45 

is found throughout the heart and loss of its expression is lethal [32, 66, 67]. In the specialized 

conductance system, channel properties of Cx45 make it ideal for propagating impulses from the 

atria to the ventricles, preventing reentrant arrhythmias [32, 66, 67]. In the ventricles of healthy 

adult hearts, GJs are made up primarily of Cx43, however, in failing hearts Cx45 is upregulated. 

Cx45 has also been implicated in coupling of Cx43-null ventricular myocytes. [83, 431]. This leads 

to altered coupling and slower conductance, contributing to increased incidence of ventricular 

tachy-arrhythmias [432]. The possibility also exists that in Cx43-KO mice, residual conduction may 

be mediated by ephaptic signaling from the NaV1.5 channel [433, 434]. Although normal 

intercellular current flow mediated by Cx45 is considered near non-existent in healthy hearts, in the 

pathological situation Cx45 mediated coupling becomes dominant due to overexpression in the 

ventricles. This is further confounded by the ability of Cx45 to form heteromeric channels with 

residual Cx43 thereby reducing current flow and voltage sensitivity, in ways that could still be 

managed with simple remodeling of Cx43 alone [82, 87, 432, 435-438]. Importantly, there is a lack 

of clear delineation of the mechanisms which make each cardiac Cx family member unique, 

including what makes Cx45 channel properties so different from Cx43 or Cx40, and how its 

upregulation makes it a potential substrate for arrhythmogenesis. As a result of this deficit and 

previous observations in the field we sought to better understand the possibility that interactions 

between the two CT domains of Cx45 molecules (i.e., dimerization) affect GJ regulation. 

 Work done previously in our laboratory identified a novel feature of the Cx45CT, high 

affinity dimerization (KD ~100 nM). This dimerization was mediated by the presence of six key 

hydrophobic residues, positioned such that they create a hydrophobic face on the α-helical region 

(A333-N361) [247, 439]. Replacement of all six hydrophobic residues by Glu (L335E, L338E, 

I324E, L349E, I353E, Y356E; Cx45CT 6E; Fig. 2.18) disrupted dimerization yet maintained α-

helical conformation [247]. Dimerization of cytosolic domains has previously been demonstrated to 

be critical regulators for ion channels (e.g., IP3 receptor [440]), and the importance of the Cx CT 

domain to proper channel function through modulation of protein partner interactions is well 
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established [153]. Basing our study on these notions, here we study the physiological role for 

dimerization of the Cx45CT and how it regulates Cx45 channel function and properties.  
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6. Materials and Methods 

6.1 Cell Culture and Transient Transfections 

 MDCK cells (gift from Dr. Paul Lampe, Fred Hutchinson Cancer Center), HeLa cells (gift 

from Dr. Steve Caplan, University of Nebraska Medical Center) and HEK293T cells (gift from Dr. 

Myron Toews, University of Nebraska Medical Center) were cultured in Dulbecco’s modified Eagle 

medium (Corning) at 37°C in a humidified 5% CO2 atmosphere. Medium was supplemented with 

10% fetal bovine serum (FBS, Seradigm), 2 mM L-glutamine (HyClone), 1% pen-strep (Corning), 

and 0.2% Normocin (Invivogen). The selective agent puromycin (Tocris) was used, when 

appropriate, at empirically determined concentrations. MDCK or HeLa cells at ~70% confluence 

were lipofected using the MDCK Avalanche (EZ Biosystems) reagent at 2.5:3.5 (plasmid:reagent) 

and Lipofectamine 2000/XtremeGene 9 (LifeTech/Roche) at (1:3/1:4 ratio) respectively, diluted in 

OptiMem under antibiotic free conditions. MDCK cells were analyzed 24-48 hr post-transfection 

while HeLa were analyzed 48 hr after transfection. 

6.2 Stable Cell Line Generation 

 70% confluent MDCK, HeLa, and HEK293T cells were lipofected with indicated SalI 

linearized plasmid using either MDCK Avalanche (MDCK; 2.5:3.5) or Lipofectamine 2000 

(HEK293T; 1:1) in OptiMem. Transfections were carried out under antibiotic free conditions, and 

cells were cultured 48-72 hr prior to addition of selection media. MDCK and HEK293T were 

selected with 5 µg/mL and 2 µg/mL puromycin respectively. Cells were either maintained as bulk 

(polyclonal) or clonally (monoclonal) selected cell lines. Monoclonal lines were obtained using 

Whatman paper cloning disks. Western blots and immunofluorescence were used to screen clones. 

6.3 Antibodies and Immunostaining 

 All primary and secondary antibodies, detection reagents and concentration ranges utilized 

are summarized in Table 2. Cells seeded on glass coverslips were rinsed 2x with 1x phosphate 

buffered saline (PBS) and then fixed and permeabilized with either ice cold methanol at -20°C for 

15 min or buffered formalin (1x PBS, 3.7% formaldehyde, 0.3% TX-100) at 37°C for 30 min. 

Coverslips were washed 3x 5 min in 1x PBS with gentle agitation and then blocked for 60-90 min 
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at 37°C (1x PBS containing 1% bovine serum albumin (BSA) and 0.3% TX-100). Coverslips were 

then incubated with the indicated primary antibodies diluted in blocking buffer for either 1 hr at RT 

or ON at 4°C. Coverslips were washed 3x with 1x PBS and then incubated with secondary antibody 

(if necessary) 1 hr at RT and then washed 1x for 5 min with 1x PBS containing 100 ng/mL DAPI 

and then 2x 5 min with 1x PBS. Coverslips were mounted with SlowFade (LifeTech) and sealed 

with clear nail polish and imaged. All images acquired on either Zeiss 710 or 800 LSM microscope. 

6.4 Live Imaging 

 Live imaging dishes (In Vitro Scientific) were coated with bovine plasma fibronectin (Sigma) 

at 10 µg/mL. MDCK clones expressing Cx45 WT-eGFP or 6E-eGFP were seeded and imaged at 

confluence. Images were acquired over a 1 hr period at 1 min intervals on a Zeiss 710 LSM confocal 

microscope with definite focus module. 

6.5 Cell Lysis for Direct Western blot 

 Cultured cells were rinsed 2x with 1x PBS and then incubated with protease inhibitor buffer 

(PIB; 1x PBS containing 1x Roche Complete + ethylenediaminetetraacetic acid (EDTA), 2 mM 

PMSF, 2 mM Pepstatin A) on ice for 20 min and then harvested with a cell scraper. Cell 

suspensions were pelleted at 1500 RPM for 5 min at 4°C. PIB was removed and cell pellet 

resuspended in an appropriate volume of lysis buffer (PIB + 1% TX-100, unless otherwise 

specified), mechanically lysed and incubated on ice for 30 min. Lysates were quantified by 

bicinchoninic acid assay (BCA; Pierce) and normalized with lysis buffer. 30 μg of total protein lysate 

(unless otherwise indicated) was resolved. 

6.6 Co-IP and Western blot 

 Co-IP: MDCK cells stably expressing either Cx45 WT or 6E were seeded in either 10 or 

15 cm plates and grown to confluence. Cells were rinsed 2x with 1x tris buffered saline (TBS) + 

1mM EDTA and then scraped up an either 0.5 or 1.0 mL of IP lysis buffer (25 mM Tris-

(hydroxymethyl)aminomethane (Tris), 150 mM sodium chloride (NaCl), 0.25% sodium 

deoxycholate, 0.05% SDS, 1% TX-100 plus protease and phosphatase inhibitors).   
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Antibodies and Reagents 

1° Antibody Manufacturer Applications Concentration 

Cx45 (MAB3101) Millipore WB/IF/IP 1:2000/1:200/1:500 

Cx45 (ACC-207) Alomone WB/IP 1:2000/1:500 

Cx43 (C6219) Sigma WB/IF 1:2000/1:200 

Cx43 pS272/282 Fred Hutchinson WB 1:500 

Cx43 pS368 Cell Signaling WB 1:1000 

Cx43 pY247 Fred Hutchinson WB 1:1000 

Cx43 pY265 Fred Hutchinson WB 1:1000 

Cx43 pY313 (in-house) LifeTein WB 1:500 

β-Tubulin (T8328) Sigma WB 1:500 

Drebrin (AB10140) Millipore WB 1:3000 

ZO-1 (61-7300) Zymed WB 1:500 

Nedd4 (07-049) Millipore WB 1:3000 

pTyr (pTyr-1000) Cell Signaling WB 1:1000 

pSer (A4A) Millipore WB 1:500 

β-Catenin (C2206) Sigma IF 1:200 

E-cadherin (Alexa-488; 24E10) Cell Signaling IF 1:100 

HA-Tag (Alexa-647; 6E2) Cell Signaling IF 1:50 

Myc-Tag (Alexa-555; 9B11) Cell Signaling IF 1:100 

    

2° Antibody Manufacturer Applications Concentration 

Goat α-mouse (Alexa-647) Cell Signaling IF 1:500 

Goat α-rabbit (Alexa-555) Cell Signaling IF 1:500 

Goat α-mouse-HRP Millipore WB 1:100,000 

Goat α-rabbit-HRP Alpha Diagnostics WB 1:50,000 

Veriblot Abcam WB 1:4,000 

Goat α-rabbit light-chain HRP Jackson Immuno WB 1:300,000 

    

Fluorescent Dye/Protein Manufacturer Applications Concentration 

Neurobiotin Vector Labs Fluorescence 2.0 mg/mL 

Lucifer Yellow CH LifeTech Fluorescence 0.25 mg/mL 

Texas Red Dextran (10,000 Da; fixable) LifeTech Fluorescence 1.0 mg/mL 

Streptavidin (Alexa-647 or Alexa-488) LifeTech/Jackson Immuno Fluorescence 1:100 (1 mg/mL stock) 

Table 2. Antibodies and reagents. 
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Cells were mechanically lysed and then incubated for 30 min at 4°C with rotation. Lysates were 

precleared with normal rabbit IgG (2 µg) bound protein G agarose for 1 hr at 4°C and then clarified 

by centrifugation. Clarified lysates were quantified by BCA (Pierce) and normalized. Input samples 

were reserved and either 2 or 5 mg of lysate was subjected to IP with either 2 or 3 μg of rabbit α-

Cx45 (Alomone) ON at 4°C. Immune-protein complexes were captured by 2 hr 4°C incubation with 

protein G agarose (Pierce), washed 5x with IP wash buffer (IP lysis buffer excluding sodium 

deoxycholate) captured proteins were eluted using 35-50 μL 3x SDS sample buffer. Equal volumes 

of each sample were analyzed by Western blot and to avoid cross reactivity with the IP antibody a 

light chain specific secondary antibody (Jackson) or Veriblot (Abcam) were utilized for detection. 

Western blot: Protein samples were resolved by SDS-PAGE with an appropriate gel 

concentration, transferred to PVDF (EMD Millipore), blocked either 2 hr at RT or ON at 4°C with 

either 5% non-fat milk/PBS + Tween 20 (PBST) or 5% BSA/TBS + Tween 20 (TBST) and incubated 

with indicated primary antibody in blocking buffer either 1 hr at RT or ON at 4°C. Blots were washed 

3x for 10 min with either PBST or TBST, and then incubated for 1 hr at RT with secondary antibody. 

Membranes were then washed 4x 10 min each with either PBST or TBST and detected using Signal 

West Femto kit (Thermo) per manufacturer protocol and exposed to autoradiography film. 

Quantifications were done using NIH ImageJ software using a minimum of three independent 

replicates. 

6.7 RT-PCR 

 MDCK clones expressing mCx45 WT and 6E were seeded and cultured to confluence. 

Cells were rinsed 2x with 1x PBS and lysed for RNA content using the GeneJet RNA Isolation kit 

(Thermo) per manufacturer protocol. Equivalent masses of RNA were reverse transcribed using 

the MuMV-RT kit (NEB) per manufacturer protocol with OligoDT priming. Equal volumes of each 

RT reaction were used as template for standard PCR reactions with primers to mCx45-WT/6E (5’- 

ACAGTAAAAGGAGGGAACTTGAT-3’ and 5’- TGGCTTTGTTTTGCTTGTAGG-3’) and GAPDH 

(5’- GTAGTGAAGCAGGCATCGGA-3’ and 5’- GTCGAAGGTGGAAGAGTGGG-3’) using Taq 

Green Master Mix (Thermo). Cycling was carried out as follows: Initial denaturation 95°C for 2 min, 

followed by 30 cycles of 95°C denaturation for 30 s, 54.5°C annealing for 30 s, and 72°C extension 
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for 30 s, followed by final extension of 5 min at 72°C. Equal samples volumes were analyzed by 

2% Agarose/TAE electrophoresis spiked with ethidium bromide. No reverse transcriptase reactions 

were used to subtract genomic background. Quantification was done using NIH ImageJ software, 

normalizing samples to GAPDH loading control. Quantification was done using three independent 

replicates. 

6.8 Cycloheximide Chase 

 MDCK clones expressing mCx45-WT or mCx45-6E were cultured to approximately 90% 

confluent. Cells were rinsed 2x with 1x PBS and the incubated with fresh medium containing 80 

μg/mL cycloheximide (CHX; Cell Signaling) for the indicated time points. Following the desired 

incubation time the cell media was spiked with 10x Roche Complete + EDTA and the cells were 

harvested and pelleted at 1500 RPM for 5 min at 4°C. The supernatant was removed and the cells 

were lysed directly in 1x sample buffer supplemented to 1x PBS, with protease inhibitors and 50 

units Benzonase. Equal volumes of sample were resolved by SDS-PAGE and analyzed by Western 

blot. Each time point was normalized to loading control and then to the starting time point. 

6.9 Scrape Loading Dye Transfer Assay 

 Cells were scrape loaded as previously described [340]. Briefly, all buffers were pre-

warmed to 37°C prior to beginning the experiment. Stable expressing MDCK clones or transiently 

transfected HeLa cells were seeded on bovine plasma fibronectin (Sigma; 10 µg/mL) coated 35 

mm live imaging dishes (CellStar). MDCK cells were transfected with Cx43 siRNA with 

Lipofectamine RNAiMAX (LifeTech) according to manufacturer protocol and then cultured for 48 hr 

prior to scrape loading. After transfection cells were washed 1x with 1x PBS and then overlaid with 

dye tracer mix (1x PBS containing Lucifer yellow, NB, and Texas Red Dextran). Scrapes were 

introduced using a fine edged micro-scalpel and incubated at RT for 1 min. Tracer dye was gently 

washed away with 1x PBS and media was added and the cells returned to the incubator to culture 

for 5 min to allow dye to transfer. Following the dye transfer period the cells were washed with 1x 

PBS containing 1 mM CaCl2 and 1 mM MgCl2 to stop dye spread. Coverslips were then formalin 

fixed and stained as described above and imaged. 15 consecutive fields of view were acquired per 

replicate. 
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6.10 Triton X-100 Solubility Assays 

 Biochemical: The TX-100 solubility assay was modified from a method described 

previously [412]. Briefly, MDCK cells grown in 10-cm plates were washed with PBS and incubated 

in 1 mL PIB for 20 min at 4°C, harvested in the same buffer and gently pelleted. Supernatant was 

aspirated, and cell pellet resuspended in 1 mL of fresh PIB supplemented with 50 units of 

Benzonase and mechanically lysed. Lysates were quantified by BCA and normalized. A total of 

450 µL of cell lysate was brought to 1% SDS with 10% SDS and reserved as total lysate. Another 

450 µL was brought to 1% TX-100 with 10% TX-100 in 1x PBS and incubated at 4°C for 30 min 

with agitation. The TX-100 lysate was then separated into non-junctional (supernatant; soluble) and 

junctional (pellet; insoluble) fractions by ultracentrifugation at 100,000 xg for 1 hr at 4°C. The 

supernatant was carefully removed and retained as the soluble fraction. The pellet was solubilized 

in 500 µL of solubilization buffer (1x PBS, 8 M urea, 2.5% SDS, 0.1 M dithiothreitol (DTT), 1x Roche 

complete + EDTA, 2 mM PMSF, and 2 µM Pepstatin A). Volume normalized samples of total lysate 

(T), TX-100 soluble (S) and TX-100 insoluble (I) portions were analyzed by Western blot. Soluble 

and insoluble fractions were quantified as a function of total lysate. Quantification was done using 

NIH ImageJ software from three independent replicates. In situ TX-100 extraction: The in situ 

detergent extraction was previously described by [340]. Briefly, MDCK cells were seeded on glass 

coverslips (Neuvitro) and cultured to ~90% confluence. Coverslips were rinsed 2x with 1x PBS and 

then incubated for 30 min at 4°C with gentle agitation with either mock extraction buffer (1x PBS 

containing 1x Roche complete + EDTA, 2 mM PMSF, and 2 µM Pepstatin A) or extraction buffer 

(mock buffer + 1% TX-100). Following extraction, the cells were fixed, immunostained, and images 

acquired. Extractions were performed on three independent replicates to ensure reproducibility. 

Quantification of remaining immunostain was done by taking the DAPI normalized MFI of the Cx 

signal in extracted images as a percent of signal in the mock images using ImageJ. 

6.11 siRNA Knock-down of Cx43 

 MDCK clones stably expressing Cx45 WT or 6E at approximately 60% confluent were 

lipofected with stealth siRNA designed against endogenous canine Cx43 using Lipofectamine 

RNAiMAX according to manufacturer protocol under antibiotic free conditions, cells were cultured 
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48 hr prior to any analysis. Complexes were generated in OptiMem. siRNA was designed using the 

Invitrogen design tool against the coding region (CDS) of accession number NM_001002951.3. 

siRNA duplex sequence: 5’-UAA CAC UCA ACA GCC UGG UUG UGA A-3’ and 5’-UUC ACA ACC 

AGG CUG UUG AGU GUU A-3.’ 

6.12 Bimolecular Fluorescence Complementation 

 MDCK cells seeded on coverslips were transiently co-transfected with Lyn-HA-Cx45/6E-

CT-mVenusN and Lyn-Myc-Cx45/6E-CT-mVenusC. Approximately 20 hr after transfection the cells 

were rinsed 2x with 1x PBS and ice-cold methanol fixed and immunostained as described below, 

and imaged. Plasma membrane measurements were made using the Zeiss profile measurement 

tool of at least 90 double-transfected cells for each condition at 630X and signal calculated as area 

under the curve. For ER/Golgi measurements images were exported to NIH ImageJ and ROIs were 

used to isolate the ER/Golgi and signal was measured as mean fluorescent intensity. Quantification 

of mVenus signal was normalized individually to both HA and Myc signal.  

6.13 Blue-Native PAGE 

 Post nuclear triton soluble lysates were prepared as described for the TX-100 solubility 

assay. Samples were resolved on Blue-Native PAGE gels prepared freshly as described in [137, 

441]. Gels were run on ice or in cold room with blue cathode buffer (0.01% Coomassie Blue (G250)) 

until dye front migrated approximately two-thirds through the gel. The cathode buffer was then 

exchanged for dye free cathode buffer and run to completion. Gel was incubated with 0.1% SDS 

containing semi-dry transfer buffer and then transferred to PVDF and blotted as described above.  

6.14 Sucrose Density Gradient Fractionation 

Gradient preparation: Stock sucrose solutions were prepared by dissolving the appropriate 

mass of sucrose in 1x PBS containing 0.1% TX-100 and 0.02% azide. Gradients were prepared 

segmented from stock solutions with greater sucrose concentrations on the bottom. A 200 μL 

cushion of 25% sucrose was added to the bottom of a 4 mL polyallomar tube (Beckman) and snap 

frozen, then 850 μL of each 20%, 15%, 10%, and 5% sucrose was layered on the previous layer 

snap freezing between layers. Gradients were stored at -20°C until use. On the day of use the 
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gradients were removed from -20°C and allowed to thaw at room temp for 30 min, and then tilted 

30° from horizontal for 90 min to linearize the gradient by diffusion. Oligomerization assay: To 

determine the location of oligomerization we modified the protocol of Koval et al. [143]. Briefly, 

MDCK clones expressing either Cx45 WT or 6E were seeded in 10 cm plates and cultured to 

confluence and then treated for 4 hr with 10 µM Monensin A ((MonA); Sigma). After treatment cells 

were washed 2x with 1x PBS and then incubated on ice in protease inhibitor buffer PIB for 20 min. 

Cells were scraped up and pelleted at 1500 RPM for 5 min at 4°C. PIB was removed and cell pellet 

resuspended in 0.5mL lysis buffer (PIB + 1% TX-100 and 50 units Benzonase) and mechanically 

lysed. Lysates were quantified by BCA and normalized. Normalized lysates were fractionated into 

soluble and insoluble fractions as described above. An aliquot of the supernatant was retained as 

input, and the remainder was overlaid on a 5-25% sucrose gradient, prepared as described above. 

Gradients were centrifuged at 148,000 x g for 16 hr at 4°C. 500 μL fractions were obtained by 

pipetting down from the top maintaining the pipette tip at the meniscus, and then vortexed. An 

aliquot of each fraction was resolved by SDS-PAGE and analyzed by Western blot. Sucrose 

determination: Remaining gradient fraction volumes were vortexed and allowed to warm to room 

temperature. 50 μL aliquots were analyzed by a Brix refractometer (Milwaukee Instruments, 

MA871) in triplicate and the mean of the three reads taken as °Brix.  °Brix was then converted to 

sucrose concentration (% w/v) by a standard curve generated using stock solutions at 2.5, 5.0, 7.5, 

10.0, 12.5, 15.0, 17.5, 20.0, 22.5, and 25.0% sucrose. The equation for the trend-line generated 

from the standard curve shown as equation 2:  

1) 𝑦 =   °𝐵𝑟𝑖𝑥 

2) 𝑦 =  0.7743𝑥 +  2.26 

3) °𝐵𝑟𝑖𝑥 − 2.26/.7743 =  [𝑠𝑢𝑐𝑟𝑜𝑠𝑒] 

6.15 Calmodulin Binding Assay 

 The LCK-GCaMP2 construct was shuttled from the pN1 vector purchased from AddGene 

(#24794) to the pD2529 mammalian expression vector by PCR and Gibson assembly. The A333-

N361 region of Cx45 WT or 6E were QuikChanged to replace the M13 domain of myosin light chain 

kinase using megaprimers derived by PCR in the new LCK-GCaMP2 pD2529 vector, called WT- 
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and 6E-LCK-GCxaMP2 respectively. Newly developed vectors were sent for Sanger sequencing 

to ensure correct sequence, midi-prepped, and stably transfected into MDCK cells. Stable clones 

of parental LCK-GCaMP2, WT- and 6E-LCK-GCxaMP2 were chosen based on similar levels of 

protein expression. Clones were seeded in triplicate in live imaging dishes and cultured to 

confluence in phenol free DMEM. At confluence cells were rinsed 2x with 1x PBS and the medium 

was replenished. Images were acquired every 5 s using definite focus module on a Zeiss 800 LSM 

with 5% CO2 infusion and 37°C incubation. After 3 min of baseline (36 images) image acquisition 

dishes were spiked with Ionomycin to a final concentration of 15 µM and images were acquired for 

an additional 5 min. Mean fluorescent intensity was taken for the total field of view for each image.  

6.16 Hemichannel Dye Uptake Assay 

 To assess hemichannel activity we modified the protocol described by [442]. Briefly, all 

buffers were pre-warmed to 37°C prior to beginning the experiment. MDCK clones expressing 

either Cx45 WT or 6E were seeded on glass coverslips were cultured to approximately ~90% 

confluent. Some wells were pretreated with either 100 µM La3+ (Sigma) or freshly prepared 100 µM 

pervanadate or both for 15 min prior to Ca2+ washout and dye uptake. The presence of La3+ was 

maintained during dye uptake. Cells were rinsed 1x with HBSS + Ca2+/Mg2+ (LifeTech) and then 2x 

with HBSS – Ca2+/Mg2+ (LifeTech). Cells were then incubated at 37°C with HBSS – Ca2+/Mg2+ 

containing NB (0.1 mg/mL; Vector labs) for 10 min. Cells were then washed 2x with HBSS + 

Ca2+/Mg2+ to close hemichannels and GJs. Cells were formalin fixed and stained with streptavidin 

647 conjugate (LifeTech) and imaged. Control cells were treated identically except all incubations 

were done in HBSS + Ca2+/Mg2+. Three independent replicates were used for quantification 

calculated by DAPI normalized mean fluorescent intensity in Zen Blue (2012) where 15 fields of 

view were acquired per replicate. Results presented as mean + s.e.m. of all replicates. 

6.17 Statistical Analysis 

 All data were analyzed by using GraphPad Prism 5.0 and were presented as the mean + 

s.e.m. Statistical analysis performed in GraphPad Prism 5.0 was either one-way ANOVA with a 

Newman-Keuls post-hoc analysis or Student’s T-Test (one or two-tailed as appropriate) where 

appropriate. P-values <0.05 were considered statistically significant. 
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7. Results 

7.1 Cx45CT WT Dimerizes at the Plasma Membrane 

 Dimerization of the Cx45CT was initially identified by Kopanic et al. using a recombinantly 

expressed Cx45CT peptide in vitro [247]. We hypothesized that the salient features of the peptide 

(structure and oligomeric state) would be present in the context of the cytosol of the cell in proximity 

to the plasma membrane. To address this, we sought to determine if the CT domains expressed at 

the plasma membrane would in fact dimerize if expressed exogenously in cyto. We implemented a 

bimolecular fluorescence complementation (BiFC) approach to investigate this [443]. In this assay, 

the use of a fluorescent protein tag (mVenus) that has been expressed as separate N- and C-

termini on the same protein (either Cx45CT WT or Cx45CT 6E) yields fluorescent signal when the 

protein of interest interacts with itself. Design of the BiFC constructs is illustrated in Fig. 2.1. In 

order to target the proteins to the plasma membrane, in the absence of the transmembrane 

domains, the first 16 residues of Lyn kinase domain were included on the N-terminus to mediate 

membrane anchoring via myristoylation and palmitoylation. To differentiate N- and C-terminal 

mVenus constructs as well as provide a reference signal to quantify against, we included HA- or 

Myc-tags, respectively. When expressed in MDCK cells mVenus signal fluorescent signal should 

be detected only if two Cx45CT domains interact, which places the mVenus fragments in close 

enough proximity to properly refold and result in fluorophore maturation. mVenus signal was 

detected for both the Cx45CT WT and 6E constructs, however, was restricted only to cells 

transfected with both HA- and Myc-tagged constructs (Fig. 2.2A; single transfections not shown). 

Using the profile measurement tool to isolate fluorescence signal present at the plasma membrane 

we quantified the area under the curve from 90 WT and 92 6E cells that had immunoreactivity to 

both HA- and Myc-tags (collected across three independent experiments). To quantify (and control 

for potential differences in expression and trafficking to the plasma membrane) the mVenus signal 

was normalized to the Myc-tag signal for each construct (Fig. 2.2B). For the Cx45CT WT construct, 

the plasma membrane signal observed was 2.46-fold greater (P <0.0001) than that for Cx45CT 6E. 
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Figure 2.1. Schematic of Cx45CT BiFC constructs for in cyto dimerization 
assay. 
The Cx45CT (WT or 6E) was c-terminally fused to the first 16 residues of Lyn kinase with 
either and HA- or Myc-tag as a linker. To the c-terminus of the Cx45CT for HA-tagged 
constructs the mVenus (V2-E173) were fused, similarly to the Myc-tagged constructs mVenus 
(Q155-Y238) was fused. Proximity of the two halves of the mVenus fragments results in 
refolding and measurable fluorescence. This figure is modified from Trease et al., (2017). 
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This data suggested that the CT domain of Cx45 was indeed dimerized when anchored to the 

plasma membrane, and furthermore indicated the mutations of the 6E were sufficient to inhibit 

dimerization. Our results are further supported by a similar trend observed when using the HA-tag 

to normalize the mVenus signal at the plasma membrane. Using the HA-tag we observed a 4.40-

fold (P <0.0001) increase in the mVenus signal of Cx45CT WT compared to that of the 6E. It is 

likely differences in antibody affinity for the HA and Myc tags lead to the larger difference seen with 

the HA-tag. Of note, significant mVenus signal was observed for both the Cx45CT WT and 6E 

present in the endoplasmic reticulum (ER)/Golgi apparatus. As a result, we quantified this region 

independently of the plasma membrane signal and determined it to be of similar albeit not identical 

levels (Fig. 2.2B). We believe the signal we observed in Cx45CT 6E expressing cells is the result 

of localized concentration, as refolding of the mVenus is dependent on proximity. Indeed, the 

degree of signal observed for both Cx45CT WT and 6E in the ER/Golgi supports this hypothesis. 

Further support of this hypothesis is a conflict in the quantification of the ER/Golgi mVenus using 

the HA-tag to normalize instead of the Myc-tag. Consequently, proximity leads to “background” 

mVenus signals that are not the result of bona fide dimerization. Despite this limitation, any 

reduction of the Myc normalized mVenus signal of Cx45CT 6E compared to Cx45CT WT indicates 

less dimerization and is therefore significant. We sought to test if this assay would work properly 

on full length Cx45 WT and 6E, however, we failed to observe a significant difference in the mVenus 

signal between the Cx45 WT and 6E constructs in this manner (data not shown). We speculate the 

since mVenus refolding is contingent upon proximity and thereby localized concentration, CT 

domains of adjacent Cxs in a connexon would be close enough together to allow refolding to occur 

independent of dimerization interactions. Indeed, when taken together with the ER/Golgi mVenus 

signal this hypothesis is supported, as there is an accumulation of protein in close proximity in the 

ER/Golgi similar to that the condition in a connexon. 
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Figure 2.2. Cx45CT WT dimerizes at the plasma membrane. 
MDCK cells transiently transfected with the Cx45CT WT or 6E versions of Lyn-HA-CxCT-mVenN and Lyn-
Myc-CxCT-mVenC were assessed for complemented mVenus signal. A) Representative immunofluorescence 
images of double transfected MDCK cells. B) Calculated area under the curve and mean fluorescent intensity 
of mVenus signal normalized to either the Myc- or HA-tag fluorescence at the plasma membrane (top) and 
Golgi/ER (bottom), respectively. Statistics are one tailed unpaired student’s T-test between the Cx45CT WT 
and 6E groups; ***P <0.0001. Scale bar = 10 μm. This figure is modified from Trease et al., (2017). 
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Figure 2.3. Localization of Cx45 WT and Cx45 6E in HeLa cells. 
HeLa cells were transiently transfected with either Cx45 WT or Cx45 6E for approximately 20 hr, fixed 
and immunostained for Cx45 (red). White arrows indicate GJ plaques for Cx45 WT at cell appositions, 
while for Cx45 6E indicate the presence of protein at the plasma membrane in absence of apposition of 
another expressing cell. DAPI (blue) was used to stain the nuclei. Scale bar = 20 µm 
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7.2 Inhibiting CT Dimerization of Cx45 Alters Protein Localization 

 In order to determine if inhibiting dimerization affects proper Cx45 function our first 

approach was to transiently transfect Cx45 WT and 6E into Cx-deficient HeLa cells. Following 

transfection, the cells were cultured approximately 20 hr, fixed, and stained for Cx45. Similar to 

what has been shown in the literature, our immunofluorescent images demonstrate that Cx45 WT 

and 6E localized in the cell differently. Cx45 WT formed the expected small punctate GJs at cell to 

cell interfaces, while the 6E presented as a predominantly linear structure covering the bulk of the 

plasma membrane of each transfected cell independent of expression in apposed cells or cell-cell 

contact (Fig. 2.3; white arrows). To confirm this phenotype in a second cell line we also transiently 

transfected MDCK cells with either Cx45 WT or 6E. As we expected, immunofluorescence of the 

MDCK cells revealed a similar pattern as we observed in the HeLa cells for both WT and mutant 

Cx45 (data not shown). To further investigate the importance of Cx45 CT dimerization we then 

sought to create stable expressing Cx45 WT and 6E cell lines using MDCK cells as the transgene 

recipient. MDCK cells were chosen over HeLa cells for this portion of the study as they have been 

used extensively in the literature to study GJs and are capable of consistent GJ formation. 

Furthermore, the flattened shape of the cell line lends itself well to microscopic studies. Stables cell 

lines were clonally selected for clones that best represented the transiently expressed phenotype 

by immunofluorescence (Fig. 2.4). In addition to determining if protein localization was altered by 

loss of CT dimerization, we also measured the apparent GJ size for both Cx45 WT and 6E proteins 

using the built-in measure function of Zen software. Quantification of the length confirmed 

differences between the apparent length of Cx45 WT and 6E GJ plaques (Table 3). As the Cx45 

WT stable cell line expressed a residual amount of Cx43, we sought to determine if the presence 

of Cx43 affected Cx45 localization by use of siRNA mediated knock down of endogenous Cx43. 

Western blot and immunofluorescent imaging indicated that the presence of Cx43 did not affect the 

expression levels of Cx45 or alter Cx45 localization (Fig. 2.5A and 2.5B). 
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Figure 2.4. Inhibition of Cx45CT dimerization alters proteins localization. 
MDCK cells were stably transfected with either Cx45 WT or Cx45 6E and were clonally selected. 
Representative images of the clones utilized for this study are presented here. Cx45 (red) and E-
cadherin (green) were stained. DAPI (blue) was used to stain the nuclei. White arrows represent 
apparent GJ plaques. Scale bar = 20 µm. This figure is modified from Trease et al., (2017). 
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Protein Species Host Cell Average Length (nm) Plaques Measured T-Test P value 

WT Mouse MDCK 602 ± 141 113 
<0.0001 

6E Mouse MDCK 1330 ± 343 208 

WT Human MDCK 640 ± 236 311 
<0.0001 

6E Human MDCK 1756 ± 340 131 

WT Mouse HEK-293 749 ± 365 141 
<0.0001 

6E Mouse HEK-293 1325 ± 776 137 

Table 3. Measurements of GJ plaque length. 
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Figure 2.5. Endogenous Cx43 does not alter Cx45 expression or localization. 
MDCK cells expressing Cx45 were analyzed for expression of Cx45 and Cx43  and localization of Cx45 
after siRNA mediated knock-down of the endogenous Cx43. A) Western blot and quantification of the 
expression of Cx45 and Cx43 in the stable MDCK cells. B) Representative immunofluorescent images 
of the localization of Cx45 (red). E-caderin (green) was used to mark the plasma membrane, and DAPI 
(blue) was used to stain the nuclei. White arrows indicate GJ plaques. Scale bar = 20 µm. This figure is 
modified from Trease et al., (2017). 
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Finally, we hypothesized that the phenotype we were observing was independent of host 

cell type or species of origin for the Cx45. Thus, we created humanized versions of Cx45 WT and 

6E and expressed them in MDCK cells, as well as expressed mouse Cx45 WT and 6E in HEK293T 

cells. Similarly, we immunostained these proteins to assess cellular localization, and as we 

expected observed similar localization and GJ morphology to that of our stable cell lines (Fig. 2.6). 

We additionally, measured the GJ lengths under these conditions to compare to mouse Cx45 WT 

and mouse 6E. As we expected the trend for these permutations were consistent with what we 

observed for mouse Cx45 WT and 6E expressed in MDCK cells. The measurements are 

summarized in Table 3. Finally, we wanted to confirm our observations were not caused by 

differences in antibody affinity or an artifact of fixation. To accomplish this, we generated stable 

expression cell lines of C-terminal eGFP-fusions for each of our Cx45 WT and 6E constructs and 

used live imaging to determine protein localization (Fig. 2.7). Confirming what we observed in the 

fixed and stained cells Cx45 WT was restricted to puncta along the plasma membrane while the 

6E was expressed as a diffuse staining all along the plasma membrane. Of note, for Cx43, the 

inclusion of a C-terminal eGFP-tag resulted in an increase in apparent GJ length which was 

determined to result from disrupted associations with the scaffolding protein ZO-1 [166]. 

Interestingly, when we measured the length of the Cx45-eGFP WT GJs we obtained a length of 

667 ± 240 nm from a total of 12 plaques, suggesting that eGFP fusions are not altering the length 

of Cx45 WT GJs and consequently are unlikely to cause the diffuse membrane signal observed for 

the Cx45-eGFP 6E. 
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Figure 2.6. Localization of Cx45 WT and 6E are not species specific. 
Representative immunofluorescent images of Cx45 WT and 6E in MDCK (A) and 
HEK293T (B) cells. A) Human Cx45 WT and Cx45 6E were stably expressed in bulk 
selected MDCK cells and immunostained for Cx45 (red) and E-cadherin (green). B) 
Mouse Cx45 WT and 6E were stably expressed in bulk selected HEK293T and 
immunostained for Cx45 (red) and β-Catenin (green). DAPI (blue) was used to stain the 
nuclei of both. White arrows indicate apparent GJ plaques. Scale bar = 20 µm. This 
figure is modified from Trease et al., (2017). 
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Figure 2.7. Live imaging using Cx45-eGFP WT or 6E reveals diffuse 
localization of Cx45 6E along plasma membrane. 
Representative single time point live fluorescent images of Cx45 WT (left) or 6E (right) 
with c-terminal eGFP fusions. Notably the bulk of 6E-eGFP fluorescence is observed 
diffusely across the entire plasma membrane. White arrows indicate apparent GJ 
plaques. Scale bar = 10 µm. This figure is modified from Trease et al., (2017).  
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7.3 Cx45 6E Has Altered Protein Expression 

 Noting the increased expression of the Cx45 6E at the plasma membrane compared to 

that of WT, we wanted to determine if this was the result of a difference in protein expression level. 

To address this, we used Western blot to determine if CT dimerization was affecting protein 

expression levels. Our results indicated that Cx45 6E was expressing protein at approximately 1.6-

fold that of WT (Fig. 2.8A). Notably, we simultaneously tested both stable lines for expression of 

endogenous Cx43 and our results indicate our 6E line does not express any of the endogenous 

Cx43 (Fig. 2.8A). We reasoned the increase in protein expression could be the result of either 

increased transcription (enhancing translation) or impaired turnover (enhancing stability) of the 6E 

mutant. We first sought to determine if increased translation was contributing to the increased 

protein express of the 6E mutant. To assess this, we measured the level of Cx45 WT and 6E 

transcripts by RT-qPCR. Relative levels of Cx45 transcript were compared to that of the 

housekeeping gene, GAPDH (Fig. 2.8B). We determined compared to GAPDH the levels of Cx45 

WT and 6E transcript to be identical. This suggested to us that the increased 6E protein expression 

was likely a consequence of altered 6E turnover. To test this, we used a CHX chase assay to 

measure the degradation time of Cx45 WT and 6E. MDCK cells were treated over the course of 12 

hr with 80 µM CHX and samples were analyzed by Western blot (Fig. 2.8C). The Western blot 

results indicate that the Cx45 WT protein was degraded to near completion (~14% remaining) in 

12 hr. In contrast, the 6E protein expression was relatively unchanged over the 12 hr period. 

Although the relative stability of the 6E protein prevented calculation of half-life, we calculated the 

half-life of the Cx45 WT protein to be 4.18 ± 0.90 hr; a result similar to previously published results 

for Cxs [189]. Taken together with the RT-qPCR data this suggests that the increase in 6E protein 

expression is the result of decreased turnover rather than increased synthesis. 
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Figure 2.8. Inhibiting Cx45CT dimerization disrupts protein degradation. 
Three different MDCK cells expressing either Cx45 WT or 6E were assessed for expression at the protein 
and transcript levels. A) Western blots and quantification of Cx45 WT, Cx45 6E, and Cx43 expression. B) 
RT-PCR gel images and quantification of Cx45 WT and 6E transcripts. C) Western blots and quantification 
of Cx45 WT or 6E subjected to a 12 hr CHX chase. Results presented as the mean + s.e.m. (n=3). Statistics 
are used to analyze the data were two-tailed unpaired Student’s T-test (A, n=3, *P<0.05; and C, n=3, ns, 
*P<0.9056) and one-way ANOVA with a Newman-Keuls post hoc test (B, n=3; *P<0.05, **P<0.001 
comparing Cx45 WT and 6E, and ##P<0.001 compared to time = 0). This figure is reprinted from Trease et 
al., (2017). 
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7.4 Cx45CT Dimerization is Essential for Proper GJIC 

 By inhibiting Cx45CT dimerization we determined an increased proportion of Cx45 6E was 

present at the plasma membrane relative to WT. We were curious if this increased amount of Cx 

protein would correlate with increase GJIC. To test this, we used scrape loading dye transfer of 

NB, a 322.8 Da cationic molecule that Cx45 channels have been demonstrated to be permeable to 

[86]. In addition to NB we utilized Lucifer Yellow CH (LY), a 457.2 Da anionic fluorescent dye as a 

negative control, as Cx45 channels have conversely been shown to be impermeable to LY [86]. 

Scrape loading takes advantage of the ability to “load” cells with membrane impermeable dyes 

through a cut introduced into a monolayer of cells. Stable Cx45 WT and 6E cells were cultured to 

confluence in live imaging dishes, scrape loaded, fixed, and stained with Streptavidin-647 

conjugate to identify the NB. Confocal microscopy was used to image dishes and to determine the 

degree of dye transfer. As a marker of cells damaged by the scrape that take up the dye, a large 

(10,000 Da) fluorescently labelled dextran was utilized for its inability to pass through GJs. Similar 

to what has been published previously for the Cx45 WT we observed substantial dye coupling with 

respect to NB, in some cases dye spread reached greater than 5th order (5 rows of cells from 

scrape) transfer (Fig. 2.8 (top); green). Consistent with the literature we also observed little-to-no 

permeability of Cx45 WT channels to LY (Fig. 2.8 (top); yellow). When we repeated the assay with 

the 6E cells, to our surprise we observed severely impaired dye coupling with respect to NB, 

reaching 2nd-3rd order transfer very rarely (Fig. 2.8 (bottom); green). Furthermore, LY transfer was 

not altered relative to Cx45 WT remaining only in the cells immediately adjacent to the scrape (Fig. 

2.8 (bottom); yellow). These data suggest a role for Cx45 CT dimerization in proper GJIC. 

Furthermore, the reduced coupling of NB in the 6E cells could be explained by fewer junctional 

channels, reduced channel open time/probability, or by reduced NB permeability. 

7.5 Inhibition of Cx45 CT Dimerization Impairs GJ Plaque Formation 

 Our experiments on the localization of Cx45 indicated that a larger pool of Cx45 protein 

was present at the plasma membrane when CT dimerization was inhibited that correlated with a 

decreased communication of NB dye. This led us to question whether this increased plasma 

membrane protein was incorporated into GJ plaques. To test this, we utilized the TX-100 solubility 
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Figure 2.9. Inhibiting Cx45CT dimerization impairs gap junction intercellular 
communication. 
MDCK cells expressing Cx45 WT (top) or 6E (bottom) were scrape loaded with tracer dyes to assess 
the degree of intercellular communication. Red, Texas red dextran (MW 10,000 Da); yellow, Lucifer 
yellow CH (MW 443 Da; −2 charge), green, NB (MW 287 Da; +1 charge); and blue, DAPI. Images are 
representative of greater than six independent experiments. Scale bar in = 100 μm. This figure is 
modified from Trease et al., (2017) 
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assay which allows for the separation and quantification of non-junctional (soluble; hemichannels 

and non-oligomerized Cx proteins in secretory pathway) from junctional (insoluble; GJ plaques) Cx 

protein. We found that for Cx45 WT, protein segregated reproducibly into 58.57 ± 3.006% soluble 

and 39.17 ± 2.154% insoluble. When we tested the 6E we determined that 86.43 ± 4.654% of the 

protein segregated into the soluble fraction while only 22.59 ± 5.422% of the protein was found in 

the junctional pool (Fig. 2.9A). We determined this to result in a 1.47-fold increase (N=3,P < 0.0001, 

one-way ANOVA) in the soluble protein pool when dimerization was inhibited. Utilizing an in-situ 

TX-100 followed by immunofluorescence we obtained results that were comparable to the Western 

blot data (Fig. 2.9B). Quantification of the percentage of residual Cx protein following extraction 

indicated 37.17% of Cx45 WT fluorescent signal remained after extraction while only 17.37% of 6E 

signal remained (Fig. 2.9B). Taken together this indicates that the increased protein expression at 

the plasma membrane seen in the 6E expressing cells is non-junctional. Furthermore, we sought 

to ensure co-expression of Cx43 in the Cx45 WT clone did not significantly impact segregation of 

Cx45 WT into GJ plaques. To determine this, we again performed the TX-100 solubility assay on 

Cx45 WT cells that had been treated with siRNA against the endogenous Cx43. We determined 

our knockdown efficiency of the endogenous Cx43 to be 91.25% (see Fig. 2.5A). With the TX-100 

solubility assay we found that 39.56 ± 4.81% of the Cx45 was present in the soluble pool, while 

60.44 ± 18.46% was present in the junctional pool when cells were mock transfected (Fig. 2.10). 

Similarly, when Cx43 was knocked down by transfection with siRNA we found 39.45 ± 6.22% and 

60.55 ± 9.95% of Cx45 in the non- and junctional pools, respectively. Therefore, the presence of 

Cx43 did not alter Cx45 GJ formation. Taken together with the dye transfer data our results 

demonstrate that Cx45 CT dimerization contributes to the stability of Cx45 at the GJ plaque. 

Furthermore, our reduced dye transfer in the 6E expressing cells is consistent with the decreased 

percentage of GJ channels.  
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Figure 2.10. Inhibiting Cx45CT dimerization impairs GJ plaque formation. 
A) TX-100 solubility was used to compare MDCK cells expressing Cx45 WT or 6E. A) Western blot image of 
TX-100 extracted protein; total lysate (T), soluble (S), and insoluble (I) fractions. Below is the quantification of 
protein in the T, S, and I fractions. Statistics represent one-way ANOVA with a Newman-Keuls post-hoc 
correction (n=3, **P<0.001, ***P<0.0001). B) Representative fluorescent images (left) and quantification (right) 
of in situ TX-100 and mock (1x PBS) extracted Cx45 WT or 6E in MDCK cells (red, Cx45; blue, DAPI). This 
figure was modified from Trease et al., (2017). 
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Figure 2.11. Endogenous Cx43 does not impact Cx45 GJ plaque formation. 
Representative Western blot and quantification of total (T), Triton soluble (S), and Triton insoluble 
(I) Cx45 WT after siRNA mediated knockdown of Cx43. Data presented as the mean + s.e.m. of 
three independent experiments. Statistics for the TX-100 solubility assay were one-way ANOVA 
with a Newman-Keuls post hoc test (n=3). This figure was modified from Trease et al., (2017). 
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7.6 Inhibiting Dimerization Does Not Alter Oligomerization 

 Since our previous experiments revealed inhibiting Cx45CT dimerization affected both 

protein localization and GJ plaque formation we hypothesized that it may alter oligomerization. As 

an initial test to determine if overall oligomerization was affected by inhibiting dimerization we used 

Blue Native PAGE to assess the oligomeric status of Cx45 WT and 6E from TX-100 soluble 

fractions. MDCK cells expressing either Cx45 WT or 6E were lysed in buffer containing 1% TX-

100, fractionated by high speed centrifugation, and the supernatant was applied to Blue Native 

PAGE, resolved, and then interrogated by Western blot. Our results demonstrated that both Cx45 

WT and 6E formed proper oligomers as indicated by the immunoreactivity of a species consistent 

in molecular weight with a connexon (Fig. 2.11A). Furthermore, and to our surprise, we found that 

Cx45 WT did not show any appreciable banding or immunoreactivity at a molecular weight that 

would be consistent with the monomeric Cx, however, showed a smear with some discrete banding 

present for higher order (dimer, tetramer, etc.) oligomers while 6E showed clear banding for all 

species from monomeric Cx to hexameric connexon. This led us to wonder if dimerization of the 

Cx45CT would occur prior to channel oligomerization. For Cx43 it was shown that oligomerization 

of Cxs into connexons occurred in the TGN [137, 147]. As such we sought to determine if 

oligomerization of Cx45 would occur in the TGN, as well as determine if inhibiting CT dimerization 

would alter this. To test this, we used linear sucrose gradient (5-25%) centrifugation to separate 

non- from oligomerized Cx45 WT and 6E. Work from other labs has indicated that suboligomeric 

Cx43 sediments below 15% sucrose [143]. Specifically, monomeric Cx43 sediments at ~8% 

sucrose, while hexameric Cx43 sediments at 15% sucrose. We applied Cx45 WT or 6E from 1% 

TX-100 soluble fractions to linear 5-25% sucrose gradients and centrifuged them overnight. We 

fractionated the gradients in 0.5 mL fractions in a top down manner and analyzed them for Cx 

content by Western blot. In order to accumulate the Cx45 in the cis-Golgi we treated the cells with 

MonA to block transport to the medial-Golgi and subsequently TGN compartment. MonA treated 

samples were compared to vehicle (EtOH) treated. In EtOH treated cells, we observed little 

difference between Cx45 WT and 6E. This was characterized by two peaks, one at lower sucrose  
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Figure 2.12. Inhibiting Cx45CT dimerization does not impact oligomerization state or cell 
compartment. 
Post-nuclear TX-100 soluble lysates from MDCK cell stably expressing Cx45 WT or Cx45 6E were analyzed 
by Blue Native PAGE and sucrose density centrifugation. A) Representative Western blot of Blue Native PAGE 
samples. B) Plots of Western blotted fractions of Cx45 WT and Cx45 6E from sucrose density centrifugation 
following 4 hr treatment with MonA. 
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concentration, corresponding to suboligomeric Cx45 and one at ~15% corresponding to connexons 

(Fig. 2.11B; solid line).  However, for MonA treated samples we observed a shift away from the 

peak corresponding to connexons and an accumulation of Cx45 in a lower sucrose density. 

Specifically, peak sedimentation of Cx45 WT corresponded to ~8.0% sucrose while for 6E this peak 

was present at ~5.7% sucrose (Fig. 2.11B; dashed line). The data suggests that oligomerization of 

Cx45 is not affected by inhibiting dimerization. Additionally, when taken together with the Blue 

Native PAGE results, this data suggests that Cx45CT dimerization occurs prior to oligomerization, 

consistent with a slightly larger molecular species for Cx45 WT as indicated by the slight shift to 

higher sucrose concentration when compared to that of 6E (Fig. 2.11B; dashed line).  

7.7 Increased Membrane Cx45 6E Mediates Increased Hemichannel Activity 

 Having determined the excess 6E at the plasma membrane was not incorporated into GJ 

plaques we reasoned they may be available to mediate hemichannel activity. To test for this, we 

used an established hemichannel dye uptake assay [442]. Briefly, depletion of extra cellular Ca2+ 

results in a positive membrane potential that leads Cx hemichannels to open [442]. The degree of 

hemichannel opening can be quantified as a function of NB dye uptake. We found for the control 

condition (+Ca2+) both Cx45 WT and 6E expressing MDCK cells minimally took up NB as indicated 

by the limited staining with Streptavidin (DAPI normalized MFI WT = 0.5873 ± 0.03083 vs. 6E = 

0.4180 ± 0.02306; ns, Fig. 2.12A). Conversely, following extracellular Ca2+ depletion we determined 

the 6E expressing cells took up approximately 2-fold NB compared to Cx45 WT (DAPI normalized 

MFI WT = 0.8866 ± 0.02859 vs. 6E = 2.042 ± 0.1397, P <0.0001, n=15, N=3, Fig. 2.12A). 

Additionally, we wanted to test if increasing Tyr phosphorylation (a stimulus that inhibits Cx43 GJ 

channels) would alter Cx45 WT hemichannel activity. To test this, we pretreated the Cx45 WT 

expressing cells with 100 µM pervanadate for 15 min to inhibit normal dephosphorylation and again 

measured dye uptake [444]. Compared to untreated Cx45 WT expressing cells no difference in dye 

uptake was observed in normal Ca2+ or during Ca2+ depletion or (Normal Ca2+: DAPI normalized 

MFI untreated = 0.5873 ± 0.03083 vs. pervanadate = 0.6217 ± 0.02705, ns, n=15, N=3, Fig 2.12A; 

Ca2+ depletion: DAPI normalized MFI untreated = 0.8866 ± 0.02859 vs. pervanadate = 0.8737 ± 

0.03953, ns, n=15, N=3, Fig. 2.12A). The degree of change in Tyr phosphorylation in response to 
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pervanadate treatment was determined by IP of Cx45 and Western blotting with a general pTyr 

antibody (Fig. 2.12B). We found that treatment with pervanadate increased the amount of Cx45 

total Tyr phosphorylation by 3.38-fold (pTyr: Cx45; untreated = 0.05023 ± 0.00776 vs. pervanadate 

= 0.1698 ± 0.0439, P <0.05, N=3). Our data in indicate that increased Tyr phosphorylation does 

not alter Cx45 hemichannel mediated dye uptake. The data also demonstrates that pervanadate 

did not alter the requirement for Ca2+ depletion to open Cx45 hemichannels. Finally, we sought to 

confirm that our dye uptake was mediated by Cx45 hemichannels rather than some other 

membrane channel protein and we used the GJ hemichannel blocker La3+ to inhibit hemichannel 

channel activity. Confirming our dye uptake was mediated by Cx45 hemichannels, treatment with 

La3+ reduced dye uptake to levels similar as seen when normal Ca2+ bathing solution was used 

(DAPI normalized MFI WT = 0.6272 ± 0.0275, WT + pervanadate = 0.7102 ± 0.0664, 6E = 0.6462 

± 0.0440, ns, n=15, N=3, Fig 2.12A). Taken together with the scrape loading experiments our data 

indicate 6E hemichannels and channels are permeable to NB, albeit channel permeability appears 

reduced relative to Cx45 WT. Furthermore, when correlated with the TX-100 solubility assay data 

the differences in NB transfer (hemichannels-higher, channels-lower) are consistent with the 

location of Cx45 (hemichannels vs. GJ channels; i.e., less Cx45 in the GJ correlates with increased 

hemichannel activity). 
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Figure 2.13. Inhibiting Cx45CT dimerization affects hemichannel dye uptake. 
A) MDCK cells stably expressing Cx45 WT or 6E were subjected to conditions that activate hemichannels 
activity (Ca2+ deprivation) and the level of NB uptake was measured. Representative fluorescent micrographs 
of cells loaded with NB and probed with streptavidin-647 conjugate (red). Quantification of DAPI (blue) 
normalized mean fluorescent intensity (MFI) from 3 replicates, 15 random 100X FOVs were acquired per 
replicate. Statistics are one-way ANOVA with a Newman-Keuls multiple comparison test (***P<0.0001 relative 
to +Ca2+ within same group, ^ and ^^^P<0.05 and <0.0001 respectively, relative to −Ca2+ within same group; 
###P<0.0001 between −Ca2+ treatment groups; •••P<0.0001 compared to WT + pervanadate). Scale bar = 
50 μm. B) MDCK cells expressing Cx45 WT were treated with 100 μM pervanadate for 15 min, captured by 
IP with α-Cx45, analyzed by Western blot (left), and quantified using ImageJ (right). Data presented as the 
mean + s.e.m. of three independent experiments. Statistical analysis was done using a one-tailed unpaired 
Student’s T-Test (P< 0.05). This figure was modified from Trease et al., (2017). 
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7.8 Cx45CT Dimerization Reduces Hemichannel Currents 

 Since we observed increased hemichannel mediated dye uptake in our stable MDCK cell 

lines it is important to note that dye uptake/transfer does not always correlate with current 

conductance due to issues with permselectivity [445]. To determine if our increase dye uptake 

coincided with increased hemichannel currents we measured the macroscopic conductance of 

Cx45 WT and 6E channels expressed in Xenopus oocytes by cell attached electrophysiology.  

Identical amounts of Cx45 WT or 6E cRNA were injected into oocytes, together with DNA antisense 

to the endogenous XenCx38. After voltage clamping the oocytes, hemichannel opening was 

induced by successive depolarizing voltage steps followed by measurement of the macroscopic 

conductance (Fig. 2.13). In congruence with our hemichannel dye uptake results we determined 

that inhibiting dimerization greatly increased hemichannel currents Furthermore, it was determined 

that initial rate constants for the transition from the closed state to the open state was increased for 

6E channels as compared to WT. The results illustrated are representative of data from multiple 

injected oocytes (WT, n=8; 6E, n=4). Importantly, these data clearly illustrate 6E channels are 

functional, and mediate a much greater degree of current flow that Cx45 WT channels under 

identical stimuli, it is unclear at this time whether this increase observed in the 6E hemichannels is 

the result of a single factor or several. Possible explanations include: the greater degree of “soluble” 

plasma membrane expression, shifted Po-V relationships, or increased unitary conductance. 

Although it requires further investigation, it is likely to be determined that a combination of these 

factors result in the greatly enhanced hemichannel currents (and dye uptake) seen with 6E 

channels. 
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Figure 2.14. Inhibiting Cx45CT dimerization affects hemichannel currents. 
Oocytes injected with equal amounts of cRNA coding for Cx45 WT or the 6E mutant were voltage clamped 
and hemichannel currents elicited by large depolarizing voltage steps from −50 to +80 mV in 10 mV increments 
from a holding potential of −80 mV. A) Representation of voltage protocol. Under the same voltage protocols, 
the WT channels mediated substantially less current than the 6E channels. Representative current plots from 
(B) WT and (C) 6E expressing oocytes. This figure is reprinted from Trease et al., (2017).  
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7.9 Cx45CT Dimerization Enhances Tyrosine but Not Serine Phosphorylation 

 Amongst most Cxs it has been shown consistently that changes in phosphorylation level 

affect GJIC [86, 306, 340, 385]. The effect has been shown via a number of mechanisms including 

affecting trafficking, GJ plaque stability, modulating protein partner interactions, altering turnover, 

or directly modulating channel properties such as open probability or conductance state [306, 309, 

446]. Consequently, we hypothesized inhibiting dimerization would impact total levels of Cx45 

phosphorylation and may in part influence the 6E phenotype. We therefore used IP to selectively 

concentrate either Cx45 WT and 6E from our stable MDCK cells and probed the eluted Cx45 by 

Western blot with either a general pTyr antibody (Fig. 2.14A) or pSer antibody (Fig. 2.14B). We 

determined that the basal level of Tyr phosphorylation of 6E was ~2.28-fold (N=3,P <0.001; WT 

0.8635  0.69 vs. 6E 1.971  0.217) greater than that of Cx45 WT. Conversely, we did not observe 

a significant change in Ser phosphorylation from Cx45 6E to WT. Importantly, due to the lack of 

phosphospecific Cx45 antibodies we were unable to determine the locations of phosphorylated 

residues and therefore the possibility exists that for Tyr phosphorylation both an increase in the 

degree of phosphorylation as well as an alteration of the residues phosphorylated may exist, while 

for Ser phosphorylation only the possibility of alterations to the location of phosphorylated residues 

exists.   
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Figure 2.15. Inhibiting Cx45CT dimerization increases Tyr but not Ser 
phosphorylation. 
IP was used to selectively concentrate Cx45 WT and 6E from MDCK cell lysate and probed 
for total levels of phosphorylation. A) Representative Western blot and quantification of Tyr 
phosphorylation using a general pTyr antibody. B)  Representative Western blot and 
quantification of Ser phosphorylation using a general pSer antibody. Data presented as 
mean fold change + s.e.m. relative to the first WT replicate. Statistics are two-tailed unpaired 
Student’s T-test. (n=3, ** P<0.01). This figure is modified from Trease et al., (2017). 
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7.10 Cx45CT Dimerization Affects Cytoskeletal Adapter Protein Partner Interactions 

Our data indicating the 6E expressing cells contain a reduced number of docked GJ 

channels, increased overall plasma membrane expression and altered localization combined, 

strongly suggest trafficking to, at, or away from the GJ plaque is altered. Furthermore, consistent 

with our observation of increased Tyr phosphorylation of the 6E, trafficking of Cx43 is also affected 

by changes in Tyr phosphorylation. Work from our laboratory and others demonstrated that 

phosphorylation of Cx43 by Src kinase disrupts microtubule binding (β-tubulin) and anchoring to 

the actin cytoskeleton Drebrin and ZO-1 [286, 377, 378]. To determine if the increased Tyr 

phosphorylation observed for 6E correlated with altered cytoskeletal anchoring we used IP of Cx45 

WT or 6E and Western blot to detect β-tubulin, Drebrin, and ZO-1 in the eluate (Fig. 2.15). 

Compared to Cx45 WT we observed a significant increase in the amount of pulled-down Drebrin 

(~1.97-foldP <0.01; WT 0.9005  0.104 vs. 6E 1.753  0.138; Fig. 2.15B), a significant decrease 

for β-tubulin (~5.17-foldP <0.0001; WT 0.6095  0.079 vs. 6E 0.1180 0.043; Fig. 2.15A) and non-

significant albeit trending decrease in the association with ZO-1 (~1.45-fold ns; WT 1.173  0.199 

vs. 6E 0.8103  0.184; Fig. 2.15C). Taken together with our phosphorylation data, these results 

suggest that the phenotypic difference between Cx45 WT and 6E may be in part the result of altered 

cytoskeletal interactions.  
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Figure 2.16. Loss of Cx45CT dimerization alters cytoskeletal anchoring. 
MDCK cells stably expressing Cx45 WT or 6E were cultured, lysed, and enriched by IP to 
assess interactions with β-tubulin, Drebrin, and ZO-1. A) Representative Western blots of 
eluted Cx45 WT or 6E blotting against β-tubulin (n=7, ***P<0.001), B) Drebrin (n=3, **P<0.01), 
and C) ZO-1 (n=3, ns) pulled-down by IP of either Cx45 WT or 6E. Data presented as mean 
fold change + s.e.m. relative to the first WT replicate. Statistics are two-tailed unpaired 
Student’s T-test. This figure is modified from Trease et al., (2017). 
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7.11 Inhibiting Cx45CT Dimerization Disrupts Nedd4 but Not TSG101 Interactions 

In addition to altered plasma membrane localization, we observed a significant increase in 

the total expression of Cx45 6E compared to WT that could not be explained by altered synthesis 

but rather impaired degradation (see Fig. 2.8). It is possible altered interactions with proteins 

involved in turnover and recycling of Cxs could result in the increase in 6E protein expression. For 

Cx43 a number of studies have highlighted the role of Nedd4, an E3 ubiquitin ligase, as an 

important regulator of turnover at the plasma membrane [203, 204, 447]. While intracellularly, 

TSG101 regulates trafficking of Cx43 to lysosomes or segregation for recycling back to the plasma 

membrane [448]. Additionally, previous work from our laboratory demonstrated a direct interaction 

via NMR between the Cx45CT domain and the WW2 domain of Nedd4 and the UEV domain of 

TSG101 [247]. We therefore reasoned Cx45CT dimerization may influence the interaction with 

these proteins. To test this, we used IP to concentrate Cx45 WT and 6E from MDCK cells and 

Western blotted for Nedd4 and TSG101 (Fig. 2.16). Compared to Cx45 WT, we determined 6E 

pulled-down significantly more Nedd4 (~2.05-fold P <0.01; WT 1.088  0.085 vs. 6E 0.5297  0.086; 

Fig. 2.16A) and a comparable amount of TSG101 (Fig. 2.16A). The data, consistent with the CHX 

chase, suggests that the increase in 6E protein expression is likely the result of impaired turnover 

through decreased association with the E3 ligase Nedd4. Our data also suggests that altered 

recycling or trafficking to the lysosome is not a contributor to the phenotype.  
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Figure 2.17. Inhibiting Cx45CT dimerization correlates with decreased associated 
of Nedd4 but not TSG101. 
MDCK cells stably expressing Cx45 WT or 6E were cultured, lysed, and captured by IP to assess 
interactions with Nedd4 and TSG101. A) Representative Western blots of the IP of Cx45 WT or 6E 
blotting with against A) Nedd4 (n=3, **P<0.01) and B) TSG101 (n=3; ns) pulled-down by either Cx45 
WT or 6E. Data presented as mean fold change + s.e.m. relative to the first WT replicate. Statistics 
are two-tailed unpaired Student’s T-test. This figure is modified from Trease et al., (2017). 
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7.12 The Cx45CT A333-N361 Contains a Potential CaM IQ Motif 

 Another protein known to regulate channel closure for Cxs is CaM [239]. Work from a 

number of laboratories including our own, have identified CaM binding sites in the Cx43 CL and CT 

domains (Sorgen Laboratory, unpublished data; [238, 246]). Previously, we demonstrated a direct 

interaction of CaM with the Cx45CT domain over residues (Y275-P288 and T302-N314) [247]. We 

posited that CaM may serve a similar function for Cx45 and sought to determine if there were 

additional CaM binding sites in Cx45. Using the online bioinformatics resource Calmodulin Target 

Database Binding Site Search and Analysis tool (http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html), 

we scanned the full-length Cx45 sequence as well as the isolated CL and CT for additional potential 

CaM binding sites (Fig. 2.17). The analysis suggests that potential CaM binding sites exist in both 

the Cx45 CL and CT.  Interestingly, when analyzing our isolated CL sequence, no CaM binding 

motif was identified, but one was identified for the CL in the full-length sequence, suggesting that 

sequence information contained outside the CL was essential for prediction. Furthermore, the 

region identified as a direct interaction with the Cx45CT by NMR was not identified by motif 

prediction either. Focusing the on the CT domain we determined the predicted motif was an IQ type 

([FILV]Qxxx[RK]Gxxx[RK]xx[FILVWY]; underlined in Fig. 2.17), and furthermore determined that 

our 6E mutations eliminated the motif by mutating the first essential bulky hydrophobic residue to 

Glu (L338E). As the dimerization domain of Cx45 is not amenable to NMR interaction studies as 

conditions that disrupt dimerization would disrupt most interactions, we decided to modify an 

existing calcium flux sensing tool (GCaMp2) to meet our needs. GCaMp2 is a second-generation 

calcium sensor that uses a fusion protein of the canonical CaM binding protein domain (M13 

domain of myosin light chain kinase), CaM, and a (cyclically) modified eGFP to produce fluorescent 

signal in response to CaM binding to M13 in the presence of Ca2+ [449]. We modified this construct 

to replace the M13 domain with the dimerization domain region (A333-N361) of either Cx45 WT or 

6E. After creating stable expressing MDCK cells we used live imaging to determine if each protein 

  

http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html
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Figure 2.18. In silico prediction of Cx45 CaM binding motifs. 
Full length Cx45 (mouse) as well as the CL and CT domains in isolation were 
analzyed by the Calmodulin Target Database Binding Site Search and Analysis 
tool for putative CaM binding motifs. Areas highlighted in red are predicted CaM 
interaction motifs, residues within the motifs that are mutated in Cx45 6E are bold 
and underlined. http://calcium.uhnres.utoronto.ca/ctdb/ctdb/sequence.html 
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possessed Ca2+ responsiveness as a method to interpret CaM binding to the domain. We used the 

original GCaMp2 (M13) as positive control for the experiment. To accomplish the assay cells were 

seeded in live imaging dishes in phenol free DMEM and maintained at 37°C 5% CO2 for the duration 

of the experiment.  Images were acquired every 5 s for 3 min, the dishes were then treated with 15 

µM of the Ca2+ ionophore, Ionomycin, and images were acquired for an additional 3-5 min in 5 s 

intervals. Addition of ionomycin to the control GCaMp2 expressing cell resulted in an acute sharp 

increase in MFI that returned to baseline rapidly (Fig. 2.18). For both Cx45 WT and 6E, addition of 

the ionomycin did not result in any appreciable increase in MFI (Fig. 2.18).  The data indicates the 

A333-N361 region of Cx45—although predicted to bind CaM—does not, and furthermore mutation 

to the 6E does not alter this. Altogether indicating that differential CaM binding is not a factor which 

contributes to the 6E phenotype. 
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Figure 2.19. Cx45CT A333-N361 does not bind CaM. 
MDCK cells were stable transfected with A) LCK-GCaMP2, B) WT-GCaMP2, or C) 6E-GCaMP2, 
clonally selected and live imaged. To assess CaM binding eGFP fluorescence (green) images were 
acquired every 5 s for 8 min. After 3 min of baseline acquisitons the dishes were treated with 3 µM 

ionomycin to activate CaM. The mean fluorescent intensity of eGFP was recorded throughout.  
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8. Discussion 

 Previous work from our laboratory revealed that the Cx45 family member has a unique 

structural feature compared to other family members, high affinity dimerization (KD ~100 nM) [247]. 

This dimerization was mediated by the region comprised of residues A333-N361, which are highly 

conserved (72.4%) across several species including mouse, rat, hamster, chicken, dog, and 

human. In fact, 5/6 of the critical hydrophobic residues are identical in all orthologs and the other 

highly conserved (Fig. 2.19). Based on results of a protein BLAST search with Cx45CT residues 

A333-N361 as the query, limited to comparisons within the human genome, no significant homology 

to any other protein exists, demonstrating this sequence and structure is unique to Cx45. The 

importance of protein binding interactions to the regulation of other CxCT domains (especially that 

of the Cx43CT) suggests that this interaction between Cx45CT domains, in part, influences the 

unique channel properties of Cx45 GJs. Furthermore, it is reasonable to posit that inhibition of this 

dimerization would also modulate Cx45 channel properties and function. From our studies 

contained herein, the inferred effects we observed through inhibiting dimerization include: 

increased protein at the plasma membrane due to inhibited degradation, decreased plaque 

formation, increased hemichannel activity, retained regulation by Ca+2, increased Tyr 

phosphorylation, decreased interaction with β-tubulin and Nedd4, increased interaction with 

Drebrin, maintained interaction with ZO-1, and increased macroscopic currents. 

Very few studies have characterized the functional role of the Cx45CT domain, and many 

were limited to a context in which Cx43 was co-expressed. In one such study, chicken Cx45 WT 

and CT truncation mutants (deletion of either the last 34 or 37 residues) were exogenously 

expressed in rat osteosarcoma cell line (ROS) which endogenously expresses Cx43 [450]. In each 

circumstance, the Cx45 WT or mutants were transported to the plasma membrane and the Cx45 

WT and Δ34 displayed a punctate staining pattern reminiscent of what we show for Cx45 WT, 

however, the Cx45 Δ37 displayed a more linear distribution about the plasma membrane [451].   
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Figure 2.20. Sequence alignment of the Cx45CT dimerization domain (A333-N361) from 
different species. 
Sequence alignment of the A333-N361 region using Clustal Omega to all available Cx45 RefSeq 
sequences revealed a high degree of conservation within this region, with 72.4% identical, 20.6% 
conserved, and 6.9% non-conserved residues. For clarity, the sites of point mutations in the Cx45 6E 
construct are indicated by the single letter code above the alignments. Degree of site conservation 
(excluding Cx45 6E mutations) is indicated at the bottom, * = identical, : and . = high conservation and 
intermediate conservation, respectively. Reprinted from Trease et al., (2017). 
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Notably, neither truncation deleted any of the critical hydrophobic residues previously 

shown to be involved in CT dimerization. One important difference between the two mutants was 

the ability to co-IP ZO-1, which was inversely correlated with TX-100 solubility (Cx45 Δ37 did not 

co-IP ZO-1 and was more TX-100 soluble) [451]. The authors suggested the lack of association 

with ZO-1 may have prevented Cx45 Δ37 from being pulled from lipid rafts, and that WT Cx45 may 

have a complex extended binding with ZO-1 or may harbor two smaller binding sites [451]. Previous 

work from our laboratory using the CT domain of mouse Cx45 did not observe an extended 

interaction of the Cx45CT with the PDZ2 domain of ZO-1, when compared to the binding of Cx43CT 

[247, 286]. However, without being able to follow the resonances of the Cx45 dimerization domain 

the possibility still exists that complex binding with ZO-1 occurs. 

We observed a similar phenotype with the 6E, such that changes in the association with 

the cytoskeleton (decreased association with β-tubulin and conversely increased association of 

Drebrin) and proteins involved in Cx degradation (decreased binding of Nedd4) correlated with 

altered membrane localization, GJIC, and preferential segregation into TX-100 soluble pools. Other 

studies utilizing truncated forms of Cx45 highlight possible functional regulation mediated by the 

Cx45 CT domain, however, whether dimerization of the Cx45CT domain in these studies is a 

contributing factor is not clear. The aspects investigated in these studies include regulating GJ 

conductance, channel permeability, and the ability of Cx45 to interact with Cx43 [189, 450, 452, 

453]. Koval et al. demonstrated that Cx45 Δ37 enhanced communication of larger tracer dyes [450]. 

The same study also demonstrated that Cx45 channels are more selective of being the dye 

recipient cell than the dye donor cell compared to the truncated mutant when forming heterotypic 

GJs with Cx43 [450]. Similar to Koval et al., the Laing et al. study observed increased dye coupling 

of for the Cx45 Δ37 as well as the Cx45 Δ34 mutant, compared to WT Cx45 [450, 451]. We similarly 

observed a decrease in the co-IP of ZO-1 with Cx45 6E compared to WT (albeit non-significant) 

which correlated with increased TX-100 solubility, lending support to Laing’s hypothesis [424, 451]. 

A difference we observed was the impaired communication of 6E [424]. Notably, from the results 

of the Kopanic et al. study, truncation of the CT at residues c-terminal to the critical Y356 would be 

expected to increase dimerization affinity between CTs due to decreased intrinsic disorder (as was 



102 
 

seen with the A333-N361 peptide) [247]. Taken together with the observation of increased dye 

coupling in the ROS cells with Cx45 truncations (increased dimer strength = increased 

communication), this further supports our hypothesis that dimerization is essential for Cx45 

coupling. An interesting finding was that expression of the Cx45CT domain together with a Cx43 

mutant truncated after the 4th transmembrane domain could not restore pH sensitivity to Cx43CT 

truncated channels, while co-expression of the Cx40CT could [229]. Another important result of the 

truncation studies is that if the Cx45CT was used to replace that of either Cx43 or Cx40 (i.e., Cx43-

Cx45CT or Cx40-Cx45CT), they failed to form functional channels [453]. Potentially highlighting, a 

critical effect of Cx45CT dimerization. 

Many aspects of Cx regulation involve phosphorylation of the intracellular domains [308, 

326-328]. The addition of a strong negative charge arising from the phosphate group has been 

shown to affect the channel permeability to ions, influence the structure and positioning of the 

transmembrane domains thereby altering pore size, or modulate the affinities of the extensive 

number of protein partners which regulate Cxs. Importantly, if phosphorylation affects the rate of 

either channel assembly/trafficking or turnover/degradation (e.g., Nedd4; [203, 204, 447]), GJIC 

will be impacted. A limited number of studies have focused on determining how phosphorylation 

regulates Cx45. Phosphoamino acid analysis of Cx45 identified phosphorylation of Cx45 Ser, Thr, 

and Tyr residues [189]. Furthermore that same study determined that deletion of the final 26 

residues of the Cx45 CT (containing 9 Ser) greatly reduced phosphorylation [189]. A few studies 

have explored differences and similarities in the regulation of Cx45 and Cx43 by Ser 

phosphorylation and highlight little conservation of effect. For example, PKA activation by 

stimulation with the cAMP analogue, 8-Br-cAMP, reduced the junctional conductance of Cx45 

channels while increasing that of Cx43 [306, 454]. This was in contrast to activation of protein 

kinase G (PKG) by 8-Br-cGMP which was shown to have little-to-no effect on conductance of Cx45 

channels, but severely impaired Cx43 junctional conductance [306, 454]. In two studies, activation 

of PKC by the phorbol ester PMA was shown to decrease Cx43 junctional conductance [86], 

however, the same studies show conflicting results for Cx45 with an increase in conductance in 

one [306] and decreased in the other [86]. Of note, in the Martinez et al. [86] study, decreased 
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junctional conductance of the Cx45 channels did not correlate with decreased transfer of the tracer 

NB through Cx45 channels, although it did correlate with decreased NB transfer through Cx43 

channels. Finally, phosphorylation of Cx45 unlike that of Cx43 did not alter the single channel 

conductance of Cx45 (22 pS and 42 pS) (35). The authors suggesting phosphorylation affects the 

open probability of Cx45 GJ channels [306], however, taken together with the decreased junctional 

conductance and unaffected NB transfer it may be more likely channel permselectivity is altered.  

Despite a number of differences in the regulation of Cx45 and Cx43 by Ser 

phosphorylation, a commonality exists in the regulation of junctional conductance by pervanadate. 

Through direct inhibition of Tyr phosphatases, pervanadate indirectly promotes increased Tyr 

phosphorylation of the CT domain of both Cx43 and Cx45 subsequently impairing GJIC [306, 455, 

456]. It is, however, unclear whether the mechanism(s) (e.g., altered localization vs. open 

probability) that achieve this are the same. An example suggesting they may differ is Cx43 in cells 

treated with pervanadate localizes intracellularly [457], conversely we observed that Cx45 is still 

localized at the plasma membrane. A likely explanation for this is the only established Tyr kinases 

that phosphorylate Cx43 (Src and Tyk2; residues Y247, Y265, and Y313) disrupt Cx43 cytoskeletal 

anchoring by directly displacing β-tubulin and Drebrin [377, 378]. Unlike Tyk2, Src also indirectly 

displaces ZO-1 by competing for PDZ2 domain binding titrating ZO-1 away from Cx43 [377, 378]. 

Conversely to Cx43, the CT of Cx40 is capable of simultaneously interacting with Src and ZO-1 

[285]. Displacement of Cx43 from the microtubules and actin cytoskeleton would explain the 

observed intracellular localization of Cx43. In our study, although Tyr kinases were not identified, 

increased basal Tyr phosphorylation of 6E correlated with a decreased (albeit not statistically 

significant) interaction with ZO-1 (actin) and β-tubulin (microtubules), increased association with 

Drebrin (actin), and a decreased interaction with Nedd4. Consistent with previous literature reports, 

our results further implicate ZO-1 in the regulation of GJ plaque size and accretion [458, 459], and 

supports the notion that β-tubulin is essential for plaque formation [167, 460, 461] while Drebrin 

stabilizes Cxs present at the appositional membrane [378, 379]. These studies in conjunction with 

our findings would explain how pervanadate had no effect on Cx45 hemichannel activity in either 

the presence or absence of Ca+2.  
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Cell-cell coupling in healthy adult ventricular GJs primarily consists of Cx43, however, in 

end-stage heart failure or the epicardial border zone after infarct, remodeling of Cx43 (decreased 

expression and lateralization) sets the stage for an arrhythmic substrate. The remodeling of Cx43 

although well tolerated, when coupled with aberrant upregulation of Cx45 expression (normally 

very low in adult ventricles) greatly enhances propensity for lethal arrhythmias [83, 431, 462]. It is 

likely this is in part mediated by the restrictive electrical properties of Cx45 channels (low 

conductance, high voltage-sensitivity), and the fact that heteromeric Cx45/Cx43 channels are more 

similar in electrical properties to Cx45 homomeric channels than that of Cx43 [463]. A number of 

studies have highlighted the tendency for Cx45/Cx43 heteromeric channels to elicit properties 

indicative of a dominant negative effect of Cx45 on Cx43 [31, 82, 86, 452, 464]. Furthermore, with 

the dimerization of Cx45CT occurring prior to channel oligomerization in the TGN, it is likely that 

stoichiometry within heteromeric GJ channels would favor incorporation of a minimum of two Cx45 

subunits. Whether this is enough to exert the dominant negative effect remains to be explored but 

depending the on the subunit arrangement it would not be unexpected for the dimerization of the 

Cx45CT to exert some steric force on the transmembrane domains potentially altering pore 

structure/diameter. Unfortunately, little work has been done to explore how the unique properties 

of Cx45 channels make its expression in the ventricles detrimental. Based on our findings in this 

study, Cx45CT dimerization is a structural feature essential to proper Cx45 function. Future studies 

should focus on determining exactly what regulatory role(s) are mediated by Cx45CT dimerization, 

especially if Cx45 dimerization is a key contributor to the dominant negative effect on Cx43-Cx45 

heteromeric channels and whether it controls stoichiometry and subunit arrangement. Furthermore, 

it should be investigated how kinases and specific CT binding partners that regulate Cx43 also 

Cx45 function. 
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Chimeric Cx45 Proteins Confirm 

Cx45CT Dimerization Regulates 

Localization, Hemichannel 

Activity, and GJIC  
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9. Introduction  

 In Chapter Two, we used a mutant of Cx45 which abolished CT domain dimerization 

through the replacement of six hydrophobic residues with six Glu residues [424]. The absence of 

dimerization in that context suggested that dimerization was a key structural element required for 

the proper function of Cx45. Loss of dimerization correlated with increased plasma membrane 

localization, hemichannel activity (dye uptake and macroscopic currents), and basal Tyr 

phosphorylation, as well as decreased turnover, GJ plaque formation, and GJIC (measured by dye 

coupling). Altered cytoskeletal interactions via Drebrin, β-Tubulin, and ZO-1 were also observed. 

While the data offers a suggestive link between CT dimerization and channel function, a few 

important questions remain. Was the phenotype in part mediated by altered charge of the CT (net 

charge Cx45 WT = -1 vs. 6E = -7; pI Cx45 WT = 6.97 vs. 6E = 6.16)? Are there sequence or 

structure specific features of the dimerization domain or is the requirement simply for a dimer?  

The current link between CT dimerization and GJ function is, however, only correlative at 

this point. This is more complex when the CT domain of the cardiac Cxs were swapped [453]. By 

replacing the CT domain of either Cx43 or Cx40 with that of Cx45 GJs were rendered non-functional 

[453]. Furthermore, replacement of the Cx45CT domain with the CT of either Cx43 or Cx40 resulted 

in GJs that functioned comparable to WT, albeit GJ plaque size was altered [453]. Interestingly, 

truncation of Cx45 at position 272 resulted in channels that failed to traffic properly, while the Cx45-

Cx43CT or Cx45-Cx40CT mutants trafficked normally, which suggests that for Cx45 channels a 

CT domain is essential to proper trafficking [453]. Taken together this also suggests that Cx45CT 

dimerization may be essential for Cx45 function in the context of its own CT domain. In order to 

further investigate this we sought to use alternative modifications to the Cx45CT to modulate 

dimerization. In this Chapter, we use a combinatorial approach of biophysical, cell biology, and 

biochemical studies with chimeric, deletion, and scrambled Cx45 constructs to address these 

questions more directly. Similar to what we observed by inhibiting the dimerization with the 6E 

mutant, we observed increased membrane localization, TX-100 solubility, and hemichannel dye 

uptake in all mutants that disrupted dimerization. For mutants that maintained dimerization, we 

observed punctate GJ localization and GJ plaque formation (TX-100 insolubility) that were 
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comparable to Cx45 WT. To our surprise when we assessed GJIC by scrape loading we observed 

variable results suggesting a more complex mechanism regulates Cx45 coupling.  
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10. Materials and Methods 

10.1 Expression and Purification of Recombinant GST-tagged Proteins 

 Constructs designed for this project are summarized in Table 4. Cx45CT WT and mutants 

were expressed and purified as previously described [247].  

10.2 Analytical Ultracentrifugation (AUC): Sedimentation Equilibrium 

 AUC experiments were performed as previously described with minor modifications [247]. 

Briefly, purified recombinant proteins were buffer exchanged (if necessary) into 1x PBS pH 7.4 

using a Nap 5 (GE Healthcare) column per manufacturer directions. Proteins were then loaded into 

either an AN-50Ti or AN-60Ti rotor (Beckman Coulter; Indianapolis, IN) at three concentrations 

(Abs280 nm of 0.5, 0.7, and 0.9) and speeds (15,000, 18,000, 21,000, and 24,000 RPM). 

Sedimentation equilibrium experiments were performed at ether 7°C or 20°C with a Beckman 

Optima XL-I analytical ultracentrifuge. Data were collected at various rotor speeds. Absorbance 

scans at 280 nm were acquired after 12 hr, 14 hr, and 16 hr at each speed; attainment of equilibrium 

was confirmed by overlay of all four time points. Analysis of the sedimentation equilibrium data was 

performed using the Beckman XL-A/XL-I software package ORIGIN v6.0. Sednterp 

(http://www.rasmb.bbri.org) was used to calculate the buffer viscosities and densities as well as the 

partial specific volume for each protein based on the primary sequence. 

10.3 Circular Dichroism (CD): Secondary Structural Analysis 

 CD experiments were performed as described previously [247]. Briefly, data was collected 

with a Jasco J-815 spectrophotometer with a Peltier temperature control system (Easton, MD). 

Spectra for the protein samples were acquired in 1x PBS pH 7.4. For each sample, 5 scans 

(wavelength range: 190–250 nm; response time: 1 s; scan rate: 50 nm/min; bandwidth 1.0 nm) 

were collected using a 0.01 cm quartz cell and processed using Spectral Analysis (Jasco). Spectra 

are presented as the averaged change in molar residual ellipticity (MRE; degree cm2 dmol−1) over 

wavelength following buffer subtraction. Protein concentrations were determined using a NanoDrop 

1000 (Thermo Scientific; Wilmington, DE) at 280 nm.  
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Protein Source of Chimeric Region 

Cx45 WT NA; Wild-type, K265-I396 

Cx45 6E NA; L335/L338/I342/L349/I353/Y356E 

Cx45 DDSc NA; A333-N361 randomly scrambled 

Cx45 GCN4LZ 
S. cerevisiae GCN4 R249MKQLEDKVEELLSKNYHLENEVARLKKLVGER281TS 

(plus TS linker) 

Cx45 BsubVD E. coli F1/F0 ATP Synthase V25WPPLMAAIEKRQKEIADGLASAERAHKD53 

Cx45 BsubAA E. coli F1/F0 ATP Synthase A31AIEKRQKEIADGLASAERAHKDLDLAKA59 

Cx45 ΔDD NA; Deletion of Cx45CT A333-N361 

Cx45 40MD R. norvegicus P306EEGFIHTQYGQKPEQPSGAS326 

Cx45 43MD R. norvegicus Cx43 F335DFPDDNQNAKKVAAGHELQPLAIVDQR362 

Table 4. Source of homologous and heterologous Cx45 mutants. 
NA – not applicable (source is M. musculus Cx45) 
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10.4 Cell Culture and Stable Cell Line Generation 

 MDCK cells (gift from Dr. Paul Lampe, Fred Hutchinson Cancer Center were cultured in 

Dulbecco’s modified Eagle medium (Corning) at 37°C in a humidified 5% CO2 atmosphere. Medium 

was supplemented with 10% FBS (Seradigm), 2 mM L-glutamine (HyClone), 1% pen-strep 

(Corning), and 0.2% Normocin (Invivogen). The selective agent puromycin (Tocris) was used, when 

appropriate, at empirically determined concentrations. 70% confluent MDCK cells were lipofected 

with indicated SalI linearized plasmid using MDCK Avalanche (MDCK; 2.5:3.5) in OptiMem. 

Transfections were carried out under antibiotic free conditions, and cells were cultured 48-72 hr 

prior to addition of selection media. MDCK were selected with 5 µg/mL. Cells were clonally 

(monoclonal) selected using Whatman paper cloning disks. Western blots and 

immunofluorescence were used to screen clones. 

10.5 Antibodies and Immunostaining 

 All primary and secondary antibodies, detection reagents and concentration ranges utilized 

are summarized in Table 2. Cells seeded on glass coverslips were rinsed 2x with 1x PBS and then 

fixed and permeabilized with either ice cold methanol at -20°C for 15 min or buffered formalin (1x 

PBS, 3.7% formaldehyde, 0.3% TX-100) at 37°C for 30 min. Coverslips were washed 3x 5 min in 

1x PBS with gentle agitation and then blocked for 60-90 min at 37°C (1x PBS containing 1% BSA 

and 0.3% TX-100). Coverslips were then incubated with the indicated primary antibodies diluted in 

blocking buffer for either 1 hr at RT or ON at 4°C. Coverslips were washed 3x with 1x PBS and 

then incubated with secondary antibody (if necessary) 1 hr at RT and then washed 1x for 5 min 

with 1x PBS containing 100 ng/mL DAPI and then 2x 5 min with 1x PBS. Coverslips were mounted 

with SlowFade (LifeTech) and sealed with clear nail polish and imaged. All images acquired on 

either a Zeiss 710 or 800 LSM microscope. 

10.6 Cell Lysis for Direct Western blot 

 Cultured cells were rinsed 2x with 1x PBS and then incubated with protease inhibitor buffer 

(PIB; 1x PBS containing 1x Roche Complete + EDTA, 2 mM PMSF, 2 mM Pepstatin A) on ice for 

20 min and then harvested with a cell scraper. Cell suspensions were pelleted at 1500 RPM for 5 
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min at 4°C. PIB was removed and cell pellet resuspended in an appropriate volume of lysis buffer 

(PIB + 1% TX-100, unless otherwise specified), mechanically lysed and incubated on ice for 30 

min. Lysates were quantified by BCA and normalized with lysis buffer. 30 μg of total protein lysate 

(unless otherwise indicated) was resolved. 

10.7 Western blot 

Protein samples were resolved by SDS-PAGE with an appropriate gel concentration, 

transferred to PVDF (Millipore), blocked either 2 hr at RT or ON at 4°C with either 5% non-fat 

milk/PBST or 5% BSA/TBST and incubated with indicated primary antibody in blocking buffer either 

1 hr at RT or ON at 4°C. Blots were washed 3x for 10 min with either PBST or TBST, and then 

incubated for 1 hr at RT with secondary antibody. Membranes were then washed 4x 10 min each 

with either PBST or TBST and detected using Signal West Femto kit (Thermo) per manufacturer 

protocol and exposed to autoradiography film. Quantifications were done using NIH ImageJ 

software using a minimum of three independent replicates. 

10.8 Triton X-100 Solubility Assay 

The TX-100 solubility assay was modified from a method described previously [412]. 

Briefly, MDCK cells grown in 10-cm dishes were washed with PBS and incubated in 1 mL PIB for 

20 min at 4°C, harvested in the same buffer and gently pelleted. Supernatant was aspirated, and 

cell pellet was resuspended in 1 mL of fresh PIB supplemented with 50 units of Benzonase and 

mechanically lysed. Lysates were quantified by BCA and normalized. A total of 450 µL of cell lysate 

was brought to 1% SDS with 10% SDS and reserved as total lysate. Another 450 µL was brought 

to 1% TX-100 with 10% TX-100 in 1x PBS and incubated at 4°C for 30 min with agitation. The TX-

100 lysate was then separated into non-junctional (supernatant; soluble) and junctional (pellet; 

insoluble) fractions by ultracentrifugation at 100,000 xg for 1 hr at 4°C. The supernatant was 

carefully removed and retained as the soluble fraction. The pellet was solubilized in 500 µL of 

solubilization buffer (1x PBS, 8 M urea, 2.5% SDS, 0.1 M DTT, 1x Roche complete + EDTA, 2 mM 

PMSF, and 2 µM Pepstatin A). Volume normalized samples of total lysate (T), TX-100 soluble (S) 

and TX-100 insoluble (I) portions were analyzed by Western blot. Soluble and insoluble fractions 



112 
 

were quantified as a function of total lysate. Quantification was done using NIH ImageJ software 

from three independent replicates. 

10.9 Scrape Loading Dye Transfer Assay 

 Cells were scrape loaded as previously described [340]. Briefly, all buffers were pre-

warmed to 37°C prior to beginning the experiment. Stable expressing MDCK clones were seeded 

on bovine plasma fibronectin (Sigma; 10 µg/mL) coated 35 mm live imaging dishes (CellStar). 

MDCK cells were transfected with Cx43 siRNA with Lipofectamine RNAiMAX (LifeTech) according 

to manufacturer protocol and then cultured for 48 hr prior to scrape loading. After transfection cells 

were washed 1x with 1x PBS and then overlaid with dye tracer mix (1x PBS containing NB). 

Scrapes were introduced using a fine edged micro-scalpel and incubated at RT for 1 min. Tracer 

dye was gently washed away with 1x PBS and media was added and the cells returned to the 

incubator to culture for 5 min to allow dye to transfer. Following the dye transfer period, the cells 

were washed with 1x PBS containing 1 mM CaCl2 and 1 mM MgCl2 to stop dye spread. Coverslips 

were then formalin fixed and stained as described above and imaged. 15 consecutive fields of view 

were acquired per replicate. 

10.10 Hemichannel Dye Uptake Assay 

 To assess hemichannel activity we modified the protocol described by [442]. Briefly, all 

buffers were pre-warmed to 37°C prior to beginning the experiment. MDCK clones expressing 

either Cx45 WT or 6E were seeded on glass coverslips were cultured to approximately ~90% 

confluent. Some wells were pretreated with 50 µM carbenoxolone (CBX; AbCam) for 15 min prior 

to Ca2+ washout and dye uptake. The presence of CBX was maintained during dye uptake. Cells 

were rinsed 1x with HBSS + Ca2+/Mg2+ (LifeTech) and then 2x with HBSS – Ca2+/Mg2+ (LifeTech). 

Cells were then incubated at 37°C with HBSS – Ca2+/Mg2+ containing NB (0.1 mg/mL; Vector labs) 

for 10 min. Cells were then washed 2x with HBSS + Ca2+/Mg2+ to close hemichannels and GJs. 

Cells were formalin fixed and stained with streptavidin 647 conjugate (LifeTech) and imaged. 

Control cells were treated identically except all incubations were done in HBSS + Ca2+/Mg2+. 15 

fields of view were acquired per sample. 



113 
 

10.11 Statistical Analysis 

 All data were analyzed by using GraphPad Prism 5.0 and were presented as the mean + 

s.e.m. Statistical analysis performed in GraphPad Prism 5.0 was either one-way ANOVA with a 

Bonferroni post-test comparing all samples to either Cx45 WT or 6E. P-values <0.05 were 

considered statistically significant. 
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11. Results 

11.1 Design of Cx45CT Chimeric Constructs  

Since our previous study made use of a single dimerization incompetent Cx45 we sought 

to design novel constructs that would either maintain or inhibit dimerization while assessing the 

requirement for any Cx45 sequence specific regulatory roles of the A333-N361 region. To 

accomplish this, we substituted Cx45CT A333-N361 with: a comparable helical dimer (Cx45CT 

GCN4LZ, helical monomer (Cx45CT BsubVD and BsubAA), scrambled Cx45CT A333-N361 (Cx45CT 

DDSc), unstructured monomeric homologous regions of Cx40CT (Cx45CT 40MD) and Cx43CT 

(Cx45CT 43MD), and finally deletion of Cx45CT A333-N361 (Cx45CT ΔDD). A summary of the 

chimeric proteins (source and sequence of substitution) is contained in Table 4. To determine if the 

chimeric constructs would result in discernable interacting faces (i.e., hydrophobic or electrostatic) 

the substituted residues were modeled using a helical wheel and Cx45CT A333-N361 was included 

for reference (Fig. 3.1). For Cx45CT GCN4LZ, as expected, helical wheel modeling revealed a 

substantial electrostatic face (blue colors Fig. 3.1) and validated the use of helical modeling for this 

purpose [465]. Cx45CT BsubVD, BsubAA, and DDSc no major electrostatic or hydrophobic faces 

were detected (Fig. 3.1). Cx45CT ΔDD, 40MD, and 43MD were not modeled as deletion of the domain 

removes the structure, and the structures of both regions of Cx40 and Cx43 are published [231, 

277].   

11.2 Biophysical Characterization of Cx45CT Mutants 

Following our helical wheel modeling of the Cx45CT mutants we next wanted to test their 

ability to dimerize. To test this, we first expressed and purified Cx45CT WT, Cx45CT DDSc, 

Cx45CT GCN4LZ, Cx45CT BsubVD, Cx45CT BsubAA, and Cx45CT ΔDD from E. coli (Cx43CT and 

commercial lysozyme were used as purity comparisons; Fig. 3.2). Proteins (Cx45CT WT, Cx45CT 

DDSc, Cx45CT GCN4LZ, Cx45CT BsubVD, Cx45CT BsubAA, and Cx45CT ΔDD) were then analyzed 

by AUC sedimentation equilibrium at three concentrations (Abs280 = 0.9, 0.7, 0.5) across of number 

of rotor speeds (curves not shown). A summary of the results is contained in Table 5. For Cx45CT  
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Figure 3.1. Helical wheel analysis of heterologous and scrambled Cx45 mutants. 
The region corresponding to A333-N361 of Cx45 WT, heterologous, and scrambled homologous mutants 
were modeled as α-helices and presented as a helical wheel projection. Blue colored residues are 
electrostatic, green colored residue are bulky hydrophobic, orange represent small side chain, and red are 
neutral.  
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WT we observed similar mass and dimerization affinity as in [247]. For Cx45CT GCN4LZ, as 

predicted, we observed the protein in a dimer conformation as indicated by an observed mass of 

approximately 2-fold that of the calculated mass. Furthermore, the dimerization affinity (KD = 8.38 

nM) was comparable to that of other GCN4 fusion proteins and mutants from [466]. We detected 

Cx45CT DDSc, BsubAA, and ΔDD as monomers with observed masses similar to the calculated 

mass (Table 5). Although we determined a monomeric conformation for Cx45CT DDSc and BsubAA 

it is important to note that the observed masses are slightly below the calculated mass and therefore 

indicate mild degradation. Similarly, we were unable to use the data for Cx45CT BsubVD because 

its observed mass indicated substantial degradation (data not shown). Interestingly, for Cx45CT 

DDSc, although the observed mass is consistent with a monomer conformation the calculated 

affinity for the monomer-dimer species was 211.39 µM (Table 5), which in the context of a connexon 

would be present as a dimer (CT concentration approximately 25 mM in a connexon; [231]).   The 

affinities of Cx45CT BsubAA and ΔDD were calculated to be 1.45 M and 3.215 mM, respectively. 

In addition to testing the mutant Cx45CT constructs for dimerization we determined the secondary 

structure by circular dichroism (CD) spectroscopy (Fig. 3.3). Cx45CT WT (Fig. 3.3; black line) and 

6E (Fig. 3.3; tan line) were included in the analysis as structure controls. For Cx45CT GCN4LZ (Fig. 

3.3; red line) were observed an increase in the helical character as compared to WT, indicated by 

increased positivity in the maxima at 195 nm, and more negative minima at 208 and 222 nm. This 

is not surprising as the length of the GCN4 substitution is 36 residues (Table 4) vs. 29 residues for 

Cx45CT A333-N361. Our spectra of Cx45CT BsubVD and BsubAA, both indicated a loss of helical 

character indicated by negative MRE values at 195 nm, and loss of the minima at 208 and 222 nm 

(Fig. 3.3; blue and purple lines respectively). Despite this apparent loss in secondary structure, 

both curves overlay with the Cx45CT 6E spectra (Fig. 3.3; tan line) and thus based on the Kopanic 

et al. study, the loss of secondary structure is minimal [247]. As expected for the Cx45CT ΔDD 

(Fig. 3.3; orange line), the spectra is consistent with deletion of the structured A333-N361 region. 
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Figure 3.2. Purification of the CT domains of Cx45 WT and mutants. 
The CT domain of Cx45 WT, Cx45 GCN4LZ, Cx45 BsubVD, Cx45 BsubAA, 
Cx45 DDSc, and Cx45 ΔDD were cloned into the pGEX-KT vector, expressed 
in E. coli, and purified as in (Kopanic et al. (2014). Resulting purity of proteins 
were analyzed by SDS-PAGE. Cx43CT and commercial lysozyme were added 
as purity controls. 
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Table 5. Summary of observed mass and KD for Cx45 mutants. 

Protein Mobs (kDa) MCalc (kDa) Conformation KD 

Cx45CT WT 31.098 15.006 Dimer 101.13 nM 

Cx45CT GCN4LZ 32.068 15.713 Dimer 8.38 nM 

Cx45CT DDSc 13.716 15.006 Monomer* 211.339 µM 

Cx45CT BsubAA 12.802 14.647 Monomer 1.45 M 

Cx45CT ΔDD 12.088 11.546 Monomer 3.215 mM 



119 
 

   

 

 

  

Figure 3.3. Circular dichroism spectra of Cx45CT WT and dimerization domain mutants. 
The purified CT domains of the indicated Cx45 WT and mutants were analyzed for secondary structure by CD 
spectroscopy from 250 – 190 nm. The curves are presented as mean residual ellipicity (MRE). 
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11.3 Similar to Cx45 6E dimerization incompetent Cx45 mutants display increased plasma 

membrane localization 

 To further investigate the functional consequences of inhibiting (or maintaining dimerization 

Cx45 GCN4LZ and DDSc) we made full-length stable expressing MDCK cell lines of each mutant 

Cx45CT construct. Similar to our characterization of Cx45 WT and 6E, we initially used 

immunofluorescence as a tool to determine if localization was affected by the mutations in a manner 

similar to the 6E cells (Fig. 3.4). Importantly, all the mutants trafficked to the plasma membrane, 

indicating none of them were confined to intracellular compartments or suffer from misfolding and 

ERAD [141, 142]. Similar to our results in the previous Chapter, for Cx45 WT we observed punctate 

staining along the plasma membrane and intracellularly, and linear extended immunoreactivity of 

the 6E. For both of the dimeric mutants (Cx45 DDSc and GCN4LZ) immunolocalization of the protein 

was visually comparable to Cx45 WT, with punctate distribution along the plasma membrane and 

intracellularly (Fig. 3.4). Similar to the 6E, the immunoreactivity for Cx45 BsubAA and ΔDD was 

more linear and extended about the plasma membrane, with limited intracellular labeling (Fig. 3.4). 

Interestingly, when we immunostained the Cx45 BsubVD mutant we observed an intermediate 

localization phenotype, characterized by longer apparent GJ plaques than Cx45 WT but not as 

extended as 6E. Furthermore, there was a large contribution from small intracellular puncta (Fig. 

3.4).  The immunolocalization of the mutants suggests dimerization is an important regulator of 

Cx45 trafficking. 

11.4 Loss of CT Dimerization Results in Decreased TX-100 Solubility 

 Following from our results in Chapter Two, we hypothesized that since we observed 

increased plasma membrane trafficking of the dimerization incompetent mutants, they would 

preferentially segregate into TX-100 soluble fractions. To test this, we lysed the MDCK cells 

(excluding Cx45 DDSc) mechanically and then incubated in the presence of 1% TX-100 for 1 hr to 

extract soluble proteins, and then fractionated the lysate by ultracentrifugation. Resulting total, TX-

100 soluble, and TX-100 insoluble fractions were then analyzed by SDS-PAGE and Western blot 

(Fig. 3.5A).  Using densitometry, five independent experiments were quantified and all mean values   
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Figure 3.4. Immunofluorescence of Cx45 WT and mutants reveals altered plasma membrane 
localization. 
MDCK cells stably expressing Cx45 WT, Cx45 DDSc, Cx45 GCN4LZ, Cx45 6E, Cx45 BsubAA, Cx45 ΔDD, and 
Cx45 BsubVD were cultured on glass coverslips to confluence, fixed, and immunostained for Cx45 (green) and 
the nuclei (blue) and imaged by confocal microscopy. Scale bar = 20 µm. 
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cross-compared to both Cx45 WT and 6E by one-way ANOVA with a Bonferroni post-test (Fig. 

3.5B; * compared to Cx45 WT, # compared to 6E). We observed a preference of Cx45 WT to 

segregate into the TX-100 insoluble fraction (~28.8% soluble and ~71.2% insoluble, P <0.001) and 

6E preferentially to the soluble fraction (~62.4% soluble and ~37.6% insoluble, P <0.001). We 

observed Cx45 GCN4LZ to segregate primarily into the insoluble fraction (~28.1% soluble and 

~71.9% insoluble, P <0.001), consistent with the notion that dimerization promotes GJ plaque 

incorporation. For Cx45 BSubVD, where we observed an intermediate localization by 

immunostaining, our TX-100 solubility results similarly suggest an intermediate phenotype with a 

predominance of TX-100 insoluble segregation but to a lesser degree than either Cx45 WT or 

GCN4LZ (~37.2% soluble and ~62.8% insoluble, P <0.001). The other Bsub mutant Cx45 BsubAA 

also displayed an intermediate phenotype with regard to TX-100 solubility. Conversely to Cx45 

BsubVD, BsubAA solubility trended towards the 6E phenotype (~55.4% soluble and ~44.6% 

insoluble, P <0.001). Notably, despite the intermediate phenotype neither Cx45 BsubVD nor BsubAA 

were statistically different from Cx45 WT or 6E, respectively. Finally, as predicted by the dimer 

status, Cx45 ΔDD displayed a phenotype akin to 6E (~62.0% soluble and ~38.0% insoluble, P 

<0.001). Worth noting is there is set of higher molecular weight bands of immunoreactivity detected 

in the Western blots of lysate from all Cx45 cell lines. These may represent nonspecific labeling of 

some other cellular protein, or potential phosphorylation dependent migratory isoforms, however 

this remains to be determined, as such these bands were not included in the quantification. Similar 

to the immunofluorescence images, the presence of the manipulations to the A333-N361 region 

require the use of an alternate antibody (α-Cx45 CT vs. α-Cx45 CL).  

11.5 Dimer Incompetent Cx45 Mutants Display Increased Hemichannel Dye Uptake 

 Our observed TX-100 solubility in Chapter Two and increased plasma membrane 

localization correlated with hemichannel dye uptake when under conditions where Ca2+ was 

depleted (see Figs. 2.4, 2.9, and 2.12). We hypothesized TX-100 solubility and plasma membrane   



123 
 

  

Figure 3.5. Inhibiting Cx45CT dimerization increases TX-100 solubility. 
MDCK cells stably expressing Cx45 WT and mutants were cultured, lysed, extracted with TX-100, and 
fractionated into TX-100 soluble (non-junctional), and TX-100 insoluble (junctional) fractions. A) 
Representative Western blot analysis of Cx45 WT and mutant (T – total, S – soluble, I – insoluble). B) 
Quantification of Western blot results from 5 independent replicates. Statistical analysis is one-way ANOVA 
with a Bonferroni post-test to compare all samples to Cx45 WT (*) and Cx45 6E (#). 
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localization could be used as a predictor of hemichannel dye uptake and therefore predicted that 

Cx45 BsubAA and ΔDD would take up more dye than GCN4LZ. To test this, we depleted cells grown 

on glass coverslips of Ca2+ in presence of NB for 10 min, fix the cells, and stained with Streptavidin-

647 and imaged the coverslips. As a confirmation dye uptake was mediated by Cx hemichannels 

we pretreated one group of coverslips with 50 µM CBX for 15 min prior to Ca2+ depletion. CBX, like 

La3+, is a potent inhibitor of Cx hemichannels at concentrations of 25-50 µM [467]. Qualitative 

analysis of the images revealed all Cx45 proteins tested exhibit some degree of NB uptake when 

Ca2+ is depleted (Fig. 3.6, middle) compared to when extracellular Ca2+ levels were normal (Fig. 

3.6, left). Similarly, all Cx45 proteins had NB uptake that returned to near control levels when the 

cells were pretreated with CBX (Fig. 3.6, right). Importantly, Cx45 6E, BsubAA, and ΔDD all took up 

more dye than WT, GCN4LZ, or BsubVD. The data taken together with the TX-100 and 

immunofluorescent images further confirm the link between dimerization, forward trafficking, and 

hemichannel activity. Additionally, they suggest that membrane localization and TX-100 solubility 

combined can be a predictor of hemichannel activity. 

11.6 Inhibiting Dimerization Correlates with Impaired GJIC 

 To complete our analysis of the chimeric and deletion mutants of Cx45 we measured GJIC 

as a function of NB dye transfer in a scrape loading experiment. Since we observed impaired GJIC 

for Cx45 6E in Chapter Two, we predicted increased TX-100 solubility would correlate with 

decreased GJIC. MDCK cells were cultured in live imaging dishes to confluence and then loaded 

with NB by scrape loading, cells were fixed, stained with Streptavidin-647 and imaged (Fig. 3.7). 

For Cx45 WT and 6E our results were comparable to those seen previously. Cx45 WT (Fig. 3.7; 

left-top) expressers transferred dye away from the scrape reaching 7th order transfer, while 6E (Fig. 

3.7; left-middle) displayed severely impaired dye transfer yielding up to 3rd order transfer with little 

to no lateral transfer, suggesting networks of coupled cells are smaller in the 6E cells. We expected 

Cx45 GCN4LZ expressing cells to be as competent as Cx45 WT cells in dye coupling, however, to 

our surprise transfer of NB in these cells was much more similar to that of 6E (Fig. 3.7; left-bottom).   
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Figure 3.6. Dimerization incompetent Cx45 mutants display increased neurobiotin 
uptake through hemichannels. 
MDCK cells stably expressing Cx45 WT or mutants were subjected to conditions that activate 
hemichannels activity (Ca2+ deprivation) and the level of NB (NB) uptake was measured. Representative 
fluorescent micrographs of cells loaded with NB and probed with streptavidin-647 conjugate (red). 15 
random 100X FOVs were acquired per sample. Carbenoxolone (CBX) pretreatment was used to 
demonstrate specificity of uptake through Cx hemichannels. Nuclei are stained with DAPI (blue) to show 
confluence. Scale bar = 50 µm. 
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Comparing our results to the observations of Koval et al. and Laing et al. indicates a more complex 

link between Cx45CT dimerization and the regulation of GJIC [450, 451]. Since our Cx45CT 

GCN4LZ dimer had a KD of 8.38 nM (~17-fold that of Cx45CT WT), it suggests that increased 

dimerization (or alternatively some other uninvestigated aspect of this specific mutation) is 

impairing GJIC. Since we observed TX-100 solubility and hemichannel activity comparable to Cx45 

WT in the Cx45 BsubVD mutant, we predicted it would be comparable to Cx45 WT with respect to 

NB dye coupling. As we predicted, Cx45 BsubVD cells were able to transfer dye to a similar extent 

as Cx45 WT (Fig. 3.7; right-top). Taken together with the Cx45 GCN4LZ results, this mutant 

suggests that the A333-N361 region is not essential for Cx45 dye coupling. The results also 

suggest the Cx45 GCN4LZ mutation itself is leading to the impairment. Scrape loading of the Cx45 

BsubAA and Cx45 ΔDD (Fig. 3.7; right-middle and right-bottom, respectively) mutants revealed, like 

6E, both manipulations abolishing dimerization impaired NB dye coupling. 

11.7 Homologous Mutations of A333-N361 from Cx40 or Cx43 Alter Trafficking 

 Our Cx45 substitution mutants (except Cx45 DDSc) to this point have relied on the use of 

heterologous mutations and thus the potential for unintended consequences exists. Sahu et al. 

demonstrated Cx45 channels were still functional when the CT domain was swapped with that of 

either Cx40 or Cx43, despite the loss of Cx45CT dimerization [453]. We considered the possibility 

that in the absence of dimerization homologous mutations may preserve some features of Cx45 

function. To investigate this, we engineered Cx45 mutants with A333-N361 substituted with a 

homologous region of either Cx40 or Cx43 and used them to generate stable MDCK cell lines 

(Cx45 40MD and 43MD; Table 5). Similar, to our previous characterizations we used 

immunofluorescence as an initial comparison of any phenotypic alterations. Since the structure and 

dimerization status of the regions of Cx40 and Cx43 have been previously described we predicted 

we would observe increase plasma membrane localization of both Cx45 40MD and 43MD. Indeed, 

the localization of both mutants was preferentially shifted towards a primary plasma membrane 

localization (Fig. 3.8). Interestingly, even though we observed increased plasma membrane 

localization, the pattern of immunoreactivity at the plasma membrane was more similar to Cx45 

BsubVD than 6E (see Fig. 3.4) for both Cx45 40MD and 43MD (Fig. 3.8).   
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Figure 3.7. Inhibiting Cx45CT dimerization impairs cell coupling of neurobiotin. 
MDCK cells expressing Cx45 WT or mutants were scrape loaded with NB (green) to assess the degree 
of intercellular communication. Nuclei are stained with DAPI (blue). Scale bar in = 100 μm. 
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Figure 3.8. Homologous Cx45 mutants display increased plasma membrane localization. 
MDCK cells were stably transfected with Cx45 40MD (left) or Cx45 43MD (right), cultured to confluence on 
glass coverslips, fixed, and immunostained for Cx45 (green). Nuclei were stained with DAPI (blue). Scale 
bar = 20 µm. 
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11.8 Cx45 40MD and Cx45 43MD Show Increased Hemichannel Dye Uptake 

 Following from observation that Cx45 40MD and 43MD displayed increased plasma 

membrane localization consistent with having dimerization inhibited we predicted they would 

similarly have increased NB dye uptake through hemichannels when depleted of Ca2+. To test this, 

we cultured MDCK cells expressing either Cx45 40MD or 43MD on glass coverslips to confluence 

and then depleted Ca2+ in the presence of NB for 10 min. Afterward incubating with NB the cells 

were fixed, stained with Streptavidin-647, and imaged. As we expected both Cx45 40MD and 43MD 

had increased dye uptake compared to Cx45 WT when Ca2+ was depleted (Fig. 3.9; bottom-middle 

and lower-middle). Surprisingly, Cx45 43MD appeared to take up more dye than even 6E (Fig. 3.9; 

bottom-middle). Importantly, treatment with CBX abolished the dye uptake confirming Cx 

hemichannels were involved (Fig. 3.9; right panels).   

11.9 Homologous A333-N361 Mutations Preserve or Enhance GJIC 

 We lastly wanted to determine if, similar to the Sahu et al. chimeras, the Cx45 40MD and 

43MD proteins would yield functional GJ channels despite inhibiting Cx45CT dimerization [453]. 

Although, all of our heterologous mutants negatively impacted NB dye transfer (including Cx45 

GCN4LZ), the trend observed for the dimerization incompetent mutants was that loss of dimerization 

equated to impaired GJIC (Fig. 3.7). If the lack of Cx45CT dimerization (regardless of manipulation) 

in the context of the Cx45CT (all resides except A333-361) is essential for Cx45 GJIC, then loss of 

dimerization in the context of either Cx45 40MD or 43MD should impair GJIC. In order to test this, we 

cultured MDCK cells expressing either Cx45 40MD or 43MD in live imaging dishes to confluence, and 

scrape loaded the cells with NB. After the incubation with NB the dishes were fixed, stained with 

Streptavidin-647, and imaged.  Much to our surprise unlike 6E both Cx45 40MD and 43MD were both 

able to robustly transfer NB dye (Fig. 3.10; bottom panels). Furthermore, Cx45 40MD was more 

competent than WT in dye transfer, almost filling the entire field of view (Fig. 3.10; lower middle). 

Cx45 43MD mediated NB transfer was comparable to that WT (Fig. 3.10; bottom). Taken together 

with our heterologous mutant data this supports our hypothesis that Cx45CT dimerization is an 

essential structural feature of Cx45 that regulates GJIC in the context of its own CT. 
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Figure 3.9. Homologous Cx45 mutants have increased hemichannel uptake of 
neurobiotin. 
MDCK cells stably expressing Cx45 40MD or Cx45 43MD mutants were subjected to conditions that activate 
hemichannels activity (Ca2+ deprivation) and the level of NB uptake was measured. Representative 
fluorescent micrographs of cells loaded with NB and probed with streptavidin-647 conjugate (red). 15 
random 100X FOVs were acquired per sample. Carbenoxolone (CBX) pretreatment was used to 
demonstrate specificity of uptake through Cx hemichannels. Nuclei are stained with DAPI (blue) to show 
confluence. Cx45 WT and 6E from Fig. 3.6 were included for ease of comparison. Scale bar = 50 µm. 
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Figure 3.10. Homologous Cx45 mutant maintain or 
enhance neurobiotin transfer.  
MDCK cells expressing Cx45 40MD or Cx45 43MD were cultured to 
conlfuence in live imaging dishes, scrape loaded with NB (green) and 
imaged. 15 fields of view per sample were acquired. Cx45 WT and 
6E were included here from Fig. 3.7 for ease incomparison. Nuclei 
were stained with DAPI (blue). Scale bar = 100 µm.  
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12. Discussion 

A notable similarity between the study in Chapter Two and the one contained in this 

Chapter is the consistent increase and more widespread plasma membrane localization of the 

dimerization incompetent mutants. Another similarity was the increased TX-100 solubility of these 

mutants. Together the pieces of data suggest the dimerization is in some manner directly linked to 

control mechanisms that limit the amount of the Cx45 that is present in the plasma membrane and 

therefore the formation of GJs. Furthermore, we observed similar increases in hemichannel dye 

uptake for the dimerization incompetent mutants. Although it is tempting to conclude this is directly 

mediated by dimerization, it seems more likely that this is a secondary effect of the increased 

trafficking and TX-100 solubility. Importantly, it is clear from localization of the Cx45 ΔDD (and 

conversely Cx45 GCN4LZ and DDSc), that Cx45CT A333-N361 is not essential for the forward 

trafficking of Cx45 to the plasma membrane (Fig. 3.4). These data also support our conclusion that 

dimerization limits Cx45 membrane expression. Taken together with the turnover assay in Chapter 

Two, it suggests this is accomplished by positively regulating degradation and the association with 

Nedd4 (Fig. 2.8 and 2.16). A key difference in the studies between Chapters One and Two, was 

the unpredictable nature of NB dye transfer (Cx45 GCN4LZ – impaired; 40MD and 43MD – functional). 

The data suggest that Cx45CT dimerization either does not regulate cell coupling or a more 

complex mechanism is involved. Testing the coupling ability of the Cx45 DDSc mutant will no doubt 

provide further insight into this possibility. Furthermore, our data highlights an important caveat in 

the interpretation of TX-100 solubility data, that increased solubility does not necessarily equate to 

decrease GJIC.  

Other studies investigating functional regulation of Cx45 by the CT domain have been 

spurious over the last two and a half decades and narrow in focus. In one set of studies the focus 

was using CT truncation mutants to investigate the role of the CT in cell coupling, localization, and 

detergent solubility [450, 451]. In the Koval et al. study chick Cx45 truncated at position 357 (Cx45 

Δ37) expressed in ROS cells was observed to correlate with increased intercellular transfer of 7-

hydroxycoumarin-carboxylic acid (HCCA), LY, and calcein [450]. Notably, this truncation is 

immediately following the critical Y356 in the Cx45 dimerization domain and would likely increase 



133 
 

the dimerization affinity. A second study from the same laboratory compared the Cx45 Δ37 to 

another mutant Cx45 Δ34 [451]. In that study, the Cx45 Δ34 localized in a more punctate manner 

(similar to dimer competent Cx45 mutants) than did the Cx45 Δ37 (which was more linear, similar 

to Cx45 dimer incompetent mutants) [451]. Furthermore, it was revealed that the Cx45 Δ37 failed 

to co-IP ZO-1 and was also more TX-100 soluble than either Cx45 WT or Cx45 Δ34, the authors 

reasoned this was due to the presence of a second or more extended binding site for ZO-1 than 

was previously reported for Cx43 [286, 451]. A number of pieces of data suggest that dimerization 

of the Cx45CT may be essential for maintaining appropriate interactions with ZO-1. The most direct 

piece of evidence we observed was a decrease (albeit non-significant) in the amount of ZO-1 eluted 

with Cx45 6E compared to WT in Chapter Two (Fig. 2.15). Although this was not directly tested in 

the current study, the phenotypic consistency of the dimerization incompetent mutants (increased 

plasma membrane localization and TX-100 solubility), all of which in some way or another result in 

a loss of Cx45 residues 357-361 (like Cx45 Δ37), is consistent with the Laing et al. study Cx45 Δ37 

phenotype [451].  

The nature of the loss of NB dye coupling for the heterologous (and deletion) mutants can 

be possibly explained by one of two theories. 1) Dimerization is a critical regulator of cell coupling 

either through enhancing protein-partner interactions, PTMs, or TM/EL positioning to favor docking; 

and 2) the heterologous (and deletion) mutations lead to unintended consequences via sequence 

specific mechanisms such as: gain/loss of protein partner interactions, or aberrant phosphorylation. 

Taken alone, the data cannot rule out the first theory, however, when considering the homologous 

Cx45 mutants this theory breaks down. The homologous mutants displayed comparable (Cx45 

43MD) and even enhanced (40MD) NB dye coupling when compared to WT. This result is both 

interesting and consistent with the results obtained by Sahu et al. when CT truncated Cx45 was 

tethered with either the CT of Cx40 or Cx43 [453].  

Cx45CT dimerization is a structural feature essential to controlling the amount of Cx45 

present in the plasma membrane. Future studies should focus on determining how exactly ZO-1 

interacts with the CT domain of Cx45 and how dimerization contributes. Furthermore, the studies 

of Koval et al. and Laing et al. used ROS cells to exogenously express Cx45, the ROS cells 
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endogenously express Cx43 (similar to the MDCK cells) [424, 450, 451]. A study focused on the 

regulation of heteromeric GJ channels discovered that functional Cx proteins can functionally 

rescue defective mutants by heterotypic pairing (docking) and are regulated normally (by the wild-

type side) [452]. It is possible in the studies of Laing et al. and Koval et al. that a similar mechanism 

occurred, however, since the Sahu et al. study utilized Neuro-2a (N2A) cells, which lack 

endogenous Cx expression this would have not been a factor and lends greater support to the 

validity of our conclusions [450, 451, 453]. Additionally, further studies should direct their focus to 

understanding the role of Cx45CT dimerization in the context of heteromeric connexons. 
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13. Introduction 

The previous two Chapters focused on the regulation of Cx45 function by 

homodimerization of the CT domain, an intramolecular interaction that occurs prior to and is 

maintained at the GJ plaque. While protein interactions, both intra- and inter-molecular, are 

important for the regulation of Cxs in general, other regulatory mechanisms are critical as well. 

Some of the mechanisms we discussed in Chapter One include transcriptional regulation, quality 

control mechanisms in the ER (ERAD), gating (voltage, pH, and Ca2+), and diverse PTMs 

(ubiquitination, carboxylation, acetylation, methylation, nitrosylation, and phosphorylation). An 

important and widely studied modification of Cxs is phosphorylation. Despite being well 

characterized for Cx43, little information exists about the regulation of other Cx family members by 

phosphorylation. In this section, we focus on the importance of Cx phosphorylation to the function 

and regulation of Cx43 and Cx45. 

GJs are integral membrane proteins that enable the direct exchange of ions and small 

cytoplasmic molecules (≤ 1kDa) between adjacent cells [468]. They mediate propagation and 

amplification of signaling cascades initiated by many stimuli. The 21 human Cx family members 

oligomerize into connexons which aggregate to form GJs [468]. Two important cardiac Cxs are 

Cx43 and Cx45, the latter is the focus of this Chapter. Cx43, expressed in ventricular myocytes, 

mediates propagation of cardiac action potentials and maintains a working cardiac rhythm [67]. 

Cx45 GJs, found primarily in the specialized conductance system, slow conduction velocity to allow 

successive atrioventricular contraction and their high voltage sensitivity (i.e., responsiveness to 

voltage gating) prevents current backflow [230, 464, 469]. In addition to voltage gating, Cx45 and 

Cx43 differ significantly in pore size, conductance, selectivity, and pH sensitivity [470, 471]. 

Dysregulation of GJ distribution, expression, and gating negatively impacts normal impulse 

propagation and can lead to arrhythmias [34, 36, 67, 71, 472]. The compartmentalization and 

unique channel properties of Cx45 and Cx43 strongly suggest that any alterations to expression or 

distribution, both associated with ischemia and heart failure, could lead to the generation of lethal 

arrhythmias. In end stage failing hearts, increased Cx45 at the ID, combined with Cx43 remodeling 

forms the basis for the arrhythmogenic substrate [432].  
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While Cx45 and Cx43 share high sequence homology in the transmembrane and 

extracellular domains, they are divergent in their cytosolic domains, especially the CTs.  The CT of 

Cxs are involved in Ca2+ and pH mediated channel closure, voltage gating, trafficking, assembly 

and disassembly of GJs, and regular Cx turnover [149, 277, 285, 308, 473-475]. The CT domain is 

a hub for Cx regulation through diverse protein interactions [231, 247, 248, 285, 473, 476]. 

Importantly, phosphorylation alters GJ function via changes in protein partner interactions [153, 

300, 306, 308, 312, 477-479]. Phosphorylation of Cx43CT is an important regulator of both 

increasing [153]. Phosphorylation of critical Ser residues by PKA has been attributed to enhanced 

forward trafficking and increasing cell coupling [160, 343]. Additionally, phosphorylation by CK1 is 

attributed to the P2 migratory phosphoisoform (not exclusively) and associated with increased 

channel openness [311]. Phosphorylation of Cx43 Ser residue 373 stimulates transfer of Cx43 from 

the perinexus into the GJ proper where it can participate in meaningful cell coupling [158, 159, 166, 

459].  

Conversely, phosphorylation is also a potent inhibitor of GJIC [153]. For example, Src 

phosphorylation destabilizes Cx43 GJs by loss of binding to the cytoskeletal anchoring proteins – 

β-tubulin, Drebrin, and ZO-1 [378, 480-483]. Src phosphorylation also induces channel closure and 

promotes internalization by indirectly activating PKC and MAPK (which phosphorylate S368 and 

S255/262/279/282, respectively), thereby decreasing GJIC [16, 376, 484]. Importantly, a number 

of protein partners studied in our laboratory also interact with the Cx45CT. These include Drebrin, 

ZO-1, Nedd4, and the GJ recycling protein TSG101 [247, 485, 486]. Notably, several of these 

proteins interact with the Cx45CT in regions containing several phosphorylatable residues 

suggesting phosphorylation may regulate the interactions [247]. Studies investigating the effects of 

Cx45 regulation by phosphorylation are limited, however, Ser phosphorylation of Cx45 often results 

in opposing effects compared to Cx43. For example, activation of PKC by PMA, triggers channel 

closure to subconductance states and promotes internalization and turnover of Cx43 leading to 

reduced GJIC, however, studies investigating the regulation of Cx45 by PKC have yielded 

conflicting results [86, 306, 385]. In one study, activation of PKC by the PMA resulted in increased 

gj, while in another gj was impaired (albeit to a lesser degree than Cx43) yet transfer of NB via Cx45 
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channels was unaffected while Cx43 did not transfer any NB [86, 306]. Interestingly, one of the 

earliest study to describe phosphorylation of Cx45 in any detail noted that phosphorylation of Cx45 

(presumably by PKC) on far CT Ser residues promoted stability of Cx45 (another opposite of Cx43), 

while loss of phosphorylation correlated with decreased half-life [189]. In another study, activation 

of PKG by cGMP impaired communication of Cx43 channels but not those of Cx45 [487]. Taken 

together these findings suggest that different Cx family members are likely differentially regulated 

by the same kinase (if at all). Furthermore, if Cx45 is present at the ID to compensate for loss of 

Cx43 coupling under the same conditions it strongly suggests the same kinases will have opposing 

effects on Cx45 compared to Cx43.  

     In diseased hearts, dysregulated molecular processes lead to the activation of stress related 

proteins such as AngII and signal cascades via altered kinase activation [488, 489]. A number of 

kinases known to regulate Cx43 (and possibly Cx45) are directly activated by increased AngII levels 

including PKC, Pyk2 and Src [490-497]. In the heart, Pyk2 is activated downstream of AngII 

signaling by the AT1R due to increased [Ca2+] via PKC [489, 492, 498, 499]. Activation of Pyk2 

links Ca2+ flux, integrin signaling, and G protein-coupled receptors with effectors in both the MAPK 

and PI3K/PDK1/Akt pathways [500-502]. Pyk2 is also activated by JAK1/2 or Src phosphorylation 

[499, 502-505]. Phosphorylation at Y579/580 by Src results in “enhanced” Pyk2 activation [505]. A 

number of in vivo models show Pyk2 upregulation in the adult heart in disease states, including 

models of hypertrophy [506, 507]. Despite these data, mechanisms defining how Pyk2 is involved 

in cardiac disease are limited. 

 The connection between Src and the pathogenesis of heart disease is well established. In 

the case of cardiac hypertrophy, upregulation of Src kinase expression and activity has been 

reported in the ventricular myocytes of spontaneously hypertensive rats [508]. The study noted 

decreases in the autoinhibitory phosphorylation site (Y529), and concomitant increase in 

phosphorylation at the active site (Y418) when compared to age-matched control Kyoto-Wistar rats 

[508]. Src is essential to stretch induced hypertrophy of the cardiomyocytes, a hallmark of 

hypertensive heart failure [509]. The study of Wang et al. demonstrated mechanical stretch of 

cardiomyocytes (as occurs in hypertension) activates the AT1R independently of AngII, leading to 
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β-arrestin2 mediated activation of Src and subsequently the ERK1/2 pathway [509]. Interestingly, 

the authors reported that ERK1/2 activation could be abrogated by the addition of Src inhibitors 

only when the initiating stimulus was mechanical stretch, not AngII mediated signaling, suggesting 

a bimodal role for the AT1R in the pathogenesis of hypertension induced heart failure [509]. Similar 

results were reported by another study in the ventricles of hypertrophic cat hearts [510]. Although 

both studies demonstrated a critical role of Src in the activation of the ERK1/2 cascade, the 

Kuppuswamy et al. study suggested a critical requirement for integrin signaling not explored in the 

Wang et al. report [509, 510]. Taken together these studies illustrate an important role for Src in 

signal transduction pathways that lead to cardiac remodeling, including the direct phosphorylation 

of the GJ proteins Cx43 and Cx45. Finally, in addition to Pyk2 and Src, PKC is a critical effector of 

AT1R signaling, and forms a feedback activation loop with Src [511].   

 Similar to Src and Pyk2, PKC is activated downstream of the AT1R [496, 497, 509]. The 

Wang et al. study discussed above demonstrated AngII independent activation of Src via 

mechanical stretch induced AT1R activation [509]. Notably, they also described AngII-dependent 

activation of PKC, mediated by the G-protein coupled receptor activity of the AT1R [509]. Several 

PKC isoforms have been implicated in the progression of heart disease including PKCα, PKCβ, 

PKCγ, PKCδ, and PKCζ (reviewed in [512]). AngII has been implicated in the activation of several 

of the PKC isoforms (α, β(2), ε, γ, and ζ isoforms) resulting in translocation to the plasma membrane 

[513]. Similarly, PKC isoforms α, β(2), and ζ were shown to be activated under hypoxic conditions 

mimicking ischemia [513]. In Dahl salt-sensitive rats, expression of several PKC isoforms (α, β, δ, 

and ε) increased in animals fed high-salt diet compared to low-salt diet for 11 weeks [514]. Although 

expression of PKCε, returned to near control levels by 16 weeks high-salt, while expression of the 

others (α, β, and δ) remained high compared to low-salt diet controls [514]. Despite the potential 

involvement of several PKC isoforms in heart failure, PKCα has been implicated as particularly 

important. For instance, in guinea pigs subjected to aortic banding (pressure overload model) PKCα 

activity was shown to increase, this was however, reduced by treatment with ACE inhibitors [515]. 

Similarly, in rats subjected to pressure overload by aortic banding a selective upregulation of PKCα 

and PKCδ was reported, while PKCε expression remained constant [516]. Furthermore, PKCα has 
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been shown to be a critical mediator of cardiac contractility [517, 518]. Importantly, genetic ablation 

of PKCα specifically, offered cardiac protection from heart failure induced by pressure overload and 

dilated cardiac myopathy, as well as partial protection from infarct induced heart failure [517, 518].  

Since Cx45 is expressed in the myocytes of the ventricle in human failing hearts it is 

reasonable to assume that kinases activated in heart failure may regulate the function of Cx45. 

Based on the lack of information available on the phosphorylation of Cx45 in end-stage heart 

failure, the importance of AngII signaling and the kinases, Pyk2, Src, and PKC, in hypertensive 

models of heart failure we sought to investigate the possibility Cx45 is phosphorylated (and 

regulated) by these kinases using a combined approach of in vitro, proteomic, and 

molecular/cellular biology techniques. 
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14. Materials and Methods 

14.1 Antibodies and Reagents 

 All antibodies and reagents for this study are contained in Table 2. 

14.2 Expression and Purification of Cx45CT WT and Mutants 

Constructs designed for this project are summarized in Table 6. Cloning of constructs was 

achieved by the purchase of a GeneBlock gene fragments (IDT) for each of the single Tyr mutants. 

GeneBlock gene fragments were cloned into pGEX-KT by NEBuilder (NEB) per manufacturer 

protocol and sequence verified by Sanger sequencing. Cx45CT WT and mutants were expressed 

and purified as previously described [247]. Following purification, proteins were buffer exchanged 

into (5 mM 3-(N-morpholino)propanesulfonic acid (MOPS), pH 7.2) using a Nap 5 (GE Healthcare) 

column per manufacturer protocol. Concentration of buffer exchanged proteins were determined 

by Abs280 nm using a NanoDrop 1000 and Beer’s Law. 

14.3 Kinase Screen (Eurofins KinaseProfiler) 

 Cx45CT WT expressed and purified as described above. Purified protein was diluted in 1x 

PBS pH 7.4 to a final concentration of 200 µM in a final volume of 1 mL, flash frozen on dry ice and 

shipped on dry ice to Eurofins Scientific for a custom Kinase Profiler Assay testing the Cx45CT as 

substrate for the indicated kinases. Substrate diluted to 20 µM was incubated with the indicated 

kinase and 200 µM ATP [γ-33P] for 40 min at RT. Substrate was then captured by either P30 or 

FilterMat A filters and quantified by scintillation counter. Quantification of raw scintillation counts 

were achieved by averaging the value of two experimental well following subtraction of the acid 

buffer blank for each kinase. This value was normalized to the acid blank subtracted average of 

two wells of the positive control peptide for each kinase tested.  

14.4 In vitro Phosphorylation 

 Buffer exchanged pure Cx45CT (K265-I396) or single Tyr mutants (Table 6) were used as 

substrate for in vitro phosphorylation by Src, Pyk2, and PKCα. Reactions were prepared, an 

incubated ON at 30°C and stopped by the addition of 6X SDS loading buffer, and then analyzed by 

SDS-PAGE and Western blot (2 nmol) or MS (15 nmol). Reactions were set up as follows:  
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Construct Mutations Remaining Tyr 

Cx45CT WT None Y275/277/290/301/311/324/256 

Cx45CT Y275 Y277/290/301/311/324/356F Y275 

Cx45CT Y277 Y275/290/301/311/324/356F Y277 

Cx45CT Y290 Y275/277/301/311/324/356F Y290 

Cx45CT Y301 Y275/277/290/311/324/356F Y301 

Cx45CT Y311 Y275/277/290/301/324/356F Y311 

Cx45CT Y324 Y275/277/290/301/311/356F Y324 

Cx45CT Y356 Y275/277/290/301/311/324F Y356 

Table 6. Cx45CT WT and single Tyr mutants. 
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Src: 1.5 µg of recombinant full-length active human Src, pure Cx45CT or mutants, and 500 

µM ATP were combined in reaction buffer (5 mM MOPS pH 7.2, 2.5 mM β-glycerol-phosphate, 4 

mM MgCl2, 2.5 mM MnCl2, 1.0 mM ethyleneglycol tetra acetic acid (EGTA), 0.4 mM EDTA, 0.05 

mM DTT, and 40 µg/mL BSA) in a total volume of 60 µL. For negative control the kinase was 

substituted with reaction buffer. 

Pyk2: 1.5 µg of recombinant active human Pyk2 (360-690), pure Cx45CT or mutants, and 

500 µM ATP were combined in reaction buffer (5 mM MOPS pH 7.2, 2.5 mM β-glycerol-phosphate, 

4 mM MgCl2, 2.5 mM MnCl2, 1.0 mM EGTA, 0.4 mM EDTA, 0.05 mM DTT, and 40 µg/mL BSA) in 

a total volume of 60 µL. For negative control the kinase was substituted with reaction buffer.  

PKCα: 1.5 µg recombinant full-length active human PKCα, pure Cx45CT or mutants, 6 µL 

of lipid activator (0.5 mg/ml phosphatidylserine and 0.05 mg/ml diacylglycerol in 20 mM MOPS, pH 

7.2, containing 1 mM CaCl2) and 500 µM ATP were combined in reaction buffer (5 mM MOPS pH 

7.2, 2.5 mM β-glycerol-phosphate, 5 mM MgCl2, 1.0 mM EGTA, 0.4 mM EDTA, 0.05 mM DTT, 40 

µg/mL BSA) in a total volume of 60 µL. For negative control the kinase was substituted with reaction 

buffer.  

14.5 Mass Spectrometry 

10 nmol of purified mouse Cx45CT (K265-I396) subjected to in vitro phosphorylation by 

the Src, Pyk2, or PKCα in Section 14.4 was resolved by SDS-PAGE, gel stained with Coomassie 

bright blue, and then destained with pure methanol until bands appeared. The Cx45CT bands were 

cut out, washed extensively with MilliQ water followed by 50% acetonitrile in MilliQ water, snap 

frozen on dry ice, and shipped on dry ice to the Harvard Beth Israel Deaconess Medical Center 

Mass Spectrometry Core Facility for post-translational mapping [519]. 

14.6 Validation of Mass Spectroscopy 

 2 nmol of purified Cx45CT WT and single Tyr mutants (Table 6) were subjected to in vitro 

phosphorylation by Src or Pyk2 as in Section 14.4. Resolved by SDS-PAGE and analyzed for 

phosphorylation by Western blot with a general pTyr antibody. As negative control, the kinase was 

omitted and replaced with reaction buffer for each protein and kinase.  
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14.7 Cell Culture and Stable Cell Line Generation 

 MDCK and LA25 cells (gifts from Dr. Paul Lampe, Fred Hutchinson Cancer Center), HeLa 

cells (gift from Dr. Steve Caplan, University of Nebraska Medical Center) were cultured in 

Dulbecco’s modified Eagle medium (Corning) at 37°C in a humidified 5% CO2 atmosphere. Medium 

was supplemented with 10% FBS (Seradigm), 2 mM L-glutamine (HyClone), 1% pen-strep 

(Corning), and 0.2% Normocin (Invivogen). The selective agent puromycin (Tocris) was used, when 

appropriate, at empirically determined concentrations. 70% confluent MDCK, HeLa, or LA25 cells 

were lipofected with SalI linearized plasmid using Lipofectamine 2000 at a 1:2 ratio in OptiMem. 

Transfections were carried out under antibiotic free conditions, and cells were cultured 48-72 hr 

prior to addition of selection media. HeLa were selected with 2 µg/mL, MDCK were selected with 5 

µg/mL, and LA25 cells were selected 7 µg/mL. Cells were clonally (monoclonal) selected using 

Whatman paper cloning disks. Western blots and immunofluorescence were used to screen clones. 

For LA25 cells Src activity was modulated by culturing the cells at 35°C (permissive – Src active), 

37°C (intermediate), or 40°C (non-permissive – Src inactive) for 8 hr.  

14.8 Transient Transfections 

 HeLa cells were cultured to approximately 90% confluence and lipofected using 

Lipofectamine 2000 (1:2 ratio) in Optimem under antibiotic free conditions. Expression of the 

transgene was maintained for approximately 24 hr prior to cell lysis or subsequent experimentation. 

14.9 Co-IP and Western blot 

 Co-IP: MDCK, LA25, or HeLa cells stably expressing Cx45 WT were seeded in either 10 

or 15 cm plates and grown to confluence. Cells were rinsed 2x with 1x TBS + 1 mM EDTA and then 

scraped up an either 0.5 or 1.0 mL of IP lysis buffer (25 mM Tris, 150 mM NaCl, 0.25% sodium 

deoxycholate, 0.05% SDS, 1% TX-100 plus protease and phosphatase inhibitors). Cells were 

mechanically lysed and then incubated for 30 min at 4°C with rotation. Lysates were precleared 

with normal rabbit IgG (2 µg) bound protein G agarose for 1 hr at 4°C and then clarified by 

centrifugation. Clarified lysates were quantified by BCA (Pierce) and normalized. Input samples 

were reserved and either 2 or 5 mg of lysate was captured by IP with either 2 or 3 μg of rabbit α-
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Cx45 (Alomone) or mouse α-Cx45 (Millipore) ON at 4°C. Immune-protein complexes were captured 

by 2 hr 4°C incubation with protein G agarose (Pierce), washed 5x with IP wash buffer (IP lysis 

buffer excluding sodium deoxycholate) proteins were eluted using 35-50 μL 3x SDS sample buffer. 

Equal volumes of each sample were analyzed by Western blot and to avoid cross reactivity with 

the IP antibody a light chain specific secondary antibody (Jackson) or Veriblot (Abcam) were 

utilized for detection. HeLa and MDCK cells were treated with PMA (100 nM) for 1 hr prior to lysis, 

LA25 cells were incubated at 35°C, 37°C, and 40°C for 8 hr prior to lysis. Western blot: Protein 

samples were resolved by SDS-PAGE with an appropriate gel concentration, transferred to PVDF 

(Millipore), blocked either 2 hr at RT or ON at 4°C with either 5% non-fat milk/PBST or 5% 

BSA/TBST and incubated with indicated primary antibody in blocking buffer either 1 hr at RT or ON 

at 4°C. Blots were washed 3x for 10 min with either PBST or TBST, and then incubated for 1 hr at 

RT with secondary antibody. Membranes were then washed 4x 10 min each with either PBST or 

TBST and detected using Signal West Femto kit (Thermo) per manufacturer protocol and exposed 

to autoradiography film. Quantifications were done using NIH ImageJ software using a minimum of 

three independent replicates. 

14.10 Antibodies and Immunostaining 

 All primary and secondary antibodies, detection reagents and concentration ranges utilized 

are summarized in Table 2. Cells seeded on glass coverslips were rinsed 2x with 1x PBS and then 

fixed and permeabilized with either ice cold methanol at -20°C for 15 min or buffered formalin (1x 

PBS, 3.7% formaldehyde, 0.3% TX-100) at 37°C for 30 min. For LA25 cells, the cells were 

incubated at 35°C, 37°C, and 40°C for 8 hr prior to fixation. Coverslips were washed 3x 5 min in 1x 

PBS with gentle agitation and then blocked for 60-90 min at 37°C (1x PBS containing 1% BSA and 

0.3% TX-100). Coverslips were then incubated with the indicated primary antibodies diluted in 

blocking buffer for either 1 hr at RT or ON at 4°C. Coverslips were washed 3x with 1x PBS and 

then incubated with secondary antibody (if necessary) 1 hr at RT and then washed 1x for 5 min 

with 1x PBS containing 100 ng/mL DAPI and then 2x 5 min with 1x PBS. Coverslips were mounted 

with SlowFade (LifeTech) and sealed with clear nail polish and imaged. All images acquired on 

either Zeiss 710 or 800 LSM microscope. 
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14.11 Scrape Loading Dye Transfer Assay 

 Cells were scrape loaded as previously described [340]. Briefly, all buffers were pre-

warmed to 37°C prior to beginning the experiment. Stable expressing HeLa or LA25 clones were 

seeded on bovine plasma fibronectin (Sigma; 10 µg/mL) coated 35 mm live imaging dishes 

(CellStar). After appropriate treatments cells were washed 1x with 1x PBS and then overlaid with 

dye tracer mix (1x PBS containing NB and Texas Red Dextran). LA25 cells were incubated for 8 hr 

at either 35°C or 40°C prior to scrape loading. HeLa cells were either transiently transfected with 

v-Src for 24 hr, treated with PMA (100 nM) for 1 hr, or serum starved for 24 hr and then treated with 

either epidermal growth factor (EGF) (100 ng/mL) or human insulin (100 nM) for 1 hr and then 

scrape loaded. Scrapes were introduced using a fine edged micro-scalpel and incubated at RT for 

4 min. Tracer dye was gently washed away with 1x PBS and media was added and the cells 

returned to the incubator to culture for 6 min to allow dye to transfer. Following the dye transfer 

period, the cells were washed with 1x PBS containing 1 mM CaCl2 and 1 mM MgCl2 to stop dye 

spread. Dishes were then formalin fixed and stained as described above and imaged. 15 

consecutive fields of view were acquired per replicate. Dye spread was quantified using an ROI 

tool in NIH ImageJ measuring the dye spread as a function of total area of field of view. Data is 

presented as mean ± SD. 

14.12 TX-100 Solubility Assay 

The TX-100 solubility assay was modified from a method described previously [412]. 

Briefly, MDCK, LA25, or HeLa cells stably expressing Cx45 grown in 10-cm dishes were washed 

with PBS, scraped into in 1 mL of fresh PIB and mechanically lysed by sonication (10 s at power 

3). Lysates were quantified by BCA and normalized to 1.5 mg/mL. A total of 450 µL of cell lysate 

was brought to 1% SDS with 10% SDS and reserved as total lysate. Another 450 µL was brought 

to 1% TX-100 with 10% TX-100 in 1x PBS and incubated at 4°C for 30 min with agitation. The TX-

100 lysate was then separated into non-junctional (supernatant; soluble) and junctional (pellet; 

insoluble) fractions by ultracentrifugation at 100,000 xg for 1 hr at 4°C. The supernatant was 

carefully removed and retained as the soluble fraction. The pellet was solubilized in 500 µL of 

solubilization buffer (1x PBS, 8 M urea, 2.5% SDS, 0.1 M DTT, 1x Roche complete + EDTA, 2 mM 



147 
 

PMSF, and 2 µM Pepstatin A). Volume normalized samples of total lysate (T), TX-100 soluble (S) 

and TX-100 insoluble (I) portions were analyzed by Western blot. MDCK cells were treated prior to 

analysis for the indicated time with PMA (100 nM) or 15 min with 100 µM pervanadate (freshly 

prepared). HeLa cells were transiently transfected for 24 hr with v-Src prior to analysis. LA25 cells 

were incubated at 35°C and 40°C for 8 hr prior to analysis. Soluble and insoluble fractions were 

quantified as a function of total lysate. Quantification was done using NIH ImageJ software from 

three independent replicates. Data is presented as the mean  s.e.m. 

14.13 Circular Dichroism (CD): Secondary Structural Analysis 

 Peptides for Cx45 A333-N361 (A333-N361 npY356, and A333-N361 pY356) were 

purchased from LifeTein. CD experiments were performed as described previously [247]. Briefly, 

data was collected with a Jasco J-815 spectrophotometer with a Peltier temperature control system 

(Easton, MD). Spectra for the protein samples were acquired in 1x PBS pH 7.4 at 7°C. For each 

sample, 5 scans (wavelength range: 190–250 nm; response time: 1 s; scan rate: 50 nm/min; 

bandwidth 1.0 nm) were collected using a 0.01 cm quartz cell and processed using Spectral 

Analysis (Jasco). Spectra are presented as the averaged change in molar residual ellipticity (MRE; 

degree cm2 dmol−1) over wavelength following buffer subtraction. Peptide concentrations were 

determined using a NanoDrop 2000 (Thermo Scientific; Wilmington, DE) at 205 nm. 

14.14 Analytical Ultracentrifugation (AUC): Sedimentation Equilibrium 

 AUC experiments were performed as previously described with minor modifications [247]. 

Peptides for Cx45 A333-N361 (npY356 and pY356) were purchased from LifeTein. Briefly, peptides 

were extensively dialyzed against 1x PBS pH 7.4 prior to sample preparation. Proteins were then 

loaded into either an AN-50Ti or AN-60Ti rotor (Beckman Coulter; Indianapolis, IN) at three 

concentrations (Abs280 nm of 0.5, 0.7, and 0.9) and speeds (24,000, 30,000, and 36,000 RPM). 

Sedimentation equilibrium experiments were performed at 7°C with a Beckman Optima XL-I 

analytical ultracentrifuge. Data were collected at various rotor speeds. Absorbance scans at 280 

nm were acquired after 12 hr, 14 hr, and 16 hr at each speed; attainment of equilibrium was 

confirmed by overlay of all four time points. Analysis of the sedimentation equilibrium data was 

performed using the Beckman XL-A/XL-I software package ORIGIN v6.0. Sednterp 
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(http://www.rasmb.bbri.org) was used to calculate the buffer viscosities and densities as well as the 

partial specific volume for each protein based on the primary sequence. 

14.15 Statistical Analysis 

All data were analyzed by using GraphPad Prism 5.0 and were presented as the mean ± 

s.e.m (TX-100) or mean ± SD (scrape loading). Statistical analysis performed in GraphPad Prism 

5.0 was either one-way ANOVA with a Newman-Keuls post-hoc analysis comparing all groups, or 

two-tailed Student’s T-Test where appropriate. P-values <0.05 were considered statistically 

significant.  
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15. Results 

15.1 Screen Identifies Kinases that Phosphorylate the Cx45CT 

 Little is known about the regulation of Cx45 by kinases and phosphorylation. Several 

studies have identified Cx45 as a phosphoprotein and correlative links from various 

phosphorylating conditions and some effect on Cx45 function [86, 189, 385, 487, 520]. Despite 

these advances the relationship between Cx45, specific kinase(s), the sites phosphorylated, and 

the physiological outcome remain unclear. Consequently, we set out to investigate how 

phosphorylation regulates Cx45 function, identify several kinases and the residues of Cx45 they 

phosphorylate.  

 Using a discovery-based approach, we expressed and purified recombinant mouse 

Cx45CT (K265-I396; see Fig. 3.2 for representative purity) as in [247]. After purification, the protein 

was buffer exchanged into 1x PBS pH 7.4 and submitted to Eurofins Scientific for custom 

KinaseProfiler Assay.  We screened a total of 40 kinases for the Cx45CT. Phosphorylated Cx45CT 

or control peptide were captured by either FMA (Fig. 4.1A) or P30 filtermat (Fig. 4.1B) and signal 

determined by scintillation.  The results of the screen are summarized in Fig. 4.1A and Fig. 4.1B, 

data presented is the mean percent of control peptide for each kinase after subtracting the signal 

of acid blanks. Any kinase producing greater than 50% of control signal on either filtermat was 

considered a positive result. A number of kinases relevant to cardiac function and disease (Fig. 

4.1A and Fig. 4.1B; red bars)  were able to phosphorylate the Cx45CT with at least 50% of control 

peptide signal, including: Src, JAK2, PKC isoforms (α, β, and δ), Pyk2, and TAK1. Based on our 

results and the importance that Src, PKCα, and Pyk2 have in the heart and interconnected signaling 

pathways (see introduction for this Chapter) we chose to focus our efforts on validating and 

characterizing the effects of these kinases. 

15.2 Src, Pyk2, and PKCα Interact with Cx45 in HeLa Cells. 

 HeLa cells express Src, Pyk2, and PKCα, and thus were chosen to determine if the kinases 

are capable of interacting with Cx45. To test this, we generated a HeLa cell line stable expressing  
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Figure 4.1. Kinase screen reveals several kinases phosphorylate Cx45CT in vitro. 
Cx45CT (K265-I396) was expressed in E. coli and purified as described in Kopanic et al. (2014). Pure Cx45CT 
was submitted to Eurofins Scientific as test-substrate for phosphorylation in their KinaseProfiler assay. 
Cx45CT data is presented as the percent signal of positive control substrate for each kinase captured on A) 
FMA filtermat and B) P30 filtermat. Red bars represent kinases relevant to cardiac disease. Horizontal black  
bars correspond 50% of positive control peptide signal. 
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Cx45 and used a co-IP experiment to determine if the kinases interact with Cx45 under basal 

conditions. Lysates from the stable Cx45 expressing HeLa cells were subjected to IP ON with either 

an antibody against the CL domain of Cx45 or normal rabbit IgG, and then captured with resin 

conjugated with Protein G. Eluates were resolved by SDS-PAGE and Western blotted for Cx45, 

Src, Pyk2, PKCα, and p21 activated kinase 2 (PAK2). PAK2 was used as a negative control. 

Representative results from our co-IP experiment are shown in Fig. 4.2. We observed that Cx45 

was able to co-IP Src, Pyk2, and PKCα as indicated by the presence of immunoreactivity for each 

kinase. Furthermore, the amount that was detected by co-IP of Cx45 was greater in all three cases 

compared to the background signal pulled down by normal rabbit IgG. Importantly, PAK2 

immunoreactivity was not detected in either the lane corresponding to the IgG control nor the α-

Cx45 lane validating our positive results and indicating our washing conditions were appropriate. 

Although, our results for Src are not as pronounced as either Pyk2 or PKCα, they are further 

supported by the NMR data in the Kopanic et al. study and consistent with the moderate KD 

suggesting a more transient interaction potential [247].  

15.3 Src Regulates Cx45 Phosphorylation in LA25 Cells 

 Having detected an interaction between Src and Cx45 using co-IP, we sought to determine 

if Src regulates the phosphorylation state of Cx45. To accomplish this, we generated LA25 cells 

that stably express Cx45. LA25 cells are useful in the study of regulation by Src because they 

express a temperature sensitive mutant of v-Src where the activity is modulated by incubating at 

alternative temperatures (35°C – Src permissive, 37°C – intermediate, 40°C – Src non-permissive) 

[325]. We incubated LA25 cells that stably express Cx45 for 8 hr at 35°C, 37°C, and 40°C, then 

lysed the cells and enriched for Cx45 by IP using antibodies raised against both the CL and the CT 

domain (Fig. 4.3). Eluates were resolved by SDS-PAGE and Western blotted using antibodies 

against general pTyr, Src, and PAK2. When Cx45 was captured using an antibody against the CL  
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Figure 4.2. Co-IP of Src, Pyk2, and PKCα by Cx45. 
HeLa cells stably expressing Cx45 were cultured and lysed. 
Cx45 was enriched by IP from the lysate using antibody raised 
against the CL domain. Eluates were resolved by SDS-PAGE, 
and Western blotted for the indicated kinases. Normal rabbit IgG 
and PAK2 were used as negative controls. 
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domain we observed a temperature (and Src activity) dependent increase in the amount of Src 

associated with Cx45, while no PAK2 was observed to co-IP, in support of the data obtained in 

HeLa cells (Fig. 4.3; middle). Additionally, general pTyr immunoreactivity was also detected, and 

increased in intensity as Src activity increased, however, based on molecular weight, the observed 

pTyr signal was actually derived from Cx43 also pulled-down by Cx45 (LA25 endogenously express 

Cx43). Any general pTyr signal for Cx45 was being obscured by the large IgG heavy chain 

immunoreactivity. To circumvent this, we also used an antibody against the CT domain to IP Cx45, 

and analyzed those eluates simultaneously (Fig. 4.3; top). When using this antibody, we observed 

a loss of detectable immunoreactivity to Src, suggesting the antibody against the CT domain was 

blocking (or disrupting) the interaction. However, we now observed two sets of bands of general 

pTyr immunoreactivity that increased in intensity with increasing Src activity, one consistent with 

the molecular weight of Cx43 and the other consistent with the molecular weight of Cx45 (Fig. 4.3; 

top). Interestingly, when analyzing the inputs, we observed a temperature dependent increase in 

the total expression of Cx45, where increasing Src activity correlated with increased Cx45 

expression (Fig. 4.3; bottom).  

15.4 v-Src Activity Does Not Alter Cx45 Localization in LA25 Cells 

 Since we observed a temperature dependent increase in the Tyr phosphorylation of Cx45 

in LA25 cells we hypothesized this would correlate with a difference in protein localization following 

incubation at the Src permissive, intermediate, and non-permissive temperatures. We tested this 

by culturing the Cx45 expressing LA25 on glass coverslips to confluence and then incubating for 8 

hr at the various temperatures followed by chemical fixation and immunofluorescent staining. 

Confocal imaging of the stained coverslips revealed little-to-no difference in the gross morphology 

(localization or plaque size) of Cx45 GJs (Fig. 4.4; Cx45 in red). We also immunostained Cx43 (Fig. 

4.4; Cx43 in green) to determine if the both Cx45 and Cx43 co-localized under each condition. We 

visually observed similar colocalization between Cx45 and Cx43 under each temperature (Fig. 4.4; 

overlap in yellow).   
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Figure 4.3. Cx45 Tyr phosphorylation increases with Src 
activity in LA25 cells. 
LA25 cells engineered to stably express Cx45 were cultured at Src non-
permissive (40°C), intermediate (37°C), and Src permissive (35°C) 
temperatures. Cx45 was captured by IP using antibodies raised against 
either the CT or CL domain. Eluates were analyzed by SDS-PAGE and 
Western blotted for general pTyr and Src. PAK2 was used as negative 
control.  



155 
 

15.5 v-Src Disrupts Cx45 GJ Plaque Formation in LA25 and HeLa Cells 

 In our immunofluorescence of Cx45 in LA25 cells at the Src permissive temperature we 

observed little-to-no change in the localization of Cx45 compared to the Src non-permissive 

temperature. We therefore hypothesized that Src activity would not affect GJ plaque formation. To 

test this, we cultured LA25 cells stably expressing Cx45 to confluence and then incubated the cells 

for 8 hr at either 35°C or 40°C. The cells were then lysed, extracted with TX-100, and fractionated 

into soluble (non-junctional) and insoluble (junctional) Cx45 by ultracentrifugation. The resulting 

fractions were resolved by SDS-PAGE and Western blotted for Cx45. Representative immunoblots 

are presented in Fig. 4.5A. At the Src non-permissive temperature we observed approximately 50% 

of the Cx45 immunoreactivity in each the soluble and insoluble fractions (Fig. 4.5A; left lanes, S – 

50.5% vs. I – 49.5%, ns, N=3). Conversely, when incubated at the Src permissive temperature for 

8 hr we observed a shift of Cx45 immunoreactivity from the junctional to the non-junctional pool. 

Quantification of the results of three independent experiments indicated this was a statistically 

significant change (Fig. 4.5, right lanes; S – 57.9% vs. I – 42.1%; one-way ANOVA, P <0.0001, 

N=3;). When comparing non-permissive to permissive Src temperatures we observed a significant 

difference in both the soluble and insoluble Cx45 pools (Fig. 4.5; S – 40°C 50.5% vs. 35°C 57.9%, 

one-way ANOVA, P <0.01; I – 40°C 49.5% vs. 35°C 42.1%, one-way ANOVA, P <0.01). To 

determine if this effect was isolated to LA25 cells, we tested the response of Cx45 to transient 

transfection of v-Src in Cx45 expressing HeLa cells. HeLa cells stably expressing Cx45 were grown 

to 90% confluent and transiently transfected with v-Src or empty plasmid for approximately 24 hr 

prior to analysis. The obtained fractions were analyzed by SDS-PAGE and Western blot (Fig. 4.5B). 

Similar to observations in LA25, under control conditions Cx45 was evenly partitioned between the 

junctional and non-junctional pools (Fig. 4.5B; left lanes). Additionally, and again similar to the 

results we obtained from LA25 cells, v-Src resulted in a statistically significant shift of Cx45 from 

the insoluble to the soluble fraction (Fig. 4.5B; right lanes; one-way ANOVA; P <0.001 comparing 

control to v-Src, N= 3). Quantification of three independent experiments indicated when v-Src was 

expressed Cx45 in the soluble pool was 65.0% of the total, while the insoluble Cx45 represented 

35.0% of total (Fig. 4.5B; graph). This was compared to control transfection conditions where Cx45 
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Figure 4.4. Src activity does not appreciably alter the localization of Cx45 in LA25 cells. 
LA25 cells stably expressing Cx45 were grown on glass coverlsips, fixed, and immunostained for Cx45 (red), Cx43 (green), 
and nuclei (DAPI, blue). Prior to fixation cells were incubated for 8 hr at the Src permissive, intermediate, and non-
permissive temperatures.  
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in the soluble pool was 51.9% of total, while the insoluble pool was 48.1% of total. Interestingly, 

although we did not quantitate the difference in the amount of total Cx45 between either control 

condition (empty plasmid transfection or 40°C) and the Src active condition (v-Src transfection or 

35°C), we did observe an apparent increase in total Cx45 expression when Src was active, similar 

to in Fig. 4.3. This may explain how little-to-no difference in the localization or GJ plaque distribution 

was observed in LA25 cells by immunofluorescence (Fig. 4.4).  Finally, in the HeLa cells we 

observed a larger shift from junctional to non-functional pools of Cx45 as compared to LA25, this 

is likely due to the difference in time before analysis (~24 hr for v-Src transfection in HeLa vs. ~8 

hr for v-Src permissive temperature in LA25).  

15.6 v-Src Negatively Regulates Cx45 GJIC in HeLa Cells 

 Our observation of decreased junctional segregation of Cx45 in both HeLa cells and LA25 

led us to hypothesize that Src active conditions would decrease Cx45 GJIC as measured by scrape 

loading transfer of NB. Since we observed a larger change in the segregation of Cx45 in HeLa cells 

we reasoned this cell line would more reliably show a phenotypic change in communication if one 

existed. Furthermore, since HeLa cells are deficient of endogenous Cx expression, they allow us 

to study the effects of Src on Cx45 function in isolation. We tested this by culturing stable Cx45 

expressing HeLa cells in live imaging dishes, scrape loaded them with NB, fixed, stained with 

Streptavidin-488, and imaged. Representative immunofluorescent micrographs of our results are 

presented in Fig. 4.6. Under control conditions NB dye was transferred away from the line of the 

scrape an average 4-5 cell layers (Fig. 4.6; top). However, when cells were transfected with v-Src 

for ~24 hr, NB dye transfer was impaired, with only 1-2 layers of cells on average showing staining 

for NB (Fig. 4.6; bottom).  
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Figure 4.5. Src activity disrupts Cx45 GJ plaque formation in LA25 and HeLa cells. 
TX-100 solubility assays were used to determine the effect of Src on Cx45 GJ plaque formation in A) LA25 
cells incuabted for 8 hr at either the Src non-permissive or permissive temperatures or B) HeLa cells trasniently 
transfected with v-Src for 24 hr. Quantificaiton was done from thre indenpdent experiments using NIH ImageJ 
for densitometry. Statistics are one-way ANOVA with a Newman-Keuls post-hoc comparison. *P <0.05, **P 
<0.01. ***P <0.001 
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15.7 Physiological Activation of Src by EGF Enhances Cx45 GJIC 

 Transfection of v-Src results in substantial Src activation [295]. It is possible that this 

nonphysiological level of activation influences GJIC in ways that do not directly involve GJ proteins, 

such as remodeling of actin cytoskeletal networks [521]. A more physiological stimulus for 

activating c-Src is stimulation of the EGFR with EGF [522]. In order to test whether acute (and more 

physiological) stimuli altered Cx45 GJIC, we starved HeLa cells stably expressing Cx45 of serum 

for 24 hr and then treated with EGF for 1 hr before scrape loading the cells with NB and Texas Red 

Dextran. After scrape loading the cells were fixed, stained with Streptavidin-488 and imaged. We 

acquired a minimum of 15 non-overlapping fields of view per replicate. To quantify dye spread we 

used the drawing tool of NIH ImageJ to draw regions of interest around the dye spread and 

measured the area as function of percent of the field of view. Representative fluorescent 

micrographs are presented in Fig. 4.7.  GJIC of NB under serum starvation conditions was not 

appreciably different from under standard growth media conditions (compare Fig. 4.7 top to Fig. 

4.6 top). We measured the spread of the serum starved cells to be 18.75 ± 2.51% (n = 114). When 

cells were treated for 1 hr with EGF prior to scrape loading we observed a statistically significant 

increase in dye spread (18.75% (control) to 25.09 ± 2.40% (EGF), n = 82; one-way ANOVA; P 

<0.0001). In order to confirm that the upregulation of GJIC was specific to the signaling of the EGFR 

(and Src downstream) and not a function of a general stress response, we similarly serum starved 

the cells for 24 hr and then treated the cells with human insulin for 1 hr before scrape loading. When 

treated with insulin we observed little-to-no change in the NB dye spread compared to serum 

starved control (18.75% vs. 18.98 ± 2.09%, n = 45; ns). Taken together the results suggest that 

acute phosphorylation effects activated by EGF enhance Cx45 mediated cell coupling.  
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Figure 4.6. Transfection with v-Src impairs Cx45 GJIC. 
HeLa cells stably expressing Cx45 were cultured in glass bottom dishes, scrape loaded with NB, fixed, stained 
with Streptavidin-488, and imaged. NB dye transfer (green) was assessed visually. Nuclei are stained with 
DAPI (blue) to illustrate cell confluence. 
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15.8 Acute Exposure to Pervanadate Increases GJ Plaque Formation 

 To further investigate the effects of acute phosphorylation on Cx45 we used pervanadate 

to transiently increase Tyr phosphorylation of Cx45 (see Fig. 2.12B). We tested the segregation of 

Cx45 into junctional and non-junctional pools after pervanadate exposure. MDCK cells were grown 

to confluence, treated with fresh pervanadate for 15 min, lysed, extracted, and fractionated the 

protein by ultracentrifugation. Notably, 15 min of pervanadate treatment in our experience has been 

the longest we can treat cells without observing significant loss of viability. Representative Western 

blot analysis of the total, soluble, and insoluble fractions of Cx45 are shown in Fig. 4.8A. 

Quantification of three independent experiments by densitometry indicated a statistically significant 

increase in the junctional (insoluble) fraction of Cx45 after pervanadate treatment. The insoluble 

portions of Cx45 under control conditions was 37.6 ± 0.92% and increased to 45.6 ± 4.2% when 

treated with pervanadate (Fig. 4.8.B and C; T-test, P <0.05).  The data taken together with scrape 

loading data suggest acute and chronic effects on GJIC can be diverse. 

15.9 PMA Enhances Anchoring of Cx45 to Cytoskeleton in MDCK and HeLa Cells 

 In addition to Src and Pyk2, we also detected phosphorylation of the Cx45CT by PKCα in 

our kinase screen. Although several studies have examined the potential role for PKC regulation 

of Cx45 by phosphorylation, the results have not been consistent [86, 189, 306, 385, 520]. 

Consequently, we wanted to assess the potential effects of activation of PKCα on Cx45 in our own 

hands. Since the Hertlein et al. study suggested phosphorylation by PKCα promoted Cx45 stability 

through the use of various mutants where loss of phosphorylatable Cx45 Ser residues correlated 

with decreased protein stability, we sought to examine mechanistically how this may occur [189]. 

In order to address this, MDCK or HeLa cells stably expressing Cx45 were cultured, treated for 1 

hr with PMA (or vehicle), and then analyzed by IP and Western blot for several proteins as well as 

general Tyr and Ser phosphorylation. Representative Western blot for MDCK (Fig. 4.9) and HeLa 

(Fig. 4.10) cells are presented here. In MDCK cells following treatment with PMA, we observed an 

increase in the active pool of Pyk2 (activated downstream of PKCα via Src [489, 492, 498, 499]) 

as assessed by increase Pyk2 (pY402). This indicated our treatment with PMA was successful in 

activating PKC. Furthermore, when we blotted for general pSer and pTyr, we observed a PMA 
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dependent increase in both Cx45 Ser and Tyr phosphorylation (Fig. 4.9; black arrows). Importantly, 

we observed this increase in total phosphorylation to correlate with increased association with the 

cytoskeletal anchoring proteins ZO-1, Drebrin (Fig. 4.9; black arrow), and β-tubulin. The increases 

in association of the cytoskeletal anchoring proteins is consistent the conclusions made by the 

Hertlein et al. study on the stability of Cx45 [189]. Since the MDCK cells endogenously express 

Cx43, we wanted to confirm our results in a cell line devoid of Cx43. We used our Cx45 stable 

expressing HeLa cells to test this. Following the same approach as in the MDCK cells, we cultured 

HeLa cells, treated for one hr with PMA, and analyzed the cells by IP and blotting for general 

phosphorylation and the cytoskeletal protein partners. Similar to MDCK, PMA treatment for one hr 

induced activation of Pyk2 (Fig. 4.10). We also detected increased activation of Src by Western 

blotting for Src (pY416) and total Src. Interestingly, total levels of Src were observed to increase, 

but not proportionally to the increase in detected active Src. Finally, we directly determined that 

PMA activated PKCα blotting with an antibody against PKCα (pT638), observing an increase in the 

active form of PKCα (Fig. 4.10; comparing total levels of PKCα and pT638). Notably, treatment with 

PMA reduced the total expression of PKCα in both MDCK and HeLa cells. An early study of Cx45 

phosphorylation by Laing et al. demonstrated that activation of PKC by PMA in a smooth muscle-

like cell derived from embryonic rat heart (BWEM cells) resulted in decreased expression of Cx45 

[385]. It is likely the differences in observed total Cx45 expression levels may be cell line specific, 

herein we demonstrate this effect occurs in two diverse cell lines confirming our results were not 

impacted by co-expression of Cx43. In addition to increased total expression of Cx45, we observed 

PMA dependent increases in both Ser and Tyr phosphorylation in HeLa cells, consistent with our 

results in MDCK cells. Interestingly, the Laing et al. study, suggested that in BWEM, cells activation 

of PKC with PMA did not alter Cx45 phosphorylation levels by radiography of [32P] metabolically 

labeled cells [385]. This difference either highlights a cell-type specific pathway, differences in 

treatment times and concentrations (30 min and 50 nM in Laing et al.; 1 hr and 100 nM herein), or 

limitations in the ability of the Cx45 antibody used in the Laing et al. study to IP all phosphoisoforms 

of Cx45 [385]. While all are reasonable possibilities the latter has been observed for Cx43 (for 

example see [523]). In combination with our results from two diverse cell lines and the observation 
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Figure 4.7. More physiologically relevant activation of Src by stimulation of the EGFR by 
EGF enhances Cx45 GJIC.  
HeLa cells stably expressing Cx45 were culture to confluence in glass bottom dishes, serum starved for 24 
hr, and then treated with either EGF (100 ng/mL) or insulin (100 nM) for 1 hr. Cells were then scrape loaded 
with NB and Texas Red Dextran, fixed, stained with Streptavidin-488, and imaged. NB dye spread was 
measured as a function of total area of field of view from a minimum of 10 non-overlapping fields of view in 
each of three independent replicates. Statistics are one-way ANOVA with a Newman-Keuls post-hoc 
comparison. ***P <0.0001 
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Figure 4.8. Acute pervanadate treatment enhances Cx45 GJ 
plaque incorporation.  
MDCK cells stably expressing Cx45 were cultured to confluence and then 
treated with 100 µM pervanadate for 15 min to increase total Tyr 
phosphorylation. Cells were then lysed, extracted with TX-100 and 
fractionated into total (T), non-junctional (soluble – S), or junctional (insoluble 
– I) pools of Cx45. A) Representative Western blot of the fractionation of 
Cx45. B) Quantification of three independent experiments by densitometry. 
C) Comparison of the total amount of insoluble Cx45. Statistics for B) are 
one-way ANOVA with a Newman-Keuls post-hoc comparison and (*P <0.05, 
**P <0.01) C) Two-tailed Student’s T-Test (*P <0.05). 
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Figure 4.9. PMA increases Cx45 Tyr and Ser phosphorylation and 
enhances cytoskeletal anchoring in MDCK cells. 
MDCK cells stably expressing Cx45 were cultured and treated for 1 hr with 100 nM PMA 
and lysed. Lysates were subjected to IP with an antibody against the Cx45 CL and 
Western blotted with antibodies against general pSer, pTyr, Drebrin, β-tubulin, and ZO-
1. Phosphorylation of Pyk2 (pY402) was used as a marker for PKC activation. 
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Figure 4.10. PMA increases Cx45 Ser and Tyr phosphorylation and enhances 
interactions with cytoskeletal anchors in HeLa cells. 
HeLa cells stably expressing Cx45 were cultured and treated for 1 hr with 100 nM PMA and lysed. 
Lysates were subjected to IP with an antibody against the Cx45 CL and Western blotted with 
antibodies against general pSer, pTyr, Drebrin, β-tubulin, ZO-1, and ZO-2. Phosphorylation of PKCα 
(pT638), Pyk2 (pY402), and Src (pY416) were used as marker of PKC activation. 
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that some Cx43 antibodies are conformation specific, it is highly likely this is the case and presents 

an important caveat in the analysis of IP of phosphorylated proteins when changes in the amount 

of precipitated protein are detected. When blotting for cytoskeletal partners, we observed an 

appreciable increase in the association of Drebrin, ZO-1 and ZO-2 pulled-down by Cx45 after PMA 

(a second tight-junction actin cytoskeletal anchoring protein). We were unable to test the 

association of ZO-2 with Cx45 in MDCK cells as the available antibodies were not reactive to canine 

ZO-1, however, our observations of increased ZO-1 and Drebrin are consistent with the results we 

obtained in MDCK cells (Fig. 4.9). For β-tubulin little-to-no change in the amount that came down 

with Cx45 was observed between vehicle and PMA treated cells (Fig. 4.10). It is possible that 

regulation of the microtubule network in HeLa cells (a cancer line) and MDCK cells (a kidney 

epithelial line) by signal transduction is different. Another possibility is that species specific 

differences in the primary sequence of β-tubulin or binding site for β-tubulin on Cx45 may result in 

different outcomes.  

15.10 Treatment with PMA Does Not Affect Cx45 GJ Plaque Formation 

 Following our observation of increased association of the cytoskeleton anchors β-tubulin, 

Drebrin, ZO-1, and ZO-2 we hypothesized this would correlate with an increase in the amount of 

Cx45 present in the junctional pools. We therefore tested this by TX-100 solubility assay and 

analyzed the results by SDS-PAGE and Western blot. To test this in absence of any influence from 

Cx43, we treated and analyzed Cx45 from our stable HeLa line. We initially treated cells for 1 hr 

with PMA as we did in our IP experiments previously. Comparing levels of junctional and non-

junctional Cx45 after 1 hr of PMA we observed little-to-no change in the immunoreactivity of Cx45 

(Fig. 4.11A and B; S – 47.2% vs. 49.0%, I – 52.8% vs. 51.0%, ns). In order to determine if time-

dependent changes may occur beyond the 1 hr treatment period, we additionally treated cells for 

2 and 4 hr and evaluated them in the same manner (Fig. 4.11A and B). Similar to 1 hr of PMA 

treatment, we observed little-to-no change in either the soluble or insoluble pools of Cx45 (Fig. 

4.11B; 2 hr S – 51.8% vs. 53.0%, I – 48.2% vs. 47.0%, ns; 4 hr S – 49.3% vs. 49.5%, I – 50.7% vs. 

50.5%, ns). Finally, to determine if minute changes were present we compared the vehicle-to-PMA 
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Figure 4.11. PMA does not affect Cx45 GJ plaque stability. 
HeLa cells stably expressing Cx45 were cultured and treated with 100 nM PMA for 1, 2, and 4 hr periods and 
then lysed, extracted with TX-100, and fractionated into total (T), non-junctional (soluble – S), and junctional 
(insoluble – I) Cx45 pools by ultracentrifugation. Resulting fractions were analyzed by SDS-PAGE and 
Western blot. A) Representative Western blots of Cx45 fractions. B) Quantification of three independent 
replicates using densitometry by ImageJ. C) Ratio of vehicle:PMA treated samples of the S and I fractions at 
each time point. Statistical analysis used was one-way ANOVA with a Newman-Keuls post-hoc comparison.  
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ratios at each time-point for both soluble and insoluble pools of Cx45 (Fig. 4.11C; 1 hr S – 0.969, I 

– 1.04; 2 hr S – 0.986, I – 1.03; 4 hr S – 0.998, I – 1.00). Consistent with our direct quantification 

by densitometry no difference was detected between vehicle and PMA treatments at any time point. 

15.11 Activation of PKC by Treatment with PMA Impairs Cx45 GJIC 

 Stemming from our observation that PMA did not alter the GJ plaque incorporation of Cx45 

and the previous conflicting reports on the effects of PMA on Cx45 GJIC we sought to evaluate this 

in our own hands as well. In the van Veen et al. study ROS cells were used which endogenously 

co-express Cx43 [306]. Conversely, the Martinez et al. study used HeLa cells to study Cx45 in the 

absence of influence from other Cx family members [86]. In order to assess the effect of PMA on 

Cx45 in isolation in our study we similarly used HeLa cells. After culturing HeLa cells expressing 

Cx45 to confluence, the cells were treated for 1 hr with PMA and scrape loaded with NB, fixed, 

stained, and imaged. Representative fluorescent micrographs are presented in Fig. 4.12. 

Importantly, NB dye spread was observed in vehicle treated cells comparably to the untreated cells 

in Fig. 4.6. When quantified as a function of area of field of view vehicle treated cells were observed 

to have a total dye spread of 23.6 ± 2.46% of the field area. When cells were treated with PMA 

communication was still observed, however, the total area of dye spread was significantly reduced 

(Fig. 4.12; vehicle 23.6% vs. PMA 19.74 ± 3.26%; T-Test; P <0.0001). This observation is in conflict 

with the dye transfer results presented by the Martinez et al. study [86].  

15.12 MS Identifies Cx45 Residues Phosphorylated by Src, Pyk2, and PKCα 

 Functionally, we have provided several pieces of data that suggest activation of Src, Pyk2 

(indirectly), and PKCα regulate Cx45. Unfortunately, without explicit knowledge of the residues 

phosphorylated by each of the kinases, attribution of a given effect to a specific kinase remains 

correlative at best. For Cx43 phosphoisoform specific antibodies are essentially responsible for our 
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Figure 4.12. Treatment with PMA impairs Cx45 GJIC in HeLa cells. 
HeLa cells stably expressing Cx45 were culture to confluence in glass bottom dishes then treated with either 
vehicle or PMA (100 nM) for 1 hr. Cells were then scrape loaded with NB and Texas Red Dextran, fixed, 
stained with Streptavidin-488, and imaged. NB dye spread was measured as a function of total area of field 
of view from a minimum of 15 non-overlapping fields of view in each of three independent replicates. Statistics 
are two-tailed Student’s T-Test. ***P <0.0001 
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current degree of understanding of the regulation of Cx43 by phosphorylation (reviewed in [524]). 

Regrettably, while several high-quality commercial Cx43 phosphoisoform specific antibodies exist, 

there are currently none for Cx45. In order to lay the groundwork for the development of 

phosphoisoform specific Cx45 antibodies and simultaneously identify Cx45 residues 

phosphorylated by Src, Pyk2, and PKCα we purified Cx45CT (K265-I396; for example of 

purification, see Fig. 3.2) and phosphorylated it in vitro with Src (recombinant human full-length, 

Sigma), Pyk2 (recombinant human residues 360-690, SignalChem), or PKCα (recombinant human 

full-length, SignalChem). The resulting phospho- and non-phosphoproteins were resolved by SDS-

PAGE and the bands corresponding to Cx45CT were cut from the gel and submitted to the Beth 

Israel Deaconess Mass Spectrometry Core Facility at Harvard for PTM mapping. A summary of the 

residues identified as phosphorylated by each kinase is presented in Fig 4.13. For Src (Fig. 4.13A) 

Tyr residues 324 and 356—the latter is present in the Cx45CT dimerization domain—were 

identified by peptides that mapped to this region containing mass shifts of 80 Da, consistent with a 

phosporyl moiety (data not shown). Similar to Src, for Pyk2 phosphorylated Cx45CT we also 

identified Tyr residues 324 and 356 (Fig. 4.13B, peptides detected not shown). Interestingly, for 

Cx43CT our laboratory has also detected identical phosphorylation by MS from Src and Pyk2 [295]. 

When we phosphorylated Cx45CT with PKCα and analyzed by MS we observed phosphorylation 

of several Ser residues and one Thr residue (Fig. 4.13C). Specifically, we observed Ser 

phosphorylation on residues 326, 376, 378, 381, 381, 384, and 385; and detected Thr 

phosphorylation on residue 392 (Fig. 4.13C; peptides detected not shown). Of note, T392 is 

immediately followed by a Ser residue, so the possibility exists that this is erroneous placement of 

the phosphate during analysis, however, this remains to be tested.  

15.13 Cx45CT Mutants Confirm MS and Identify Additional Phosphorylated Tyrosines 

  Although MS identified only two Tyr residues phosphorylated by either Src or Pyk2, at 

least one other Tyr (Y301) has been identified as phosphorylated in other studies utilizing high 

through-put MS that did not directly investigate Cx phosphorylation [525, 526]. Furthermore, despite 
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Figure 4.13. MS reveals residues of Cx45CT phosphorylated in vitro by Src, Pyk2, and PKCα. 
Cx45CT (K265-I396) was expressed in E. coli., purified as in Kopanic et al. (2014), and in vitro phosphorylated 

by Src, Pyk2, or PKCα. Reactions were resolved by SDS-PAGE, the bands for Cx45CT were cut out and 

submitted to the Beth Israel Deaconess Mass Spectrometry Core Facility at Harvard for PTM mapping. 

Summary of residues phosphorylated (red) by A) Src, B) Pyk2, and C) PKCα. 
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the high sensitivity of MS at a tool for identifying PTMs, there are limitations to its use, such as the 

inherent failure of some peptides to fly in MALDI-TOF [320, 527]. Additionally, the high-throughput 

discovery-type nature of MS requires subsequent validation of through the use of low-throughput 

methods due to the high kinase concentration used in the reaction which can result in aberrant 

hyperphosphorylation. In order to validate the results of our MS analysis on Src and Pyk2 

phosphorylated Cx45CT we generated single Tyr mutants of Cx45CT (Table 6) where all CT Tyr 

residues (7 total) except 1 were mutated to Phe to focus analysis to phosphorylation on a specific 

residue. We in vitro phosphorylated Cx45CT WT and each of the 7 single Tyr mutants with either 

Src (Fig. 4.14A) or Pyk2 (Fig. 4.14B), resolved the resulting proteins by SDS-PAGE, and then 

Western blotted for pTyr using a general pTyr antibody. In addition to validating the MS data, this 

method allows for determining the “primary” target of the specific kinase as it will be the mutant with 

the highest degree of pTyr signal detected. As negative control a second reaction was prepared 

replacing the kinase volume with excess reaction buffer. For Src we observed robust 

phosphorylation of Cx45CT WT as expected. When analyzing the single Tyr mutants, Cx45CT 

Y324 displayed the highest degree of pTyr signal, followed by Y301, then Y275, and finally Y356. 

The data validates Tyr residues 324 and 356 as phosphorylated by Src (as detected in the MS 

data), and identified novel Tyr residues 275, and 301. Importantly, the data identifies Cx45 Tyr 

residue 324 as the primary target for Src. For Pyk2 we followed an identical approach to validate 

the residues identified by MS. Similar to Src, we observed phosphorylation on the MS identified 

sites as well as additional residues. In order of decreasing signal strength, we observed Tyr 

phosphorylation of Cx45CT WT > Y324 > Y301 ≈ Y277 > Y275 ≈ Y356. Our results therefore 

validate the MS identified Tyr residues (324 and 356) as well as identified novel Tyr residues (275, 

277, and 301), of which Tyr 324 is also the primary target for Pyk2.  
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Figure 4.14. Cx45CT single Tyr mutants reveal novel 
phosphorylated residues and validate in vitro MS 
results. 
Cx45CT WT (K265-I396) and mutants where all but the indicated 
Tyr residue have been mutated to Phe, were in vitro 
phosphorylated by A) Src or B) Pyk2. Reactions were resolved 
by SDS-PAGE and Western blotted with a general pTyr antibody 
to detect phosphorylation.  
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15.14 Phosphorylation of Y356 Reduces Cx45CT A333-N361 Dimerization Affinity 

 Although Y324 was identified as the primary target for both Src and Pyk2, we have 

significant interest in Y356 as it is identified as a critical residue mediating the dimerization of the 

Cx45CT domain [247]. As such we sought to determine if phosphorylation of Y356 would affect 

Cx45CT dimerization. To test this, we purchased peptides (LifeTein) corresponding to Cx45CT 

A333-N361 that was either not phosphorylated on Y356 (npY356) or was phosphorylated on Y356 

(pY356) and subjected them to AUC sedimentation equilibrium (example curves shown in Fig. 

4.15). Importantly, analysis of observed mass revealed both peptides sedimented primarily as 

dimers (npY356 – 7.332 ± 0.17 kDa; pY356 – 6.541 ± 0.12 kDa). However, based on calculated 

molecular weight the npY356 peptide (3.458 kDa), the observed mass suggests a small 

contribution from the presence of higher order oligomers. Previous characterization of recombinant 

Cx45CT A333-N361 observed a similar phenomenon, where the recombinant peptide (including a 

linker not present in the synthesized peptide) sedimented with a mass consistent with a primarily 

tetrameric arrangement [247]. In the same study the KD for the monomer-dimer species was 

calculated to be 141 nM [247]. We did not calculate the KD for the npY356 peptide, however for the 

pY365 peptide we calculated the KD and determined it to be 531 ± 284 µM. Taken together the data 

indicates phosphorylation of Cx45 Y356 severely impacts the affinity of dimerization.  
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Figure 4.15. Phosphorylation of Y356 reduces the dimerization affinity of 
Cx45 A333-N361 by an order of seven magnitudes. 
Peptides corresponding to A333-N361 with or without phosphorylation of Y356 were 
synthesized by LifeTein. Peptides were dialyzed into 1x PBS pH 7.4 and their oligomeric 
status was assessed by AUC sedimentation equilibrium. Observed mass and dimerization 
affinity for the A333-N361 (pY356) peptide are inlaid on the left plots.  Plots shown are for 
speeds: 24,000 (left) and 30,000 (right) RPM. 
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15.15 Cx45 Y356 Phosphorylation Does Not Alter Structure of A333-N361 

 Although there are many mechanism by which phosphorylation may be reducing the 

dimerization affinity of Cx45 A333-A361, one possibility is that phosphorylation may alter the 

secondary structure of residues A333-N361. Any change in structure that results in loss of the 

hydrophobic face of the A333-N361 (either by loss of helix entirely or by “over-tightening” it as 

acetonitrile does) would reasonably alter the KD of the homodimerization. To test whether 

phosphorylation of Y356 affects A333-N361 secondary structure both npY356 and pY356 peptides 

were subjected to CD spectroscopy to analyze overall secondary structure (Fig. 4.16). Similar to 

what was observed in our previous study, the secondary structure of the npY356 (Fig. 4.16; black 

line) peptide is consistent with that of an α-helix, indicated by the presence of a local maxima at 

195 nm, and two local minima at 208 and 222 nm respectively. When phosphorylated on Y356 (Fig. 

4.16; red line), we observed a decrease in the magnitude of the local maxima at 195 nm, as well 

as a slight positive change in magnitude (i.e., less negative) for the local minima at 208 and 222 

nm. This suggest there may be a mild decrease in the total amount of helical character, however, 

the overall trace is consistent with an α-helical structure and we therefore conclude that 

phosphorylation has not significantly altered the structure of the peptide. On a technical note, the 

difference observed in the traces could also be explained by differences in calculated MRE as this 

is a function that is concentration dependent. Phosphorylation of Tyr residues reduces the 

extinction from 1,490 M-1cm-1 (ExPasy ProtParam value for Tyr) to ~650 M-1cm-1, thereby reducing 

the reliability of A280 in determining concentration [528]. To circumvent this, A205 (measures the 

peptide bond absorbance [529]) was utilized, however, the effect of phosphorylation of side chains 

on the A205 of peptide to our knowledge has not been explored, and thus the possibility exists that 

even using A205 may introduce a margin of error that modestly affects analysis.  
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Figure 4.16. Phosphorylation of Y356 does not alter A333-N361 secondary structure. 
Peptides corresponding to A333-N361 with or without phosphorylation of Y356 were synthesized by LifeTein. 
Peptides were dialyzed against 1x PBS pH 7.4 and then the secondary structure was assessed by CD 
spectroscopy from 190 – 250 nm. The curves are presented as mean residual ellipicity (MRE). 
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15.16 Phosphomimetic Cx45 Y356E Localizes Similar to Cx45 WT 

 As one final experiment, we hypothesized phosphorylation of Cx45 Y356 may regulate 

Cx45 in cells since it reduced the affinity of the dimer. To test this, we created a phosphomimetic 

mutant Cx45 Y356E and used that to generate a stable expressing MDCK cell line. As we have on 

numerous accounts, we used immunofluorescence of the localization of Cx45 as an indicator of 

major phenotypic changes in trafficking, plaque incorporation, or degradation. Representative 

immunofluorescent micrographs of Cx45 WT and Y356E expressed in MDCK cells are presented 

as Fig. 4.17. Cx45 (green) is seen in both Cx45 WT and Y356E as primarily punctate GJ plaques 

studding the cell surface with a significant contribution of intracellular puncta as well. This was not 

surprising, as phosphorylation of the Tyr reduced dimerization affinity, but since the concentration 

of CT domain present in the connexon would be in excess of 500 µM ([CT] in connexon ~ 25 mM; 

[231]), even the CT of phosphorylated Cx45 would still be present primarily as a dimer. 

Furthermore, the use of Glu as a substitution for pTyr, although well accepted in the GJ field is not 

a perfect mimetic, as it lacks the ring stacking interactions and the negative charge is not equivalent.  
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Figure 4.17. Phosphomimetic Cx45 Y356E similarly to Cx45 WT. 
MDCK stably expressing Cx45 Y356E were cultured on glass coverslips, fixed, and immunostained for Cx45 
(green) and imaged on a Zeiss LSM 800 confocal microscope.  Nuclei were stained with DAPI (blue). Cx45 
WT from Fig. 3.4 has been included for ease of comparison. Scale bar for Cx45 WT = 20 µm, and for Y356E 
= 10 µm. 
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16. Discussion 

 In this Chapter, we have presented numerous observations confirming and expanding 

upon previous reports that Cx45 is a phosphoprotein [189, 385]. Although, these previous studies 

detected Cx45 phosphorylation [189, 385], and in some cases attributed functional effects of 

activation of a specific kinase [86, 306, 385], no direct connections to a specific kinase or 

phosphorylated residue were presented. We used an in vitro screen to identify several kinases that 

phosphorylate the Cx45CT. Specifically, a number of the kinases that were able to phosphorylate 

the Cx45CT are known to be involved in AngII signaling [491, 492, 498, 499, 504, 509]. 

Upregulation of AngII in the bloodstream is a hallmark of both hypertensive patients and those 

suffering from end-stage heart failure [530]. Similarly, Cx45 expression in the myocytes of ventricles 

has been shown to increase in a number of models of heart disease and in human patient samples 

[67, 75, 79, 82]. The understanding how phosphorylation of Cx45 affects its function in context of 

heart disease is critical for the development of novel therapeutic targets. Importantly, while Cx45 

expression increases in the ventricles, Cx43 expression is reduced [67, 71, 75, 84, 531].  Residual 

Cx43 has therefore been demonstrated to form heteromeric channels with Cx45 and suggested to 

form the basis for arrhythmias via altered electrical properties of the resultant heteromeric channels 

[31, 86, 87]. Despite this notion, work in native cardiac murine GJs has suggested that the presence 

of Cx45 in the ventricles did not alter the organ level electrical properties of the heart (i.e., ECG, 

QRS duration, etc.) [83]. Additionally, the study identified a number of Cx45 residues 

phosphorylated in vitro by CaMKII and CK1, several of which we also identified as phosphorylated 

by PKC [83]. One caveat to the study of Bao et al. is their focus on the outcome of Cx45/Cx43 

heteromeric channels in healthy hearts [83]. While this is important, it does little to examine how 

the presence of Cx45 alters electrical properties of the heart in the diseased state, which is notably 

characterized by a vastly altered kinase landscape, including increased expression and activation 

of PKC, Pyk2, and Src [491, 492, 498, 499, 504, 509]. 

Our results demonstrate the Cx45CT domain is efficiently phosphorylated in vitro and in 

cyto by Src, leading to impaired and enhanced GJIC under chronic and acute Src activation, 

respectively. When v-Src was overexpressed, we observed a decrease in the total amount of 
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junctional (TX-100 insoluble) Cx45, that correlated with impaired transfer of NB dye and increased 

Tyr phosphorylation. The loss in junctional Cx45 was consistent between both LA25 cells at the 

Src permissive temperature and HeLa cells transiently transfected with v-Src. Surprisingly, we did 

not observe a gross change in the localization or punctate GJ staining of Cx45 in LA25 when Src 

was active, which has been demonstrated for Cx43 [325]. The mechanism behind this remains to 

be determined, however, one possibility is the anecdotal increase in total Cx45 expression when 

Src was overexpressed (HeLa) or active (LA25). Contrastingly, we observed an increase in NB dye 

transfer when we treated HeLa cells with EGF to achieve more physiological levels of Src 

activation. Our results with EGF treatment highlight a difference in the regulation of Cx45 and Cx43 

by the EGFR signaling. A study by Warn-Cramer et al. studying the regulation of Cx43 used EGF 

to treat cells and measured the Cx43 mediated gj and observed a rapid decrease in coupling within 

4 minutes of treatment [532]. The authors attributed this affect specifically to the Cx43 MAPK sites, 

as mutation of S255,279,282 prevented the downregulation of GJIC by EGF treatments [532]. For 

Cx45 in our system, whether this is directly linked to Src or alternate pathways activated by EGF 

remains to be determined. Regardless, the result indicates a dichotomy may exist between acute 

and chronic stimulation of signaling pathways or alternatively low vs. high levels of phosphorylation. 

This is supported by variable results of several studies using EGF to affect GJIC [533-539]. In the 

bulk of these studies EGF treatment disrupted GJIC on a short time frame (30 min to 1 hr), however 

in the study by Vikhamar et al. an increase in Cx43 mediated GJIC was observed 2-3 hr after 

treatment with EGF [533-539]. The authors speculated this may be a function of the low native 

coupling observed in the K7 cells they used in the study [539]. Another acute effect we observed 

was the increase in junctional Cx45 in MDCK cells treated with pervanadate, a stimulus we 

previously demonstrated increases the amount of total Tyr phosphorylation on Cx45 [424]. Due to 

the very short test period it is unclear what the fate of the Cx45 protein would have been 30-45 min 

later.  Finally, for Src we detected phosphorylation on Y275, Y301, Y324, and Y356, of which Y324 

was the apparent primary target. 

In addition to regulation by Src, our results suggest that Cx45 GJIC is also modulated by 

PKC as well. Although we did not detect alterations in the GJ plaque dynamics of Cx45 in response 
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to PKC activation, we did observe a number of phenomena worth discussing. First, we observed 

increased ability of Cx45 to co-IP several cytoskeletal proteins when cells were treated with the 

PKC activator PMA. In both HeLa cells and MDCK we observed an increase in the amount of 

Drebrin and ZO-1 that precipitated with Cx45. In HeLa cells, we additionally detected an increase 

in the amount of ZO-2 pulled down, which we were unable to assess in MDCK cells due to antibody 

recognition issues. The only non-consistent change in protein partner binding we observed was for 

β-Tubulin, in MDCK we observed an increase while in HeLa no change. Notably, when cells were 

treated with PMA we observed an increase in the total levels of Cx45 Ser and Tyr phosphorylation 

indicating that PMA is activating a Tyr kinase downstream of PKC that can phosphorylate Cx45, 

perhaps Src [511]. Although we have not explored the signaling pathway in detail to determine 

which kinases are contributing to the phosphorylation of Cx45 subsequent to PMA treatment, the 

enhanced associations linking Cx45 to the structural network of the cell is of particular interest. This 

is in contrast to Cx43, whose association with the cytoskeleton is generally disrupted by increased 

Tyr phosphorylation [286, 295, 325, 378]. A notable difference between Cx43 and Cx45 is the 

binding sites for the cytoskeletal proteins (predicted: β-Tubulin (R267-P273; MAPred [540]); 

empirically determined: Drebrin (T283-K312; Sorgen Laboratory, unpublished data) and ZO-1 

(K371-I396; Kopanic et al. [247])) is the lack of Tyr residues phosphorylated by Src, except Drebrin 

which has one Tyr phosphorylated by Src while Cx43 has three in the Drebrin binding domain [295]. 

Consistent with the conclusions of Hertlein et al., the increased affinity of cytoskeletal proteins and 

correlated stability (at least to 4 hr) suggest that phosphorylation of Cx45 by PKC contributes to 

Cx45 GJ stability [189]. Importantly, residues identified by Hertlein et al. to contribute to Cx45 

stability in their study were identified as phosphorylated by PKC in our MS analysis [189]. In contrast 

to the studies of van Veen and Martinez et al., we observed a PMA dependent decrease in NB 

transfer [86, 306]. Few differences exist between our study and that of van Veen et al. that may 

explain the difference in our results, HeLa cells expressing mouse Cx45 were utilized in each study, 

the major differences are the method of detection (macroscopic conductance vs. dye coupling) and 

the timeframe addressed (0-5 min vs. 1 hr after addition of PMA). It is possible that on our time 

scale we are observing effects mediated by downstream effectors of PKC, however to this will need 
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to be addressed directly by future studies. Similar to the van Veen et al. study, Martinez et al. used 

HeLa cells expressing mouse Cx45, they however measured both macroscopic conductance and 

dye coupling [86]. Key differences in these two studies are the concentration of PMA used to treat 

cells (100 nM vs. 200 nM)) and the timeframe of analyses, which for the Martinez et al. study was 

more in line with our own [86, 306]. Although, Martinez et al. concluded no statistical difference in 

the NB dye transfer of Cx45 channels after 30 min of PMA, they did observe a non-statistical 

decrease [86]. It is possible this decrease would have become more pronounced at 1 hr if that 

assay had been continued. Indeed, when they measured macroscopic conductance after 1 hr of 

PMA treatment they did note a reduction in gj [86].  

The study of contributions to the regulation of Cx45 by Pyk2 at this point are merely 

correlative. We observed an increase in Pyk2 activity as measured by autophosphorylation of Y402 

when cells were treated with PMA. In fact, lack of high-quality selective inhibitors for Pyk2 make 

investigating its role in phosphorylating Cx45 difficult to separate from either Src or PKC. Despite 

this, our results have shown a number of Cx45 residues that are phosphorylated by Pyk2, all but 

one of which (Y277) are also targeted by Src. We have observed a similar trend for the 

phosphorylation of Cx43 by Pyk2 and Src as well (Sorgen Laboratory, unpublished data). Current 

models link Src and Pyk2 activity the scaffolding protein Paxillin, where Src is required for enhanced 

activation of Pyk2 via phosphorylation of residues Y579/580 on Pyk2 [505, 541]. Due to the physical 

link (Paxillin) between these two kinases and the reliance of Pyk2 on Src for its full activity, it is 

unlikely Pyk2 is ever the “lone gunman” kinase, but rather fine-tunes the effects of Src. The 

development of inhibitors selective for Pyk2 will no doubt be essential for delineating its specific 

role in regulating Cx45 (and Cx43).  

 Although knowledge of the regulation of Cx43 by phosphorylation is broad, that of Cx45 is 

quite limited. Very few studies investigate the outcome of activation of specific kinase programs on 

Cx45 function and those that have do not make a direct link to phosphorylation of any specific 

residue of Cx45. In this Chapter, we have used a diverse set of approaches (biophysical, cellular 

and molecular biology, and proteomics) to investigate phosphorylation of Cx45. Our results confirm 

previous studies that have demonstrated Cx45 is a phosphoprotein and expand on the notion that 
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Cx45 is regulated by kinases active downstream of the AT1R [189, 385]. Additionally, our results 

suggest that important differences may exist in the regulation of Cx45 by kinases when compared 

to Cx43, a feature that may contribute to maintained Cx45 expression in the ventricles of diseased 

hearts as well as the arrhythmogenic substrate.  
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17. Introduction 

 In Chapter Four we characterized the phosphorylation of Cx45 by kinases (Src, Pyk2, 

PKCα) active downstream of the AT1R [491, 492, 498, 499, 504, 509]. Additionally, all three of the 

kinases similarly phosphorylate Cx43 (Pyk2 – Sorgen Laboratory, unpublished data) [296, 300]. 

The effects of Src and PKC on Cx43 mediated GJIC are well characterized and lead to the down-

regulation of coupling through either channel closure, loss of cytoskeletal anchoring and 

internalization, or the combination of these  [19, 286, 295, 296, 300, 325, 337, 339, 351, 372-376, 

480, 482-484, 542]. Our results in Chapter Four suggest that aspects of the regulation of Cx45 by 

these kinases, at least in the acute stage are different than that of Cx43 (EGF increased Cx45 GJIC 

and PMA enhanced cytoskeletal anchoring supporting plaque stability). Since Cx45 and Cx43 can 

form heteromeric channels the question arises how these kinases would affect the regulation of 

heteromeric channels. It stands to reason that in cells that express two or more Cx family members 

compatible to form heteromeric channels, that regulation of all aspects of the heteromeric channels 

are likely more complex than either individual counterpart. Indeed, a number of observations 

support this. For example, dye coupling properties of Cx43-Cx45 heteromeric channels in HeLa 

cells fail to couple LY (anionic) while NB dye coupling is maintained, suggesting Cx45 exerts a 

dominant negative effect on Cx43 [86]. Similarly, in NRK cells stably transfected with the lens Cx56 

(NRK-Cx56), the current-voltage relationship was altered compared to that of untransfected NRK 

cells (endogenously express Cx43) [543]. Specifically, the untransfected NRK cells displayed a 

decay of current following a voltage pulse of >50 mV and the rate of decay was proportional to the 

magnitude of the voltage pulse [543]. Conversely, the NRK-Cx56 cells maintained current 

conductance following the voltage pulse without appreciable decay, suggesting that the presence 

of Cx43-Cx56 heteromeric [543]. Finally, two studies examining the formation of heteromeric 

channels between Cx43 and Cx40 in vascular smooth muscle cells observed significant differences 

in dye permeability and channel electrical properties [544, 545]. Although all of these studies 

highlight differences in channel properties formed from intermixing of Cx family members, only the 

Martinez et al. study investigated the regulation of the heteromeric channels by phosphorylation 

[86]. In their study, they noted that NB coupling of Cx45 homomeric channels were unaffected by 
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addition of PMA (contrary to our results in Chapter Four), however, when Cx43 was co-expressed 

they observed significant reductions in NB dye coupling, suggesting the presence of Cx43 exerted 

some regulatory role on Cx45 in response to phosphorylation [86].  

 Studies have hinted at the potential for heteromeric channel formation in the failing heart. 

In the ventricles of human patients with heart failure, Yamada et al. noted an increase in the protein 

expression of Cx45 by approximately 2-fold, that correlated with an increase in immunostaining by 

3.5-fold compared to non-failing hearts [82]. Notably, Cx45 mRNA levels in the failing hearts was 

unaltered suggesting that Cx45 protein stability was increased by some mechanism in the failing 

hearts [82]. Additionally, the presence of Cx45 in the failing heart increases the susceptibility to 

tachyarrhythmias [432]. While the mechanisms of how Cx45 expression was upregulated and 

maintained in these systems was not explored, altered regulation by kinases maybe a contributing 

factor. Notably, in Chapter Four, when we immunostained Cx45 and Cx43 in the stable Cx45 

expressing LA25 cells we observed Cx43 still present at the GJ plaque where it colocalized with 

Cx45 at the Src permissive temperature contrary to what was observed in our previous study by Li 

et al. [340]. We therefore sought to investigate the potential cross-regulation of Cx45 on Cx43 in 

heteromeric channels in LA25 cells. 
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18. Materials and Methods 

18.1 Antibodies and Reagents 

 All antibodies and reagents for this study are contained in Table 2. 

18.2 Cell Culture and Stable Cell Line Generation 

 LA25 cells (gifts from Dr. Paul Lampe, Fred Hutchinson Cancer Center) were cultured in 

Dulbecco’s modified Eagle medium (Corning) at 37°C in a humidified 5% CO2 atmosphere. Medium 

was supplemented with 10% FBS (Seradigm), 2 mM L-glutamine (HyClone), 1% pen-strep 

(Corning), and 0.2% Normocin (Invivogen). The selective agent puromycin (Tocris) was used, when 

appropriate, at empirically determined concentrations. 70% confluent LA25 cells were lipofected 

with SalI linearized plasmid using Lipofectamine 2000 at a 1:2 ratio in OptiMem. Transfections were 

carried out under antibiotic free conditions, and cells were cultured 48-72 hr prior to addition of 

selection media. LA25 cells were selected 7 µg/mL. Cells were clonally (monoclonal) selected using 

Whatman paper cloning disks. Western blots and immunofluorescence were used to screen clones. 

Src activity, in LA25 cells, was modulated by culturing the cells at 35°C (permissive – Src active), 

37°C (intermediate), or 40°C (non-permissive – Src inactive) for 8 hr.  

18.3 siRNA Knock-down of Exogenous Cx45 

 Parental (Cx45-) LA25 cells or those stably expressing Cx45 (Cx45+) at approximately 60% 

confluent were lipofected with stealth siRNA designed against the exogenous mouse Cx45 using 

Lipofectamine RNAiMAX according to manufacturer protocol under antibiotic free conditions, cells 

were cultured 48 hr prior to any analysis. Complexes were generated in OptiMem. siRNA was 

designed using the Invitrogen design tool against the coding region (CDS) of accession number 

NM_001159382.1. siRNA duplex sequence: 5’-UUUGCUUGUAGGCAAUCUUAGCAUU-3’ and 5’-

AAUGCUAAGAUUGCCUACAAGCAAA-3’ 

18.4 Antibodies and Immunostaining 

 All primary and secondary antibodies, detection reagents and concentration ranges utilized 

are summarized in Table 2. Cells seeded on glass coverslips were rinsed 2x with 1x PBS and then 

fixed and permeabilized with either ice cold methanol at -20°C for 15 min or buffered formalin (1x 



190 
 

PBS, 3.7% formaldehyde, 0.3% TX-100) at 37°C for 30 min. LA25 cells were incubated at 35°C, 

37°C, and 40°C for 8 hr prior to fixation. For siRNA mediated knock-down of exogenous Cx45, at 

60% confluence cells were transiently transfected with siRNA as described in 18.3. Coverslips were 

washed 3x 5 min in 1x PBS with gentle agitation and then blocked for 60-90 min at 37°C (1x PBS 

containing 1% BSA and 0.3% TX-100). Coverslips were then incubated with the indicated primary 

antibodies diluted in blocking buffer for either 1 hr at RT or ON at 4°C. Coverslips were washed 3x 

with 1x PBS and then incubated with secondary antibody (if necessary) 1 hr at RT and then washed 

1x for 5 min with 1x PBS containing 100 ng/mL DAPI and then 2x 5 min with 1x PBS. Coverslips 

were mounted with SlowFade (LifeTech) and sealed with clear nail polish and imaged. All images 

acquired on either Zeiss 710 or 800 LSM microscope. 

18.5 Scrape Loading Dye Transfer Assay 

 Cells were scrape loaded as previously described [340]. Briefly, all buffers were pre-

warmed to 37°C prior to beginning the experiment. Cx45- or Cx45+ LA25 cells were seeded on 

bovine plasma fibronectin (Sigma; 10 µg/mL) coated 35 mm live imaging dishes (CellStar). After 

appropriate treatments cells were washed 1x with 1x PBS and then overlaid with dye tracer mix (1x 

PBS containing NB). LA25 cells were incubated for 8 hr at either 35°C or 40°C prior to scrape 

loading. Scrapes were introduced using a fine edged micro-scalpel and incubated at RT for 4 min. 

Tracer dye was gently washed away with 1x PBS and media was added and the cells returned to 

the incubator to culture for 6 min to allow dye to transfer. Following the dye transfer period, the cells 

were washed with 1x PBS containing 1 mM CaCl2 and 1 mM MgCl2 to stop dye spread. Dishes 

were then formalin fixed and stained as described above and imaged. 15 consecutive fields of view 

were acquired per replicate. Dye spread was quantified using an ROI tool in NIH ImageJ measuring 

the dye spread as a function of total area of field of view. 

18.6 TX-100 Solubility Assay 

The TX-100 solubility assay was modified from a method described previously [412]. 

Briefly, Cx45- or Cx45+ LA25 cells were grown in 10-cm dishes were washed with PBS, scraped 

into in 1 mL of fresh PIB and mechanically lysed by sonication (10 s at power 3). Lysates were 

quantified by BCA and normalized to 1.5 mg/mL. A total of 450 µL of cell lysate was brought to 1% 
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SDS with 10% SDS and then reserved as total lysate. Another 450 µL was brought to 1% TX-100 

with 10% TX-100 in 1x PBS and incubated at 4°C for 30 min with agitation. The TX-100 lysate was 

then separated into non-junctional (supernatant; soluble) and junctional (pellet; insoluble) fractions 

by ultracentrifugation at 100,000 xg for 1 hr at 4°C. The supernatant was carefully removed and 

retained as the soluble fraction. The pellet was solubilized in 500 µL of solubilization buffer (1x 

PBS, 8 M urea, 2.5% SDS, 0.1 M DTT, 1x Roche complete + EDTA, 2 mM PMSF, and 2 µM 

Pepstatin A). Volume normalized samples of total lysate (T), TX-100 soluble (S) and TX-100 

insoluble (I) portions were analyzed by Western blot. LA25 cells were incubated at either 35°C or 

40°C for 8 hr prior to analysis. Soluble and insoluble fractions were quantified as a function of total 

lysate. Specifically, for Cx43 quantification was done using samples resolved on a 15% SDS-PAGE 

to ensure collapse of the multiple phosphorylation depended migratory forms into a single band. 

Quantification was done using NIH ImageJ software from three independent replicates. 

18.7 Statistical Analysis 

All data were analyzed by using GraphPad Prism 5.0 and were presented as the mean + 

s.e.m. Statistical analysis performed in GraphPad Prism 5.0 was either one-way ANOVA with a 

Newman-Keuls post-hoc analysis comparing all groups, or two-tailed Student’s T-Test where 

appropriate. P-values <0.05 were considered statistically significant. 
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19. Results 

19.1 Cx45 Prevents Src Mediated Turnover of Cx43 Containing GJs 

 Since we observed a maintenance of Cx43 immunoreactivity consistent with GJ plaques 

in LA25 cells expressing Cx45 at the Src permissive temperature in Fig. 4.4 we hypothesized this 

would correlate with reduced TX-100 solubility. To test this, we cultured Cx45- or Cx45+ LA25 cells 

to confluence, then incubated them for 8 hr at either the Src non- or permissive temperatures. 

Expression of Cx45 was assessed in both Cx45- or Cx45+ LA25 cells by Western (Fig. 5.1A)Cells 

were lysed, extracted and resolved by SDS-PAGE and analyzed by Western blot for Cx43 (we 

used a high percentage gel to collapse Cx43 phosphoisoforms into a single band for ease of 

quantification) (Fig. 5.1B). At the Src non-permissive temperatures, we observed no difference in 

the junctional pool of Cx43 regardless of Cx45 expression (Fig. 5.1C, dashed lines; Cx45- 56.5% 

vs. Cx45+ 55.9%, ns, N=3). When comparing the Src permissive to the Src non-permissive 

temperature within each group (i.e., Cx45- to Cx45-), we observed a significant decrease in the 

amount of junctional Cx43 at the Src permissive temperature compared to the non-permissive (Fig. 

5.1B, solid lines; Cx45- 40°C – 56.5% vs. 35°C – 30.7%, P <0.0001; Cx45+ 40°C – 55.9% vs. 35°C 

– 39.6%, P <0.0001, N=3). Finally, when comparing the amount of non-junctional and junctional 

Cx43 between the Cx45- and Cx45+ LA25 cells at the Src permissive temperature, we observed a 

difference in the degree of change in Cx43 (Fig. 5.1C, dashed lines; Cx45- 30.7% vs. Cx45+ 39.6%, 

P <0.05, N=3). In Cx45- LA25 cells we observed only 35% of Cx43 remaining in the junctional pool, 

while for Cx45+ LA25 this was ~45%. Suggesting that Cx45 was stabilizing some of the Cx43 at 

the GJ plaque. In parallel, we resolved Cx43 on our standard 10% SDS-PAGE gel to display the 

multiple migratory forms (Fig. 5.1D).  
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Figure 5.1. Cx45 mutes the effect of Src on Cx43, reducing the transition of junctional to 
non-junctional Cx43. 
Cx45- and Cx45+ LA25 cells were cultured to confluence and incubated at 40°C or 35°C for 8 hr. Cx43 was 
extracted with TX-100 and fractionated into total (T), non-junctional (TX-100 soluble, S) and junctional (TX-
100 insoluble, I) fractions by ultracentrifugation. A) Representative Western blot showing the expression of 
Cx45 in the Cx45- and Cx45+ LA25 cell lines B) Representative Western blot of resulting fractions analyzed 
by 15% SDS-PAGE and probed for Cx43. C) Quantification of 15% blots from three independent experiments. 
D). Representative Western blot of Cx43 fractions resolved on 10% SDS-PAGE demonstrating multiple 
electrophoretic forms of Cx43. Statistics are one-way ANOVA with a Newman-Keuls post-hoc analysis, *P 
<0.05, ***P <0.0001.   
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19.2 Knock-down of Exogenous Cx45 Results in Src Mediated Cx43 Turnover 

 To follow up with our TX-100 data from the previous experiment, we hypothesized that the 

increase in Cx43 GJ stability in the Cx45+ LA25 cells would be lost if expression of Cx45 was 

abrogated. We cultured Cx45+ LA25 cells on glass coverslips to 60% confluent and then treated 

with siRNA designed against the exogenous Cx45 for 48 hr. Following siRNA treatment, the cells 

were maintained for 8 hr at the Src non-, intermediate, or permissive temperatures, fixed and 

immunostained the cells. Representative immunofluorescent micrographs are presented in Fig. 

5.2. As expected when LA25+ were treated with siRNA, we observed a stark decrease in the 

expression of Cx45 indicating the knock-down was successful (Fig. 5.2; red; right panels). This was 

surprisingly more efficient at the Src permissive temperature than either intermediate or non-

permissive. Immunoreactivity of Cx43 in the mock transfected LA25+ was similar in pattern and 

degree at all three temperatures (Fig. 5.2; green; left panels), however, when Cx45 was knocked 

down we observed a Src activity dependent loss of Cx43 immunoreactivity (Fig. 5.2; green; right 

panels). In fact, after 8 hr at the Src permissive temperature the majority of Cx43 staining was 

completely lost. Furthermore, few if any GJ plaques were observed. Taken together with the TX-

100 data, this further supports the hypothesis that Cx45 protects Cx43 from the effects of Src. 

19.3 Presence of Cx45 Does Not Protect Against Src Mediated Channel Closure 

 Our immunostaining and TX-100 data suggest that expression of Cx45 is a factor that 

contributes to maintained GJIC in cells expressing Cx43 when Src is active. We wanted to test this 

using scrape loading transfer of NB in Cx45- and Cx45+ LA25 cells. Experimentally, we cultured 

either Cx45- or Cx45+ LA25 in glass bottom dishes to confluence, incubated them at 35°C or 40°C 

for 8 hr, and then scrape loaded them with NB. Following loading the cells were fixed, stained with 

Streptavidin-488, and imaged. Representative fluorescent images are presented in Fig. 5.3. Dye 

spread was quantified as a function of the percent of total area in the field of view. At the Src non-

permissive temperature, we observed no difference in the amount of NB transfer between Cx45- 

or Cx45+ LA25 cells (Fig. 5.3, top panels, green; Cx45- 53.9 ± 7.67% vs. Cx45+ 53.2 ± 5.95%). To  



195 
 

 

  

Figure 5.2. Knock-down of exogenous Cx45 restores Cx43 lability when Src is active. 
Cx45- and Cx45+ LA25 cells were cultured to ~60% confluent on glass coverslips and either mock transfected 
(left panels) or transfected with siRNA designed against the exogenous Cx45 (right panels). After 48 hr of 
siRNA or mock transfection the cells were incubated at the Src non-permissive, intermediate, or permissive 
temperature for 8 hr, followed by fixation and immunostaining for Cx43 (green) and Cx45 (red). Nuclei were 
stained with DAPI (blue). Scale bars = 20 µm. 
 



196 
 

 

our surprise, we observed a Src dependent decrease in the amount of NB dye transfer at the Src 

permissive temperature for both cell lines (Fig. 5.3, bottom panels, green; Cx45- 28.1 ± 5.53% vs. 

Cx45+ 27.6 ± 5.80%). Quantification indicated the degree of change in GJIC in response to Src 

activation was comparable between Cx45- and Cx45+ LA25 cells (Fig. 5.3; right). Taking into 

consideration our observation of Src mediated loss of coupling in HeLa cells when transiently 

transfected with v-Src, the possibility exists that our model is resulting in aberrantly high levels of 

phosphorylation not physiologically relevant. It would be interesting to determine how these cells 

respond to EGF treatment.  

19.4 Cx43 Maintained in GJs by Cx45 Shows Altered Phosphorylation Patterns 

 Since we observed a comparable Src dependent decrease in GJIC in both Cx45- and 

Cx45+ LA25 cells, yet a decrease in the amount of Cx43 GJ disassembly, we wanted to determine 

whether the phosphorylation pattern of the residual junctional Cx43 was consistent with that of 

open or closed channel conformations. To test this, we probed only the insoluble fraction of Cx43 

from our experiment in Section 19.1 with several phosphospecific antibodies for Cx43 and 

normalized to the amount of total insoluble Cx43 (Fig. 5.4). For Src phosphorylation sites, we 

probed Cx43 with antibodies against pY247, pY265, and pY313. For pY247 we observed a non-

significant increase (2.03-fold for Cx45+ at 35°C compared to 40°C; 1.66-fold for Cx45- at 35°C 

compared to 40°C, N=3) in the amount of pY247 relative to total insoluble Cx43 (Fig. 5.4; top right 

panel). For the primary Cx43 Src phosphorylation site, Y265 (first site phosphorylated by Src to 

generate SH2 binding site), we observed a statistically significant increase (1.42-fold Cx45+ at 35°C 

compared to 40°C; 1.01-fold change in Cx45- at 35°C compared to 40°C, P <0.05, N=3) in the 

amount of pY265 in the Cx45+ LA25 cells at 35°C compared to Cx45- (Fig. 5.4; upper-central right 

panel). For Cx43 Y313, we observed comparable levels of phosphorylation in the insoluble fraction 

of both Cx45- and Cx45+ LA25 cells at the Src permissive temperature (Fig. 5.4; center right panel; 

1.76-fold for Cx45+ at 35°C compared to 40°C; 1.82-fold for Cx45- at 35°C compared to 40°C, ns, 

N=3). In addition to the Src phosphorylation sites, we also probed the Cx43 MAPK sites (S279/282)   
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Figure 5.3. Cx45 does not prevent Src mediated downregulation of GJIC in LA25 cells. 
Cx45- and Cx45+ LA25 cells were cultured to confluence in glass bottom dishes and subsequently incubated 
for 8 hr at either 40°C (top panels) or 35°C (lower panels) and then scrape loaded with NB dye. Following 
scrape loading the cells were fixed and stained with Streptavidin-488 (green) and DAPI (blue) to show cell 
confluence, and then imaged. The degree of NB dye transfer was quantitated in ImageJ by measuring the 
total area of dye spread as a function of total area of field of view. Images were acquired from a minimum of 
10 non-overlapping fields of view from each of three independent replicates.  
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for phosphorylation and our results indicate the presence of Cx45 significantly reduced the degree 

of phosphorylation at S279/282 (Fig. 5.4 lower-center right panel; 1.71-fold for Cx45+ at 35°C 

compared to 40°C; 4.14-fold for Cx45- at 35°C compared to 40°C, P <0.05, N=3). Finally, we probed 

the insoluble Cx43 for phosphorylation of S368 (PKC site). Similar to the MAPK sites, we observed 

a significant decrease in the amount of S368 phosphorylation in the Cx45+ LA25 cells (1.07-fold 

change at 35°C compared to 40°C for Cx45+; 2.27-fold increase for Cx45- at 35°C compared to 

40°C; P <0.0001, N=3). Taken together, the data suggest that the co-expression of Cx45 is altering 

the phosphorylation landscape of Cx43 in response to increased Src activity. Although we did not 

directly compare the levels of Cx43 phosphorylation at 40°C, it is worth noting that we did observed 

increased Cx43 phosphorylation on Y247 and Y265 by co-expression of Cx45 alone, the 

significance of this observation is unclear at this time. 
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Figure 5.4. Cx43 is maintained the GJ plaque with altered phosphorylation landscape when 
Cx45 is co-expressed in LA25 cells. 
Cx45- and Cx45+ LA25 cells were cultured to confluence and incubated at 40°C or 35°C for 8 hr. Cx43 was 
extracted with TX-100 and fractionated into total (T), non-junctional (TX-100 soluble, S) and junctional (TX-
100 insoluble, I) fractions by ultracentrifugation. Resulting insoluble fractions were resolved by SDS-PAGE 
and Western blotted for total Cx43, and Cx43 phosphorylation at residues Y247, Y265, Y313, S272/282, and 
S368. A) Representative Western blots of total and phospho Cx43 from the insoluble fractions. B-F) 
Quantitation of Cx43 phosphorylation in the insoluble pool relative to total insoluble Cx43. Statistics are one-
way ANOVA with a Bonferroni multiple comparison test comparing Cx45- to Cx45+ in each temperature group. 
*P <0.05, ***P <0.0001 
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20. Discussion 

 Although the existence of heteromeric oligomerization of Cxs has been accepted for over 

a decade, studies investigating them are not plentiful. Of the studies that do explore the 

consequences of heteromeric channel formation, a vast majority have focused on aspects of 

channel trafficking, GJIC, and gating (reviewed in [546, 547]). For example, Berthoud et al. 

demonstrated altered the voltage dependence in heteromeric channels composed of Cx43 and 

Cx56, compared to homomeric Cx43 channels [543]. Similary, in N2a cells Brink et al. 

demonstrated channels composed of intermixed Cx37 and Cx43 displayed conductance/voltage 

relationships different from either family member alone [548]. Consistent with the Brink et al. and 

Berthoud et al. studies, a study by He et al. attributed altered GJ channel propertied in Ar75 (rat 

vascular smooth muscle cells) to the co-expression of Cx40 and Cx43 [543, 544, 548]. Specifically, 

they reported changes in voltage sensitivity and residual conductance at high voltage in the Ar75 

compared to cell lines only expressing either Cx40 or Cx43 [544]. A 2008 study by the Dupont 

group examined the effects of co-expressing Cx45 and Cx43 in HeLa and rat lung epithelial (RLE) 

cells and concluded that expression of Cx45 significantly reduced GJ plaque size [88]. Notably, 

several studies have examined the ability of wild-type Cxs to rescue trafficking (and functional) 

defects of mutant Cxs (both homomerically and heteromerically) [452, 549-551]. Finally, Martinez 

et al. also investigated heteromeric channels composed of Cx43 and Cx45 in HeLa cells, reporting 

that co-expression reduced the dye permeability of the cells to LY, and resulted in the appearance 

of single channel conductance recording that could not be attributed to Cx43 or Cx45 alone [86]. In 

the same study, the authors examined the effects of PKC activation by PMA to determine if 

heteromeric Cx43/Cx45 channels would respond to PKC more complexly than either homomeric 

counterpart [86]. Compared to Cx43 homomeric GJs PKC similarly affected Cx43/Cx45, rapidly 

reducing conductance and dye coupling, while compared to Cx45 PKC had much less pronounced 

effect on conductance and did not affect dye coupling [86]. To our knowledge, the Martinez et al. 

study is unique in investigating the link between response to kinase activation and connexon 

composition [86]. Despite this, the data presented in the study only suggests a casual role for the 
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kinase and did little to explore the mechanism leading to altered function in of the Cx43/Cx45 

heteromers. 

In this Chapter we took a cellular biology approach to begin to understand the outcome of 

having two heterocompatible Cxs co-expressed in the context of Src kinase activation. Although 

the work is preliminary it suggests that a heteromeric channels respond more complexly to 

regulatory stimuli such as phosphorylation. One example we presented is the ability of Cx45 to 

protect Cx43 from Src mediated turnover assessed by detergent solubility. Although the amount of 

retained insoluble Cx43 in the Cx45+ cells was only ~10% greater than in Cx45- cells this actually 

represents a substantial rescue of ~40%. Supporting our detergent solubility results, a second 

example is when exogenous Cx45 was knocked down by siRNA, we observed Src activity 

dependent loss of Cx43 GJs and expression that was not observed when Cx45 was expressed. 

The significance of these results is two-fold, on one hand this could maintain coupling potential and 

promote communication, however, due to the dominant negative effect of Cx45 on Cx43, in the 

heart, this could explain why aberrant expression of Cx45 leads to arrhythmia while lateralization 

and reduction in expression of Cx43 alone does not [72, 73, 76, 82, 84, 432, 438]. Although we 

observed an increase in Cx43 retention at the GJ plaque, we did not observe a functional rescue 

in terms of dye coupling. This raises the question: Why does heteromeric mixing of Cx43 and Cx45 

result in plaque maintenance if the channels are still closed? It is possible that this is a protective 

mechanism that would retain a working quantity of Cx43 at the GJ plaque poised to reopen upon 

more favorable conditions thus promoting GJIC. This supposition is consistent with studies 

describing: 1) A similar mechanism may occur involving CaM and its interaction with Cx32, in which 

reduced Tyr phosphorylation of Cx32 by EGFR stimulation has was reported in the presence of 

CaM [298]. 2) An interaction of CaM with the CT domain of Cx43 that would in part prevent the 

internalization of Cx43 by blocking the Nedd4 and AP2 binding sites, potentially preventing 

ubiquitination and subsequent clathrin mediated endocytosis (Sorgen Laboratory, unpublished 

data). Furthermore, our probing of the insoluble fraction of Cx43 with phosphospecific antibodies 

supports this as we observed a significant decrease in the percentage of Cx43 that was 

phosphorylated by MAPK, which would reduce the affinity of Cx43 for Nedd4 and consequently 
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reduce binding of AP2 [203, 382]. Consistent with MAPK phosphorylation of Cx43 occurring 

simultaneously as phosphorylation by PKC, the decrease in phosphorylation of S279/282 

correlated with a decrease in phosphorylation of S368 [325]. While this data in consistent with the 

decrease in both turnover and phosphorylation of S279/282, the functional significance is unclear 

at this time. In order to obtain a clearer picture, the ability to interrogate phosphorylation of Cx43 at 

the CK1 and PKA sites (S325,328,330 and S365, respectively) would be essential. Nevertheless, 

the data supports the concept that regulatory complexity increases as Cx proteins intermingle. 

The work in this Chapter raises important novel questions about heteromeric channels: 1) 

What determines which Cx family member is dominant, is it a function of stoichiometry? 2) Does 

protomer arrangement within the connexon contribute to the regulation? 3) Do heteromeric 

channels respond bimodally in response to acute/chronic signaling pathway activation (e.g., 1 hr 

EGF vs. v-Src transfection for 24 hr)? 4) Physiologically speaking, what is the advantage of 

maintaining GJs in the plasma membrane in situations that would normally lead to turnover? 4) 

Furthermore, what does this reflect in terms of potential therapeutic value? Future studies should 

focus efforts on addressing these questions as well as expanding them to other heterocompatible 

Cx co-expression systems especially under endogenous or in vivo conditions.  

  



203 
 

 

CHAPTER SIX 

 

 

Regulation of Cx32 by Ephrin 

Receptors and TC-PTP 

 

The bulk of data presented in this Chapter is published Trease et al. 

(2018), Journal of Biochemistry [552] 
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21. Introduction 

GJ are comprised of tight knit arrays of membrane channels that connect the cytoplasm of 

adjacent cell and function to allow the passive transport of ions, small metabolites, and signaling 

molecules between coupled cells. Their function is important for several cellular and tissue 

processes including cell growth, maintenance, differentiation, and tissue synchronization. Of the 21 

human family members, Cx32 is the primary GJ protein in both liver and brain, as well as the 

reproductive tissues [553]. Mice harboring Cx32 KO suffer from increased incidence of 

spontaneous tumors in the liver and are more susceptible to chemically induced liver tumors as 

well [554, 555].  Additionally, other pathological conditions arise in Cx32 KO mice including 

impaired innervated bile secretion, increases release of the enzyme amylase from the pancreas, 

and loss of myelination in the peripheral nervous system [556-559]. Mutations in Cx32 are an 

etiological source of the X-linked CMTX syndrome. Over 400 unique mutations have been identified 

in Cx32, encompassing every domain of Cx32 [560]. Many of the mutations affect Cx32 GJ function 

by impairing trafficking, gating properties, selectivity, interactions with protein partners, or the 

phosphorylation status [561].  

Phosphorylation is a critical regulator of every point in the Cx life cycle, such as accretion, 

turnover, the regulation of channel opening/closure, and modulating the affinities for binding of 

protein partners [328]. The intracellular domains of Cx32 contain 12 Ser residues (NT, 2; CL, 1; 

CT, 9) and has been phosphorylated in vitro by CaMKII, PKA, and PKC [365, 478, 562]. Although 

demonstration of changes in Cx32 phosphorylation status were not assessed, activation of the 

MAP kinase p38, correlated with differentiation of rat mammary epithelial cells [563]. In addition to 

Ser residues the intracellular domains of Cx32 also contains two Tyr residues (NT, Y7; CT, Y243). 

A third Tyr (Y211) is present in a membrane juxtaposed region of the Cx32CT, however, may not 

be accessible to cytoplasmic enzymes. If Y211 is accessible it is unlikely to interact with any 

proteins (including enzymes) due to steric hindrance from the plasma membrane itself. Cx32 was 

shown to be Tyr phosphorylated in purified liver membranes by stimulation of the RTK EGFR, and 

this phosphorylation was prevented when excess CaM was present [248, 365]. Although Cx32 Tyr 

phosphorylation was detected, neither the specific residue(s) phosphorylation nor the effect on 



205 
 

Cx32 GJ function were determined [365]. Phosphorylation of Y7 was detected in a MS study 

utilizing exogenous Cx32 expression in HeLa cells, however, potential kinases targeting this site 

were not revealed [274]. The lack of information on the kinases involved, sites phosphorylated, and 

downstream effects of Cx32 Tyr phosphorylation, we screened the Cx32NT and Cx32CT in vitro 

for candidate kinases and identified the Ephrin type-B receptor 1 (EphB1) and Ephrin type-A 

receptor 1 (EphA1) as novel Tyr kinases which phosphorylate Cx32.  

Both Eph receptors and ligands (the ephrins) are integral membrane proteins and mediate 

both forward (Eph receptor) and reverse (ephrin) signaling in response to cell-cell contact. Signaling 

downstream of the Eph receptor has been shown to influence cell migration and sorting during 

development, modulate adhesion, neuronal injury repair, and importantly GJ [366, 564-566]. Cx43 

was demonstrated to co-IP EphB4, and when EphB4 was activated in primary rodent 

cardiomyocytes Cx43 GJIC was inhibited [567]. Along the same lines it was shown by another 

group that GJIC was reduced in ectopic ephrin boundaries and Cx43 localization was influenced 

via interaction with ephrin-B1 [366]. Taken together these studies highlight a potential mechanism 

by which cell coupling via GJs is regulated by cell-cell contact through Eph receptors and ephrins 

that is both dependent and independent of phosphorylation of the GJ proteins. Whether the 

phosphorylation of Cxs by Eph receptors is direct and whether this mechanism is general to multiple 

Cx family members remains to be investigated.  

In this study, we reveal that Eph receptors (EphB1 and EphA1) phosphorylate the Cx32CT 

on residue Y243, and consequently (and conversely to what would be expected for Cx43) increase 

GJIC. We also identify T-Cell Protein Tyr Phosphatase (TC-PTP) as a phosphatase that can 

dephosphorylate Cx32CT residue pY243. This study provides further support that the outcome of 

Cx phosphorylation by a given kinase is determined not by the kinase but by the cx family member, 

and thus characterization of the same kinase for each Cx family member is essential for a complete 

understanding of the regulation of Cxs by phosphorylation. 
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22. Materials and Methods 

22.1 Cell Culture and Treatments 

Cx32 WT, Y243F, and Y243E cloned into the pD2529 vector as described previously, were 

stably expressed in HeLa cells (ATCC) [424]. HeLa and Caco2 cells were grown in Dulbecco's 

modified Eagle's medium (Hyclone, Thermo Fisher Scientific Inc.) supplemented with 10% FBS 

(Hyclone, Thermo Fisher Scientific Inc.) and antibiotics. FHC cells were cultured in DMEM:F12 

supplemented with 25 mM HEPES, 10 ng/mL cholera toxin, 0.005 mg/mL insulin and transferrin, 

100 ng/mL hydrocortisone, 20 ng/mL human recombinant EGF, 10% FBS, and antibiotics. All cells 

were cultured in an atmosphere of humidified 5% CO2 at 37°C. Where appropriate, cells were 

transiently transfected with either EphA1, EphB1, or a combination of either in conjunction with TC-

PTP1-314 using Lipofectamine 2000 (Invitrogen) according to manufacturer protocol. For single and 

combination transfections, the amount of plasmid for the Eph receptor and TC-PTP1-314 was 

equivalent. Cells were treated for 1 hr at 37°C with 1 µg/mL of either EphA1-Fc or EphB2-Fc 

(SinoBiological) approximately 24 hr after transfection. 

22.2 Antibodies and Immunostaining 

The following antibodies were used in this study: Cx32 monoclonal antibody (Sigma-

Aldrich); Cx32 polyclonal antibody (LifeTech); EphB1 and EphA1 antibodies (Cell Signaling); 

EphA1 antibody (Cell Signaling); TC-PTP antibodies against the N-terminus and C-terminus 

(Sigma-Aldrich); general pTyr antibody (Cell Signaling).  

Cells were immunostained as described previously [424]. Briefly, cells grown on cover slips 

to ~60% confluence were fixed with 2% para-formaldehyde for 15 min. Cells were blocked for 30 

min at room temperature (RT) by MPS buffer (1x PBS, 1% Goat Serum) containing 0.2% TX-100 

for permeabilization. Then, cells were immunostained with appropriate primary antibodies at RT for 

1 hr, followed by several PBS-0.5% Tween washes. Secondary antibodies (Alexa 594-conjugated 

goat αrabbit antibody and/or Alexa 488-conjugated goat αmouse antibody) were applied for 1 hr at 

RT. Images of immunostained cells were acquired with a Zeiss 510 Meta Confocal Laser Scanning 

Microscope using a 63×1.4 numerical aperture objective with appropriate filters. 

http://en.wikipedia.org/wiki/Phosphate_buffered_saline
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22.3 Co-IP and Western blot 

Cx32 expressing HeLa cells were lysed in complete lysis buffer (50 mM Tris-HCl [pH 7.4], 

150 mM NaCl, 0.5% Na-deoxycholate, 1% TX-100, 5 mM NaF, and one-half tablet of Complete 

protease inhibitor (Roche) in 20 ml buffer), maintained on ice for 30 min, precleared with protein G 

beads for 30 min at 4°C, and then spun at 12,000 rpm for 15 min. Total protein was assessed using 

the BCA protein assay kit (Pierce). 2 mg of protein lysate was incubated with 2 μg of αCx32 or 

mouse IgG (4 hr at 4°C) and then incubated with 100 μl of protein G sepharose (GE Healthcare) 

(overnight (ON) at 4°C). The sepharose was washed 4x with cold lysis buffer and the co-IP was 

analyzed by SDS-PAGE and Western blot. ΑEphB1 monoclonal antibody was used to detect 

EphB1 co-IP with Cx32. 

Protein levels were detected by SDS-PAGE and Western blot. One exception for detecting 

Tyr phosphorylation was that 5 mM Na3VO4 was added in the blocking buffer and primer antibody 

buffer in order to minimize the loss of phosphorylation. Western blot data were scanned and 

quantified using Image J as described in [424]. 

22.4 GST Pull Downs 

The GST pull down assay was modified from [203]. Briefly, purified GST, GST-Cx32NT, or 

GST-Cx32CT were bound to glutathione-Sepharose beads in buffer containing 25 mM Tris-HCl 

(pH=7.4),150 mM NaCl, 0.1% TX-100, 1 mM DTT, 0.1 mM EDTA and one-half tablet of Complete 

protease inhibitor in 20 ml buffer. 5 mg of either purified TC-PTP1-314 was incubated with the GST 

control or either fusion GST-fusion protein ON at 4°C on a rotating wheel. Beads were washed 5 

times with buffer and bound proteins were eluted with SDS-PAGE sample buffer and analyzed by 

Western blot. 

To pull down Cx32 binding partners, 4 mg of MDA-MB-231 cell lysate protein (in cell lysis 

buffer containing 25 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.5% TX-100, 0.5% sodium 

deoxycholate, 2 mM EDTA, PhosSTOP (Roche), and Complete protease inhibitor) were incubated 

with GST-fusion Cx32CT or the GST control for 6 hr at 4°C on a rotating wheel. Beads were washed 

5 times with cell lysis buffer and bound proteins were eluted with SDS-PAGE sample buffer and 

analyzed by Western blot. 
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22.5 NMR-HSQC Experiment 

NMR data were acquired using a 600 MHz Varian INOVA NMR Spectrometer outfitted with a 

Bruker cryo-probe at the NMR Facility of the University of Nebraska Medical Center. Cx32CT217-283 

and TC-PTP1-314 were expressed and purified as described previously [248, 340]. Gradient-

enhanced two-dimensional 15N-HSQC experiments were acquired to detect backbone amide bond 

resonances from the 15N-Cx32CT (30 μM) in the absence and presence of different concentration 

of unlabeled TC-PTP1-314.  

For testing the interaction with CaM, peptides corresponding to Cx32CT217-266 (not 

phosphorylated, nopY243) or Cx32CT217-266 pY243 were purchased (LifeTein) and 15N-CaM was 

expressed recombinantly and purified by affinity chromatography using a Phenyl HP column 

(Amersham). Pure CaM was eluted with Tris-EGTA, dialyzed extensively against water, and 

lyophilized. Gradient-enhanced two-dimensional 15N-HSQC experiments were acquired to detect 

backbone amide bond resonances from the 15N-CaM (300 μM) in the absence and presence of 

different concentration of either unlabeled Cx32CT217-266 nopY243 or Cx32CT217-266 pY243. A similar 

approach was used to test the impact of pY243 on the interaction with hDlg. 15N-HSQC experiments 

were acquired to detect backbone amide bond resonances from 15N-Cx32CT WT or Y243E (50 

μM) in the absence and presence of unlabeled synapse associated protein 97-guanylate kinase 

(SAP97-GUK701-924) domain. SAP97-GUK701-924 was purified as in [248]. NMR spectra were 

processed using NMRPipe [568] and analyzed with NMRView [569]. Binding affinity from the 15N-

HSQC titration experiments were calculated by GraphPad Prism 5 (GraphPad Software, Inc.). 

22.6 In vitro Phosphatase Assay   

Cx32 phospho-peptide pY243 (HRLSPEpYKQNEIN) was used in the malachite green 

assay (Millipore) to detect if they are substrates of TC-PTP in vitro. Positive and negative controls 

were DADEpYL (described in [570]) and ARKRIpYPP (described in [571]), respectively. Peptides 

and enzyme were dissolved and diluted in reaction buffer (60 mM HEPES [pH 7.2], 150 mM NaCl, 

1 mM EDTA, 0.17 mM DTT, 0.83% glycerol, 0.017% BSA, and 0.002% Brij-35) and temperature-

equilibrated for 15 min at RT. 500 μM of each peptide was added into a 96-well plate, and then TC-

PTP1-314 was added to each peptide at different time points. The final concentration of TC-PTP1-314 
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was 0.6 nM. All reactions were terminated by adding 100 μl malachite green solution and incubated 

for 15 min at RT to allow color development. Absorbance at 650 nm was read using a SpectraMax 

190 spectrometer (Molecular devices).  

The Malachite green assay was also used to measure the kinetic parameters of de-

phosphorylation [570]. The reaction was performed in 96-well plates with a final volume of 25 μl. A 

standard curve of KH2PO4, used for calculating the release of inorganic phosphate, was determined 

on the same plate as the reaction samples. Different concentrations of peptides [substrate] were 

combined with 1.2 nmol TC-PTP1-314. Time points of the reaction were sampled from 0-15 min to 

calculate the initial velocity (v) versus [substrate]. Lineweaver-Burk double-reciprocal plot 

(rearranged from the Michaelis-Menten equation) was created based on 1/v and 1/[substrate]. The 

kinetic parameters were determined by the linear equation from the Lineweaver-Burk double-

reciprocal plot. All the reactions were conducted at pH 7.5, 25°C. The reported results were 

calculated from three independent experiments. 

22.7 Scrape Loading Assay 

Cells were scrape-loaded as described in [248]. Briefly, either HeLa cells expressing Cx32 WT 

or the Y243E mutant and Caco2 cells were seeded on cover slips 24 hr before performing the 

assay. Cell culture medium from 100% confluent cells was removed and replaced with 1 ml of PBS 

containing 0.25% Lucifer Yellow and Texas Red-conjugated fluorescent dextran (10 kDa, 1.5 

mg/ml: fixable). Cells were scrape-loaded with a sterile scalpel by two longitudinal scratches and 

then incubate at RT for 1 min for HeLa cells and 4 min for Caco2. Cells were washed quickly 3x 

with warm PBS (containing MgCl2 and CaCl2) or cell culture medium followed by incubating at 37°C 

for 5 min. After incubation, cells were washed 2 times with warm PBS, and fixed with 3.7% buffered 

paraformaldehyde for 15 min. 0.1 M glycine was used to quench autofluorescence for 15 min. 

Cover slips were mounted on glass slides in a droplet of SlowFade (Invitrogen). The result was 

confirmed by repeating the experiment 3 times and for each trial, capturing 4 side-by-side images. 

The method to quantify dye transfer was described previously [248]. Briefly, cells with Lucifer yellow 

were counted while the cells with dextran, which indicated the initially loaded cells, were excluded.   
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22.8 Statistical Analysis 

All data were analyzed by GraphPad Prism 5.0 and presented as the mean ± standard 

deviation (±S.D.). Either Student’s T-Test or one-way ANOVA with Newman-Keuls post hoc 

analysis was used to compare differences between all groups, where appropriate. P <0.05 was 

considered to be statistically significant. 
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23. Results 

23.1 EphB1 directly interacts and phosphorylates the Cx32CT domain 

We initially used the web-based software tools GPS 2.0, NetPhos 2.0 Server, and 

KinasePhos 2.0 to predict kinases that could phosphorylate Tyr residues on the NT and CT 

domains of Cx32 (data not shown). Based on our in silico analysis, we chose five candidate Tyr 

kinases to screen against the Cx32 NT and CT domains. We submitted purified Cx32NT (M1-G21; 

Y7) and Cx32CT (C217-C283; Y243) as substrates to Eurofins Scientific for the in vitro screen 

(KinaseProfiler; Fig. 6.1A). Of the five kinases EphB1 and Ron both phosphorylated the Cx32 CT 

domain with greater than 50% and 40% of control peptide signal, respectively. EphB1 also 

phosphorylated the Cx32NT to a level similar to that of the Cx32CT. Based on the importance of 

Cx43CT Tyr phosphorylation in regulating Cx43 channel function, we sought to validate the 

Cx32CT screen, and thus tested the ability of the EphB1, Ron, and EGFR (negative control) to 

phosphorylate the purified Cx32CT in our laboratory. Our results, consistent with the Eurofins 

screen, demonstrated clear phosphorylation of the Cx32CT domain by EphB1 and Ron kinase (Fig. 

6.1B). Although we were unable to detect Tyr phosphorylation of the Cx32CT by EFGR, work from 

Diez et al. used autoradiography to demonstrate that EGFR can phosphorylate IP enriched Cx32 

in vitro [365]. This may suggest in our system the degree of phosphorylation was below the 

detection limit of the general pTyr antibody, or alternatively that stimulation of EGFR leads to a 

cascade that ultimately results in phosphorylation of Cx32 by some other downstream kinase. We 

next sought to confirm an interaction of Cx32 with EphB1 and Ron using a GST pull down assay. 

To accomplish this we purified GST alone, GST-Cx32NT, GST-Cx32CT and used these constructs 

as bait for EphB1 and Ron from HeLa (expressing EphB1 and Ron, but not Cx32) cell lysate (Fig. 

6.1C). We were able to successfully pull down EphB1 with the GST-Cx32CT, but not either GST 

or GST-Cx32NT. The amount of EphB1 pulled down by the GST-Cx32CT was increased by the 

addition of the chemical crosslinker DTSSP (3,3 ́-dithiobis[sulfosuccinimidylpropionate]; indicating 

the interaction was stabilized [572]). 
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Figure 6.1. EphB1 phosphorylates the Cx32CT domain in vitro.  
A) The Cx32NT and CT domains were used as a substrate for the human EGFR, Blk, EphB1, Met, and Ron 
kinases (performed by Eurofins Scientific). The amount of Cx32NT and CT phosphorylation was compared 
with a positive control peptide for each kinase (% of control signal). The dashed line highlights 50% of the 
control signal. B) An in vitro kinase assay for the Cx32CT was performed in our laboratory to repeat the kinase 
screen performed by Eurofins Scientific (EphB1, Ron, and EGFR). A general anti-phospho-tyrosine antibody 
was used to detect the phosphorylation level by Western blot. Control group used buffer to substitute the 
kinases in the reactions. C) Purified GST alone, GST-Cx32CT (CT), or GST-Cx32NT (NT) bound on 
glutathione-agarose beads were incubated without (-) or with (+) HeLa cell lysate and the pulled down proteins 
were analyzed by Western blot using anti-EphB1 or anti-Ron antibodies. The chemical cross-linker DTSSP 
was used to capture the weak and/or transient interactions. D) Co-IP was performed in HeLa cells stably 
expressing Cx32. Lysates were captured by IP with anti-Cx32 or IgG and then blotted for Cx32 and EphB1. 
Reprinted from Trease et al., (2018). 
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Further confirming the interaction, co-IP revealed that EphB1 could complex with full-length 

Cx32 from transfected HeLa cells (Fig. 6.1D). Although we detected robust phosphorylation of the 

Cx32CT by Ron kinase in vitro, detection of Ron kinase in the GST pull down was very low, and 

was not improved by the addition of DTSSP, nor was Ron detected to complex with Cx32 from 

transfected HeLa cells in co-IP (data not shown). Thus, Ron was not included in any following 

assays, highlighting a caveat in this type of in vitro screen where the phosphorylation in vitro does 

not always correlate with a detectable interaction in cells. 

23.2 TC-PTP interacts with and dephosphorylates Cx32CT residue pY243  

Previous work from our laboratory demonstrated that TC-PTP dephosphorylates Cx43 

residues Y247 and Y265, which promotes increased GJIC [340]. It is currently unknown whether 

TC-PTP is able to target and dephosphorylate other Cx family members (e.g., Cx32 pY243). We 

hypothesized TC-PTP may mediate a general mechanism by which Cx family members are 

dephosphorylated and such sought to determine if it directly interacts with the Cx32CT domain.  To 

address this, we performed NMR titration experiments comparing purified Cx32CT alone to that of 

Cx32CT mixed with the purified catalytic domain of TC-PTP (TC-PTP1-314). We acquired 15N-HSQC 

spectra at a number of molar ratios of 15N-labeled Cx32CT217-283 and unlabeled TC-PTP1-314 (Fig. 

6.2A). We observed changes in the 15N-Cx32CT spectra in response to increasing amount of TC-

PTP, such that at a 1:1 molar ratio, residues C217-S266 of Cx32CT (including Y243) had 

broadened beyond detection (highlighted on the Cx32CT sequence in Fig. 6.2B; red peaks on 

spectra).  

The loss of 15N-Cx32CT signal from increasing TC-PTP1-314 concentrations was plotted and 

fit according to the nonlinear least square method allowing for the determination of the KD (Fig. 

6.2C), which was determined to be 19.9 ± 4.5 μM. To validate the NMR results we did a GST pull 

down experiment with purified GST alone, GST-Cx32CT, or GST-Cx32NT as bait. The purified 

proteins were incubated on glutathione-Sepharose with purified TC-PTP1-314, washed, and 

analyzed by SDS-PAGE and Western blot. Analysis revealed a band consistent with the molecular  
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Figure 6.2. Cx32CT residues affected by the direct interaction with TC-PTP.  
A) Overlaid 15N-HSQC spectra of the 15N-Cx32CT alone (residues 217-283; 30 μM) and in the presence of 
different concentrations of unlabeled TC-PTP1-314. The cross-peak color changes according to the 
concentration ratio. The strongly affected peaks are labeled. B) Amino acid sequence of Cx32CT. Residues 
affected by the addition of TC-PTP1-314 are highlighted in green. In red is Cx32 residues Y243. C) KD for the 
TC-PTP1-314 interaction with Cx32CT was estimated by fitting the decrease in signal intensity as a function of 
TC-PTP1-314 concentration. Represented are a subset of the residues used to calculate the KD. Reprinted from 
Trease et al., (2018). 
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weight of TC-PTP1-314, whose identity was confirmed as TC-PTP using an αTC-PTP NT antibody 

that was pulled down by GST-Cx32CT, but not GST alone nor GST-Cx32NT (Fig. 6.3A, B). Taken 

together with the NMR this demonstrates that TC-PTP directly interacts with the Cx32CT. We also 

tested if GST-Cx32CT could pull down full length TC-PTP from HeLa cell lysate confirming by 

Western blot (Fig. 6.3C).     

Having confirmed a direct interaction between the Cx32CT and TC-PTP, we next sought 

to determine if TC-PTP dephosphorylates Cx32 Y243. To test this, we ordered a peptide 

corresponding to Cx32 residues H237-N249 phosphorylated on Y243 and incubated it with TC-

PTP1-314 in vitro. Using the Malachite green assay kit (Millipore) we observed an increase in the 

absorbance of the reactions containing TC-PTP1-314 over time, indicating an accumulation of 

inorganic phosphate (Fig. 6.3D). This confirmed that TC-PTP can dephosphorylate Cx32 Y243. 

Importantly, when compared to the positive control peptide for TC-PTP we observed comparable 

affinity of TC-PTP for both substrates as determined from the kinetic data in Table 7 (kcat/Km•10-6; 

2.24±0.18 vs. 2.42±0.47). 

23.3 EphB1 phosphorylates and TC-PTP dephosphorylates Cx32 in HeLa cells 

Having demonstrated that EphB1 and TC-PTP modulate phosphorylation of Cx32 Y243 in 

vitro we next wanted to determine if this effect could be reproduced in cells. We therefore transiently 

transfected HeLa cells which stably expressed exogenous Cx32 WT with either EphB1 alone or in 

conjunction with the TC-PTP1-314. We measured the level of Tyr phosphorylation by IP of Cx32 and 

Western blotting with a general phospho-Tyr antibody (Fig. 6.4A, left lane). In the control condition 

(no EphB1 or TC-PTP) we were unable to detect any Tyr phosphorylation on Cx32; however, 

increased Tyr phosphorylation was detected when cells were transfected with EphB1 and activated 

with the soluble ligand (Fig. 6.4A, middle lane). This effect was partially reversed by the co-

transfection of TC-PTP1-314 with EphB1 (Fig. 6.4A, right lane).  
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Figure 6.3. TC-PTP interacts with the Cx32CT domain and 
dephosphorylates pY243. 
 A) Purified GST, GST-Cx32NT, or GST-Cx32CT on glutathione sepharose beads were 
incubated without (-) or with (+) purified TC-PTP catalytic domain (residues 1-314). After 
washes, samples were run on SDS-PAGE gel and stained with Coomassie Blue. B) GST 
pull down samples were blotted with the anti-TC-PTP NT antibody. The TC-PTP catalytic 
domain is 36 kDa. C) Purified GST, GST-Cx32NT, or GST-Cx32CT bound on glutathione 
beads were incubated with HeLa cell lysate containing endogenous TC-PTP. Pulled down 
proteins were analyzed by Western blot using anti-TC-PTP NT or anti-GST antibodies. D) 
Plot of the Malachite green assay shows the time course of Cx32 phospho-peptides 
containing pY243 dephosphorylated by the TC-PTP catalytic domain (1.2 nmol). Data 
were recorded based on readings at OD650. Each experiment was repeated three times. 
Reprinted from Trease et al., (2018). 
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       Table 7. Kinetic constants for dephosphorylation of Cx32  
      pY243 by TC-PTP1-314.  
      Reprinted from Trease et al., (2018). 

  

Peptide Km (mM) kcat (s
-1) kcat/Km x 10-6 (M-1s-1) 

Positive control*# 0.0220.001 52.810.6 2.420.47 

pY243* 0.0280.007 63.313.8 2.240.18 

*All data were collected at pH 7.5, 25°C. 



218 
 

 

 

Despite no detected interaction of the Cx32NT with EphB1 in our GST pull down (Fig. 6.2), 

phosphorylation of the Cx32NT Y7 by EphB1 was detected in vitro, so we wanted to test if this 

residue was phosphorylated in HeLa cells [274]. To accomplish this, we generated a Cx32 Y243F 

mutant and created a stable expressing HeLa cell line. We used IP to enrich either Cx32 WT or 

Cx32 Y243F from these cells and interrogated the level of Tyr phosphorylation by Western blot 

(Fig. 6.4B). When the stable cells were transiently transfected with EphB1 we observed increased 

Cx32 WT phosphorylation. Exogenous activation of the EphB1 receptor with a soluble version of 

the high-affinity ligand ephrin-B2-Fc further increased the degree of Cx32 WT phosphorylation. 

Confirming the specificity of EphB1 for phosphorylating Cx32 Y243 (not Y7 or Y211), no 

appreciable Cx32 phosphorylation was detectable from cells expressing the Cx32 Y243F mutant. 

23.4 Cx32 Y243E increases GJIC 

In order to determine the specific effects of Y243 phosphorylation on Cx32 function, we generated 

a Y243E mutant in addition to the Y243F mutant. Use of this mutant allows us to interpret the effects 

of specific site phosphorylation as the mutation ensures there is enough “phosphorylated” protein 

produced to observe a biological response. Use of the Glu substitutions for phosphorylated Tyr 

residues is common accepted in the GJ field as a reasonable mimetic for phosphorylation, often 

times reproducing the effects of bona fide phosphorylation (e.g., [344, 573]). Here, HeLa cells either 

transiently or stably expressing Cx32 WT, Cx32 Y243F, or Y243E were used to determine the 

impact of Y243 phosphorylation on Cx32 GJIC. We first wanted to determine if phosphorylation 

altered subcellular localization of Cx32 and therefore immunostained HeLa cells transiently 

transfected with Cx32 WT, Cx32 Y243F, or Cx32 Y243E (Fig. 6.5A). Our results suggest that 

mimicking phosphorylation of Y243 did not disrupt trafficking to the plasma membrane or the ability 

of the cells to make GJ plaques, as the Cx32 Y243E made GJ plaques of apparently similar size 

and number (Fig. 6.5A; white arrows) although this was not directly quantified.   
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Figure 6.4. EphB1 increases and TC-PTP decreases the Tyr phosphorylation level on Cx32.  
A) HeLa cells stably expressing Cx32 were transfected with EphB1 and/or the TC-PTP catalytic domain 
(residues 1-314). Cx32 was enriched by IP and tyrosine phosphorylation was detected with a general 
phospho-tyrosine antibody. The level of tyrosine phosphorylation was quantified by densitometry from three 
independent experiments. **P<0.01 (compared to control); ##P<0.01 (compared to EphrinB1) (One-way 
ANOVA). B) HeLa cells stably expressing Cx32 wild-type (WT) or the Y243F mutant were transfected with 
EphB1. EphrinB2-Fc was used to activate the EphB1 receptor. Cx32 was similarly enriched by IP and the level 
of tyrosine phosphorylation detected by Western blot. **P<0.01 (compared to control); *** P<0.001 (compared 
to EphrinB1) (One-way ANOVA). Black arrows indicate IgG light chain. Reprinted from Trease et al., (2018). 
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Interestingly, the Cx32 Y243F mutant (mimicking non-phosphorylated Cx32 Y243) failed 

to make any observable GJ plaques. To confirm this, we made stable expressing HeLa cell lines, 

as expected, the localization and propensity to form GJ plaques mirrored that of the transient 

transfections (Fig. 6.5A). To assess if the mutations affected protein expression levels we analyzed 

stable cell lysates by Western blot (Fig. 6.5B).  We determined that the expression of Cx32 WT 

was 2-fold that of Cx32 Y243E (54% of WT), and approximately 6.5-fold that of Cx32 Y243F (14% 

of WT), as a result we excluded Cx32 Y243F from any functional assay. Finally, to test the effect 

of Y243 phosphorylation on cell coupling we measured the junctional transfer of the fluorescent 

tracer LY by scrape loading assay (Fig. 6.5C). Although we observed an approximate 50% 

reduction in the amount of Cx32 Y243E compared to Cx32 WT, we were surprised to observe a 

significant increase in the number of cells positive for LY but negative for the labeled dextran. This 

data suggests that phosphorylation of Cx32 Y243 positively regulates GJIC. 

23.5 EphA1 also phosphorylates Cx32 on the CT domain  

Following from our experiments establishing EphB1 as a kinase that phosphorylates and 

thereby regulates Cx32, we were curious if other Eph receptor family members also phosphorylated 

Cx32. To test this, we purified Cx32CT (C217-C283; Y243) and submitted it to Eurofins Scientific 

for in vitro kinase screening with all other available Eph receptor family members (KinaseProfiler). 

To validate the screen, EphB1 and Yes were screened as positive and negative controls, 

respectively. Of the Eph receptors screened, only EphA1 was able to phosphorylate the Cx32CT 

in vitro (Fig. 6.6A). Compared to control peptide it phosphorylated the Cx32CT at ~67% (Fig.  6.6A). 

The phosphorylation by EphB1 was comparable to the previous screen, and Yes kinase did not 

detectably phosphorylate the Cx32CT.  Following our workflow for EphB1 we next transiently 

transfected human EphA1 into the Cx32 stable expressing HeLa cell line and activated the receptor 

with the soluble ligand, ephrin-A1-Fc. To determine the level of Tyr phosphorylation we captured 

Cx32 by IP and Western blotted with a general pTyr antibody (Fig. 6.6B). Like when transfected 

with EphB1 we observed a significant increase in Cx32 Tyr phosphorylation when EphA1 was 

expressed, that was further increased upon activation with the ligand (Fig. 6.6B).  
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Figure 6.5. Cx32 Y243E increases GJIC.  
A) Immunostaining of Cx32 WT, Y243F, and Y243E transiently (top) and stable (bottom) expressed 
in HeLa cells. Green: Cx32; Blue: DAPI. White arrow shows gap junction plaques. Scale bar is 20 µm. 
(B) Western blot of Cx32 expression in stable Cx32 WT, Y243F, and Y243E HeLa cells. C) GJIC of 
Cx32 WT, Y243F, Y243E were investigated using the scraping loading dye transfer assay. Cells 
grown on glass coverslips were scrape loaded with Lucifer Yellow (LY, green) and Texas Red-
conjugated dextran (red). Nuclei were stained by DAPI to show the confluence of cells. Scale bar is 
100 μm. **P<0.01 (T-Test). Modified from Trease et al., (2018). 
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Since our work to this stage was completed using exogenous expression systems we 

sought to determine if phosphorylation would occur under endogenous expression conditions. We 

screened a number of cell lines (colon cancer, cholangiocyte, and cholangiocarcinoma lines) at our 

disposal for expression of Cx32 and EphA1 (Fig. 6.6C). We determined that Caco2 cells (human 

colon cancer line) expressed reasonable levels of Cx32 and EphA1 and thus tested whether EphA1 

could phosphorylate Cx32 (Fig. 6.6D). We observed a significant increase in Cx32 Tyr 

phosphorylation when the Caco2 cells were treated with the soluble ephrin-A1-Fc, confirming the 

results we obtained from the overexpression system (Fig. 6.6D).  

Having observed a significant increase in GJIC in our Cx32 Y243E expressing HeLa cells 

(Fig. 6.5), suggesting that phosphorylation of Y243 enhanced the dye transfer we predicted that 

activation of EphA1 in Caco2 cells would have a similar result. We therefore treated Caco2 cells 

with ephrin-A1-Fc and used scrape loading to determine if GJIC was increased subsequent to 

receptor activation. Our results indicate that similar to the phosphomimetic Cx32 Y243E mutant, 

activation of EphA1 enhanced GJIC in Caco2 cells (29 vs. 12 cells receiving dye; Fig. 6.6E). Finally, 

we were curious if the expression of EphA1, EphB1, and Cx32 was specific to the cancer state of 

the Caco2 cells, so we compared the levels of expression in Caco2 cells to their normal counterpart 

fetal human colon (FHC) cells by Western blot (Fig. 6.6F). To our surprise compared to Caco2 cell 

FHC cells expressed EphA1 and Cx32, but not EphB1, while the FHC only expressed EphB1. This 

may suggest a developmental role for EphB1 in colon, or oncogenic conditioning in the cancer 

cells, however, further investigation is needed. The data taken together suggest a role for Eph 

receptors in regulating Cx32 mediated cell coupling, and further reinforce the validity of using 

phosphomimetic mutants to ascertain the function of specific phosphorylation sites. 

23.6 Phosphorylation at Y243 has little-to-no effect on the Cx32CT interaction with 

calmodulin or synapse-associated protein 97 

A number of mechanisms by which phosphorylation affects the function of Cxs have been 

described in the literature, including: altering trafficking and assembly, accretion, open probability, 

channel gating, or modulation of protein partner binding (e.g., [204, 378]). Having demonstrated  
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Figure 6.6. EphA1 phosphorylation of Cx32 increases gap junction intercellular 
communication in vitro and in cyto.  
A) Cx32CT was used as a substrate for a number of different Eph receptor isoforms. EphB1 and Yes were 
used as positive and negative control, respectively. The amount of Cx32CT phosphorylation was compared 
with a positive control peptide for each kinase (% of control signal). The dashed line highlights the 50% of the 
control signal. B) HeLa cells stably expressing Cx32 were transfected with EphA1. EphrinA1-Fc was used to 
activate EphA1 receptor. Cx32 was captured by IP and the tyrosine phosphorylation level detected by Western 
blot. **P<0.01 (one-way ANOVA). Black arrows indicate IgG light chain. C) Western blot analysis of several 
cell lines screening for endogenous expression of Cx32 and EphA1. D) Cx32 was enriched by IP from Caco2 
cells stimulated with EphrinA1-Fc and probed for tyrosine phosphorylation by Western blot. E) Caco2 cells 
cultured on glass coverslips were stimulated with EphrinA1-Fc and scrape loaded with Lucifer Yellow (LY, 
green) and Texas Red-conjugated dextran (red). Nuclei were stained by DAPI to show the confluence of cells. 
Scale bar is 100 μm. ***P<0.0001 (T-Test). F) Western blot analysis comparing endogenous expression levels 
of EphA1, EphB1, and Cx32 in fetal human colon (FHC) and Caco2 cells. Modified from Trease et al., (2018). 
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that phosphorylation of Cx32 Y243 enhances GJIC we were curious what the mechanism behind 

this may be. Previously our laboratory reported direct interactions between either CaM or SAP97, 

and the Cx32CT in a region which includes Y243 (CaM: C217-S266; SAP97: C217-Q245) [248]. 

We hypothesized that phosphorylation of Y243 may modulate the association of these proteins with 

the Cx32CT. To test this, we used NMR 15N-HSQC titrations with either unlabeled Cx32 (C217-

S266, pY243; 15N-CaM; Fig. 6.7) or 15N-Cx32CT Y243E (unlabeled SAP97701-924; Fig. 6.8). Little-

to-no difference was observed in the NMR spectra in the experiments between the non- and 

phosphorylated (or phosphomimetic) Cx32, indicating phosphorylation of Y243 alone does not 

significantly affect the interaction of Cx32CT with CaM or SAP97. 

Although our results show that phosphorylation of Y243 alone do not modulate the binding 

of either CaM nor SAP97 to the Cx32CT, it is possible that a requirement for multiple 

phosphorylations exists. There are three Ser residues in close proximity to Y243 that have been 

detected as phosphorylated (e.g., all in vitro: S229, PKC; S233, PKA and PKC; and Ser240, PKC) 

[274, 478]. It may be that cooperativity between phosphorylation at Y243 and one (or more) of the 

Ser residues may alter the binding of CaM and SAP97. An additional possibility is that 

phosphorylation of Y243 may not alter protein partner binding at all, but rather alter channel 

properties such as gating, open probability, or permselectivity. Interestingly, the presence of CaM 

was shown to reduce the degree of Cx32 phosphorylation by EGFR and may represent a 

mechanism by which CaM mediates or maintains the closure of Cx32 channels by negating the 

effect of Y243 phosphorylation or preventing it altogether [239, 240, 298]. 
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Figure 6.7. Phosphorylation of Cx32 Y243 has little-to-no effect on the interaction with CaM.  
15N-HSQC spectra of purified 15N-CaM (30 µM) titrated with either (A) Cx32CT217-266 nop (no phosphorylation) 
or (B) Cx32CT217-266 pY243 peptides at various molar ratios. The KD for each interaction was estimated by 
fitting the change in chemical shift. Represented are a subset of the CaM residues used to calculate the KD. 
Reprinted from Trease et al., (2018).   
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Figure 6.8. Phosphorylation of Cx32 Y243 has no effect on the interaction with SAP97.  
15N-HSQC spectra of purified 15N-Cx32CT WT (left) or Y243E (right) (50 µM) in the presence (red) or absence 
(black) of the SAP97 GUK domain (residues 701-924). For easier comparison, the main peaks affected by the 
SAP97-GUK701-924 domain for both constructs have been boxed and linked. Reprinted from Trease et al., 
(2018). 
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24. Discussion  

Although our report of the regulation of Cx32 GJIC by Eph receptors is novel, others have 

reported links between Cxs (Cx43 and Cx36) and Eph receptors. Notably, when GJIC was 

measured, the studies all reported an impairment of communication. In one such study examining 

the relationship of Cx43 and the EphB4 receptor, Cx43 was shown to co-IP the EphB4 receptor. 

Additionally, when the receptor was activated in primary cardiomyocytes GJ coupling was impaired 

[567]. A second study demonstrated co-IP of ephrin-B1(high affinity ligand of EphB2) and Cx43 

[366]. The same study also showed that when ephrin-B1 was bound by EphB2 in NIH3T3 cells 

Cx43 was internalized and consequently GJIC was disrupted [366]. Another study examining the 

formation and function of GJs in zebra fish cap cells demonstrated that both unidirectional 

(activation of either Eph receptor or ephrin) and bidirectional Ephrin signaling (activation of both 

Eph receptor and ephrin) completely blocked transfer of LY dye at the boundary of two cell 

populations [566]. Although the authors did not directly measure GJIC, a fourth study, 

demonstrated Cx36 expression was required for EphA receptor mediated insulin secretion in 

pancreatic β cells [574]. In the study, siRNA mediated knock-down of Cx36 reduced insulin 

secretion to that of control levels (inactive EphA5), however, supplementing the cells with cDNA to 

Cx36 cDNA rescued insulin secretion [574]. 

  In the current study, we have shown that Cx32 Y243 is phosphorylated by EphB1 and 

EphA1. Use of phosphomimetic Cx32 (Y243E) suggested phosphorylation of this site increased 

GJIC in HeLa cells and did so through mechanisms that did not apparently affect number of size of 

the GJ plaques. A result that was reproducible by activation of the EphA1 receptor in an 

endogenous expression system (Caco2 cells). Interestingly, in hepatocytes, phosphorylation of 

Cx32 S233 was also shown to correlate with increased GJIC [478]. We have additionally 

demonstrated that the phosphatase TC-PTP dephosphorylates Cx32CT residue pY243 both in vitro 

and in the context of cells, and based on our scrape loading assays would reduce Cx32 GJIC. This 

contrasts with reports for Cx43, where Tyr phosphorylation (specifically Y247, Y265, and Y313) 

decreases GJIC by disrupting cytoskeletal anchoring and thereby GJ stability [323, 325, 328, 575-

577]. These and our studies contained herein, therefore suggest that Cx phosphorylation by the 
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same kinase can have largely diverse effects of the regulation of different Cx family members. The 

number of reports of differences in response to activation of the same kinase is increasing. A good 

example of this is differential regulation of Cx43 and Cx45, where activation of PKA was shown to 

reduce Cx45 gj while that of Cx43 was increased [306, 454]. Another example is PKG activation 

seemingly has no effect on Cx45 channels while it reduced Cx43 gj [306, 454]. Response to PKC 

activation similarly has been shown to be divergent between Cx43 and both Cx45 and Cx37, where 

Cx43 channel function (gj and dye coupling) is inhibited by PKC while one study showed Cx45 gj 

increased, and a second showed although Cx45 gj had a mild decrease, its ability to couple NB 

was unaffected [86]. For Cx37, PKC activation was shown to increase GJIC, again highlighting an 

opposite effect than what has been observed for Cx43 GJ channels [446]. 

Although our study has demonstrated phosphorylation of Cx32 by Eph receptors positively 

regulates GJIC, the relevance to human physiology remains to be determined. Using data curated 

within the Human Protein Atlas, expression of Cx32 is primarily found in the foregut and lower 

portion of the digestive tract (appendix, liver, gallbladder, gastrointestinal tract), renal (kidney), and 

reproductive systems (both male and female) ([578]; www.proteinatlas.org). Importantly, the EphA1 

receptor is also expressed in all of these systems, suggesting that this mechanism of Cx32 

regulation is likely common in these systems. EphB1 expression, however, is more restricted and 

relatively low. In the testes, however, EphB1 expression is relatively high and is therefore likely to 

contribute to the regulation of Cx32 GJIC there. Although alternate mechanisms of Eph receptor 

activation have been described (e.g., soluble ephrin-A1 secretion in HeLa cells [579, 580]), 

canonical activation of EphA1 and EphB1 by their respective ephrin ligands [581] is dependent on 

cell-cell contact. A similarity to this is the requirement of cell-cell contact for GJs to assemble. It is 

therefore likely in cells and tissues that express either EphA1 or EphB1 and Cx32, that this contact 

would result in the increased Cx32 phosphorylation and subsequent increases in GJIC. 

Furthermore, any pathological dysregulation in the expression of either the receptors, ligands, or 

Cx32, or aberrant cell interactions (e.g., implantation of metastatic cancer cell at site of metastasis) 

could lead to aberrant Cx32/Eph signaling [565, 582, 583]. While our work demonstrates 

http://www.proteinatlas.org/
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phosphorylation of Cx32 Y243 (independent of the kinase) enhances GJIC, future studies should 

determine what physio- and pathological conditions Cx32/Eph signaling is relevant to. 

Current research on Cx phosphorylation utilizing diverse techniques and systems have 

demonstrated that Cx regulation by phosphorylation can traced to similarly diverse mechanisms 

including changes in Cx structure, localization, trafficking/assembly, protein partner binding, 

turnover, and channel gating (reviewed in [328, 338]). The identification of stimuli and signal 

transductions which lead to phosphorylation of Cxs have greatly improved our understanding of the 

regulation of Cxs by kinase programs (reviewed in [328]) and are of potential clinical significance. 

However, comprehensive understanding of the regulation of Cxs phosphorylation will require 

identification of all kinases that phosphorylate Cxs and characterization of the effect(s) of the sites 

phosphorylated. This study is important because it demonstrates phosphorylation of a specific 

Cx32 residue (Y243) modulates GJIC, and further supports the notion that the effect of Cx 

phosphorylation by a given kinase is dictated by the Cx family member rather than the kinase, and 

therefore investigation of the effects on other Cx family members is essential. 
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25. Summary and Conclusions 

GJs are critical mediators of juxtacrine signaling through the direct transfer of cytosolic 

constituents from one cell to the next, thereby regulating processes essential to tissue and organ 

homeostasis and function, including electrical and metabolic continuity, among others. Regulation 

of GJ proteins is diverse and complex, relying on the coordination of many hierarchical mechanisms 

ranging from gene expression to PTM. The importance of GJ function to many essential 

physiological processes (organ development, contraction in the heart, insulin release in the 

pancreas, neuronal plasticity, vision, hearing, etc.) makes them attractive therapeutic targets. 

However, to develop therapeutic approaches for the modulation of GJ function a clear 

understanding of mechanisms which: 1) differentiate one family member from another, 2) regulate 

channel function, 3) block or restore coupling, and 4) are associated with disease, is essential. In 

the previous Chapters, we have described the current state of GJ knowledge with a primary focus 

on 2 out of the 21 human family members (Cx43 and Cx45), as well as presented studies 

contributing to the advancement of that knowledge specifically on Cx45. Our studies focused on 

highlighting the regulation of Cx45 by both structural and post-translational (phosphorylation) 

features and described a regulatory landscape that is both similar and dissimilar to Cx43, 

reinforcing the need to fully characterize each Cx protein individually in order to design novel 

therapeutics. Our additional study on the regulation of Cx32 by phosphorylation further supports 

this notion.  

The intimate relationship that exists between the structure and function of proteins is not a 

new concept and holds true for the regulation of Cxs as well. Our laboratory has historically made 

its primary focus delineating this relationship by investigating the CT domain of several Cxs [231, 

247, 248, 284, 287, 312]. While the CT domain is primarily unstructured for most Cxs, they easily 

adopt structure from the influence other proteins or phosphorylation (for examples see [248, 312, 

377]). The CT domain of one unique Cx, Cx45, was reported previously by our laboratory to contain 

a static α-helical domain that led to high-affinity (KD ~141nM) dimerization of the recombinant CT 

domain when in solution [247]. In the work presented in Chapters Two and Three, we followed up 

on this to investigate the functional implications of Cx45CT dimerization with the hypothesis that at 
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least in part, CT dimerization contributes to the uniquely (at least among cardiac Cxs) restrictive 

channel properties elicited by Cx45 channels [424]. While the CT domains of other Cxs adopt 

helical structure when tethered to their 4th TM domain, in the presence of protein partners, or when 

phosphorylated, Cx45 is, to our knowledge, the only described to date with a static α-helix in the 

absence of protein partners, phosphorylation or tethering to the 4th TM domain [247, 248, 284, 312, 

377]. Notably, the region of the Cx45CT domain when compared to all proteins in the human 

proteome by BLAST is unique [424]. Since Cx45 expression in the ventricles has been linked to 

arrhythmias, the existence of this unique domain (and structure) would make an attractive target 

for therapeutics if modulation of the dimerization interaction alters channel function in any way. By 

inhibiting dimerization of the Cx45CT domain of full-length Cx45 through homologous mutants (6E, 

DDSc, 40MD, 43MD, and ΔDD), and heterologous mutants (GCN4LZ, BsubVD, and BsubAA) we were 

able to link the presence of dimerization to tightly regulated forward trafficking and proper plaque 

formation, while the absence of dimerization uniformly increased the plasma membrane 

expression, hemichannel activity, and detergent solubility. Importantly, the dimerization of Cx45 

appears to influence Cx45 channel function in a manner that is directly opposite that of Cx43. 

Dimerization of Cx43CT domains in a pH dependent manner serves to close the channel in 

ischemic conditions, perhaps a mechanism that prevents the spread of necrotic factors from the 

cells in the infarct the healthy cells outside the epicardial border zone [72, 84, 222, 224, 473]. It is 

also probable, that since dimerization of Cx45CT domains influence the function of Cx45 

homomeric channels, that it is also a contributing factor to the dominant negative phenotype Cx45 

exerts on Cx43 in heteromeric channels [86, 87]. Since we observed Cx45CT dimerization 

preceding oligomerization of connexons in the TGN, this is almost certainly a factor that controls 

both stoichiometry and subunit arrangement in heteromeric channels. Two factors that are likely to 

influence channel function in unique ways. Supporting this are studies done on the glutamate based 

NMDA receptor, which are composed of two subunits each of GluN1/GluN2a that adopt an 

alternating arrangement such that the two GluN1 subunits and the two GluN2a subunits are 

diagonal to each other in the tetrad forming the receptor and pore [584]. How subunit arrangement 

affects Cx function remains to be determined. Future efforts to investigate the structural regulation 
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of Cx45 should delineate the atomic structure of the dimer interface. By accomplishing this it may 

be possible under certain circumstances (such as conditions that would phosphorylate Y356, 

thereby reducing dimer affinity) to design small molecules capable of disrupting a weakened dimer, 

consequently modulating Cx45 GJIC. Additionally, the role of dimerization should be addressed in 

the context of heteromeric channels. Determining how heteromeric Cx43/Cx45 channels form in 

terms of stoichiometry and subunit arrangement may offer unique insights into how dimerization 

alters pore structure or channel permeability. It would be reasonable to predict that two Cx45 

protomers side-by-side would likely have a smaller influence than two positions across from each 

other. Although no results have been published, a study using atomic force microscopy is currently 

underway investigating the allowed subunit arrangement and stoichiometries of two β-Cxs (Cx26 

and Cx32; Jorge Contreras, personal communication). Finally, studies should focus on idenitfying 

unique protein partners that preferentially bind on Cx45CT over the dimerization domain, as this 

may offer alternate therapeutic targets that may be specific to Cx45 without needing to overcome 

the high energetic costs required to disrupt the dimerization.  

In addition to the regulation by a static structural feature another notable difference in the 

regulation of different Cx family members is the response to phosphorylation. Cx43, the canonical 

Cx family member, has been thoroughly (albeit not exhaustively) characterized with respect to 

regulation by kinases and phosphorylation [524]. Since every aspect of the Cx43 life cycle is 

regulated by phosphorylation it is highly likely, phosphorylation is a general mechanism of Cx 

regulation. Indeed, this is supported by studies identifying phosphorylation of multiple family 

members and reporting functional effects of kinase activating conditions in vitro and in vivo [86, 

158, 159, 189, 283, 294, 301, 306, 307, 311, 324, 325, 344, 351, 356, 363, 385, 446, 464, 478, 

543]. We characterized the regulation of Cx45 by kinases downstream of the AT1R that would be 

active in hypertension and in failing hearts [491, 492, 498, 499, 504, 509]. Our results are the first 

to show definitive evidence of direct phosphorylation of Cx45 by Src, Pyk2, and PKCα.  

Previous studies have implicated PKC (non-specifically) in the regulation of Cx45 but direct 

evidence of phosphorylation was lacking [86, 189]. Conversely, CaMKII has been shown to 

phosphorylate Cx45 in vitro, notably four of the seven Ser residues phosphorylated by CaMKII 
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(S381,381,384,385) are also phosphorylated in our samples by PKCα, suggesting the two kinases 

may serve overlapping or compensatory roles in the regulation of Cx45 in different cell types or 

under different physiological or pathophysiological states [83]. Additionally, a subset of the Ser 

phosphorylated by CaMKII were also phosphorylated in vitro by CK1, two of those (plus one 

additional not phosphorylated by CaMKII) were also phosphorylated in our study by PKCα (five of 

seven for CaMKII; S326,382,384 for PKCα) [83]. Whether all of these residues are actually 

phosphorylated in cyto or in vivo remains to be determined. Regardless of the kinase, based on 

the work of Hertlein et al. phosphorylation of Ser residues in the last 26 amino acids of Cx45 would 

likely contribute to GJ stability, similar to what we observed in MDCK cells stimulated with PMA 

[189]. A noteworthy difference between Cx43 and Cx45, is the redistribution of Cx43 from the 

plasma membrane following addition of PMA [585]. Speculatively, the enhancement of association 

with cytoskeletal partners following PMA could explain increased stability of Cx45 vs. Cx43. To 

address this more directly, validation of the residues phosphorylated by PKCα is essential, as well 

as determining biophysically how phosphorylation affects the association with specific protein 

partners. It is unclear if in the heart (if the same phenomenon occurs) whether this would be 

protective or pathological. Since PKCα attenuation offers a cardioprotective effect, it is likely that 

the its phosphorylation and subsequence stabilization of Cx45 would be conversely pathological 

[518].  

Currently, the effect of PKC (via activation with PMA) on Cx45 is controversial, two 

separate studies highlighted opposing effects, in one the gj was increased while in the other it 

decreased while NB transfer was unaffected [86, 306]. Our results do little to settle the controversy, 

as we report a decrease in NB transfer upon treatment with PMA. It is unclear if this is a result of 

parallel pathway activation from PMA treatment such as we observed in MDCK and HeLa cells, 

differences in timescale or concentration used, or a combination thereof. The use of selective 

inhibitors of PKC, MAPK, and Src would prove effective in teasing this out. It is interesting that we 

observed an increase in both total Cx45 and Cx45 Tyr phosphorylation when PKC is activated. 

Although we did not determine the exact residues phosphorylated, the activation of Pyk2 and Src 

downstream of PKC  may suggest they have phosphorylated Cx45 under these conditions, leading 
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to a more complex effect than that of phosphorylation by PKC alone. Certainly, PMA is resulting in 

either direct or transactivation of both of these pathways as we detected increased ratios of active 

to total Pyk2 (MDCK and HeLa) and Src (HeLa). Future studies should focus on teasing out the 

exact contributions of each of these kinases downstream of PKC, as well as validate the 

phosphorylated residues with cellular and in vivo models. Subsequently, it would be important to 

use phosphomimetic mutants to begin to tease out the functional importance of each individual 

phosphorylation site as well as in combination. 

The role of Src in regulating Cx43 has been well described by several studies [296, 325, 

375, 376, 484]. Activation of Src leads to increased phosphorylation of several Tyr and Ser residues 

of Cx43 and relies on the convergence of a number of signaling pathways mediated by Src activity 

[325, 484]. Most notably Src activation leads to the recruitment and activation of MAPK which 

phosphorylates Cx43 on S255,279,282 [325]. A unified theme of Src activation for Cx43 regardless 

of the initial stimulus (EGF, PMA, v-Src transfection, etc.) leads to channel closure and 

internalization accomplished by the direct and indirect displacement of cytoskeletal anchoring 

proteins and recruitment of turnover/internalization machinery [286, 295, 328, 378]. When we 

treated MDCK and HeLa cells with PMA we observed activation of Src (in HeLa) and Pyk2 (HeLa 

and MDCK) that correlated with increased Tyr phosphorylation and increased association with 

Drebrin, ZO-1, ZO-2, and β-Tubulin. This suggests that the molecular mechanisms that mediate 

the association of Cx45 with these proteins differ from that of Cx43. Despite this difference we 

observed Src mediated loss of GJIC, under conditions in which Src was chronically active (transient 

transfection of constitutively active v-Src, or Src permissive temperatures in LA-25). This was 

starkly contrasted by acute activation of Src through stimulation of the EGFR, which resulted in 

upregulation of GJIC. Therefore, with respect to Src kinase, it seems Cx45 (and thus perhaps other 

Cxs) has a bimodal response. Interestingly, several kinases have been reported to lead to different 

(and many times opposite) effects when acutely vs. chronically active (reviewed in [586-590]). For 

example, acute activation of p38 MAPK has prohypertrophic effects, while chronic activation seems 

to abrogate cardiac hypertrophy [590]. Another example is Protein Kinase D 1 (PKD1) in the heart, 

which acutely functions to mediate cardiomyocyte metabolism by the stimulation of glucose uptake, 
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however, when chronically activated (in conjunction with PKD3) PKD1 mediated gene transcription 

that promotes the development of hypertrophy [591]. Src kinase itself is a good example of the 

dichotomous effects of acute vs. chronic kinase activation, acutely Src functions to regulate 

angiogenic factors and vascular permeability, however, chronic activation leads to cellular 

transformation [592-594].  

 Subsequent studies should focus on clarifying the differences observed between acute vs. 

chronic activation of Src as well as examine the effects of inhibiting Src in cyto and in vivo with the 

goal of determining how pathways parallel to Src may contribute. Furthermore, it would be 

advantageous to explore the potential that other Src family kinases also regulate Cx45. 

Biophysically, studies could investigate how activation by PMA leads to increased Tyr 

phosphorylation and why this does not affect the binding of cytoskeletal protein partners. Finally, 

an intimate relationship exists between Src and Pyk2, it should be investigated exactly what 

contribution each of these kinases make to the regulation of Cx45. 

 Although the initial goal of Chapter Four was to investigate the regulation of Cx45 by three 

kinases downstream of the AT1R, investigating the role of Pyk2 was not directly achievable beyond 

our in vitro work and co-IP. We were able to demonstrate that Pyk2 phosphorylates Cx45 on 

residues similar (albeit not identical) to Src. Work currently ongoing in our laboratory studying the 

phosphorylation of Cx43 by Pyk2 has revealed a similar effect, with Pyk2 phosphorylating Cx43 

residues that are also phosphorylated by Src (Sorgen Laboratory, unpublished data). A challenge 

in investigating the direct phosphorylation of Pyk2 is the requirement of Src for “enhanced” 

activation of Pyk2, as well as the lack of selective inhibitors that do not also target focal adhesion 

kinase [505]. Additionally, Src and Pyk2 (when active) are physically linked via the scaffolding 

protein Paxillin [541]. In addition to demonstrating Pyk2 phosphorylates the Cx45CT domain, we 

were able to show that Pyk2 can complex with Cx45 using co-IP from Cx45 expressing HeLa cells, 

to this end the interaction and resultant regulation of Cx45 warrants further investigation. Notably, 

our study did not explore the involvement of upstream effectors including the AT1R, however, 

collaboratively our laboratory has tested the effects of prolonged exposure to AngII in a mouse 

model and consistent with the study of Yamada et al. demonstrated that Cx45 expression in the 
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ventricles is increased as a function of hypertrophic remodeling (Sorgen and Beuve Collaboration, 

unpublished data; [82]). Our in vitro and in cyto data, in combination with the collaborative animal 

model, numerous studies illustrating the importance of the AT1R in activation of the Src-Pyk2-

PKCα axis in heart failure, and differences observed between Cx43 and Cx45, strongly suggests 

that expression and function of Cx45 is regulated in end-stage heart failure differently than Cx43 

by the same kinase programming [72, 286, 295, 323, 378, 424, 488, 491-499, 504, 515, 530, 595, 

596]. Future studies should primarily focus on the establishing the AT1R-Src-Pyk2-PKCα axis and 

how it relates to Cx45 function specifically in cardiac derived primary cells or cell lines. With the 

plethora of identified phosphorylation sites on Cx45 from this dissertation it would be beneficial to 

develop the first phosphorylation site specific antibodies against Cx45, this would be invaluable in 

terms of better understanding molecular mechanisms and temporal regulation of phosphorylation. 

Furthermore, as mentioned above for PKCα, it would be useful to employ phosphomimetic mutants 

to better understand the importance of individual sites of phosphorylation, and how those may alter 

the binding of protein partners or modulate channel properties directly.  

 Another aspect of Cx regulation that we explored herein, is the potential for cross-

regulation between family members. Several studies describe altered channel properties or plaque 

formation when more than one heterocompatible Cx family member is expressed in the same cell 

type (for examples see [86-88, 476]). In our study we demonstrated co-expression of Cx45 with 

Cx43 in LA-25 cells was able to protect Cx43 from Src mediated turnover, while it did not prevent 

Src mediated channel closure as measured by NB transfer. Interestingly, though GJIC was reduced 

Cx43 maintained at the GJ plaque was not marked by phosphorylation for channel closure nor 

primed for ubiquitination and internalization. The implications of these observations are complex. 

In terms of turnover and channel closure the co-expression of Cx45 has greatly altered how Cx43 

would normally respond [325]. However, the lack of GJIC when Cx43 is not marked for channel 

closure suggest that Cx45 is either marked for closure (exerting dominant negative effect on Cx43), 

or permselectivity of the heteromeric channels has been altered by phosphorylation. Without 

explicit knowledge of the specific Cx45 residues phosphorylated and their functional importance, 

the first possibility is difficult to explore. The possibility that permselectivity is altered, is supported 
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by a recent study of Cx43 describing altered permselectivity in CK1 site nonphospho- and 

phosphomimetic mutants [597]. Whether this is a potential mechanism leading to the loss of GJIC 

in our system remains to be determined. The significance of this set of experiments is the idea that 

if this occurs in the heart it may be a causal factor leading to arrhythmia. Loss of Cx43 alone in the 

heart is generally well tolerated, even to expression levels as low as 50% of normal, however, even 

modest expression of Cx45 in these conditions promotes the development of lethal arrhythmias 

[432, 437, 598]. In the case of reduced Cx43 expression, channel conductance properties are 

maintained, however, the inclusion of Cx45 in the ensuing heteromeric channels greatly alters the 

conductive properties and consequently impulse propagation [86, 87]. It therefore stands that any 

mechanism which promotes the formation of Cx43/Cx45 heteromeric channels may therefore be 

pathological. Additionally, this suggests that regulation of Cxs when intermixed is not always 

predictable from regulation of the individual family members. Based on our findings future studies 

should focus on characterizing the regulation of Cx43/Cx45 heteromeric channels in vivo, putting 

an emphasis on the response to kinase activation. Similarly, as previously suggested, it would be 

important to determine what degree of connexon incorporation (i.e. stoichiometry) is required for 

Cx45 to exert its dominant negative effect. Finally, if the regulation of heteromeric channels is 

unique in comparison to either homomeric channel, it is possible that this may similarly present as 

a unique therapeutic target, thus the therapeutic potential of modulating the function of heteromeric 

channel should be explored. 

 Finally, we explored the regulation of Cx32 a β-subtype Cx, by Eph receptors EphA1 and 

EphB1, and the phosphatase TC-PTP. Our results indicate that EphA1 and EphB1 both 

phosphorylate Cx32, on residue Y243 in the CT domain. In cells this is reversed by TC-PTP. A 

unifying theme of this dissertation has been highlighting differences in the regulation of the Cx 

family members studied, as compared to Cx43. The goal of which, has been to substantiate the 

importance of thoroughly characterizing each family member with respect to protein interactions 

and phosphorylation, two critical mediators of GJ function. Notably, comparing Cx43 and Cx32, 

phosphorylation by Eph family receptors has opposite effects. For Cx43 activation of EphB4 in 

cardiomyocytes disrupted GJIC [366]. Similarly, activation EphB2 by the ligand ephrin-B1 in 
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NIH3T3 cells also resulted in loss of Cx43 mediated coupling [567]. Additional examples of 

differences between Cx43 and exist between Cx45 and Cx43 as presented in the Chapters 

contained herein, as well as in response to activation of PKA, PKC, and PKG [86, 306, 454]. 

Another example is differential responses of Cx37 and Cx43 to PKC [364]. These reports and our 

studies in Chapters Two through Six clearly define a heterogeneous response of different Cx family 

members to the same stimulus and therefore warrant direct investigation of each Cx family member 

with respect to the same stimulus.  
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