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Many events during pregnancy and early infancy can affect infant brain 

development. Inflammation during pregnancy, around delivery and during early infancy 

appears to adversely affect infant brain development. As the brain is rapidly growing and 

developing from conception through early childhood, it is particularly vulnerable during this 

time to inflammatory insults, which may be exacerbated or ameliorated by nutritional 

factors. Inflammatory compounds, as well as many nutritional compounds, can be either 

pro- or anti-inflammatory. These compounds are of particular importance in preterm 

infants, who are at risk of deficiency in anti-inflammatory micronutrients typically stored as 

a result of prenatal maternal diets and thus reliant on post-natal dietary supplementation. 

Understanding the ways in which nutritional status and inflammation interact with each 

other has been identified as a key gap to fill in improving our ability to treat and prevent 

neurodevelopmental impairment as a result of prematurity. We examined the innovative 

conceptual framework by which nutritional compounds such as alpha- and beta-carotenes, 

lutein, lycopene and alpha-tocopherol are associated with decreased levels of pro-

inflammatory compounds associated with inflammation in utero and after delivery. These 

studies will lay the foundation for long-term studies of neurodevelopment outcomes in 

these infants, as well as allow us to identify key pathways we might target for dietary or 

pharmacologic immunomodulation to improve neurologic outcomes in high risk infants.   
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CHAPTER ONE: INTRODUCTION 

Almost 10% of infants in Nebraska are born prematurely, or preterm, before 37 

weeks gestation1. As healthcare has advanced, the number of these infants that survive 

the neonatal period has increased; however, the rates of neurodevelopmental impairment 

that occur in these infants have not decreased2. Depending on gestational age and 

birthweight, 30-60% of preterm infants have neurodevelopmental impairments that persist 

into later childhood, including visual problems, cerebral palsy, developmental delays and 

problems with school function2-6. Understanding the factors that have the greatest impact 

on development can lead to treatment and prevention strategies that improve health for 

children throughout the United States and the world.  

 

Inflammation and Neurodevelopment.  

Many events during pregnancy and early infancy can affect infant brain 

development. The time from conception through early childhood is sometimes referred to 

as the “1000 days critical window” because of the rapid anatomic and functional changes 

in the developing brain at this age7. There is increasing evidence that inflammation in early 

development, from intrauterine, peri-partum and early childhood insults, may have lifelong 

impacts on neurologic function8,9. For example, elevated pro-inflammatory compounds in 

cord blood have been associated with an increased risk of cerebral palsy in several case 

series8,9. Animal studies attempting to better define the impact of specific inflammatory 

processes on neurologic function have demonstrated that cytokine exposure during 

infancy increases the risk for changes in memory or neuropsychiatric function later in life 

following a second immune challenge10-13. Additionally, following E. coli sepsis, rodents 

are less responsive to cognitive enrichment strategies than those without a history of 

infection10. Importantly, these effects are only observed in rodents less than 30 days of 
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age, revealing an early period of vulnerability in the developing brain10,12. In addition to 

risks with pro-inflammatory cytokines, anti-inflammatory cytokines may provide a 

balancing protective effect. My animal work in adult and infant mice with central nervous 

system (CNS) infections has identified a role for the potent anti-inflammatory cytokine 

interleukin-10 (IL-10) in neuroprotection following S. epidermidis catheter infection in the 

brain14. As both CNS and peripheral inflammation are associated with neurologic 

sequelae, it is possible that IL-10 serves a similar protective function in both systemic and 

CNS infections, as well as other stressors. While IL-10 and other cytokines have been 

evaluated as possible biomarkers for infection in infants, these studies have not taken into 

the gestational age of the infant nor the association of these immunologic responses with 

potentially immunomodulatory nutritional factors15,16. 

 

Dietary Modulation of Inflammation.  

As the brain is rapidly growing and developing from conception through early 

childhood, it is particularly vulnerable during this time to inflammatory insults, which may 

be exacerbated or ameliorated by nutritional factors7. This is of particular importance in 

preterm infants, who are at risk of deficiency in anti-inflammatory micronutrients typically 

stored as a result of prenatal maternal diets and thus reliant on post-natal dietary 

supplementation17. Without antioxidants to balance the effects of oxidative stress and 

inflammation, infants are at risk of abnormalities in neurologic development, 

bronchopulmonary dysplasia, and retinopathy of prematurity18. Major nutritional 

antioxidants include alpha- and beta-carotenes, lutein, lycopene, and alpha-tocopherol19. 

Infants must acquire these compounds through dietary sources as humans cannot 

synthesize these compounds18,19. Vitamin E, in particular, occurs in both an alpha- and 

gamma-tocopherol isoform19. While alpha-tocopherol has anti-inflammatory effects, 

gamma-tocopherol is conversely and potently pro-inflammatory19. Thus, the balance of 
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these two compounds could have important implications for regulating inflammation and 

thereby affecting neonatal development but have not been previously defined. At a recent 

National Institute of Child Health and Human Development (NICHD) meeting on 

“Research Gaps at the Intersection of Child Neurodevelopment, Nutrition, and 

Inflammation in Low-Resource Settings,” understanding of the ways in which nutritional 

status and inflammation interact with each other and with neurodevelopment was 

identified as the first key gap to fill in improving our ability to treat and prevent 

neurodevelopmental impairment as a result of prematurity20. To fill this gap, we will 

evaluate the relationship between pro- and anti-inflammatory cytokines, nutritional pro- 

and antioxidants in term and preterm infants. 

 

Conceptual Framework 

We propose the innovative conceptual framework by which nutritional compounds 

such as alpha- and beta-carotenes, lutein, lycopene, and alpha-tocopherol reduce pro-

inflammatory compounds associated with inflammation in utero and after delivery, which 

may result in improved neurologic outcomes in the future (Figure 1). By countering these 

pro-inflammatory compounds directly through anti-oxidant activities and indirectly by 

increases in anti-inflammatory IL-10, these nutritional compounds may improve the 

neurologic outcomes of premature infants. As premature infants are known to have lower 

levels of these protective nutritional compounds17, strategies to both improve maternal diet 

and to provide post-natal supplementation may serve to increase levels of these 

compounds and improve neurologic outcomes. In this study, we have evaluated maternal 

and neonatal levels of pro- and anti-inflammatory compounds (such as interleukin-1β, 

tumor necrosis factor-α, interleukin-6, interleukin-8, interleukin-2, and IL-10) and 

nutritional compounds (such as lutein, + zeaxanthin, β-cryptoxanthin, trans-lycopene, cis-

lycopene, total lycopene, α-carotene, trans-β-carotene,  
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Figure 1: Proposed model of inflammatory modulation and neurologic outcomes 
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cis-β-carotene, total-β-carotene, retinol, α-tocopherol, and γ-tocopherol) to examine their 

interactions with each other in term and pre-term infants.   

 

Hypothesis 

The hypothesis of this proposal is that nutritional compounds such as alpha- and 

beta-carotenes, lutein, lycopene, and alpha-tocopherol are associated with lower levels of 

pro-inflammatory compounds associated with inflammation in utero and after delivery, 

which may result in improved neurologic outcomes in the future.  

 

Clinical Impact of this Research  

A better understanding of the relationship between inflammation and nutrition 

would present several clinical advantages. Nutritional compounds may have significant 

effects on neurologic development through pro- and antioxidant activities and could be 

targeted through pre- and post-natal dietary interventions. This information could also be 

exploited to allow for earlier identification of infants at risk for neurodevelopmental 

disorders or other adverse inflammatory outcomes due to dietary insufficiencies during 

these crucial periods. These patients may require more aggressive or specifically targeted 

behavioral therapies in addition to nutritional supplementation to improve overall clinical 

outcomes. Thus, defining the factors that shape the inflammatory response in infants has 

the potential to significantly impact the health of neonates and infants.  

This is the first study to describe the association between pro- and anti-

inflammatory compounds and nutritional compounds in term and preterm infants. While 

some adult studies have demonstrated an inverse relationship between levels of vitamins 

C, E and D, and inflammatory markers, studies in infants are lacking21. As noted 

previously, evaluation of these associations in infants is of critical importance given the 
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increased susceptibility of preterm infants to neurologic injury associated with 

inflammation and nutritional deficiencies at birth that may exacerbate inflammation. 

Additionally, other micronutrients such as zeaxanthin, β-cryptoxanthin, trans-lycopene, 

cis-lycopene, total lycopene, α-carotene, trans-β-carotene, cis-β-carotene, total-β-

carotene, and retinol have not been evaluated to determine their impact on systemic 

inflammation. Studying the associations between these nutritional compounds and 

inflammation may identify targets for pre- and post-natal dietary interventions in future 

clinical trials. Immunologic profiling may also allow us to risk-stratify infants in terms of 

long-term neurologic development, with those displaying a more neuroprotective IL-10 

predominant response or higher levels of α-tocopherol having better long-term outcomes. 

This may also provide an immunomodulatory target in the future, by targeting components 

of the IL-10 pathway or dietary interventions.  
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CHAPTER TWO: METHODS 

Design  

This cross-sectional, descriptive study will evaluate the association between pro- 

and anti-inflammatory cytokines and nutritional antioxidants and pro-oxidants in term and 

pre-term infants. We will utilize existing samples from a cohort of 122 mother-infant pairs, 

which includes cord blood (infant) and maternal blood collected at birth.  

  

Enrollment and Initial Sample Collection  

Mothers of infants admitted to the neonatal intensive care unit (NICU) were 

approached for consent and enrollment in this study in summer 2016 and summer 2017. 

A maternal blood and cord blood sample were obtained from each infant enrolled. 

Maternal and cord blood samples are routinely drawn by the nursing staff during each 

delivery at Nebraska Medicine. After it was determined that the entire cord blood sample 

and a maternal blood sample was not needed for clinical purposes, it was collected by 

study personnel in subjects that have consented to participate in the study. This study was 

approved by the University of Nebraska Medical Center Institutional Review Board, 

Protocol 112-15-EP, Fatty Acids, Fat Soluble Vitamins, Infant Feeding and Inflammation 

during NICU Hospitalization.  

 

Inflammatory and Nutritional Compound Analysis  

Pro- and anti-inflammatory cytokine levels will be measured via a commercially 

available multi-analyte bead array (Millipore) per the manufacturers' instructions. This will 

include testing for interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-

6), interleukin-8 (IL-8), interleukin-10 (IL-10), and interleukin-2 (IL-2). Superoxide 

dismutase (SOD), an endogenous anti-oxidant enzyme that plays a role in the anti-
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inflammatory effects of some nutritional compounds22, was measured in maternal and 

infant samples using the SOD assay kit-WST (WST-1, 2-(4-Iodopheny)-3-(4-nitrophenyl)-

5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) from Dojindo23. This assay 

measures the percent inhibition of WST reduction by SOD, with one unit of SOD 

representing the amount of enzyme in 20µL of the sample that results in a 50% reduction 

of WST-123. These cytokine levels were selected as they have been previously proposed 

to correlate with neurologic outcomes or have potential neuroprotective anti-inflammatory 

effects 8,24,25. Serum nutrient levels will be assessed in the Biomarker Research Institute 

at Harvard University.  Measurements of lutein + zeaxanthin, β-cryptoxanthin, trans-

lycopene, cis-lycopene, total lycopene, α-carotene, trans-β-carotene, cis-β-carotene, 

total-β-carotene, retinol, α-tocopherol, and γ-tocopherol will be obtained. Concentrations 

of α- and gamma-tocopherol in plasma samples will be measured by high-performance 

liquid chromatography as previously described by Hanson, et al 19. As outlined above, 

these nutritional compounds were selected based on their potential pro- and antioxidant 

properties; however, this not been previously studied in infants18,19. These analyses will 

allow us to investigate the proposed aims investigating the association between pro- and 

anti-inflammatory cytokines with pro- and anti-oxidant nutritional compounds in infants and 

in mother-infant pairs. We expect that levels of maternal and/or infant anti-inflammatory 

nutritional compounds (as outlined in Table 1) are inversely correlated with levels of pro-

inflammatory compounds. We will additionally determine if levels of pro-oxidant nutritional 

compounds, such as γ-tocopherol, are associated with increases in pro-inflammatory 

cytokines and similarly if levels of anti-oxidant nutritional compounds are associated with 

an increase in anti-inflammatory IL-10.   
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Clinical Data and Evaluation  

Demographic and clinical data will be collected from the mother and infant's record 

at delivery, including gestational age, birth weight, length, head circumference, race, 

ethnicity, maternal chorioamnionitis, maternal infections, maternal smoking/drug use, 

prenatal complications, Apgar scores and neonatal complications including seizures, 

infections, intraventricular hemorrhage, and respiratory distress syndrome (Table 2). 

Prenatal clinical measures, such as maternal infections and complications, and 

demographic factors such as race and ethnicity will be assessed as potential confounders 

affecting the association between nutritional compounds and cytokine responses. Post-

natal outcomes, such as birth weight, length, and head circumference, Apgar scores and 

neonatal complications will be evaluated as outcomes potentially associated with 

increased levels of these nutritional compounds and cytokines. Gestational age, with 

prematurity defined as a gestational age less than 37 weeks and 0 days at the time of 

delivery, will also be included in analysis to determine if prematurity independently affects 

the association between nutritional compounds and inflammatory responses, suggesting 

that the altered immunity of a preterm infant may not respond in the same ways to 

nutritional manipulation as a more mature immune system.  

 

Data Analysis Plan  

This is a cross-sectional, descriptive study to collect pilot data for future NIH 

funding applications. All analyses were conducted using the intent-to-treat criterion. 

Descriptive statistics such as the mean, median, standard deviation, 95% CI, and range 

were used to summarize each outcome variable.26 As the data are not normally distributed, 

the Wilcoxon-Mann-Whitney test was used to compare medians between smokers and 

non-smokers, term and pre-term infants, and infants with pre- and post-natal 

complications. The nutritional and inflammatory compounds are continuous variables and  
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Pro-inflammatory compounds Anti-inflammatory compounds  
IL-1β IL-10 
TNF-α IL-2 
IL-6 Lutein + zeaxanthin 
IL-8 β-cryptoxanthin 
γ-tocopherol trans-lycopene, cis-lycopene, total 

lycopene 
 α-carotene, trans-β-carotene, cis-β-

carotene, total-β-carotene 
 Retinol 
 α-tocopherol 
 Superoxide dismutase 

 

Table 1: Proposed pro- and anti-inflammatory dietary and immune compounds for 
evaluation. 
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Table 2: Clinical and demographic factors that may be associated with inflammatory 
and nutritional compounds. * Prematurity defined as gestational age less than 37 days 
and 0 days. 
  

Potential Confounder/ 
Mediator / Moderator  

Secondary Outcome Measure 

Prenatal Complications: Maternal 
chorioamnionitis, infection, others 

Birth weight  

Maternal drug/tobacco use Birth length 
Gestational age Head circumference 
Prematurity * Apgar scores 
Race/ethnicity Neonatal complications: Seizures, 

infection, others 
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differences between compounds were evaluated using Wilcoxon rank sum as the data 

points were not normally distributed. Associations between compounds were evaluated 

via Spearman correlation coefficients, with hypothesis testing via Fisher's z-transformation 

to test the differences in the strength of this correlation in term versus pre-term infants27. 

We also used Fisher’s z-transformation to test the differences in the strength of the 

correlation in infants born to mothers with current or prior tobacco use in comparison with 

those with no smoking tobacco history. The demographic and clinical data outlined above 

were evaluated as potential confounders affecting the association between nutritional 

compounds and cytokine responses, and we utilized multiple regression to address the 

effects of these factors on the observed relationships between inflammatory compounds 

and nutritional compounds. Because there were very few participants with documented 

prenatal complications, this was treated as a single variable defined as “prenatal 

complication” to include: pre-eclampsia, maternal diabetes, suspected clinical 

chorioamnionitis, placental evidence of chorioamnionitis and premature rupture of 

membranes. To evaluate the relationship between the nutritional compounds and cytokine 

responses and the neonatal complications, the Mann-Whitney-U-test was used as the only 

neonatal complication documented was respiratory distress syndrome (RDS) and the 

cytokine data is not normally distributed.26, 28 p < 0.05 will be considered statistically 

significant. For all twin deliveries, only twin A was included in the analysis to avoid over-

representation of twin infants in subsequent analyses. All statistical analyses were 

performed using Excel, SPSS, and VassarStats.  
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CHAPTER THREE: RESULTS 

 

Description of Participants  

One hundred and twenty-two maternal-infant pairs are included in this analysis, 

based on the availability of paired maternal and infant blood samples. This includes 120 

singleton deliveries and two twin deliveries. As noted above, in the instance of twin 

deliveries, only the samples from twin A are included in future analyses. There are more 

male than female infants included in these analyses (n=74; 57.8% male; n=48; 37.5% 

female) (Table 3). 85 infants (66.4%) were delivered to Caucasian mothers; 19 African 

American mothers (14.8%); 7 Hispanic mothers (5.5%); 3 Asian or Pacific Islander (2.3%); 

1 Native American (0.8%) and 7 unknown or unreported (5.5%) (Table 3).  

This data set includes 14 (11.5%) preterm deliveries, defined as less than 37 

weeks and 0 days estimated gestational age, and 15 deliveries (11.7%) with prenatal 

complications, as outlined in Table 3. Prenatal complications included maternal diabetes 

(n=8), suspected clinical chorioamnionitis (n=1), placental chorioamnionitis (n=1), pre-

eclampsia (n=2) and premature rupture of membranes (n=5). Current or former maternal 

smoking was common, with 19 mothers (14.8%) reporting current tobacco use in this 

pregnancy and 28 (21.9%) reporting former tobacco use (Table 3).  

 

Neonatal Complications 

 Ten of the pregnancies included in this dataset resulted in neonatal complications 

(7.85), including respiratory distress syndrome (n=10, 7.8%). There were no cases of 

retinopathy of prematurity, bacteremia as evidenced by positive blood cultures, 

intraventricular hemorrhage or necrotizing enterocolitis documented in this dataset.  
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Characteristic n (% total) 
Gender 

Male 74 (61%) 
Female 48 (39%) 

Race/Ethnicity 
White 85 (66.4%) 

African American 19 (14.8%) 
Hispanic 7 (5.5%) 

Asian / Pacific Islander 3 (2.3%) 
Native American 1 (0.8%) 
Other/Unknown 7 (5.5%) 

Prematurity 
Term 108 (88.5%) 

Pre-term 14 (11.5%) 
Prenatal Complications 

Maternal diabetes 8 (6.6%) 
Clinical chorioamnionitis 1 (0.8%) 

Placental Chorioamnionitis 1 (0.8%) 
Pre-eclampsia 2 (1.6%) 

Premature rupture of membranes 5 (4%) 
Maternal Tobacco 

No prior tobacco use 74 (57.8%) 
Current tobacco use 19 (14.8%) 
Former tobacco use 28 (21.9%) 

Neonatal Complications 
Retinopathy of Prematurity 0 

Intraventricular Hemorrhage 0 
Necrotizing enterocolitis 0 

Bacteremia 0 
Respiratory Distress Syndrome  10 (8.2%) 

 

Table 3: Description of the participating mother-infant pairs in this study (N=122). 
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Characteristic Median (Q1, Q3) Range 
Gestational age (weeks) 39.57 (38.57, 40.43) 25-42.13  
Birth weight (grams) 3458.5 (3050.75, 3744) 860-4617 
Birth weight percentile 65.54 (36.38, 80.62) 3.26-99.82 
Birth head 
circumference (cm) 

34.9 (33.7, 35.6) 24-47.6 

Birth head 
circumference 
percentile 

50 (48.3, 52.1) 32-55.2 

Birth length (cm) 49.25 (32, 52.1) 32-55.2 
Birth length percentile 68.57 (29.62, 87.59) 0.01-99.77 
Apgar 1 minute 8 (7, 8) 1-9 
Apgar 5 minute 9 (9, 9) 3-10 

 

Table 4: Description of study population birth characteristics. Data are presented as 
medians, with first (Q1) and third (Q3) quartiles noted because data were not normally 
distributed. 
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Median Apgar scores were 8 at 1-minute (range 1-9) and 9 at 5-minutes (range 3-10) 

(Table 4). 

Maternal and Infant Inflammatory Compounds 

 Infant cord blood samples were noted to have higher levels of most inflammatory 

compounds measured, except for IL-2 which was slightly higher in the maternal samples 

(Table 5, Figure 2). Superoxide dismutase was measured in only 27 infant and 22 

maternal samples as this was an exploratory measure added later in the study. Infant 

superoxide dismutase activity was also higher than maternal, with a median of 431.74 

U/mL (range 176.62-1234.21) in infant samples and 172.77 U/mL (range 62.5-974.35) in 

maternal samples. There was no significant correlation between gestational age and any 

of the inflammatory compounds measured. As noted in Tables 6-7, there are significant 

correlations between many maternal and infant inflammatory compounds, reflecting the 

significant cross-talk between various components pro- and anti-inflammatory of the 

immune response. Because the primary focus of this project is the relationship between 

inflammatory compounds and nutritional compounds, subsequent analysis and results 

focus on this relationship. However, the factors that influence the correlation between 

cytokines in infancy will be analyzed in future studies of this dataset. 
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Cytokine (pg/mL) Median (Q1, Q3) Range 
Infant samples  
IL-10 21.85 (12.26, 32.11) 2.94-472.95 
IL-1β 8.52 (5.50, 12.18) 0-133.74 
IL-2 5.72 (3.94, 10.54) 2.29-21.82 
IL-6 13.72 (5.35, 50.82) 0-1997 
IL-8 12.99 (7.36, 29.66) 3.14-1325 
TNF-α 52.12 (42.52, 64.96) 16.39-298.79 
Maternal samples 
IL-10 14.78 (7.68, 24.83) -2e+308-105.42 
IL-1β 6.3 (4.24, 10.21) -2e+308-20.08 
IL-2 7.43 (4.78, 10.96) 2.55-216.75 
IL-6 11.05 (6.63, 46.16) 3.07-216.75 
IL-8 7.84 (4.96, 16.285) -2e+308-125.25 
TNF-α 25.18 (17.42, 35.95) -2e+308-473.96 

 

Table 5: Median infant and maternal cytokine measurements (pg/mL). IL-10, IL-1β, 
IL-2, IL-6, IL-8, and TNF-α levels were measured in all 122 samples.  
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Figure 2: Maternal and Infant Cytokines. Median levels of infant (black) and maternal 
(grey) inflammatory compounds (pg/mL). N=122. * p <0.05 
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Inflammatory Compound Correlation 
with other Inflammatory Compound 

rs (95% confidence interval) 

Infant IL-10 
Infant IL-10: Infant IL-1β 0.452 (0.298 to 0.583) 
Infant IL-10: Infant IL-2 0.451 (0.297 to 0.582) 
Infant IL-10: Infant IL-6 0.324 (0.155 to 0.474)  
Infant IL-10: Infant TNF-α 0.312 (0.142 to 0.464) 
Infant IL-10: Maternal Superoxide 
Dismutase 

0.477 (0.327 to 0.604) 

Infant IL-1β 
Infant IL-1β: Infant IL-10 0.452 (0.298 to 0.583) 
Infant IL-1β: Infant IL-2 0.849 (0.791 to 0.892) 
Infant IL-1β: Infant TNF-α 0.357 (0.191 to 0.503) 
Infant IL-1β: Maternal IL-10 0.250 (0.076 to 0.41) 
Infant IL-1β: Maternal TNF-α 0.266 (0.093 to 0.424) 
Infant IL-2 
Infant IL-2: Infant IL-10 0.451 (0.297 to 0.582) 
Infant IL-2: Infant IL-1β 0.849 (0.791 to 0.892) 
Infant IL-2: Infant TNF-α 0.387 (0.225 to 0.528) 
Infant IL-2: Maternal IL-10  0.231 (0.056 to 0.393)  
Infant IL-2: Maternal TNF-α 0.234 (0.059 to 0.395) 
Infant IL-6 
Infant IL-6: Infant IL-10 0.324 (0.155 to 0.474) 
Infant IL-6: Infant IL-8 0.797 (0.721 to 0.854) 
Infant IL-6: Infant TNF-α 0.302 (0.131 to 0.455) 
Infant IL-6: Maternal IL-6 0.387 (0.225 to 0.528) 
Infant IL-6: Maternal IL-8 0.341 (0.174 to 0.489) 
Infant IL-8 
Infant IL-8: Infant IL-6 0.797 (0.721 to 0.854) 
Infant IL-8: Infant TNF-α 0.290 (0.118 to 0.445) 
Infant IL-8: Maternal IL-6 0.349 (0.183 to 0.496) 
Infant IL-8: Maternal IL-8 0.219 (0.043 to 0.382) 
Infant IL-8: Infant Superoxide Dismutase 0.463 (0.311 to 0.592) 
Infant TNF-α 
Infant TNF-α: Infant IL-10 0.312 (0.142 to 0.464) 
Infant TNF-α: Infant IL-1β 0.357 (0.191 to 0.503) 
Infant TNF-α: Infant IL-2 0.387 (0.225 to 0.528) 
Infant TNF-α: Infant IL-6 0.302 (0.131 to 0.455) 
Infant TNF-α: Infant IL-8 0.290 (0.118 to 0.445) 
Infant TNF-α: Maternal IL-6 0.231 (0.056 to 0.393) 
Infant TNF-α: Maternal Superoxide 
Dismutase 

0.440 (0.284 to 0.573) 

 

Table 6: Correlation between maternal and infant cytokines (infant). Spearman's 
correlation coefficients (rs) were calculated for all inflammatory compounds in both infant 
and maternal samples (N=122). Significantly significant (p <0.05) relationships are 
included in this table. Other relationships were not statistically significant.  
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Inflammatory Compound Correlation 
with other Inflammatory Compound 

rs (95% confidence interval) 

Maternal IL-10 
Maternal IL-10: Infant IL-1β 0.250 (0.076 to 0.41) 
Maternal IL-10: Infant IL-2 0.231 (0.056 to 0.393) 
Maternal IL-10: Maternal IL-1β 0.610 (0.485 to 0.711) 
Maternal IL-10: Maternal IL-2 0.507 (0.362 to 0.628) 
Maternal IL-10: Maternal IL-8 0.215 (0.039 to 0.378) 
Maternal IL-10: Maternal TNF-α 0.548 (0.41 to 0.661) 
Maternal IL-1β 
Maternal IL-1β: Maternal IL-10 0.610 (0.485 to 0.711) 
Maternal IL-1β: Maternal IL-2 0.750 (0.66 to 0.819) 
Maternal IL-1β: Maternal TNF-α 0.644 (0.527 to 0.737) 
Maternal IL-2 
Maternal IL-2: Maternal IL-10 0.507 (0.362 to 0.628) 
Maternal IL-2: Maternal IL-1β 0.750 (0.66 to 0.819) 
Maternal IL-2: Maternal TNF-α 0.647 (0.53 to 0.74) 
Maternal IL-6 
Maternal IL-6: Infant IL-6 0.387 (0.225 to 0.528) 
Maternal IL-6: Infant IL-8 0.349 (0.183 to 0.496) 
Maternal IL-6: Infant TNF-α 0.231 (0.056 to 0.393) 
Maternal IL-6: Maternal IL-8 0.896 (0.854 to 0.926) 
Maternal IL-6: Maternal Superoxide 
Dismutase 

0.734 (0.64 to 0.807) 

Maternal IL-8 
Maternal IL-8: Infant IL-6 0.341 (0.174 to 0.489) 
Maternal IL-8: Infant IL-8 0.219 (0.043 to 0.382) 
Maternal IL-8: Maternal IL-10 0.215 (0.039 to 0.378) 
Maternal IL-8: Maternal IL-6 0.896 (0.854 to 0.926) 
Maternal TNF-α 
Maternal TNF-α: Infant IL-1β 0.266 (0.093 to 0.424) 
Maternal TNF-α: Infant IL-2 0.234 (0.059 to 0.395) 
Maternal TNF-α: Maternal IL-10 0.548 (0.41 to 0.661) 
Maternal TNF-α: Maternal IL-1β 0.644 (0.527 to 0.737) 
Maternal TNF-α: Maternal IL-2 0.647 (0.53 to 0.74) 

 

Table 7: Correlation between maternal and infant cytokines (maternal). Spearman's 
correlation coefficients (rs) were calculated for all inflammatory compounds in both infant 
and maternal samples (N=122). Significantly significant (p <0.05) relationships are 
included in this table. Other relationships were not statistically significant.  
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Maternal and Infant Nutritional Compounds 

 In contrast to inflammatory compounds, in which infant measures tended to be 

higher than the maternal levels, the levels of nutritional compounds were significantly 

higher in mothers than in infants (Table 8; Figures 3-4). There were many statistically 

significant correlations between the cytokines and nutritional compounds evaluated, most 

frequently negative correlations between pro-inflammatory cytokines such as IL-1β and 

IL-8 and anti-inflammatory nutritional compounds such the lycopenes and carotenes 

(Table 9). However, these relationships were relatively weak (rs
 = -0.213 to -0.308; rs = 

0.186 to 0.235). Additionally, there were several correlations that did not align with the 

predicted axis of anti-inflammatory compounds decreasing pro-inflammatory compounds 

and vice versa. These include infant TNF-α, which is a pro-inflammatory cytokine and was 

positively associated with maternal cis-lycopene (rs = 0.186) and maternal total lycopene 

(rs = 0.190), both anti-inflammatory nutritional compounds (Table 9). Maternal IL-6 and IL-

8, both potent pro-inflammatory cytokines, were most often found to be negatively 

correlated with anti-inflammatory nutritional compounds. Maternal IL-6 and IL-8 are also 

positively correlated with infant levels of these pro-inflammatory compounds (Table 7), 

demonstrating the impact of maternal inflammation on the infant’s inflammatory state and 

potential downstream effects of low levels of protective maternal nutritional compounds.  
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Nutritional Compound Median (Q1, Q3) Range 
Infant samples  

Lutein + Zeaxanthin 34.84 (26.23, 50.66) 11.69-144.74 
β-cryptoxanthin 17.22 (11.32, 25.49) 2.8-683.37 
trans-lycopene 11.5 (8.30, 17.63) 0.63-223.62 

cis-lycopene 12.74 (9.35, 18.58) 0.92-231.24 
Total lycopene 24.17 (17.26, 35.60) 1.55-454.86 

α-carotene 3.72 (1.48, 6.65) 0-939.42 
trans-β-carotene 9.88 (5.18, 18.84) 0-262.34 

cis-β-carotene 0 (0, 3.03) 0-24.23 
Total β-carotene 10.2 (5.18, 21.29) 0-286.57 

Retinol 166.76 (131.38, 208.1) 72.93-298.6 
δ-tocopherol 17.06 (12, 29.3) 0-114.99 
γ-tocopherol 207.22 (151.48, 275.3) 57.81-763.5 
α-tocopherol 2941.48 (2192.66, 3654.24) 394.53-11904.2 

Maternal samples 
Lutein + Zeaxanthin 216.51 (173.60, 273.11) 25.65-605.45 

β-cryptoxanthin 140.68 (91.17, 196.96) 20.85-538.58 
trans-lycopene 309.7 (234.20, 410.73) 10.33-609.44 

cis-lycopene 263.94 (210.59, 354.02) 15.48-534.38 
Total lycopene 574.83 (437.9, 764.01) 25.81-1128.24 

α-carotene 44.31 (27.34, 77.46) 2.38-1022.34 
trans-β-carotene 166.26 (92.41, 286.79) 7.08-2792.48 

cis-β-carotene 12.99 (7.71, 25.97) 0-210.6 
Total β-carotene 176.33 (99, 312.80) 7.08-3003.08 

Retinol 297 (240.65, 365.55) 113.28-590.39 
δ-tocopherol 110.07 (70.63, 182.21) 8.25-575.09 
γ-tocopherol 1,751.91 (1274.53, 2315.96) 217.82-5,695.33 
α-tocopherol 18,893.1 (15,057.95, 21,194.87) 3,898.27-35,538.29 

 

Table 8: Median infant and maternal nutritional compounds (mcg/L). N=122 
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Figure 3: Maternal and infant nutritional levels.  Median infant (black) and maternal 
(grey) levels of nutritional compounds (mcg/L). N=122 * p < 0.001 
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Figure 4: Maternal and infant tocopherols. Median maternal (grey) and infant (black) 
levels of δ-, γ-, and α-tocopherols (mcg/L). N=122 * p < 0.001 
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Cytokine: Nutritional Compound rs (95% confidence interval) 
Infant IL-2 
Infant IL-2: Maternal α-tocopherol 0.235 (0.06 to 0.396) 
Infant IL-8 
Infant IL-8: Infant δ-tocopherol 0.215 (0.039 to 0.378) 
Infant IL-8: Infant retinol -0.213 (-0.377 to -0.037) 
Infant TNF-α 
Infant TNF-α: Maternal cis-lycopene 0.186 (0.009 to 0.352) 
Infant TNF-α: Maternal total lycopene 0.190 (0.013 to 0.356) 
Maternal IL-10 
Maternal IL-10: Infant α-carotene 0.226 (0.05 to 0.388) 
Maternal IL-1β 
Maternal IL-1β: Infant β-cryptoxanthin -0.218 (-0.381 to -0.042) 
Maternal IL-1β: Maternal trans-β-carotene -0.224 (-0.386 to -0.048) 
Maternal IL-1β: Maternal total β-carotene -0.220 (-0.383 to -0.044) 
Maternal IL-2 
Maternal IL-2: Maternal δ-tocopherol 0.208 (0.031 to 0.372) 
Maternal IL-6 
Maternal IL-6: Maternal δ-tocopherol -0.231 (-0.393 to -0.056) 
Maternal IL-6: Infant β-cryptoxanthin -0.239 (-0.4 to -0.064) 
Maternal IL-6: Infant cis-lycopene -0.228 (-0.39 to -0.052) 
Maternal IL-6: Infant total lycopene -0.234 (-0.395 to -0.059) 
Maternal IL-6: Maternal lutein + 
zeaxanthin 

-0.224 (-0.386 to -0.048) 

Maternal IL-8 
Maternal IL-8: Infant trans-lycopene -0.254 (-0.413 to -0.08) 
Maternal IL-8: Infant cis-lycopene -0.308 (-0.461 to -0.138) 
Maternal IL-8: Infant total lycopene -0.296 (-0.45 to -0.125) 
Maternal IL-8: Infant trans-carotene -0.267 (-0.425 to -0.094) 
Maternal IL-8: Infant total carotene -0.263 (-0.421 to -0.089) 
Maternal IL-8: Maternal trans-carotene -0.206 (-0.37 to -0.029) 
Maternal IL-8: Maternal cis-carotene -0.267 (-0.425 to -0.094) 
Maternal IL-8: Maternal total carotene -0.213 (-0.377 to -0.037) 

 

Table 9: Correlation between cytokines and nutritional compounds. Spearman's 
correlation coefficients (rs) were calculated for all inflammatory and nutritional compounds 
in both infant and maternal samples (N=122). Statistically significant (p <0.05) 
relationships are included in this table. Other relationships were not statistically significant.  
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Factors Affecting the Correlation between Inflammatory and Nutritional 

Compounds 

 To address Specific Aim 3, we compared the inflammatory and nutritional 

compounds in term and preterm infants, and then used the Fisher z-transformation to 

determine if the correlation between cytokines and nutritional compounds were 

significantly different between term and preterm infants. There was no statistically 

significant difference between the inflammatory or nutritional compounds measured in 

term versus preterm infants in this dataset (Tables 10-11). However, we found that the 

positive correlation between anti-inflammatory infant IL-2 and anti-inflammatory maternal 

α-tocopherol was significantly stronger in preterm (rs = 0.667) versus term infants (rs = 

0.185) (Table 14). The correlation between maternal IL-2, which is anti-inflammatory, and 

maternal δ-tocopherol, which is also anti-inflammatory, was also significantly different, 

with a strongly negative correlation (rs = -0.661) in preterm infants and a weakly positive 

correlation in term infants (rs = 0.308) (Table 14). None of the other correlations between 

inflammatory and nutritional compounds, as identified on analysis of the entire dataset, 

were significantly different between the term and preterm infants.  

 Given the large number of current or former tobacco users in this dataset (38.5%) 

and increased inflammatory responses associated with prenatal tobacco use29-31, we also 

compared the levels of inflammatory and nutritional compounds in samples from mothers 

and infants with current or former tobacco use versus those without tobacco use. We found 

that infants born to mothers with current or former tobacco use had significantly higher 

levels of pro-inflammatory IL-8 (Table 10). Additionally, both infant and maternal samples 

had higher levels of anti-inflammatory δ-tocopherol and lower levels of anti-inflammatory 
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lutein, trans-β-carotene and total β-carotene than mother-infant pairs without tobacco use 

(Table 11). We then used the Fisher z-transformation to determine if the correlation 

between cytokines and nutritional compounds were significantly different between 

samples with no prior tobacco use versus current or former tobacco use. We found that 

the correlation between anti-inflammatory infant IL-2 and anti-inflammatory maternal α-

tocopherol in infants born to mothers without tobacco use (rs = 0.139) was significantly 

different from that observed in infants born to mothers with current or prior tobacco use (rs 

= -0.390) (Table 16). The correlation between pro-inflammatory infant TNF-α and anti-

inflammatory maternal cis- and total lycopene were also significantly different when 

comparing results from mother with no tobacco use and those with prior or current tobacco 

use (Table 16).   

There were no statistically significant differences in the levels of inflammatory or 

nutritional compounds in infants with or without prenatal complications. Given the small 

number of participants with a prenatal complication (n=17, 13.9%), we did not evaluate 

the difference in correlation between inflammatory and nutritional compounds in this 

population versus those without complications. There were statistically significant 

differences in the levels of several nutritional compounds in white versus non-white 

participants (Tables 12-13). Therefore, race was included in the regression analyses 

going forward.  
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Overall Term Pre-term 

Non-
smokers 

 
Smokers 

Infant samples  
IL-10 21.29 21.29 21.52 21.29 21.35 
IL-1β 8.52 8.53 8.385 8.60 8.39 
IL-2 5.72 5.77 5.62 6.82 5.62 
IL-6 13.72 13.72 18.80 14.92 9.39 

*IL-8 12.99 11.86 22.05 11.12* 15.71* 
TNF-α 52.12 51.36 58.27 55.34 51.21 

Maternal samples 
IL-10 14.78 14.62 22.485 14.87 14.78 
IL-1β 6.3 6.07 7.16 7.135 5.35 
IL-2 7.43 7.43 7.95 7.51 5.84 
IL-6 11.05 10.695 46.16 10.695 14.79 
IL-8 7.84 7.36 8.58 7.49 8.17 

TNF-α 25.18 24.31 32.72 24.7 25.405 
 

Table 10: Median differences in cytokines in infants and mothers based on 
prematurity and tobacco use. Median inflammatory compound levels (pg/mL) in the total 
participant dataset; term deliveries; pre-term (<37 weeks) deliveries; participants with no 
evidence of maternal tobacco use (non-smokers); and participants with current or prior 
tobacco use (smokers). Inflammatory compounds noted with * are statistically significant 
with p <0.05 by Mann-Whitney test. There were no statistically significant differences 
between the medians of term and pre-term deliveries. There were also no statistically 
significant differences between the medians of deliveries with or without prenatal 
complications.  
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Nutritional 
Compound 

Overall Term Pre-term Non-
smokers 

Smokers 

Infant samples     
Lutein + 

Zeaxanthin 34.84 35.65 32.14 37.07 31.82 
β-cryptoxanthin 17.22 18.82 13.865 19.59 15.26 
trans-lycopene 11.5 11.92 10.84 11.64 11.325 

cis-lycopene 12.74 13.17 11.38 13.06 12.375 
Total lycopene 24.17 25.81 22.275 24.47 23.385 

α-carotene 3.72 3.73 3.68 4.28 3.18 
trans-β-carotene 9.88 10.01 7.75 11.37 7.695 

cis-β-carotene 0 0 0 0 0 
Total β-carotene 10.2 10.99 8 12.24 8.17 

Retinol 166.76 170.39 131.29 167.53 162.64 
*δ-tocopherol 17.06 16.89 18.86 15.01* 21.735* 
*γ-tocopherol 207.22 204.67 255.905 172.16* 260.275* 
α-tocopherol 2941.48 2916.82 3265.5 3062.24 2833.19 

Maternal samples    
*Lutein + 

Zeaxanthin 216.51 219.37 191.26 240.91* 191.83* 
β-cryptoxanthin 140.68 142.47 87.57 145.56 123.54 
trans-lycopene 309.7 318.03 231.15 310.88 304.96 

cis-lycopene 263.94 269.32 221.65 264.44 261.8 
Total lycopene 574.83 608.41 449.38 568.95 584.67 

α-carotene 44.31 44.31 38.75 47.93 37.66 
*trans-β-carotene 166.26 169.91 93.51 200.69* 137.42* 

cis-β-carotene 12.99 13.44 8.46 14.03 11.47 
*Total β-carotene 176.33 185.75 102.54 214.44* 147.08* 

Retinol 297 300.63 249.4 300.46 292.75 
*δ-tocopherol 110.07 110.71 91.15 94.50* 137.79* 
γ-tocopherol 1751.91 1651.54 1851.08 1520.59 1978.86 
α-tocopherol 18893.1 18893.1 19044.96 19007.65 18622.93 

 

Table 11: Median differences in nutritional compounds in infants and mothers 
based on prematurity and tobacco use. Median nutritional levels (mcg/L) in the total 
participant dataset; term deliveries; pre-term (<37 weeks) deliveries; participants with no 
evidence of maternal tobacco use (non-smokers); and participants with current or prior 
tobacco use (smokers). Nutritional variables noted with * are statistically significant with p 
<0.05 by Mann-Whitney test. There were no statistically significant differences between 
the means of term and pre-term deliveries. There were also no statistically significant 
differences between the medians of deliveries with or without prenatal complications. 
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 Overall White Non-White 
Infant samples  

IL-10 21.29 20.51 24.43 
*IL-1β 8.52 8.26* 13.35* 

IL-2 5.72 5.65 6.96 
IL-6 13.72 12.12 16.85 
IL-8 12.99 11.96 14.04 

TNF-α 52.12 51.5 55.2 
Maternal samples 

IL-10 14.78 15.825 12.58 
IL-1β 6.3 6.605 5.78 
IL-2 7.43 6.685 7.985 

*IL-6 11.05 14.79* 9.12* 
IL-8 7.84 8.95 6.73 

TNF-α 25.18 25.775 23.72 
 

Table 12: Median differences in cytokines in infants and mothers based on 
race/ethnicity. Median inflammatory compound levels (pg/mL) in the total participant 
dataset; mothers identifying as white/Caucasian (n=85); mothers identifying as a 
race/ethnicity other than white (n=37), including African American (19), Hispanic (7), 
Asian/Pacific Islander (3), Native American (1), and other/unknown (7).  Nutritional 
variables noted with * are statistically significant with p <0.05 by Mann-Whitney test.  

  



31 
 

 

Nutritional 
Compound 

Overall White Non-white 

Infant samples   
Lutein + 

Zeaxanthin 34.84 33.23 41.91 
*β-cryptoxanthin 17.22 15.615* 22.39* 
*trans-lycopene 11.5 10.67* 14.03* 

*cis-lycopene 12.74 12.115* 14.2* 
*Total lycopene 24.17 22.205* 30.64* 

α-carotene 3.72 3.945 3.23 
trans-β-carotene 9.88 9.8 10.68 

cis-β-carotene 0 0 0 
Total β-carotene 10.2 10.135 11.19 

Retinol 166.76 167.145 166.14 
δ-tocopherol 17.06 16.655 17.32 
γ-tocopherol 207.22 197.15 254.67 
α-tocopherol 2941.48 2857.575 3167.8 

Maternal samples  
Lutein + 

Zeaxanthin 216.51 203.1 236.465 
β-cryptoxanthin 140.68 134.97 181.58 
trans-lycopene 309.7 294.31 355.075 

cis-lycopene 263.94 249.42 339.44 
Total lycopene 574.83 544.85 672.64 

α-carotene 44.31 47.31 37.94 
trans-β-carotene 166.26 174.8 130.125 

cis-β-carotene 12.99 13.75 11.575 
Total β-carotene 176.33 187.79 138.86 

*Retinol 297 309.1* 261.345* 
δ-tocopherol 110.07 103.84 138.74 
γ-tocopherol 1751.91 1623.74 1779.21 
α-tocopherol 18893.1 18960.17 17522.94 

 

Table 13: Median differences in nutritional compounds in infants and mothers 
based on race/ethnicity. Median nutritional levels (mcg/L) in the total participant dataset; 
mothers identifying as white/Caucasian (n=85); mothers identifying as a race/ethnicity 
other than white (n=37), including African American (19), Hispanic (7), Asian/Pacific 
Islander (3), Native American (1), and other/unknown (7).  Nutritional variables noted with 
* are statistically significant with p <0.05 by Mann-Whitney test.  
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Cytokine: Nutritional Compound Term Infants 
rs  

(n= 108) 

Preterm 
Infants rs 

(n= 14) 

Fisher z-
transformation 

Infant IL-2 
Infant IL-2: Maternal α-tocopherol 0.185 0.667* -1.95* 
Infant IL-8 
Infant IL-8: Infant δ-tocopherol 0.224* 0.332 -0.37 
Infant IL-8: Infant retinol -0.174 -0.284 0.37 
Infant TNF-α 
Infant TNF-α: Maternal cis-
lycopene 

0.263* -0.154 1.34 

Infant TNF-α: Maternal total 
lycopene 

0.284* -0.176 1.48 

Maternal IL-10 
Maternal IL-10: Infant α-carotene 0.192 0.538* -1.28 
Maternal IL-1β 
Maternal IL-1β: Infant β-
cryptoxanthin 

-0.248* 0.082 -1.06 

Maternal IL-1β: Maternal trans-β-
carotene 

-0.265* 0.045 -1 

Maternal IL-1β: Maternal total β-
carotene 

-0.266* 0.091 -1.15 

Maternal IL-2 
Maternal IL-2: Maternal δ-
tocopherol 

0.308* -0.661* 3.51* 

Maternal IL-6 
Maternal IL-6: Infant β-
cryptoxanthin 

-0.254* -0.200 -0.18 

Maternal IL-6: Infant cis-lycopene -0.177 -0.133 -0.14 
Maternal IL-6: Infant total lycopene -0.194 -0.133 -0.14 
Maternal IL-6: Maternal lutein + 
zeaxanthin 

-0.201 -0.167 -0.11 

Maternal IL-6: Maternal δ-
tocopherol 

-0.183 -0.417 0.082 

 

Table 14: Difference in correlation between inflammation and nutritional 
compounds based on prematurity. Spearman's correlation coefficients (rs) were 
compared between samples in which the infant was born at term (n=108) versus preterm 
(<37 weeks estimated gestational age; n=14) for all statistically significant relationships 
identified on initial analysis. All statistically significant results (p<0.05) are indicated with *. 
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Cytokine: Nutritional 
Compound 

Term Infants 
rs 

(n= 108) 

Preterm 
Infants rs 

(n= 14) 

Fisher z-
transformation 

Maternal IL-8 
Maternal IL-8: Infant trans-
lycopene 

-0.262* -0.178 -0.28 

Maternal IL-8: Infant cis-
lycopene 

-0.313* -0.064 -0.82 

Maternal IL-8: Infant total 
lycopene 

-0.310* -0.134 -0.59 

Maternal IL-8: Infant trans-
carotene 

-0.306* 0.002 -1 

Maternal IL-8: Infant total 
carotene 

-0.303* -0.011 -1.02 

Maternal IL-8: Maternal trans-
carotene 

-0.273* 0.182 -1.46 

Maternal IL-8: Maternal cis-
carotene 

-0.286* -0.108 -0.59 

Maternal IL-8: Maternal total 
carotene 

-0.271 0.099 -1.19 

 

Table 15: Difference in correlation between inflammation and nutritional 
compounds based on prematurity (maternal IL-8). Spearman's correlation coefficients 
(rs) were compared between samples in which the infant was born at term (n=108) versus 
preterm (<37 weeks estimated gestational age; n=14) for all statistically significant 
relationships identified on initial analysis. All statistically significant results (p<0.05) are 
indicated with *. 
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Cytokine: Nutritional 
Compound 

NonSmokers 
rs  

(n= 74) 

Smokers rs 
(n= 47) 

Fisher z-
transformation 

Infant IL-2 
Infant IL-2: Maternal α-tocopherol 0.139 -0.390* 2.88* 
Infant IL-8 
Infant IL-8: Infant δ-tocopherol 0.295* 0.048 1.33 
Infant IL-8: Infant retinol -0.283* -0.145 -0.76 
Infant TNF-α 
Infant TNF-α: Maternal cis-
lycopene 

0.204 -0.184 2.05* 

Infant TNF-α: Maternal total 
lycopene 

0.231 -0.169 2.12* 

Maternal IL-10 
Maternal IL-10: Infant α-carotene 0.196 0.303* -0.6 
Maternal IL-1β 
Maternal IL-1β: Infant β-
cryptoxanthin 

-0.225 -0.327 0.58 

Maternal IL-1β: Maternal trans-β-
carotene 

-0.253 -0.253 0 

Maternal IL-1β: Maternal total β-
carotene 

-0.255 -0.243 -0.07 

Maternal IL-2 
Maternal IL-2: Maternal δ-
tocopherol 

0.229 0.330 -0.57 

Maternal IL-6 
Maternal IL-6: Infant β-
cryptoxanthin 

-0.410* -0.023 -2.09 

Maternal IL-6: Infant cis-lycopene -0.314* -0.026 -1.56 
Maternal IL-6: Infant total 
lycopene 

-0.336* -0.084 -1.38 

Maternal IL-6: Maternal lutein + 
zeaxanthin 

-0.315* -0.06 -1.39 

Maternal IL-6: Maternal δ-
tocopherol 

-0.268 -0.171 -0.53 

 

Table 16: Difference in correlation between inflammation and nutritional 
compounds based on tobacco use. Spearman's correlation coefficients (rs) were 
compared between samples with no current or prior maternal tobacco use (n=74) and 
those with current or prior maternal tobacco use (n=47) for all statistically significant 
relationships identified on initial analysis. All statistically significant results (p<0.05) are 
indicated with *. 
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Cytokine: Nutritional 
Compound 

NonSmokers 
rs 

(n= 74) 

Smokers rs 
(n= 47) 

Fisher z-
transformation 

Maternal IL-8 
Maternal IL-8: Infant trans-
lycopene 

-0.327* -0.188 -0.78 

Maternal IL-8: Infant cis-lycopene -0.339* -0.256 -0.048 
Maternal IL-8: Infant total 
lycopene 

-0.352* -0.264 -0.51 

Maternal IL-8: Infant trans-
carotene 

-0.262* -0.305 0.24 

Maternal IL-8: Infant total 
carotene 

-0.249 -0.307 0.33 

Maternal IL-8: Maternal trans-
carotene 

-0.230 -0.105 -0.67 

Maternal IL-8: Maternal cis-
carotene 

-0.281* -0.158 -0.67 

Maternal IL-8: Maternal total 
carotene 

-0.241 -0.110 -0.71 

 

Table 17: Difference in correlation between inflammation and nutritional 
compounds based on tobacco use (maternal IL-8). Spearman's correlation coefficients 
(rs) were compared between samples with no current or prior maternal tobacco use (n=74) 
and those with current or prior maternal tobacco use (n=47) for all statistically significant 
relationships identified on initial analysis. All statistically significant results (p<0.05) are 
indicated with *. 

  



36 
 

 

 Based on the differences observed in the correlations between inflammatory and 

nutritional compounds based on prematurity and maternal tobacco use, we then used 

multiple regression to identify the relative impact of prematurity and tobacco use, as 

defined by current or former tobacco use, on this correlation. The cytokine and nutritional 

compound levels were first log10 transformed to allow for analysis of normalized data and 

Pearson coefficients were calculated for all inflammatory-nutritional compound 

relationship identified as significant in Spearman correlation analysis. For all statistically 

significant Pearson coefficients, multiple regression was performed with the outcome 

defined as the cytokine of interest and the nutritional compound defined as the predictor. 

Neither prematurity nor tobacco use were significant variables in any of the models. As 

expected, for many pro-inflammatory cytokines (IL-1β, IL-6, and IL-8), there is a reduction 

in the level of the pro-inflammatory cytokine relative to the level of the anti-inflammatory 

nutritional compound (Table 18).   

 Our analyses demonstrated significant correlations between the inflammatory 

outcome compounds, particularly IL-6 and IL-8, and several nutritional compounds. This 

could reflect the multifactorial influence of these nutritional compounds on maternal and 

infant inflammation. Therefore, the model for each of the cytokines with multiple significant 

nutritional compounds associations was expanded to include each of the nutritional 

compounds as potential variables in addition to prematurity, tobacco use, and non-white 

race.  When both cis- and total lycopene are included in the model, as well as tobacco 

use, prematurity and non-white, neither nutritional compound is significant in the model 

(Log10 Maternal IL-6 = 1.249 – 0.313*non-white race + 0.360*prematurity). However, 

maternal IL-1β did retain an inverse relationship with maternal trans-carotene (Log10 

Maternal IL-1β = 1.173 – 0.156*log10 maternal trans-carotene). Non-white race, tobacco 
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use and prematurity were not significant in the maternal IL-1β regression model. Similarly, 

maternal IL-8 retained an inverse relationship with anti-inflammatory nutritional 

compounds (Log10 Maternal IL-8 = 1.667 – 0.29*log10 maternal cis-carotene – 

0.291*log10 infant cis-lycopene).  Non-white race, tobacco use and prematurity were not 

significant in the maternal IL-8 regression model. 

Association Between Inflammatory and Nutritional Compounds and Adverse Infant 
Outcomes 

 A small number of infants included in this dataset (n=10) were diagnosed with 

respiratory distress syndrome (RDS) in the neonatal period. These infants had significantly 

higher infant IL-8 (with RDS 62.55 pg/mL; without RDS 11.75 pg/mL; p = 0.019), a potent 

pro-inflammatory cytokine, and lower maternal cis-lycopene (with RDS 234.79 mcg/L; 

without RDS 269.04 mcg/L; p = 0.022), an anti-inflammatory nutritional compound, than 

those without respiratory distress syndrome. There were no other significant differences 

in inflammatory or nutritional compounds between those with RDS versus those without 

RDS. There were no other adverse infant outcomes reported with this study. 
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Cytokine Intercept Nutritional Variable 
Infant IL-8 
Infant IL-8 3.495 -1.025*infant retinol 
Infant IL-2 
Infant IL-2 0.618 0.184*infant trans-lycopene 
Maternal IL-1β 
Maternal IL-1β 1.173 -0.156*maternal trans-carotene 
Maternal IL-1β 1.175 -0.154*maternal total carotene 
Maternal IL-6 
Maternal IL-6 1.660 -0.404*infant cis-lycopene 
Maternal IL-6 1.808 -0.427*infant total lycopene 
Maternal IL-8 
Maternal IL-8 1.185 -0.243*infant α-carotene 
Maternal IL-8 1.385 -0.339*infant cis-lycopene 
Maternal IL-8 1.460 -0.324*infant total lycopene 
Maternal IL-8 1.298 -0.282*infant trans-carotene 
Maternal IL-8 1.287 -0.272*infant total carotene 
Maternal IL-8 1.382 -0.325*maternal cis-carotene 

 

Table 18: Regression models for inflammation and nutritional compounds. Pearson 
coefficients were calculated for all inflammatory-nutritional compound relationships 
identified as significant on Spearman correlation analysis. For all statistically significant 
Pearson coefficients, multiple regression was performed to identify the impact of 
prematurity and of tobacco use (as defined by current or former tobacco use) on the 
relationship between the inflammatory and nutritional variable. Neither prematurity nor 
tobacco use were significant variables in any of the relationships observed.  
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CHAPTER FOUR: DISCUSSION 

 The “first 1000 days” have the potential to lay the foundation for the rest of a child’s 

life.7 Increased inflammation in the perinatal period has been associated with many 

adverse outcomes with lifelong impact, including poor growth, atopic diseases such as 

asthma, and neurologic complications such as cerebral palsy8,9,18,32. A better 

understanding of the relationship between inflammation and nutrition could identify key 

strategies for supporting optimal maternal and infant nutrition. However, the relationship 

between nutritional and inflammatory compounds in infants and mother in the peri-natal 

period is not well-defined. In this study, we confirmed our hypothesis that there are 

significant inverse relationships between anti-inflammatory nutritional compounds such as 

carotenoids and pro-inflammatory cytokines such as IL-1β, IL-6, and IL-8. This suggests 

that improving maternal and infant intake of carotenoids and other anti-inflammatory 

nutritional compounds could significant decrease inflammation.  

 Nutritional compounds including retinol, lutein, β-cryptoxanthin, tocopherols, 

lycopene and carotene were higher in maternal versus infant samples in this participant 

group. The correlation between these anti-inflammatory nutritional compounds and pro-

inflammatory cytokines IL-6, IL-8, and IL-1β suggest that nutritional interventions could be 

used decrease perinatal inflammation in mothers and infants. This may be particularly 

important in preterm infants and in pregnancies complicated by tobacco use, as evidenced 

by the significant differences observed in these groups in this study (Tables 14-17). 

Interestingly, we did not observe an positive correlation between anti-inflammatory IL-10 

and anti-inflammatory nutritional compounds, suggesting that the decreased inflammation 

observed is more attributable to direct effects on the pro-inflammatory cytokines rather 

than a bolstering of anti-inflammatory cytokines.  
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 Our results demonstrate the complex interplay among pro- and anti-inflammatory 

cytokines in the immune response, as well as the potential for multi-factorial influences on 

immunity. It is promising that there was still a significant relationship between maternal 

inflammatory cytokines IL-1β and IL-8, even with multiple factors taken into account in the 

modeling, such as the role of other nutritional compounds, tobacco use, prematurity and 

race. We observed a proportional decrease in maternal inflammatory cytokines with 

increases in maternal trans-carotene and cis-carotene, as well as infant cis-lycopene. 

Given the association in our results between maternal and infant inflammation, increasing 

maternal levels of these carotenoids could therefore have significant impact on perinatal 

inflammation and its myriad adverse consequences.  

Carotenes, vitamins C, E and D have shown promise as an anti-inflammatory 

compounds in a variety of adult disorders, including, prostate cancer and cardiovascular 

disease21,33-39. However, these studies in infants are lacking and this area of investigation 

has been highlighted as a key gap in pediatric knowledge by the National Institute of Child 

Health and Human Development20. Carotenoids were noted in many of our analyses to 

have significant protective potential. Carotenoids are vitamin-A related compounds, 

including α-, β-, cis-, and trans-carotene, lycopene, lutein and β-cryptoxanthin, found 

primarily in plant-based foods33,35.  Many studies have shown that carotenoids may have 

anti-inflammatory and antioxidant properties that impact human health and disease, 

including in maternal-infant dyad studies such as this one.33-36 Plasma levels of 

carotenoids in mothers are strongly related to the dietary intake of fruits and vegetables33, 

making this an important target of both individual prenatal nutritional counseling as well 

as large-scale programmatic strategies for optimizing prenatal nutrition. 

Limitations of this study include the small sample size, particularly in regards to the 

number of preterm mother-infant pairs enrolled. This may have limited our ability to detect 
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significant differences in preterm infants. This pilot data will be expanded to a larger 

sample size in the future to further evaluate the impact of prematurity and tobacco use on 

the relationship between inflammation and nutrition. Additionally, as this is an 

observational study, the effects observed here may be due to another variable that was 

not included in our data analysis. Inflammation is a multifactorial process and controlled 

studies will be essential for demonstrating definitive links between higher levels of 

carotenoids and decreased inflammation. Long-term studies will also be needed to 

evaluate the impact of these interventions on child development and health.  

Developing nutritional approaches to mitigating inflammation offers the opportunity 

for both pre- and post-natal interventions. The results of this study are particularly 

promising in highlighting the relationship between maternal anti-inflammatory nutritional 

compounds and infant pro-inflammatory cytokines. The interactions between nutritional 

status and inflammation represent a potential therapeutic target for reducing inflammation 

in term and pre-term infants, who may be particularly susceptible to inflammation during 

the period of rapid neurodevelopment in infancy7-9. Additionally, this information could lead 

to earlier identification of infants at risk for neurodevelopmental disorders or other adverse 

inflammatory outcomes due to dietary insufficiencies during these crucial periods. Early 

identification could guide more aggressive or specifically targeted behavioral therapies in 

addition to nutritional supplementation to improve overall clinical outcomes. Thus, defining 

the factors that shape the inflammatory response in infants has the potential to significantly 

impact the health of neonates and infants in the US and throughout the world, particularly 

in developing countries.  
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