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Abstract 

N-methyl-D-aspartate receptors  (NMDARs) are ligand-gated ion channels consisting of 

two GluN1 subunits and two other subunits from among GluN2A-2D and GluN3A-3B subunits. 

NMDARs play critical roles in synaptic plasticity, learning and memory, and higher brain function 

such as cognition and perception. Dysfunction of NMDARs  (hyper-function and hypo-function of 

NMDARs) are related to various diseases, including stroke, schizophrenia, Alzheimer’s disease, 

and others. However, to date, NMDARs antagonists have mostly failed in clinical trials due to 

adverse effects.  

NMDARs antagonists replicate the core symptoms of schizophrenia which may underlie 

its ability to alter neuronal oscillations in the neural circuitry of different brain regions. Recent 

evidence has shown that GluN2C subunits of NMDAR are expressed in astrocytes in the cortex, 

and that GluN2D NMDAR subunits are enriched in the parvalbumin-containing GABAergic 

inhibitory interneurons in the cortex and midbrain structures. Other studies have shown that both 

astrocytes and parvalbumin-containing interneurons play an essential role in generating and 

maintaining neuronal oscillations. These findings imply that GluN2C and GluN2D subunits may 

be involved in the distinct neural circuitry which regulates neuronal oscillations and thus influence 

the brain function and contribute to various diseases states. The initial aims of this dissertation are 

to determine if GluN2C and GluN2D subunits have a role in regulating neuronal oscillations. We 

also measured the auditory evoked responses in wildtype and GluN2C- and GluN2D-KO mice. 
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Lastly, we use ketamine as the tool drug to determine the role of NMDARs in neuronal oscillations 

in a CDKL5-KO mouse model. 

We found that spontaneous basal neuronal oscillations were elevated in GluN2C- and 

GluN2D-KO mice compared to WT mice. NMDARs antagonists increased the power of neuronal 

oscillations in WT mice; we found drug-induced power increase is abolished in GluN2D-KO mice 

and is augmented in GluN2C-KO mice.  

Furthermore, we also found GluN2D-KO mice displayed abnormal auditory evoked 

responses. Lastly, we test subunit-selective NMDARs drug and NMDARs allosteric modulators 

with distinct subunits selectivity developed by our lab, including PAMs and NAMs on these KO 

models. 
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Chapter 1  

Introduction 
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1.1 Glutamate neurotransmission/Glutamate receptors 

Synaptic transmission is central to the ability of the nervous system to process and store 

information. There are electrical synapses and chemical synapses in the brain. Chemical synapses 

are specialized contacts between neurons, when a presynaptic neuron is activated, it releases 

neurotransmitters into the synaptic cleft which then bind to receptors on the membrane of the 

postsynaptic neuron. Excitatory synaptic transmission in the mammalian central nervous system is 

mainly mediated by glutamate. Glutamate can activate two different groups of receptors: ionotropic 

and metabotropic glutamate receptors. The first functional ionotropic glutamate receptor was 

cloned in 1989 (Hollmann, O'Shea-Greenfield, Rogers, & Heinemann, 1989). The ionotropic 

glutamate receptors can be subdivided into NMDA (N-methyl-D-aspartate) receptors (NMDARs), 

AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptors and kainate (KA) 

receptors based on their specific agonists (Monaghan, Bridges, & Cotman, 1989; Traynelis et al., 

2010). These subtypes of ionotropic glutamate receptors serve distinct roles at excitatory synapses 

and abnormality of them has been implicated in pathologies of various neurological and psychiatric 

diseases in the central nervous system (Bowie, 2008).  

1.2 NMDA receptors 

1.2.1 NMDA receptor activation 

At resting membrane potential, NMDARs channel is blocked in a voltage-sensitive manner 

by extracellular Mg2+ (Mayer, Westbrook, & Guthrie, 1984). When the cell is depolarized, the 

extracellular Mg2+ block is removed and glutamate is then able to activate NMDARs by binding 

to the ligand binding domain of the GluN2 subunits, while the co-agonists, glycine/D-serine bind 

to GluN1 subunits (Anson, Chen, Wyllie, Colquhoun, & Schoepfer, 1998; Laube, Kuhse, & Betz, 

1998). Activated NMDAR channels are permeable to Na⁺, K⁺, and Ca²⁺. Calcium influx through 

NMDARs activates downstream cytoplasmic biochemical pathways that underlie synaptic 

plasticity under physiological conditions and neuronal death under pathological conditions. 
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Physiological levels of protons can suppress NMDARs activation, and extracellular Zn²⁺ and 

polyamines also act on NMDARs to modify its activity. In addition, NMDARs subunits interact 

with many different kinds of intracellular scaffolding, anchoring and signaling molecules.  

1.2.2 NMDARs characters 

Compared to other glutamate receptors, NMDARs display the following distinct 

characteristics: 1) require co-agonists (D-serine/glycine binding) plus glutamate for channel 

activation (Clements & Westbrook, 1991; J. W. Johnson & Ascher, 1987; Kleckner & Dingledine, 

1988); 2) are voltage-dependent, simultaneous excitatory inputs are required to sufficiently 

depolarize the membrane to remove the Mg²⁺ block, which enables NMDARs to act as a coincident 

detectors that respond to both the presynaptic glutamate release and postsynaptic depolarization 

(Nevian & Sakmann, 2004; Seeburg et al., 1995).3) have higher Ca2+ permeability. 4) NMDARs 

also display remarkably slow activation and deactivation kinetics which enable NMDARs to have 

a physiologically-distinct impact on various physiological and pathological processes, such as 

higher functions including learning and memory.  

1.2.3 NMDARs subunits composition and distribution 

NMDARs are often thought to occur as a diheteromeric which consist of two GluN1 

subunits and two identical subunits from GluN2A-2D, however, multiple lines of evidence have 

shown that triheteromeric NMDARs  (two GluN1 subunits and two different GluN2 subunits) and 

tetrameric NMDARs consist of only GluN1 and GluN3 subunits are also exist in many brain 

regions and display different pharmacological properties compare to traditional diheteromeric 

NMDARs (Delaney, Sedlak, Autuori, Power, & Sah, 2013; Hansen, Ogden, Yuan, & Traynelis, 

2014; Hatton & Paoletti, 2005; Huang & Gibb, 2014; Kvist, Greenwood, Hansen, Traynelis, & 

Brauner-Osborne, 2013; Lu, Du, Goehring, & Gouaux, 2017; Pachernegg, Strutz-Seebohm, & 

Hollmann, 2012; Perez-Otano, Larsen, & Wesseling, 2016; Rozeboom et al., 2015; Stroebel, 
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Casado, & Paoletti, 2018; Tovar, McGinley, & Westbrook, 2013; Wee, Tan, Cheong, Khanna, & 

Low, 2016; Yi, Traynelis, & Hansen, 2017). The distribution of NMDARs has been studied by 

detecting mRNA in the brain. The common NMDARs subunit, GluN1 is found throughout the 

brain. However, the four different GluN2 subunits are expressed in different brain regions in 

distinct patterns. They also have distinct physiological properties as well (Monyer, Burnashev, 

Laurie, Sakmann, & Seeburg, 1994; Wenzel, Fritschy, Mohler, & Benke, 1997). GluN2B and 

GluN2D appear prenatally, GluN2C and GluN2A are detected near birth. Both GluN2A and 

GluN2B are expressed in the telencephalon, but there is a subunit switch from GluN2B to GluN2A 

before adulthood (Monyer et al., 1994; Yashiro & Philpot, 2008). GluN2C is mainly found in the 

cerebellum, GluN2D has low expression in adulthood and mainly expressed in midbrain structures 

(Wenzel et al., 1997; Wenzel, Villa, Mohler, & Benke, 1996). In addition, in the telencephalon, 

GluN2C and GluN2D subunits have been reported to be expressed in astrocytes and interneurons 

(Monyer et al., 1994). Furthermore, there is additional evidence showing that NMDARs is also 

expressed in various glial cells, such as astrocytes (Krebs, Fernandes, Sheldon, Raymond, & 

Baimbridge, 2003), oligodendrocytes (Karadottir, Cavelier, Bergersen, & Attwell, 2005; Salter & 

Fern, 2005), and microglia (H. Liu, Leak, & Hu, 2016; Pocock & Kettenmann, 2007). For reasons 

discussed below, it is likely that the regional and cellular diversity of GluN2 subunit expression in 

the brain confer to GluN2A/2B/2C/2D-containing NMDARs essential and distinct roles in neuronal 

oscillations and regulating network activity. 
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Figure 1. 1 Schematic diagram of NMDARs subunit composition 

Diagram showing the NMDARs consist of two GluN1 and two GluN2 subunits with glycine 

binding sites and glutamate binding sites, respectively. NMDARs form a “dimer of dimers” 

structure, permeable to Ca²⁺, Na⁺, and Mg²⁺ block will be moved by the depolarization of the 

membrane. 
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1.2.4 NMDARs subunits properties 

There are seven subunits of NMDARs have been identified so far: the ubiquitously 

expressed GluN1 subunit, and four distinct GluN2 subunits (GluN2A-2D), two GluN3 subunits  

(GluN3A and GluN3B). The GluN1 subunit is encoded by a single gene which has 22 exons. Exon 

5, 21, 22 are spliced alternatively which generate 8 GluN1 splice variants (Hollmann et al., 1993; 

Nakanishi, Axel, & Shneider, 1992; Sugihara, Moriyoshi, Ishii, Masu, & Nakanishi, 1992a). On 

the other hand, GluN2 subunits are encoded by four different genes, and GluN3 subunits are 

encoded by two different genes.  

Several properties of NMDARs that depend on GluN1 subunits: specifically, GluN1 

subunits with residues encoded by exon 5 show reduced agonist potency (Traynelis, Burgess, 

Zheng, Lyuboslavsky, & Powers, 1998). Exons 21 and 22 splicing changes the amino acid 

composition of the CTD of GluN1 subunits (Traynelis et al., 2010), and it also affects the cellular 

distribution of NMDARs (Scott, Blanpied, & Ehlers, 2003; Scott, Blanpied, Swanson, Zhang, & 

Ehlers, 2001; Wenthold, Sans, Standley, Prybylowski, & Petralia, 2003). However, various 

evidence shows that most of the electrophysiological, biochemical and pharmacological properties 

of NMDARs function depend on its GluN2 subunits:1) GluN2 subunits affect the potency of 

glutamate (Buller et al., 1994; P. E. Chen et al., 2008; Hansen, Brauner-Osborne, & Egebjerg, 2008); 

2) the time course of deactivation after removal of glutamate (Vicini et al., 1998b); 3) the potency 

of glycine and D-serine at GluN1 subunits also influenced by different GluN2 subunits (P. E. Chen 

et al., 2008; Dravid et al., 2010; Jessen et al., 2017; Sheinin, Shavit, & Benveniste, 2001); 4) 

NMDARs channel kinetic properties and the decay time of NMDAR-mediated excitatory 

postsynaptic currents (EPSCs) are strongly affected by GluN2 subunits. The sequence of 

deactivation time of NMDARs with different GluN2 subunits composition is 

GluN2A<2C=2B<<2D. Additionally, single-channel conductances and the Mg²⁺ block of 

NMDARs are also subunits dependent, GluN2A and GluN2B-containing NMDARs display higher 
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conductances openings, higher sensitivity to Mg2+ block and higher Ca2+ permeability compared 

to GluN2C and GluN2D-containing NMDARs (Kuner & Schoepfer, 1996; Qian, Buller, & Johnson, 

2005). Furthermore, the channel open probability is also strongly affected by GluN2 subunits after 

all agonist-binding sites are fully occupied. For example, GluN2A and GluN2B-containing 

NMDARs display higher channel open probability than GluN2C and GluN2D-containing 

NMDARs. Lastly, the inhibition of NMDARs by endogenous protons or Zn²⁺ is also controlled by 

GluN2 subunits. GluN3 subunits do not form functional receptors alone, however, it can form 

functional receptors with GluN1 or GluN1/GluN2 subunits, the receptors formed by GluN1 and 

GluN3 subunits can only be activated by glycine; When GluN3 form NMDARs with GluN1 and 

GluN2A, it also generates low conductances channel openings (Das et al., 1998; Perez-Otano et al., 

2001).NMDARs are thought to be essential for memory formation as the activation of postsynaptic 

NMDARs in most hippocampal pathways controls the forms of activity-dependent synaptic 

plasticity known as long-term potentiation (LTP) and long-term depression (LTD) (Canevari, 

Richter-Levin, & Bliss, 1994; Collingridge & Bliss, 1995; Kombian & Malenka, 1994), these 

processes have been postulated to underlie the brain’s most important ability: storing and encoding 

information (Morris, 2013; M. Wang et al., 2013). Because of its role in synaptic plasticity, 

NMDARs are considered to be involved in higher cognitive functions such as learning and memory 

in the mammalian brain. NMDARs are also important for working memory and perception. 
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Table 1. 1 Summary of NMDAR subtype-dependent gating and lignad-binding properties.  

Adapted from (Glasgow, Siegler Retchless, & Johnson, 2015) 

 

 

 

 

 

 

 

 

 

 

 Gating and Ligand-Binding Properties 

 (GluN2 NTD-Dependent) 

NMDAR 

subtype 

Maximal 

Popen 

Agonist 

potency 

Deactivation 

Kinetics 

Zn2+ 

Sensitivity 

Proton 

Sensitivity 

Ifenprodil 

Sensitivity 

GluN1/2A High Low Fast High Intermediate Low 

GluN1/2B Intermediate Low Intermediate Intermediate High High 

GluN1/2C Low Intermediate Intermediate Low Low Low 

GluN1/2D Low High Slow Low High Low 
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 Channel Properties 

 (GluN2 S/L Site-Dependent) 

NMDAR 

subtype 

Mg2+ 

Sensitivity/voltage 

dependence 

Ca2+ 

Permeability 

Single-channel 

Conductance 

GluN1/2A High High High 

GluN1/2B High High High 

GluN1/2C Low Intermediate Intermediate 

GluN1/2D Low Intermediate Intermediate 

 

Table 1. 2 Summary of NMDAR subtype-dependent channel properties.  

Adapted from (Glasgow et al., 2015) 
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1.2.5 NMDARs structure 

Each subunit of a functional NMDAR has an extracellular amino-terminal domain (ATD), 

which links to an extracellular agonist binding domain (ABD), which, in turn, is connected to a 

transmembrane domain (TMD) forming the ion channel. The transmembrane helices communicate 

with an intracellular carboxy-terminal domain (CTD) (Traynelis et al., 2010). The ATD formed a 

bi-lobed structure by first ~350 amino acid which plays an essential role in the assembly and 

strongly modulates NMDARs function (Atlason, Garside, Meddows, Whiting, & McIlhinney, 2007; 

Farina et al., 2011; Yuan, Hansen, Vance, Ogden, & Traynelis, 2009). A distinctive feature of 

NMDARs compares to AMPA and Kainate receptors is that ion channel gating of NMDARs is 

significantly regulated by the ATD. For example, the ATD controls the open probability and speed 

of deactivation of NMDARs. Additionally, the structure of ATD creates binding sites for allosteric 

modulators, for example, extracellular Zn2+ and various GluN2B subunits selective antagonists 

(e.g., ifenprodil) have been shown to bind ATD(Karakas, Simorowski, & Furukawa, 2009, 2011; 

Tajima et al., 2016).  

The ABD is formed by S1 and S2 segments of the polypeptide chain where M1, M2, M3 

segments are in the middle of S1 and S2 segments. The ABD form bi-lobed structures that create 

the agonist binding site in the cleft between these two lobes. Binding of neurotransmitter agonists 

to the ABD produces a large conformational change involving the closure of the bi-lobed structure 

that is required for channel gating in all iGluRs (Armstrong, Sun, Chen, & Gouaux, 1998; Furukawa, 

Singh, Mancusso, & Gouaux, 2005; Mayer, 2005; Tajima et al., 2016). The glycine binding pocket 

in GluN1 subunits is considerably smaller and more hydrophobic than the glutamate binding pocket 

in GluN2 subunits (Furukawa & Gouaux, 2003; Furukawa et al., 2005; Inanobe, Furukawa, & 

Gouaux, 2005). One reason for ligands that show poor selectivity between different GluN2 subunits 

is the residues that make atomic contact with agonists and competitive antagonists within glutamate 

binding pocket are mostly conserved in GluN2 subunits. The residues at the heterodimer interface 
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between GluN1 and GluN2 ABDs also strongly modulate NMDARs function (Hansen et al., 2018). 

For example, (Borschel, Cummings, Tindell, & Popescu, 2015; Furukawa et al., 2005) have shown 

that the heterodimer interface can influence factors controlling deactivation, such as agonist 

dissociation or channel open time. In addition, a pair of conserved cysteine residues within GluN1 

subunits interact as a disulfide bond in the GluN1 and GluN2A ABD heterodimer interface, and 

reduction of this conformational constraint only in GluN1 will enhance NMDARs function 

(Talukder, Kazi, & Wollmuth, 2011). Binding of both glutamate and co-agonist (glycine or D-

serine) to GluN2 and GluN1 subunits trigger ABD closure and cause a series of conformational 

changes and ultimately open the NMDARs ion channel pore. However, binding of competitive 

antagonists, such as D-AP5, stabilizes the open cleft conformation of ABD which is incapable of 

triggering channel gating (Hansen et al., 2018). Interestingly, ABD can go through state changes 

between open and closed cleft conformations even without agonists present (Cooper et al., 2015; 

Dai & Zhou, 2015; Dolino, Rezaei Adariani, Shaikh, Jayaraman, & Sanabria, 2016; Yao, Belcher, 

Berger, Mayer, & Lau, 2013). 

The TMD that contributes to the formation of the core of the ion channel is formed by three 

transmembrane helices (M1, M3, M4) and a reentrant loop (M2) (Hansen et al., 2018). Variations 

of amino acid residues in the TMD confer to the distinct pore properties of each type of ionotropic 

glutamate receptors (Traynelis et al., 2010). The M2 loop of NMDARs has sequence and structural 

homology to the P-loop of potassium (Kuner, Seeburg, & Guy, 2003; Wo & Oswald, 1995).QRN 

site resides at the apex of the reentrant M2 loop is critical for controlling the ion permeation 

properties of NMDARs. The high Ca²⁺ permeability of NMDARs is attributed to DRPEER motif 

in GluN1 subunit, which serves as a binding site for Ca2+ and is located in the extracellular 

vestibule near C-terminal to the M3 helix (J. Watanabe, Beck, Kuner, Premkumar, & Wollmuth, 

2002). The M4 helix is known to play an important role in assembly and trafficking of NMDARs 

(Kaniakova, Lichnerova, Vyklicky, & Horak, 2012; Schorge & Colquhoun, 2003). The TMD of 
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the GluN1/GluN2B NMDA receptor forms a heterotetrameric ion channel with pseudo-four-fold 

symmetry (Karakas & Furukawa, 2014). They also observed that the tetrameric crossing of the M3 

helices occludes the ion penetration pathway. This crossing of the M3 helices occurs around the 

highly conserved SYTANLAAF motifs in iGluRs, mutations of which are known to modify gating 

properties (Zuo et al., 1997). In addition, the aspargine at the tip of M2-loop is important for Ca²⁺ 

permeability and Mg²⁺ block of NMDARs (Kuner, Wollmuth, Karlin, Seeburg, & Sakmann, 1996; 

Wollmuth, Kuner, & Sakmann, 1998a, 1998b). The binding site for PCP, Mk-801, and ketamine 

also resides in TMD. Amino acids residues at or near QRN site and around the permeation pathway 

are shown to be critical for the block by these channel blockers (Chang & Kuo, 2008; Kashiwagi 

et al., 2002; Limapichat, Yu, Branigan, Lester, & Dougherty, 2013; Lipton & Chen, 2005; Mori, 

Masaki, Yamakura, & Mishina, 1992). 

The CTD domain is the most diverse domain in terms of amino acid sequence composition 

and length. To date, only part of the GluN1 CTD binding with Ca2+/calmodulin structural details 

are known (Ataman, Gakhar, Sorensen, Hell, & Shea, 2007). The CTD is known to encode short 

docking motifs for intracellular binding proteins, and the CTD is thought to influence membrane 

targeting, stabilization, post-translational modifications, and targeting for degradation (Traynelis et 

al., 2010). Deletion of CTD domain on GluN1 and GluN2A subunits does not abolish their function 

but does alter its regulation (Ehlers, Fung, O'Brien, & Huganir, 1998; Kohr & Seeburg, 1996; J. J. 

Krupp, B. Vissel, S. F. Heinemann, & G. L. Westbrook, 1998; Vissel, Krupp, Heinemann, & 

Westbrook, 2001), because CTD domains contain different phosphorylation sites and binding sites 

for various intracellular proteins which are important for membrane trafficking and receptors 

function. The CTD domain of NMDARs binds to various classes of intracellular proteins, including 

cytoskeletal, scaffolding, adaptors, anchoring, structural, and signaling proteins (Fang et al., 2011; 

Gardoni et al., 1999; Logan, Rivera, & Leonard, 1999; Mori, Yamakura, Masaki, & Mishina, 1993; 

Tingley, Roche, Thompson, & Huganir, 1993). The interactions between the CTD domain and 
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intracellular proteins allow local signaling to proceed, providing the possibility of spatial and 

temporal specificity to receptor regulation (Traynelis et al., 2010). In addition, NMDARs are 

embedded into a rich complex of signaling molecules that are localized by a myriad of adaptor and 

scaffolding proteins (Husi, Ward, Choudhary, Blackstock, & Grant, 2000). Further enhancing the 

complexity among different subunits, for example, alternative RNA splicing of GluN1 subunits of 

NMDARs causes variation in the CTD that also affect binding sites for intracellular proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. 2 NMDARs structure 

NMDARs consist of four distinct domians: A-teminal domian (ATD), Agonist-binding domian 

(ABD), Transmembrane domian (TMD), and a C-teminal domain (CTD). The transmembrane 

domain have four segments (M1,M3,M4, and a re-entrant loop M2) which forming the channel 

pore. 
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1.3 Synaptic and extrasynaptic NMDAR signaling 

Activation of NMDARs can be either toxic to neurons or promote their survival and 

plasticity. For example, (Tymianski, Charlton, Carlen, & Tator, 1993) found that Ca2+ entry 

through NMDARs was the most efficient way to kill neurons compared to entry through other 

channels. In contrast, others have shown that NMDAR activity and function is important for the 

survival of several types of neurons (Hardingham, 2006; Hetman & Kharebava, 2006; Ikonomidou 

& Turski, 2002). In addition, (Adams, de Rivero Vaccari, & Corriveau, 2004; Gould, Cameron, & 

McEwen, 1994; Ikonomidou et al., 1999; Monti & Contestabile, 2000; Pohl et al., 1999) 

demonstrated that elimination of NMDAR activity in vivo leads to apoptosis and enhances trauma-

induced injury in developing neurons. Thus, NMDAR activation has been linked to the specific 

pathophysiological mechanisms of certain neurodegenerative diseases such as stroke and 

Huntington’s disease (Choi, 1988; Lipton & Rosenberg, 1994; Rothman & Olney, 1986), and yet 

NMDAR activation could also be neuroprotective and may represent promising therapeutic targets. 

It has been proposed that it is the location of the NMDARs that influences whether it is coupled to 

pro-death or pro-survival signals and synaptic NMDARs are neuroprotective, whereas 

extrasynaptic NMDARs mainly contribute to neurotoxicity and cell death (Hardingham, Fukunaga, 

& Bading, 2002). According to this hypothesis, it is not the Ca2+ influx itself that leads to 

neurotoxicity, but the Ca2+ influx through NMDARs located outside of the synapses that are 

particularly harmful to neurons. In immature hippocampal neurons, around ¾ of all NMDARs are 

extrasynaptic (Tovar & Westbrook, 1999), and there is an extrasynaptic NMDARs switch to 

synaptic NMDARs during development, but extrasynaptic NMDARs still represent a large number 

of NMDARs until adulthood (Cottrell, Dube, Egles, & Liu, 2000; Petralia et al., 2010; Rosenmund, 

Feltz, & Westbrook, 1995; Tovar & Westbrook, 1999). This distribution may explain observations 

that some effects of extrasynaptic NMDARs signaling are dominant over the effects of synaptic 

NMDARs signaling (Hardingham & Bading, 2003; Ivanov et al., 2006; Papadia et al., 2008; S. J. 
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Zhang et al., 2007). There are three possibilities that might explain the differences between the 

synaptic and extrasynaptic NMDARs signaling: 1) the NMDARs signaling complexes have a 

different composition at synaptic locations and extrasynaptic locations; 2) NMDAR subunit 

composition is different in synaptic NMDARs and extrasynaptic NMDARs; 3) the manner by 

which synaptic NMDARs and extrasynaptic NMDARs are activated may be distinct. For 

hypothesis #2), it has been shown that GluN2A subunits are enriched in synaptic NMDARs  

(Steigerwald et al., 2000) and GluN2B subunits are more abundant at extrasynaptic locations (Groc 

et al., 2006; Martel, Soriano, et al., 2009). However, studies also demonstrated that both GluN2A 

and GluN2B subunits express at some extrasynaptic locations (Petralia et al., 2010). GluN2B and 

GluN2A-containing NMDARs has been linked to neuronal death and neuronal survival, 

respectively (Y. Liu et al., 2007). Conversely, both GluN2A and GluN2B-containing NMDARs 

can promote neuronal death as well as neuronal survival (Martel, Wyllie, & Hardingham, 2009; 

Papadia et al., 2008; von Engelhardt et al., 2007). Interestingly, GluN2C-containing NMDARs 

suppression also has been shown to benefit the ischemic stroke (Chung et al., 2016; Holmes, Zhou, 

Donahue, Balsara, & Castellino, 2018; Kadotani, Namura, Katsuura, Terashima, & Kikuchi, 1998). 

Because of the lack of a compound that could efficiently differentiate these subunits and the 

existence of the tri-heteromeric NMDARs that contain both GluN2A, GluN2B, and GluN2C 

subunits, it is difficult to prove this hypothesis.  

1.4 The role of NMDARs in diseases 

Both NMDAR hyper-function and hypo-function have been shown to be related to disease 

states. Various studies have shown that NMDARs contribute to a variety of diseases in the brain, 

including schizophrenia (Balu, 2016; J. T. Coyle, G. Tsai, & D. Goff, 2003; Gilmour et al., 2012; 

J. T. Kantrowitz & D. C. Javitt, 2010; J. W. Olney, J. W. Newcomer, & N. B. Farber, 1999), stroke 

(Hoyte, Barber, Buchan, & Hill, 2004; Ikonomidou & Turski, 2002; Lai, Shyu, & Wang, 2011; 

Lees, 1997; Q. J. Wu & Tymianski, 2018), Huntington’s disease (Cepeda et al., 2001; Dau, 
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Gladding, Sepers, & Raymond, 2014; Hansson et al., 2001; Heng, Detloff, Wang, Tsien, & Albin, 

2009; L. Li et al., 2003; Saft et al., 2011), Alzheimer’s disease (Cain, Ighanian, & Boon, 2000; Hu 

et al., 2017; Makhaeva et al., 2015; Schmitt, 2005; Shankar et al., 2007), neuropathic pain (Chizh 

& Headley, 2005; Niesters & Dahan, 2012; Planells-Cases, Perez-Paya, Messeguer, Carreno, & 

Ferrer-Montiel, 2003; Sang, 2000; L. J. Wu & Zhuo, 2009), depression (Burgdorf, Colechio, 

Stanton, & Panksepp, 2017; Deutschenbaur et al., 2016; Duman & Li, 2012; D. J. Newport et al., 

2015; Reus et al., 2016; Skolnick et al., 1996; Szewczyk, Palucha-Poniewiera, Poleszak, Pilc, & 

Nowak, 2012; N. R. Williams & Schatzberg, 2016), autism spectrum disorder (Burgdorf, Moskal, 

Brudzynski, & Panksepp, 2013; Kiani et al., 2015; E. J. Lee, Choi, & Kim, 2015; Moskal, Burgdorf, 

Kroes, Brudzynski, & Panksepp, 2011), and intellectual disability (W. Chen et al., 2017; Kiani et 

al., 2015; Marwick, Skehel, Hardingham, & Wyllie, 2015; Metzler, 2011).  

1.4.1 NMDA and stroke 

NMDAR-dependent excitotoxicity appears to be a primary cause of neuronal death which 

occurs acutely after ischemia or traumatic brain injury (Ikonomidou & Turski, 2002; Lai et al., 

2011; Q. J. Wu & Tymianski, 2018). Loss of cerebral blood flow rapidly triggers energy deficits 

and neuronal depolarization that cause a large amount of glutamate to be released to the 

extracellular space. Overactivated NMDARs then lead to ion imbalance within the neurons, 

particularly calcium. Calcium overload then is thought to be highly effective in producing cell death 

(Besancon, Guo, Lok, Tymianski, & Lo, 2008). NMDAR antagonists, especially GluN2B selective 

antagonists have been shown to have neuroprotective effects against ischemia and injury-induced 

cell death (Cho, Park, Chung, & Gwag, 2010; Diener et al., 2002; Krivonos, Amosova, & 

Smolentseva, 2010; Lapchak, 2006; Yu, Wu, & Wang, 2015). On the other hand, even though 

inhibition of excessive NMDAR activity in the initial period of ischemia and TBI have been shown 

neuroprotective in animal models, more than two decades of neuroprotection research has not 

yielded any clinical therapies (Besancon et al., 2008; Q. J. Wu & Tymianski, 2018). Reasons behind 
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this failure might be: 1) the synaptic NMDAR signal might be neuroprotective while extrasynaptic 

NMDAR signal could lead to cell death. NMDARs antagonists disrupt both of these signals thus 

limiting the beneficial effects of NMDAR blockade (Hardingham & Bading, 2003; Hetman & 

Kharebava, 2006); 2) not only do neurons play an important role in glutamate signal, astrocytes 

and oligodendrocytes also play crucial roles in glutamate signaling. To develop better clinical 

therapies for stroke based on NMDARs, NMDAR subunit distribution at both synaptic and 

extrasynaptic sites in neurons and glia should be more well defined. For example, if specific 

NMDARs subunits are expressed in specific cellular sites (e.g., GluN2B mainly in extrasynaptic 

sites, GluN2A mainly in synaptic sites, GluN2C in astrocytes), then targeting those specific 

NMDARs subunits should reduce the side effects and achieve more satisfactory outcomes.  

1.4.2 NMDARs and neurodegenerative diseases 

Excessive activation of NMDARs is also involved in the pathogenesis of some 

neurodegenerative diseases such as Huntington’s disease (HD) and Alzheimer’s disease (AD). 

NMDARs are highly expressed in striatal medium spiny neurons which is also the major neuronal 

population that degenerates in the striatum in Huntington’s disease (Albin et al., 1990; Reiner et 

al., 1988). In addition, NMDARs agonists could replicate the behavioral and neuropathological 

features of HD. For example, injection of quinolinic acid into the striatum of rodents or primates 

induces selective loss of striatal neurons but sparing of interneurons (Fan & Raymond, 2007; 

Ferrante, Kowall, Cipolloni, Storey, & Beal, 1993; Hantraye, Riche, Maziere, & Isacson, 1990; 

Schwarcz, Brush, Foster, & French, 1984; Schwarcz, Foster, French, Whetsell, & Kohler, 1984). 

Various studies have demonstrated that both human and rodent striatum are enriched in GluN2B 

subunits of NMDARs while other subunits also exist (Kuppenbender et al., 2000; Peter, Panova, 

Christie, & Taylor, 2000; Rigby et al., 1996; Standaert, Friberg, Landwehrmeyer, Young, & Penney, 

1999). In different HD animal models, GluN2A and GluN2B subunits levels have been found 
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reduced, with GluN1 subunits unchanged (Ali & Levine, 2006; Carter, Hunt, & Morton, 2000; Cha 

et al., 1999; Jarabek, Yasuda, & Wolfe, 2004). 

There are two main hallmarks of Alzheimer’s disease (AD), amyloid-β and tau protein (V. 

E. Johnson, Stewart, & Smith, 2010; Spires-Jones & Hyman, 2014). It is widely accepted that Aβ-

induced changes in the availability of glutamate and the function of NMDARs are related to the 

neurotoxicity and neurodegeneration observed in the AD (R. Wang & Reddy, 2017). For example, 

GluN2B antagonists reverse Aβ-induced impairment of LTP, loss of synapses and synaptic proteins, 

etc. (Hanson et al., 2014; Hanson, Pare, Deng, Smith, & Zhou, 2015; Rammes et al., 2017; Zhou, 

2014). The non-selective NMDAR antagonists such as memantine (clinically approved drug for 

the AD) can also block Aβ-induced spine loss, which indicates that activation of additional 

NMDARs subunits, not only GluN2B, may be required for Aβ-induced synaptic dysfunction 

(Danysz & Parsons, 2012; Olivares et al., 2012). Additionally, tau protein has been shown to 

enhance NMDAR association with PSD-95 and coupling to downstream effects. Blocking the 

interaction between NMDARs and PSD-95 by a synthetic peptide improved memory function and 

reduced premature death seen in AD mouse models (Amadoro et al., 2006; Chohan & Iqbal, 2006; 

De Montigny, Elhiri, Allyson, Cyr, & Massicotte, 2013; S. Kobayashi, Tanaka, Soeda, Almeida, & 

Takashima, 2017; Warmus et al., 2014).  

1.4.3 NMDARs and neuropathic pain 

NMDARs are also known to be present in neurons of the nociceptive pathway (Aiyer, 

Mehta, Gungor, & Gulati, 2018; Lefevre et al., 2015). NMDARs appear to play a critical role in 

neuropathic pain since non-selective NMDARs antagonists and GluN2B-selective antagonists have 

been reported to reduce neuropathic pain in animal studies (Y. Kim, Cho, Ahn, Kim, & Yoon, 2012; 

Pud et al., 1998; Takahashi, Miyazaki, Nanbu, Yanagida, & Morita, 1998; Wei & Pertovaara, 1999). 

However, the precise role of different NMDARs subunits in the development and maintenance of 

neuropathic pain is still unknown.  
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1.4.4 NMDARs and other neurological disorders 

The implication of NMDARs in depression arises from the observation that the non-

selective NMDAR antagonist ketamine can exert a rapid and sustained antidepressant effect on 

human patients with treatment-resistant depression (Berman et al., 2000; Murrough et al., 2013; N. 

R. Williams & Schatzberg, 2016; Zarate et al., 2006). Blocking NMDARs in GABAergic 

interneurons can lead to disinhibition of pyramidal excitatory neurons and thus enhancing neural 

activity and causing the antidepressant effects (Kavalali & Monteggia, 2012; Miller et al., 2014; D 

Jeffrey Newport et al., 2015). 

Converging evidence from genetic and pharmacological studies also indicate that 

NMDARs have an important role in autism spectrum disorder (ASD) (Ghanizadeh, 2011; Moskal 

et al., 2011; Saunders, Gandal, Roberts, & Siegel, 2012). Genetic analysis of ASD patients and 

their families have identified disease-associated mutations for multiple NMDA receptor genes 

(Barnby et al., 2005; O'Roak, Vives, Fu, et al., 2012; O'Roak, Vives, Girirajan, et al., 2012; 

Tarabeux et al., 2011; Yoo, Cho, Park, Yang, & Kim, 2012). Of de novo mutations in genes 

associated with sporadic autism, the gene for the NMDAR subunit GluN2B was the most frequently 

affected (O'Roak, Vives, Girirajan, et al., 2012). In addition, NMDARs are also known to directly 

interact with other identified ASD-associated genes, such as neuroligin-4 and SHANK and appear 

to be part of a hub of ASD-associated genes (Arons et al., 2012; Barrow et al., 2009; Blundell et 

al., 2010). Together, these findings are consistent with observations that NMDAR antagonists can 

mimic the symptoms of ASD. For example, low doses of the NMDAR blockers MK-801 and 

ketamine can impair social interactions, decrease social vocalizations, and promote restricted, 

repetitive behaviors (Burket, Cannon, Jacome, & Deutsch, 2010; Moy et al., 2013; Saunders et al., 

2012; Zou et al., 2008). At higher doses, NMDAR antagonists mimic schizophrenia (including the 

negative symptoms of schizophrenia which overlap with ASD and have comorbidity with ASD 

(Gadow, 2013)). 
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NMDARs are essential for most forms of synaptic plasticity and learning. Thus it is not 

surprising that NMDARs are involved in different forms of Intellectual Disability (ID). More than 

50 NMDAR mutations have been identified for ID as well as 36 for schizophrenia and 24 for ASD 

(Yuan, Low, Moody, Jenkins, & Traynelis, 2015). For example, in patients with epilepsy aphasia 

spectrum (EAS), mutations in the GluN2A subunit are found in up to 20% of the population and 

were the first identified monogenic cause of the disorder (Turner, Morgan, Perez, & Scheffer, 2015). 

ID conditions other than those involving NMDAR mutations are also known to affect NMDAR 

activity. In fragile X, for example, the disrupted FMRP protein is known to bind to the G quadruplex 

structure of RNA for synaptic proteins, including GluN2B (Stefanovic et al., 2015). 

1.5 NMDARs pharmacology 

Even though many different compounds that target NMDARs have shown promising 

therapeutic effects in preclinical studies, most of these compounds are unable to be translated into 

effective drugs for human clinical therapy. Reasons behind this failure might be that those 

compounds have poor subunit-selectivity and/or unsuitable affinity to the target which might not 

be able to reverse the abnormal NMDARs activity. If only the NMDARs subgroups that are 

undergoing pathological changes can be modulated properly, then more efficient therapeutics with 

fewer side effects should emerge.  

NMDA receptor activity can be modulated both positively and negatively. Antagonists can 

be sorted according to their place of action: at the agonist binding site (competitive), within the ion 

channel pore (channel blockers), or at specific modulation sites (noncompetitive).  

A large number of compounds inhibit NMDARs by occupying its ion channel pore  

(channel blockers), such as some dissociative anesthetics (e.g., ketamine and phencyclidine), and 

dizocilpine maleate (MK-801) (N. Anis et al., 1990; Lodge & Johnson, 1990; Wong et al., 1986). 

Because of the side effects caused by these channel blockers, their clinical application has been 

limited (Finiels-Marlier, Marini, Williams, & Paul, 1993; Jevtovic-Todorovic, Wozniak, Powell, 
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Nardi, & Olney, 1998; Journey & Bentley, 2018; Luckenbaugh et al., 2014; Nicholi, 1984; Popke 

et al., 2002; Short, Fong, Galvez, Shelker, & Loo, 2018). A special case is memantine, the clinically 

approved drug for Alzheimer’s Disease, probably due to its fast dissociation out of the channel 

upon receptor inactivation, resulting in minimal interference with the normal synaptic transmission 

(Glasgow, Povysheva, Azofeifa, & Johnson, 2017; J. W. Johnson & Kotermanski, 2006; Y. N. Wu 

& Johnson, 2015). Since the ion channel is highly conserved between different NMDAR subunits, 

most channel blockers, including those mentioned above, poorly discriminate between different 

NMDAR subtypes (Dravid et al., 2007). Blockade of the ion channel is voltage- and use-dependent, 

which means that the blockade requires channel opening so that channel blockers can occupy the 

channel afterwards. Because of this, the inhibition effect by channel blockers is slow in onset stage 

and increases with the probability of channel opening. The inhibition by channel blockers could 

also be impacted by Mg²⁺, for example, studies have shown (Kotermanski, Wood, & Johnson, 2009) 

that physiological levels of Mg²⁺ preferentially decreases memantine inhibition of GluN2A or 

GluN2B-containing NMDARs compared to GluN2C/2D-containing receptors, which makes 

memantine weakly selective for GluN2C and GluN2D-containing NMDARs. Other NMDARs 

channel blockers (polyamine derivatives, e.g., argiotoxin-636) display higher selectivity  (more 

than 50 fold) at receptors with GluN2A or GluN2B subunits compared to receptors with GluN2C 

or GluN2D subunits. This large group of NMDARs channel blockers can be used as 

pharmacological tool drugs to differentiate GluN2A- and GluN2B- versus GluN2C- and GluN2D-

containing NMDARs.  

Competitive antagonists compete with the agonist for binding but do not activate the 

receptor. For example, D-AP5, among the first competitive antagonist discovered, binds to the 

glutamate binding site and displays high selectivity for NMDA receptors over AMPA and kainate 

receptors (Watkins & Evans, 1981). However, due to the high homology of the LBDs between 

different GluN2 subunits, the GluN2 subunits selectivity for competitive antagonists is difficult to 
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achieve(Kinarsky et al., 2005). For example, D-AP5 displayed a low selectivity (less than 10-fold) 

for different GluN2 subunits (Feng, Morley, Jane, & Monaghan, 2005). Adding a bulky 

hydrophobic group resulting in a compound weakly preferring GluN2C/2D-containing receptor. 

Further improvement in selectivity are seen in (2R*,3S*)-1 (phenanthrene-3-carbonyl) piperazine-

2,3-dicarboxylic acid (UBP141) or (2R*,3S*)-1- (9-bromophenanthrene-3-carbonyl)piperazine-

2,3-dicarboxylic acid (UBP145) which show improved selectivity for receptors containing GluN2D 

subunits (Costa et al., 2009).  Other compounds that display specific subunit selectivity includes 

Ro25-6981, NVP-AAM 077, and CPP. These compounds display unique pharmacodynamic and 

pharmacokinetics profiles which show various affinities (Table 1.3 and 1.4) to each subunit and are 

useful pharmacological tools for sorting out the distinct function of each NMDAR subtype. GluN2 

subunit-selective NMDAR antagonists are likely to have novel therapeutic/adverse effect profiles 

because these subunits differ significantly in their anatomical and physiological properties (J. H. 

Li et al., 1998; Masu et al., 1993; Monyer et al., 1994). For example, an NR2D-selective antagonist 

would be expected to be effective in some cases of neuropathic pain (Minami et al., 2001), and 

NR2C-selective antagonists may be useful in ischemic stroke (Holmes et al., 2018). 
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NMDARs channel blockers: IC50  (µM) value 

Agents GluN2A GluN2B GluN2C GluN2D Subunit 

selectivity 

Ketamine 0.7 0.5 0.5 0.7 2A≈2B≈2C≈2D 

 (+)MK-801 0.01 0.01 0.1 0.1 2A≈2B>2C≈2D 

Memantine 0.9 0.8 N/A 0.5 2A≈2B≈2D 

PCP 0.1 0.1 0.2 0.2 2A≈2B≈2C≈2D 

 

Table 1. 3  IC50 value of NMDARs channel blockers on each subunits and their relative 

subunits selectivity.   

Adapted from (Paoletti & Neyton, 2007) 
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NMDARs Non-competitive antagonist: IC50  (µM) value 

Agents GluN2A GluN2B GluN2C GluN2D Subunit 

selectivity 

Zn2+ 0.02 2.0 20 10 2A>>2B>2C≈2D 

Ro 25-6981 >30 0.009 N/A N/A 2B>>2A≈2C≈2D 

 (>3000-fold) 

Ifenprodil >30 0.15 >30 >30 2B>>2A≈2C≈2D 

 (>200-fold) 

NVP-

AAM077 

0.006 0.06 0.01 0.04 2A≈2C>2B≈2D 

 (R)-CPP 0.04 0.3 0.6 2.0 2A>2B≈2C>2D 

 

Table 1. 4 IC50 value of NMDARs non-competitive antagonists on each subunits and their 

relative subunits selectivity.  

Adapted from (Paoletti & Neyton, 2007) 
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1.6 NMDARs allosteric modulators 

NMDARs allosteric modulators are compounds that act at subunit-specific allosteric sites 

of NMDARs subunits which and promising candidates for NMDAR-related drug development as 

they should display fewer side effects compared to NMDARs channel blockers and competitive 

antagonists (Monaghan, Irvine, Costa, Fang, & Jane, 2012).  Positive allosteric modulators (PAMs) 

are compounds that bind to an allosteric site and enhance the activity of NMDARs. Inhibitory 

modulators that bind to sites other than orthosteric sites or in the channel are named NMDARs 

negative allosteric modulators (NAMs).  

Many PAMs has been identified and developed in recent years. For example, the 

pyrrolidone derivative PYD-106 displays a higher selectivity for GluN2C-containing receptors, this 

compound binds to the ATD/ABD interface of GluN2C subunits (Khatri et al., 2014). The 

substituted tetrahydroisoquinoline CIQ is a NMDARs potentiator which displays selectivity for 

GluN2C and GluN2D-containing NMDARs over GluN2A and GluN2B-containing NMDARs. The 

actions of CIQ depend on a single residue in the M1 region (GluN2D Thr592) and the linker 

between the n-terminal domain and agonist binding domain (Mullasseril et al., 2010). The helical 

segment before M1 in GluN2D subunits of NMDARs is also critical for the action of CIQ (Ogden 

& Traynelis, 2013). By replacing chlorine with the bromine on CIQ, CIQ displayed higher 

selectivity on GluN2C-containing over GluN2D-containing NMDARs (Santangelo Freel et al., 

2013). Additionally, our group has identified a series of PAMs. For example, phenanthrene 

derivatives with a carboxylic acid group at the 3-position which enhance NMDAR current. UBP512 

selectively potentiates receptors containing GluN2A subunits but inhibits GluN2C and GluN2D 

subunits. Similarly, UBP710 potentiates receptors with GluN2A and GluN2B subunits whereas it 

inhibits GluN2C and GluN2D-containing NMDARs. Naphthalene derivatives with a 2-position 

carboxyl group also display PAMs activities. UBP551 selectively potentiates GluN2D subunits 

whereas it inhibits other NMDAR subtypes (Costa et al., 2010). Other PAMs includes UBP608 
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which inhibits GluN2A-containing receptors 23 times more potently compared to GluN2D-

containing NMDARs (Costa et al., 2010). 

Ifenprodil was the first subunit-specific NMDA receptor antagonist discovered, it is known 

for its allosteric inhibitory activity at NMDARs. Ifenprodil is a non-competitive, voltage- and use-

independent inhibitor of NMDARs (Legendre & Westbrook, 1991). Ifenprodil binds to the 

interface between ATDs of GluN1/GluN2B heterodimers (Tajima et al., 2016) and displays 

inhibition of GluN1/GluN2B receptors with a 200- to 400-fold higher affinity than any other 

combination of GluN1/GluN2 subunits (K. Williams, 1993). Protons such as Zn²⁺ also display 

NMDAR NAM activity (Traynelis & Cull-Candy, 1990; Traynelis, Hartley, & Heinemann, 1995). 

Zn²⁺ inhibits only GluN2A-containing NMDARs at low concentrations but displays inhibitory 

activity at both GluN2A and GluN2B-containing NMDARs at high concentrations (Paoletti et al., 

2000; Rachline, Perin-Dureau, Le Goff, Neyton, & Paoletti, 2005). Many novel noncompetitive 

antagonists with distinctive GluN2 subunit selectivity have been described in recent years. For 

example, TCN-201 shows high selectivity for GluN2A-containing receptors (Bettini et al., 2010). 

TCN-201 acts as a negative allosteric modulator which modulates glycine binding, and the binding 

site of TCN-201 is located at the interface between ABDs of GluN1 and GluN2A subunits (Hansen, 

Ogden, & Traynelis, 2012). UBP791 act as a competitive negative allosteric modulator that 

preferentially blocks receptors with GluN2C and GluN2D subunits. Our group also identified that 

UBP618 and UBP552 act as general NMDARs NAMs with high potency (Costa et al., 2012; Irvine 

et al., 2012; Irvine et al., 2015). 

1.7 The role of  NMDARs in neuronal oscillations 

Neuronal oscillations reflect coordination of neuronal activity- groups of cells firing at the 

same time. It is thought to be generated, in part, by inhibitory GABAergic interneuron firing that 

synchronizes nearby pyramidal excitatory neurons in a certain frequency range (Buzsaki & 

Draguhn, 2004; Gray, 1994; Traub, Bibbig, LeBeau, Buhl, & Whittington, 2004). This is necessary 
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for cognition and perception and is disrupted in schizophrenia (McNally & McCarley, 2016; 

McNally, McCarley, & Brown, 2013). NMDAR antagonists have been shown to augment neuronal 

oscillations, and this is thought to underlie the schizophrenia-like symptoms induced by NMDAR 

antagonists (Caixeta, Cornelio, Scheffer-Teixeira, Ribeiro, & Tort, 2013; Gu et al., 2013; Molina, 

Skelin, & Gruber, 2014; Neymotin et al., 2011; Olszewski, Dolowa, Matulewicz, Kasicki, & Hunt, 

2013). Evidence show that in the cortex, pyramidal cells express GluN2A and GluN2B subunits 

(Q. Chen & Reiner, 1996; Petralia, Wang, & Wenthold, 1994; Siegel et al., 1994) and interneurons 

specifically PV+ interneurons express GluN2D subunits of NMDARs (Standaert et al., 1999; 

Standaert, Landwehrmeyer, Kerner, Penney, & Young, 1996). This expression pattern places 

NMDARs in a critical position for both generating and regulating neuronal oscillations. NMDARs 

antagonists like ketamine and MK-801 can increase the power of spontaneous neuronal oscillations 

in rodents (Ehrlichman et al., 2009; Gonzalez-Burgos & Lewis, 2012). In a human subject study, 

ketamine increased the amplitude of the 40-Hz auditory steady state response (Plourde, Baribeau, 

& Bonhomme, 1997) and impaired the activity of neurons in connected brain regions to 

synchronize their firing (Krystal et al., 1994; Uhlhaas et al., 2006; Uhlhaas & Singer, 2006).  

In the reticular nucleus of the thalamus, GluN2C has been proposed to be the critical 

subunit mediating NMDAR control of delta oscillations (1-4 Hz) directed to the hippocampus (Y. 

Zhang, Buonanno, Vertes, Hoover, & Lisman, 2012; Y. Zhang, Llinas, & Lisman, 2009; Y. Zhang, 

Yoshida, Katz, & Lisman, 2012). Studies (Middleton et al., 2008) have shown that NMDAR 

antagonists can alter the interactions between high gamma and low gamma oscillations in the 

hippocampus. In addition, NMDAR antagonists generate high-frequency oscillations (80-200 Hz) 

in the nucleus accumbens which can be recorded from cortex and hippocampus (Goda et al., 2015; 

Hunt, Falinska, Leski, Wojcik, & Kasicki, 2011; Hunt, Olszewski, Piasecka, Whittington, & 

Kasicki, 2015; Olszewski, Dolowa, et al., 2013). The medial prefrontal cortex-hippocampus-

nucleus reuniens of thalamus circuits loop is critical for cognitive and memory deficits in SCZ 
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(Cassel & Pereira de Vasconcelos, 2015). Thus, this loop is probably critical for synchronizing 

neuronal oscillations in these regions. GluN2D subunits are highly expressed in the nucleus 

reuniens, GluN2D could potentially influence the function of this loop. 

1.8 Schizophrenia and its hypothesis 

1.8.1 Dopamine hyper-function hypothesis of schizophrenia 

Schizophrenia is a deleterious psychiatric disease affecting almost 1% of the population 

globally. The symptoms of SCZ can be categorized into positive symptoms (hallucinations, 

delusions); negative symptoms (anhedonia, social withdraw); and cognitive deficits (deficits in 

attention, learning, and working memory) (Messias, Chen, & Eaton, 2007). The negative and 

cognitive deficits of most schizophrenics cannot be treated properly under current medications. 

These treated SCZ patient have a diminished ability to live independently and gain meaningful 

employment in society, causing large social and financial burden for both their families and society 

(Rossler, Salize, van Os, & Riecher-Rossler, 2005). The total cost of schizophrenia in the United 

States is estimated to be around $156 billion in 2013 (Cloutier et al., 2016).  

Traditionally, the dopamine hyperfunction hypothesis was the dominating theory in the 

field which was based on studies showing that administration of amphetamine and other 

compounds which increase extracellular concentrations of dopamine can induce similar psychotic 

symptoms seen in schizophrenic patients (Grace, 2016; O. D. Howes & S. Kapur, 2009; Kesby, 

Eyles, McGrath, & Scott, 2018; Seeman, 2006; Thompson, Pogue-Geile, & Grace, 2004). 

Conversely, drugs, such as reserpine and alpha-methyl-para-tyrosine which can reduce dopamine 

levels, displayed the ability to alleviate psychotic symptoms (Brodie, Murphy, Goodwin, & Bunney 

Jr, 1971; Gershon, Hekimian, Floyd, & Hollister, 1967; Nur & Adams, 2016; Pozuelo, 1979). In 

addition, post-mortem studies provide various evidence linking dopamine and SCZ.  For example, 

an increase in striatal dopamine levels and an increase in D2 receptor density has been found as 
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neuropathological changes in schizophrenia (Davis & Kahn, 1991; Mackay et al., 1982). Various 

post-mortem studies also showed that the presynaptic D2 autoreceptor was upregulated, while the 

predominantly post-synaptic D2 receptors were downregulated in the dorsolateral prefrontal cortex 

compared with healthy controls (Arinami, Gao, Hamaguchi, & Toru, 1997; Cross, Crow, & Owen, 

1981; Mackay et al., 1982). Research has also shown that environmental risk factors might 

contribute to the impaired dopamine function, which fits with a recent finding that stress and other 

risk factors can impact a vulnerable dopamine system to dysregulate it and lead to psychosis (Oliver 

D Howes & Shitij Kapur, 2009; Swanson et al., 2007; van Os, Kenis, & Rutten, 2010). This 

evidence suggests that there is a presynaptic hyperdopaminergic abnormality in schizophrenia and 

antipsychotics can treat psychotic symptoms by blocking D2 receptors. However, these findings do 

not explain how a biochemical abnormality can account for the phenomenology and specific 

symptoms of the SCZ (Kebabian & Calne, 1979). In addition, One-third of individuals with 

schizophrenia, especially those with negative and cognitive symptoms, do not respond to typical 

antipsychotics (dopamine receptor antagonists) despite high levels of D2 occupancy (Crow, 1980; 

Javitt & Zukin, 1991). Furthermore, they do not respond to manipulations that deplete presynaptic 

dopamine either (Perrault, Depoortere, Morel, Sanger, & Scatton, 1997). These evidence suggest 

that the pathophysiological basis of a large number of SCZ patients’ symptoms involves more than 

dopaminergic excess, or may be unrelated to dopaminergic dysfunction (Carlsson & Carlsson, 1990; 

Davis & Kahn, 1991; Oliver D Howes & Shitij Kapur, 2009; Laruelle, Kegeles, & ABI‐

DARGHAM, 2003). This implies that other pathways, such as glutamate pathways, may contribute 

to SCZ, especially for the negative symptoms and cognitive dysfunction (Coyle, 2006; Javitt, 2007). 

1.8.2 NMDAR hypofunction hypothesis of schizophrenia 

One of the earliest observations suggesting glutamate involvement in schizophrenia is the 

finding that schizophrenic patients show reduced cerebrospinal fluid glutamate levels (Tsai et al., 

1995). Since then, a growing body of evidence supports the theory of abnormal glutamatergic 
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neurotransmission in schizophrenia (Mouri, Noda, Enomoto, & Nabeshima, 2007; John W Olney, 

John W Newcomer, & Nuri B Farber, 1999). Although many glutamate receptors have been 

implicated in SCZ, the current prevailing hypothesis is the NMDAR hypofunction of SCZ (J. T. 

Coyle et al., 2003; Gilmour et al., 2012; Gonzalez-Burgos & Lewis, 2012; J. W. Olney et al., 1999). 

The NMDAR hypofunction hypothesis of SCZ originated from the discovery that dissociative 

anesthetics phencyclidine (PCP) and ketamine can reproduce the full spectrum of the SZ-like 

symptoms in healthy human subjects and exacerbate symptoms in people with SCZ (Jentsch & 

Roth, 1999; John W Olney et al., 1999). In addition, many SCZ risk genes have been identified that 

can directly or indirectly affect NMDAR function (Akbarian et al., 1996; Gainetdinov, Mohn, & 

Caron, 2001; Hahn et al., 2006; John E Lisman et al., 2008; Mohn, Gainetdinov, Caron, & Koller, 

1999). In postmortem studies, downregulation of NMDAR and reduced levels of D-serine had been 

found in schizophrenic brain (Bendikov et al., 2007; Kornhuber et al., 1989). In a clinical trial, an 

agent that activates through the glycine site of NMDAR improves the negative symptoms and 

cognitive deficits of SCZ patients, and in some cases, it improves the medication outcomes in 

patients with positive symptoms (Buchanan et al., 2007; D'Souza, Charney, & Krystal, 1995).  In 

vivo imaging studies also provide evidence that SCZ patients, as well as high-risk psychosis 

individuals have abnormal glutamate levels in their brains (Bressan & Pilowsky, 2000; Shenton et 

al., 1992).  

In conclusion, the major dopaminergic abnormality in SCZ appears to be presynaptic, it is 

present at the onset of SCZ and is related to the onset of psychosis. However, this hypothesis has 

many limitations, in particular, how can dopamine changes account for negative and cognitive 

symptoms. On the other hand, there are several converging lines of evidence supporting the 

NMDAR hypofunction hypothesis of SCZ (J. T. Coyle et al., 2003). These two hypotheses should 

not be considered mutually exclusive; they might be interconnected by a specific mechanism. For 

example, positive symptoms account for presynaptic dopamine hyperfunction, and negative and 
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cognitive symptoms account for NMDAR hypofunction. Moreover, reduced NMDARs function 

has been found to increase dopamine release (Mohn et al., 1999), and allosteric modulation of 

GluN2C/2D-containing NMDARs has been shown to bidirectionally modulates dopamine release 

(X. Zhang, Feng, & Chergui, 2014). Taken all together, it is plausible that both dopamine and 

glutamate are involved in schizophrenia and can be integrated into one hypothesis. 
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Figure 1. 3 Mechanism of NMDAR deletion/blockade in cortical parvalbumin (PV) 

inhibitory interneurons altering cortical activity, leading to the emergence of subcortical 

dopamine hyperactivity in mice. 

NMDAR knockout or blockade in cortical PV GABAergic inhibitory interneurons down-

regulates their GABA synthesis and release, which not only results in cortical disinhibition but 

also impairs the synchronized activity of principal neurons in the cortex. This may reduce the 

cortical output to VTA and thus increases dopamine activity in the nucleus accumbens. Adapted 

from (Nakazawa et al., 2012) 
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1.9 Neuronal oscillations and schizophrenia 

Neuronal oscillations are electrical activities arising from a group of neurons that fire 

together at the same time in a rhythmic manner (Buzsáki & Draguhn, 2004). It facilitates different 

brain regions to communicate with each other and exchange information in order to achieve higher 

brain functions (Singer, 1993). Neuronal oscillations are essential components for normal brain 

function, for example, learning and memory, attention and perception (Başar, Başar-Eroglu, 

Karakaş, & Schürmann, 2001). Neuronal oscillations can be divided into different subcategories 

based on their specific frequency ranges, for example, alpha (8-12 Hz), theta (4-7 Hz), delta (1-3 

Hz), beta (13-30Hz) and gamma (30-200Hz) (Başar et al., 2001; Buzsáki & Draguhn, 2004). 

Neuronal oscillations can be measured by the electroencephalogram (EEG) (on the scalp), 

electrocorticography (ECoG) (epidural) and magnetoencephalography (MEG), etc. (Buzsáki, 

Anastassiou, & Koch, 2012; Pfurtscheller & Da Silva, 1999). To define the role of neuronal 

oscillations in neurological diseases, besides the basal/drug-induced power changes, we can 

measure basal neuronal oscillations; drug-induced neuronal oscillations; auditory steady-state 

evoked potentials; auditory-evoked potentials; mismatch negativity; as different measurements.  

Schizophrenia and many psychiatric disorders, such as autism spectrum disorder and 

intellectual disability had been shown to display abnormal neuronal oscillations in many of specific 

frequencies (Uhlhaas & Singer, 2010). Several studies have shown that schizophrenic patients show 

reduced amplitude of the evoked beta and gamma response (Hoptman et al., 2010; Shin, O'Donnell, 

Youn, & Kwon, 2011; Woo, Spencer, & McCarley, 2010). Schizophrenic patients also 

demonstrated abnormalities in amplitude and synchronization of self-generated induced 

oscillations when they are in cognitive tasks such as executive and working memory tasks (C. M. 

Chen et al., 2014; Hong, Summerfelt, McMahon, Thaker, & Buchanan, 2004; McNally, McCarley, 

McKenna, Yanagawa, & Brown, 2011). Moreover, patients with schizophrenia display a reduced 

amplitude of gamma and theta oscillations in working memory tasks in their frontal lobes (Basar-
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Eroglu et al., 2007; Howard et al., 2003). Schizophrenic patients have also been characterized by 

abnormal neuronal oscillations at resting state with increased activity in low-frequency range and 

reduced activity in the high-frequency range (Hoptman et al., 2010; Van Den Heuvel & Pol, 2010).  

Many neurobiological abnormalities underlie the abnormal neuronal oscillations in 

schizophrenia.  Anatomically, schizophrenia has been shown to have a reduced volume of gray 

matter which is thought to cause reduced synaptic connectivity (Ellison-Wright, Glahn, Laird, 

Thelen, & Bullmore, 2008; Suddath, Christison, Torrey, Casanova, & Weinberger, 1990). This 

reduction of synaptic connectivity might be the reason that schizophrenics show reduced evoked 

neuronal oscillations. A study has shown a relationship between grey matter reduction and the ERP 

amplitudes reduction (B. O'donnell, Vohs, Hetrick, Carroll, & Shekhar, 2004). Evidence also 

indicated that white matter volume and integrity are changed in schizophrenic patients, as well as 

reduced organization of connections between different brain regions (Davis et al., 2003; Lim et al., 

1999; Pol et al., 2004). Because of the disrupted connections in a certain brain region or between 

different brain regions, patients with schizophrenia show impaired synchronization of oscillatory 

activity in the cortex in different frequency ranges (Hipp, Engel, & Siegel, 2011; Spencer et al., 

2004; Uhlhaas, Haenschel, Nikolić, & Singer, 2008). On the other hand, the disruption in different 

brain regions can cause deficits in long-range synchronization (Mulert, Kirsch, Pascual-Marqui, 

McCarley, & Spencer, 2011). 

To summarize, impairments and deficits in neuronal oscillations may be considered as an 

endophenotype of schizophrenia, each subcategory of the schizophrenia symptoms might be related 

to specific deficits found in amplitude (power) changes in the spontaneous and/or drug-induced 

neuronal oscillations, auditory-evoked response, etc. 

1.10 NMDAR involvement in mismatch negativity deficits in schizophrenia  

In the normal condition, humans or rodents respond to an unexpected stimulus (deviant 

stimulus) more strongly than to expected stimulus (standard stimulus) among a series of stimuli 
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consisting of both standard and deviant stimuli which are presented randomly (oddball paradigm) 

(Näätänen, Pakarinen, Rinne, & Takegata, 2004; Segalowitz & Barnes, 1993). Mostly the 

amplitude of the response to the deviant stimuli will be larger in both positive and negative direction. 

Mismatch negativity (MMN) is an auditory event-related potential component that is calculated 

based on the amplitude difference in response to unexpected stimuli (deviant) and standard stimuli 

(Näätänen, 1995; Näätänen, Paavilainen, Rinne, & Alho, 2007). This difference was first shown to 

be reduced in patients with schizophrenia 27 years ago (Shelley, Ward, Michie, et al., 1991). There 

are two main features of the reduced MMN seen in SCZ: 1) the size of deviant response is reduced 

with unchanged standard response; 2) the MMN increased with the higher deviance, but this 

increase reach a ceiling sooner in SCZ patients (Lavoie et al., 2008; P. Michie et al., 2000). The 

aspects that differentiate the deviant stimuli from the standard one can be frequency, latency, 

amplitude, etc.  In humans, there are few evident peaks that show up in oddball paradigm response 

waveform, according to their specific latency in milliseconds after the onset of the stimuli, they 

have been named as P100, P200, P400 (P1, P2 and P4) (Shelley, Ward, Catts, et al., 1991). Even 

though hundreds of studies have reported detectable MMN in humans, detecting MMN in animal 

models was not well-established until recently (L. Harms, Michie, & Naatanen, 2016). Several 

studies have now proved that rodents can recapitulate the MMN seen in humans and at least in part 

meet the most important criteria in human MMN- adaptation independence (Connolly et al., 2004; 

Nelken & Ulanovsky, 2007; Umbricht, Vyssotki, Latanov, Nitsch, & Lipp, 2005).  

In both the NMDAR hypofunction and neurodevelopmental animal models of 

schizophrenia, reduced MMN have been reported (Robert E Featherstone et al., 2015; L. Harms, 

2016). Among the NMDAR hypofunction models, uncompetitive NMDAR antagonists and 

GluN2B-selective blockers have been shown to cause reduced MMN (Daniel C Javitt, Mitchell 

Steinschneider, Charles E Schroeder, & Joseph C Arezzo, 1996; Korostenskaja, Nikulin, Kičić, 

Nikulina, & Kähkönen, 2007). However, ketamine increased the standard response while the 
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GluN2B blocker CP-101,606 reduced the deviant response similar to patients with schizophrenia 

instead (Digavalli V Sivarao et al., 2014), which suggest that ketamine might only affect the 

adaptation of MMN and NR2B subunits specifically might play a critical role in the MMN 

reduction seen in human schizophrenics. The observation that SCZ patients cannot establish 

deviance detection in the oddball paradigm is consistent with an essential role of NMDARs in 

short-term memory (Juanita Todd et al., 2008; Walker & Davis, 2000). This might be because they 

did not form intended short-term memory due to NMDAR dysfunction for those standard stimuli 

so that their brain cannot differentiate the deviant stimulus properly. On the other hand, 

developmental models of schizophrenia such as the neonatal ventral hippocampal lesion model and 

the social isolation model also demonstrated reduced oddball mismatch response (L. Harms, 2016). 

Since these studies did not consider the adaptation effect and lack controls for that, it is not clear 

whether this deficit represents adaptation or deviance detection has been affected in these models 

(L. Harms et al., 2016; L. R. Harms & Michie, 2013).  

1.11 NMDAR involvement in auditory steady-state response deficit in 

schizophrenia 

Sensory cortical neurons can be entrained to a stimulus at a specific frequency through the 

duration of the presented stimulus. Auditory steady-state response (ASSR) is an auditory-evoked 

potential that is generated in the brain when a large group of neurons synchronize together to a train 

of click stimuli between 1-200 Hz or by periodic modulation of amplitude and/or frequency of a 

continuous tone, and can be measured by methods like EEG (Korczak, Smart, Delgado, M Strobel, 

& Bradford, 2012; Picton, John, Dimitrijevic, & Purcell, 2003). ASSR have been extensively used 

in investigating the electrophysiological response to sensory stimulation in both children and adults 

(Roß, Borgmann, Draganova, Roberts, & Pantev, 2000; Swanepoel, Hugo, & Roode, 2004).  ASSR 

can be obtained non-invasively with minor task demand from patients and healthy controls which 

allow the ASSR to be used to test the ability of neural circuits to support oscillatory activity.  
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Although different frequency of stimuli can induce ASSR, ASSR to 40 Hz stimuli has been 

shown repeatedly to be prominent deficient in patients with schizophrenia by various studies while 

the ASSR to other frequency stimuli outside the gamma range seems to be less affected (Brenner 

et al., 2009; Jordan P Hamm, Casey S Gilmore, & Brett A Clementz, 2012; Krishnan et al., 2009; 

Kwon et al., 1999; Spencer, 2012). The brain region that generates ASSR is believed to be the 

primary auditory cortex and neurons in superficial layers, which suggests that the ASSR 

entrainment deficit at gamma frequency range seen in SCZ patients might due to the dysfunction 

of excitatory and/or inhibitory neurotransmission in their brain (Gutschalk et al., 1999; Herdman 

et al., 2002; Ross, Herdman, & Pantev, 2005). It is postulated that this deficit is secondary to the 

dysregulation of GABAergic neurons or NMDAR function (Jordan P Hamm et al., 2012; Kwon et 

al., 1999).  

However, several animal studies have examined the effects of NMDAR antagonists on the 

rat’s ASSR (B. F. O'Donnell et al., 2013; Jenifer L Vohs, Chambers, O'Donnell, Krishnan, & 

Morzorati, 2012) and found that ASSR power and phase synchronization was increased near 

auditory cortex at 20, 30, 40 Hz stimuli after ketamine administration (J. L. Vohs et al., 2010).  

Moreover, acute MK-801 administration has also been shown to increase ASSR synchronization 

at 20 and 40 Hz (Sivarao, 2015; Sivarao et al., 2016; Sivarao et al., 2013). In a human study, SCZ 

patients displayed augmented ASSR compared to healthy controls (J. P. Hamm, C. S. Gilmore, & 

B. A. Clementz, 2012).   

Thus, while most studies report a deficit in entrainment, several studies have reported 

increased signal power in ASSR. The inconsistency might be due to the usage of different tone and 

set up as stimuli such as the length of the click trains, the inter-stimulus intervals can affect the 

result of the ASSR (J. P. Hamm et al., 2012), the symptoms of the patients and different 

measurements seem to contribute to this controversial results as well (Sivarao, 2015). 
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1.12 Disrupted in the schizophrenia (DISC1) gene in schizophrenia 

Schizophrenia is a devastating psychiatric disorder that is thought to be caused by the 

interaction of genetic and environmental risk factors (Allardyce & Boydell, 2006; Van Os, Rutten, 

& Poulton, 2008). Many genes have been identified as risk genes of schizophrenia (Harrison & 

Weinberger, 2005; Jia, Sun, Guo, & Zhao, 2010). Compelling evidence for DISC1 gene 

involvement in schizophrenia is originally from a large Scottish family many of whom have a 

disrupted DISC1 gene and suffered from various mental illness, including SCZ (F. Zhang et al., 

2006). Many gene association studies have been conducted after this report. There is a consensus 

now that DISC1 is a major genetic risk factor for many mental disorders, e.g., SCZ and mood 

disorder (Hodgkinson et al., 2004; Koko Ishizuka, Matt Paek, Atsushi Kamiya, & Akira Sawa, 

2006). Clinical studies have demonstrated that mutations of DISC1 can cause abnormal brain 

function and anatomy (Callicott et al., 2005; Jaaro-Peled et al., 2009). In addition, the role of DISC1 

protein at the cellular level has been extensively studied as well. It is believed that DISC1 protein 

is a critical anchoring molecule that regulates its interacting proteins in different subcellular 

compartments (Atkin & Kittler, 2012; Brandon, 2007; Dahoun, Trossbach, Brandon, Korth, & 

Howes, 2017; Hattori et al., 2007; K. Ishizuka, M. Paek, A. Kamiya, & A. Sawa, 2006; James et 

al., 2004). The expression level of DISC1 is high in the developing brain, especially in the 

developing cortex where the DISC1 protein has been shown to be essential in various cellular 

processes, including progenitor cell proliferation, radial neuronal migration, dendritic arborization, 

and outgrowth, etc. In the adult brain, DISC1 is highly expressed in the dentate gyrus of 

hippocampus, which might suggest its possible role in neurogenesis in the mature brain (Dranovsky 

& Hen, 2007; J. Y. Kim et al., 2012; H. Lee et al., 2015; Q. Wu, Li, & Xiao, 2013; Ye et al., 2017). 

To summarize, DISC1 protein is critical for neurodevelopment which fits with SCZ that is being a 

neurodevelopmental disorder. There are animal studies showing that DISC1-mutated mice display 

various behavioral abnormalities and biochemistry changes that parallel to symptoms of SCZ 
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(Hikida et al., 2007; Niwa et al., 2010; Pletnikov et al., 2008). Chapter 4 is meant to obtain MMN 

and ASSR in DN-DISC1 transgene mice as the endophenotypes of SCZ to examine the relationship 

between DISC1 and SCZ. 

1.13 NMDAR and CDKL5 deficiency disorder 

Mutations in cyclin-dependent kinase-like 5 (CDKL5) gene reduce the amount of 

functional CDKL5 protein and/or alter its activity in neurons. It has been reported that deficiency 

of CDKL5 or impairment of its function leads to disrupted brain development (Charlotte Kilstrup-

Nielsen et al., 2012; Rusconi et al., 2008), yet it is not clear that how these molecular changes cause 

specific features of the diseases. Studies demonstrated that the CDKL5 gene provides instructions 

for making proteins that are critical for normal brain development and function. It is involved in 

the formation, growth, and migration of neurons in the brain (Bertani et al., 2006; Fehr et al., 2013; 

Lin, Franco, & Rosner, 2005). Clinically, CDKL5 deficiency shares symptoms with Rett syndrome，

e.g. seizures, intellectual disability and other developmental impairments (Mari et al., 2005). 

Specifically, CDKL5 deficiency disorder is featured with seizures initiated from infancy, usually 

occurred as early as the first three months of life. Other characteristics of CDKL5 deficiency 

disorder include impaired motor skills, delayed language acquisition, and other deficits (Bahi-

Buisson & Bienvenu, 2011). In addition, CDKL5 deficiency disorder is an X-linked mutation 

disorder that has been reported more in females probably due to more severe consequences than in 

males (Mangatt et al., 2016).   

In the animal models where CDKL5 gene function has been selectively knockout from 

excitatory and inhibitory neurons in forebrain, various biological and behavioral abnormalities have 

been reported, including abnormal EEG responses to convulsant agent, reduced visual-evoked 

responses, reduced dendritic arborization of cortical neurons, hypoactivity, and limb clasping 

(Amendola et al., 2014). Relationships between NMDAR and CDKL5 have been reported by 

several studies. For example, a cellular study of CDKL5 revealed that both CDKL5 subcellular 
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localization and expression were regulated by extrasynaptic NMDARs (Rusconi, Kilstrup-Nielsen, 

& Landsberger, 2011); On the other hand, another recent study uncovered that post-synaptic 

localization of GluN2B-containing NMDAR in the hippocampus was controlled by the CDKL5 

(Kosuke Okuda et al., 2017).  
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Chapter 2  

The role of GluN2C containing NMDA receptors in NMDA receptor antagonist-

induced neuronal oscillations 
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2.1       Abstract 

NMDA receptor (NMDAR) antagonists such as ketamine and phencyclidine (PCP), can 

reproduce many of the symptoms of schizophrenia, including deficits in perception, cognition ,and 

working memory. A reliable indicator of NMDAR antagonist action in vivo is the augmentation of 

neuronal oscillation power. Since the coordinated and rhythmic activation of neuronal assemblies 

(oscillations) is necessary for perception, cognition and working memory, their disruption both in 

psychiatric conditions and with NMDAR antagonists may reflect the underlying defects causing 

schizophrenia symptoms. Using four well-characterized NMDAR antagonists  (ketamine, MK-801, 

PCP, and memantine) and knockout (KO) mice, we evaluated the role of GluN2C NMDAR 

subunits in generating NMDAR antagonist-induced oscillations. We find that basal oscillatory 

power was elevated in the low gamma frequencies in GluN2C-KO mice. Compared to wildtype  

(WT) mice, all NMDAR antagonists increased oscillatory power more in GluN2C-KO mice, 

however, memantine was less effective than other antagonists in enhancing low gamma oscillations 

in the GluN2C-KO. Moreover, classic oddball response (the highly-sensitive measures for the 

endophenotype of schizophrenia) has been measured from GluN2C-KO mouse, KO mouse 

displayed impaired oddball response with lower amplitude peaks and shifted peaks latency. We 

propose a model wherein NMDARs containing GluN2C in astrocytes serve to detect local cortical 

excitatory synaptic activity and provide excitatory feedback to postsynaptic excitatory neurons.  In 

this manner, local excitatory activity modulates the postsynaptic potential and, in turn, oscillatory 

power.   
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2.2       Introduction 

The rhythmic and coordinated activation of groups of neurons results in neuronal 

oscillations which are thought to be necessary for cognition, perception and working memory 

(Uhlhaas, Haenschel, Nikolic, & Singer, 2008; Uhlhaas & Singer, 2012). Thus, in patients with 

schizophrenia, the increase in basal oscillatory power and a decrease, or aberrant augmentation, in 

the synchrony of oscillations between regions may be responsible for the symptoms of the disease 

(S. H. Lee et al., 2006; Spencer et al., 2003; Spencer, Niznikiewicz, Nestor, Shenton, & 

McCarley, 2009).  The ability of the NMDAR antagonists ketamine, MK-801 and PCP to mimic 

the spectrum of symptoms seen in SZ initiated the NMDAR hypofunction hypothesis of 

schizophrenia.  This hypothesis is now supported by a variety of pharmacological and genetic 

studies in both humans and rodents (J. T. Coyle et al., 2003; J. W. Olney et al., 1999; Snyder & 

Gao, 2013).  Consistent with this hypothesis, NMDAR blockade causes a well-described and 

robust augmentation of neuronal oscillations and a deficit in neural synchrony (Dzirasa et al., 

2009; Hakami et al., 2009; Korotkova, Fuchs, Ponomarenko, von Engelhardt, & Monyer, 2010; 

Pinault, 2008).  Thus, NMDAR blockade may be disrupting cognition and perception by 

increasing the noise of oscillations, thus decreasing the signal to noise ratio, or by decreasing 

appropriate synchrony or increasing aberrant synchrony between brain regions.  Presently, it is 

not clear how different NMDAR subtypes participate in the oscillatory generators. 

NMDAR complexes are composed of subunits from seven genes - GluN1, GluN2A-

GluN2D, and GluN3A-GluN3B (Masu et al., 1993; Mishina et al., 1993; Monyer et al., 1994; M. 

Watanabe, Inoue, Sakimura, & Mishina, 1993b). These subunits assemble into hetero-tetrameric 

complexes in various combinations resulting in functionally-distinct NMDARs. Many NMDARs 

are thought to be composed of two GluN1 subunits and two GluN2 subunits. The different 

alternatively spliced GluN1 isoforms have largely similar pharmacological and physiological 

properties whereas the GluN2 subunits confer distinct physiological, biochemical, and 
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pharmacological properties to the NMDAR complex (Buller et al., 1994; Hollmann et al., 1993; 

Ikeda et al., 1992; Monyer et al., 1994; Sugihara, Moriyoshi, Ishii, Masu, & Nakanishi, 1992b; 

Vicini et al., 1998a). NMDAR containing GluN2C or GluN2D subunits have distinct 

physiological properties compared to most forebrain NMDARs.  They display a reduced voltage-

dependency due to a weaker Mg²⁺ block, do not desensitize, have relatively high affinity for L-

glutamate, and have long-lasting current responses (Glasgow et al., 2015; Monyer et al., 1994; 

Paoletti, Bellone, & Zhou, 2013).  These properties, combined with their varied developmental 

profiles and anatomical distributions (M. Watanabe, Inoue, Sakimura, & Mishina, 1992, 1993a), 

imply that NMDAR containing these subunits may have a function in the CNS that is markedly 

distinct from the major GluN2A- and GluN2B-containing receptors. 

In recent studies, we have found that the potent non-selective NMDAR antagonist MK-

801 augmented gamma oscillations in GluN2C-KO mice more than in wildtype mice (Gupta et 

al., 2016).  In contrast, in the GluN2D-KO mouse, ketamine-induced oscillations were greatly 

diminished (Sapkota et al., 2016).  Since ketamine and MK-801 each have additional off-target 

activities (Briggs & McKenna, 1996; Clarke & Reuben, 1995; Sleigh, Harvey, Voss, & Denny, 

2014), we sought in the present study to directly compare 4 non-selective NMDAR antagonists in 

GluN2C-KO and mice to determine if these NMDAR antagonists effects on GluN2C-KO mice 

are a general feature of NMDAR antagonists.  Furthermore, since memantine has a potency, 

selectivity, and mechanism of action very similar to ketamine, but has less association with 

psychotomimetic effects, we were also interested to determine if memantine displays different 

effects on neuronal oscillations than other general NMDAR antagonists. 

We find that NMDAR antagonists, in general, have a significantly larger effect on 

neuronal oscillations in the GluN2C-KO mouse than in wildtype (WT) mice. Interestingly, while 

GluN2C-KO mice were associated with increased oscillatory power induced by all NMDAR 

antagonists, ketamine, MK-801 and PCP augmented oscillatory power in the low gamma 
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frequency range (30-60 Hz) while memantine and MK-801 augmented high gamma (60-90 Hz), 

thus potentially accounting for their differential ability to produce psychosis. Additionally, 

mismatch negativity is a reliable marker that is reduced in schizophrenia and it is considered to be 

a highly-sensitive measure for SCZ. To determine if GluN2C-containing NMDARs knockout will 

cause the phenotypes of SCZ, such as reduced MMN, we measure the classic oddball responses 

from WT and KO mouse and find that MMN is impaired in GluN2C-KO mouse. 
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2.3       Materials and methods 

2.3.1    Animal husbandry 

We used the GluN2C knockout/nβ-galactosidase knockin mouse (Karavanova, Vasudevan, 

Cheng, & Buonanno, 2007) which were backcrossed on to C57BL/6 background (95% and 

remaining 129 Sv/Ev). Experimental procedures were performed on male GluN2C wildtype (WT), 

heterozygous (HET), and knockout (KO) littermate mice. Mice (8-16 weeks old) were age matched 

(within one week of age) for ECoG recordings. Unless specified otherwise, animals were group-

housed on a 12:12 light/dark cycle with ad libitum access to food and water. At least 3 or more 

litters formed the subjects of each of the experimental groups and experiments were conducted in 

at least 2 or more batches and assimilated.  

2.3.2    Surgery 

All procedures were approved by the University of Nebraska Medical Center’s Institutional 

Animal Care and Use Committee (IACUC) in compliance with the National Institutes of Health 

guidelines.  12-16 weeks old WT, GluN2C-KO and GluN2D-KO mice were surgically implanted 

with tripolar electrodes  (MS333/2; Plastics One, Roanoke, VA) under 

xylazine/ketamine/acepromazine anesthesia as required by IACUC regulations. Two holes were 

made in the skull 3mm posterior to bregma at 1mm and 2.5mm lateral. Two electrodes were placed 

in the medial hole onto the dura surface near the retrosplenial cortex, and the third electrode was 

placed in the lateral hole for ground. The electrodes were secured to the skull as described 

elsewhere (Jeffrey et al., 2013). After 7 days of recovery, electroencephalographic (ECoG) 

recordings were made with a DP-311 differential amplifier (Warner Instruments, Hamden, CT) 

with high-pass/low-pass filters set at 0.1 and 300 Hz and digitized/recorded at 2000 Hz sampling 

rate (Digidata 1400, pClamp 10; Molecular Devices, Sunnyvale, CA).  
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2.3.3    Drugs 

We used the general NMDAR antagonists: ketamine (30mg/kg, Par Pharmaceutical, Spring 

Valley, New York or Hospira, Inc., Lake Forrest, IL), MK-801 (0.2mg/kg, kindly provided by 

Merck & Co.), memantine (20mg/kg), and PCP (3mg/kg, Sigma-Aldrich, St. Louis, MO). All drugs 

are dissolved in the saline. The dosage of each drug was determined by prior experiments and 

literature values (M. J. Hunt, B. Raynaud, & R. Garcia, 2006). 

2.3.4    ECoG Recordings 

At least one-week after electrode implant surgery, animals in their home cage were placed 

inside a surrounding Faraday cage, the electrode assembly was connected to a commutator by a 

cable and the animals were allowed to acclimate for 10 minutes.  After 30 minutes of baseline 

recordings, the animals were injected i.p. with NMDA antagonists or saline and recorded for 

additional 60-90 minutes. 

2.3.5    Oddball response recordings design 

Mice were tested for one half-hour session each day, for three days. The awake mouse 

recovered after 7 days from the surgery was placed in the experimental chamber for 15 min before 

each session to acclimatize. Each session consisted of an ascending and a descending oddball 

sequence separated by a 3 min break. The order of the two sequences alternated for each mouse 

across test sessions. Two sequences were presented in the experiment. These were oddball 

sequences where the roles of the deviant and standard were reversed  (flip-flop condition) resulting 

in either an ascending deviant sequence  (low frequency standard and high frequency deviant) or a 

descending deviant sequence  (high frequency standard and low frequency deviant). In the 

ascending and descending oddball sequences, 87.5% of the tones were standards and 12.5% 

deviants. For all sequences, tones had a 10 ms rise and fall time and a stimulus onset asynchrony  

(SOA) of 500 ms. Two tones of 100 ms duration were used: a low frequency tone of 9000 Hz and 
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a high frequency tone of 13000 Hz, Each of the sequences consisted of 1800 tones and ran for 20 

minutes. 

2.3.6    Data Analysis 

A power spectrum analysis was performed with Clampfit (Molecular Devices) using a 

Hamming window with 50% overlap.  Spectrogram analysis was performed by Neuroexplorer 

software. Data are expressed as mean of individual experiments along with the standard error of 

the mean. Statistical comparisons were made using one- or two-way ANOVA and multiple t-test. 

Graphpad Prism was used for statistical analysis and graphing the data. 
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2.4       Results 

ECoG recording of awake WT, GluN2C-KO mice displayed typical ECoG traces before 

and after drug administration (Figure 2.1). Average baseline absolute power of the two mice 

genotypes are displayed in (Figure 2.2) and values normalized by the WT mice values are shown 

in (Figure 2.3).  Relative to WT mice, GluN2C-KO mice displayed higher basal oscillatory power 

at frequencies above 10 Hz, especially within the beta and low gamma range of 20 to 60 Hz.  
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Figure 2. 1 Sample traces of ECoG recordings of wildtype and GluN2C-KO mice before 

(baseline) and after ketamine administration. 
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Figure 2. 2 Baseline power spectrum of WT and GluN2C-KO animals. 

GluN2C-KO mice (n = 15) display higher spontaneous oscillatory power than wildtype mice (n 

= 22), especially in low-gamma frequency range (20-60 Hz). SEMs are shown by light shading. 
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Figure 2. 3 % Power of oscillations in GluN2C-KO normalized by WT mice values. 

GluN2C-KO mice display higher oscillatory power than WT mice, the largest difference occur 

in the beta and low-gamma frequency range, which is distinct from the comparison of GluN2D-

KO in chapter 3. 



53 
 

Ketamine administration is followed by increased cortical neuronal oscillations in rodents, 

as we (Sapkota et al., 2016) and others (Hunt & Kasicki, 2013) have reported.  The ketamine 

response in WT and GluN2C KO mice is rapid (~1-2 minutes) and decays with a half-life of 15-20 

minutes, consistent with the known half-life for ketamine in mice (Sato et al., 2004) (Figure 2.4).  

This suggests that these actions are mediated by ketamine and not an active metabolite of ketamine. 

The ketamine-induced increase in oscillatory power was greater in GluN2C-KO mice than in WT 

mice at all frequencies between 5 and 200 Hz (Figure 2.5). The differences between WT and 

GluN2C-KO mice were most prominent between 30 and 60 Hz; all frequencies in this range showed 

p values < 0.05 by both multiple t-test (Figure 2.5) and two-way ANOVA.  
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Figure 2. 4 Ketamine-induced gamma oscillations increase is augmented in GluN2C-KO 

mice. 

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2C-KO mice before and after ketamine administration. Ketamine was injected at time = 0 

(minute) (arrow). The color of the spectrogram (from blue to red) represent the power (low to 

high) of the oscillations. 

 



55 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

Figure 2. 5 The average % oscillatory power increase of WT and GluN2C-KO mice after 

ketamine administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. Ketamine induced a maximal increase of 300% 

at ~50 Hz in the GluN2C=KO (red line, n = 6) while ketamine produced only a 100% in power 

increase over a broad range of frequencies in the WT (blue line, n = 10). The dotted line 

represents 0% increase, no drug-induced change in power.  SEMs are shown by light shading. 

Bottom panel: the statistical significance of the difference between WT and KO animals in 

oscillatory power at different frequencies is shown by a graph of the p values, the dotted line 

represents p = 0.05. 
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We next compared the ability of the potent NMDAR blocker MK-801 to induce oscillations 

in WT and GluN2C-KO mice. Typical baseline and MK-801-induced ECoG recording traces of 

WT, GluN2C heterozygous, and GluN2C-KO mice are displayed in Figure 2.6. MK-801-induced 

augmentation of oscillations is significantly greater in GluN2C-KO mice than in WT mice (Figure. 

2.7). MK-801 induce similar power increase in GluN2C heterozygous mice and WT mice (Figure 

2.8). Statistical analysis indicates that WT and GluN2C-KO were different with a p < 0.05 for all 

frequencies between 45 Hz and 160 Hz (Figure. 2.9).  A possible difference between ketamine and 

MK-801 is that MK-801augmented oscillations in the GluN2C-KO mouse over a broader 

frequency range.  These results include results from Gupta et al., 2016, adds additional animals, 

and excludes one GluN2C-KO animal which displayed a 26-fold greater increase in low frequency 

power than any other GluN2C-KO animal.  Inclusion of this animal increases the difference 

between WT and GluN2C-KO mice and significantly distorts the averaged response below 30 Hz. 
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Figure 2. 6 Sample traces of ECoG recordings of wildtype, GluN2C heterozygous, and 

GluN2C-KO mice before (baseline) and after MK-801 administration. 
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Figure 2. 7 MK-801-induced gamma oscillations increase is augmented in GluN2C-KO 

mice.  

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2C-KO mice before and after MK-801 administration. MK-801 was injected at time = 0 

(minute) (arrow). The color of the spectrogram (from blue to red) represent the power (low to 

high) of the oscillations. 
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Figure 2. 8 MK-801 increase the power of gamma oscillations in GluN2C heterozygous 

mice.  

Upper panel: Representative power spectrum of GluN2C heterozygous mice. Bottom panel: 

Average % power increase of WT (blue line, n = 6) and GluN2C+/- (green line, n = 4) mice 

after MK-801 administration. The dotted line represents 0% increase, no drug-induced change 

in power.  SEMs are shown by light shading. 
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Figure 2. 9 The average % oscillatory power increase of WT and GluN2C-KO mice after 

MK-801 administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. MK-801 induced a maximal increase of 200% 

between 65 to 165 Hz in the GluN2C=KO (red line, n = 5) while MK-801 produced only an 

80% increase in power over a broad range of frequencies in the WT (blue line, n = 12). The 

dotted line represents 0% increase, no drug-induced change in power.  SEMs are shown by light 

shading. Bottom panel: the statistical significance of the difference between WT and KO 

animals in oscillatory power at different frequencies is shown by a graph of the p values, the 

dotted line represents p = 0.05. 
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PCP-induced oscillations were also appeared greater in the GluN2C-KO than in WT mice 

(Figure 2.10). The average power of PCP induced oscillations was greater in GluN2C-KO mice 

especially in the range of 45 to 60 Hz.  P-values obtained by two-way ANOVA followed by Fisher 

LSD were < 0.05 for all frequencies between 45 and 60 Hz. However, the SD appeared to be a 

function of frequency.  P-values determined by multiple t-test, thus allowing SD values that may 

vary as a function of frequency, show a consistent band of low, but > 0.05, p-values between 40 

and 70 Hz (Figure 2.11).  
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Figure 2. 10 PCP-induced gamma oscillations increase is augmented in GluN2C-KO mice. 

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2C-KO mice before and after PCP administration. PCP was injected at time = 0 (minute) 

(arrow). The color of the spectrogram (from blue to red) represent the power (low to high) of 

the oscillations. 
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Figure 2. 11 The average % oscillatory power increase of WT and GluN2C-KO mice after 

PCP administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. PCP induced a maximal increase of 290% at 55 

Hz in the GluN2C=KO (red line, n = 5) while PCP produced only a 90% increase in power over 

a broad range of frequencies in the WT (blue line, n = 5). The dotted line represents 0% increase, 

no drug-induced change in power.  SEMs are shown by light shading. Bottom panel: the 

statistical significance of the difference between WT and KO animals in oscillatory power at 

different frequencies is shown by a graph of the p values, the dotted line represents p = 0.05. 
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Memantine augmented neuronal oscillations to a similar extent as do other general 

NMDAR antagonists, an approximately 100% increase especially over the gamma frequency band.  

The average memantine-induced response in GluN2C-KO was larger than in WT mice.  This 

augmentation above WT values was strongest between 70 and 90 Hz (Figure 2.12).  Unlike 

ketamine, MK-801, and PCP, memantine did not appear to augment oscillations in GluN2C-KO 

mice to a greater extent than in WT mice in the low gamma range of 30 – 60 Hz (Figure 2.13). 

High frequency oscillations (~140 – 160 Hz) were variably present after ketamine and MK-801 

administration, but not observed after PCP or memantine. 
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Figure 2. 12 Memantine-induced gamma oscillations increase is augmented in GluN2C-

KO mice.  

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2C-KO mice before and after memantine administration. Memantine was injected at time 

= 0 (minute) (arrow). The color of the spectrogram (from blue to red) represent the power (low 

to high) of the oscillations. 
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Figure 2. 13 The average % oscillatory power increase of WT and GluN2C-KO mice 

after memantine administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. Memantine induced a maximal increase of 160% 

from 70 to 90 Hz in the GluN2C=KO (red line, n = 5) while memantine produced only a 90% 

from 60 to 80 Hz in the WT (blue line, n = 5). The dotted line represents 0% increase, no drug-

induced change in power.  SEMs are shown by light shading. Bottom panel: the statistical 

significance of the difference between WT and KO animals in oscillatory power at different 

frequencies is shown by a graph of the p values, the dotted line represents p = 0.05. 
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Compared to WT, GluN2C-KO displayed abnormal evoked and oddball responses. The 

WT mouse display classic oddball response (Figure 2.14) in which the deviant tone induced a 

larger peak response.  The latency of each peak is: P1 ~ 18 ms, N1 ~ 37 ms, P2 ~ 70-120 ms. 

These peaks were shifted in GluN2C-KO mouse (Figure 2.15), and the deviant tone did not 

generate a larger response. 
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Figure 2. 14 WT Oddball auditory-evoked response. 

In an ECoG recording from above the WT mouse cortex, the classic auditory evoked 

response is enhanced when an oddball tone is presented. The average of the 13K Hz 

responses is shown for when the tone is presented as a standard (8:1) or a deviant (1:8). The 

P1 wave is at ~18 ms, N1 ~37 ms and P2 ~ 70-120 ms.  The greater amplitude of the P1/P2 

waves is consistent with an oddball response.  In some experiments, N2 was also enhanced. 
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Figure 2. 15 GluN2C-KO Oddball auditory-evoked response. 

In an ECoG recording from above the GluN2C-KO mouse cortex, the classic auditory 

evoked response is impaired when an oddball tone is presented. The average of the 13K 

Hz responses is shown for when the tone is presented as a standard (8:1) or a deviant 

(1:8). The latency of the peaks shifted compared to WT mouse, the P1 wave is at ~17 ms, 

N1 ~23 ms and P2 ~ 36 ms. The deviant tone did not generate a significantly greater 

response in the P1/P2 waves suggesting that MMN might be inhibited. 
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2.5       Discussion 

Neuronal oscillations are critical for cognition and working memory. Thus, changes in 

NMDAR-modulated neuronal oscillations would have important implications for behavior and 

cognition. Blockade of NMDAR activity in vivo causes a well-documented increase in oscillations, 

especially in the gamma frequency band. In the GluN2C KO mouse, NMDAR blockade causes 

enhanced gamma oscillations relative to those in WT mice. The enhanced response to NMDAR 

antagonists in the GluN2C-KO may correspond to a loss of GluN2C subunits from astrocytes that 

provide feedback to neurons.  Astrocytic processes near excitatory synapses can respond to L-

glutamate spill-over during bursts of synaptic stimulation with an increase in intracellular calcium  

(for reviews see (Haydon, 2001; Verkhratsky, Orkand, & Kettenmann, 1998)).  At least some of 

the astrocyte calcium response is thought to be due to NMDAR activation (Palygin, Lalo, 

Verkhratsky, & Pankratov, 2010). We have recently shown that in the telencephalon, GluN2C 

mRNA is commonly found in GFAP-positive glial cells and rarely found in neurons(Alsaad et al., 

2018). This result is thus consistent with the original conclusions from in situ hybridization studies 

(M. Watanabe et al., 1993a) and with transcriptome databases (Mancarci et al., 2017; Y. Zhang et 

al., 2014). Pankratov and colleagues (Palygin, Lalo, & Pankratov, 2011) have shown that the 

GluN2C/D preferring NMDAR antagonist UBP141 (Costa et al., 2009) preferentially blocks 

NMDA-evoked currents in astrocytes.  Since GluN2D mRNA is not found in glial cells in the 

cerebral cortex (Alsaad et al., 2018) these astrocyte currents are most likely to be mediated by 

GluN2C-containing NMDARs. This is consistent with the recent observation that agonist-evoked 

NMDAR currents in astrocytes are eliminated in the GluN2C-KO (Ravikrishnan et al., 2018).  Thus, 

there are functional GluN2C-containing receptors in astrocytes that could be responding to bursts 

of synaptic excitation.  In response to intracellular calcium elevations, astrocytes can exhibit 

calcium-dependent release of glial transmitters such as glutamate and ATP (Araque, Li, Doyle, & 

Haydon, 2000; Bezzi et al., 1998; Pasti, Zonta, Pozzan, Vicini, & Carmignoto, 2001). In turn, L-
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glutamate released from astrocytes has been shown to activate GluN1/GluN2B NMDARs 

synchronously in multiple postsynaptic neurons (Fellin et al., 2004), thus  providing a mechanism 

by which astrocytes can provide a synchronizing feedback signal to excitatory neurons in response 

to strong synaptic stimulation (Angulo, Kozlov, Charpak, & Audinat, 2004; Fellin & Carmignoto, 

2004). This hypothesis is consistent with our finding that burst stimulation, but not single 

stimulation, of the CA3-CA1 excitatory pathway results in a long-lasting postsynaptic NMDAR 

current that is blocked by both GluN2B and GluN2C/D antagonists (N. A. Lozovaya et al., 2004).  

GluN2C and astrocytes may be preferentially modulating low gamma oscillations.  In the 

GluN2C-KO, basal oscillations displayed greater power in the low gamma frequencies.  While 

NMDAR antagonists enhance oscillations over a broad range of frequencies in WT animals, in the 

GluN2C-KO, the antagonist ketamine, and sometimes PCP, selectively augmented low gamma 

oscillations.  Thus, it is noteworthy that recent studies have shown that astrocytes contribute 

specifically to the modulation of beta/low gamma in the 20 – 40 Hz range.  Transgenic animals that 

cannot release L-glutamate from astrocytes display a depressed oscillatory power at 20–40 Hz (H. 

S. Lee et al., 2014). Conversely, in an ex vivo preparation, selective optogenetic stimulation of 

astrocytes depresses 20-40 Hz kainate-induced gamma oscillations in a manner blocked by A1 

adenosine receptor antagonists (Tan et al., 2017). Thus, astrocytes appear to be able to modulate 

20-40 Hz oscillations in a bidirectional manner by releasing L-glutamate and ATP.  If GluN2C-

containing NMDARs regulate glial transmitter release, then their specific regulation of low gamma 

would be expected.  The greater oscillatory power in the GluN2C-KO in response to NMDAR 

blockers suggests that in the WT, GluN2C blockade normally suppresses low gamma  (while 

blocking other NMDARs enhance oscillations).  Thus, in the WT, tonic activation of GluN2C-

containing receptors may be enhancing low gamma.  This hypothesis is thus a telencephalic, 

astrocyte variation of that proposed for GluN2C-containing receptors in interneurons of the 
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thalamic reticular nucleus where the tonic activation of NMDARs with GluN2C modulate delta 

oscillations (Y. Zhang et al., 2009). 

Compared to GluN2A/B-containing NMDARs, GluN2C- and GluN2D-containing 

NMDARs have higher affinity for L-glutamate, show less voltage-dependency due to reduced Mg++ 

sensitivity, and they do not desensitize (Glasgow et al., 2015; Johannes J Krupp, Bryce Vissel, 

Stephen F Heinemann, & Gary L Westbrook, 1998; Traynelis et al., 2010; Wyllie, Livesey, & 

Hardingham, 2013).  Thus these receptors are well suited for being activated by low concentrations 

of extracellular glutamate and they can retain their activity under tonic or fast-spiking activity. With 

GluN2C in astrocytes, these receptors can provide excitatory feedback to the local ensemble of 

excitatory neurons in response to excitatory drive.  This subtype represents numerically minor 

NMDAR subtypes in the forebrain.  Thus, their potential ability to differentially modulate neuronal 

oscillations, while minimally impacting the major populations of NMDARs that are involved in a 

variety of other processes, suggests that these receptors could be useful targets for therapeutic 

applications. 
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Chapter 3  

The role of GluN2D containing NMDA receptors in NMDA receptor antagonist-

induced neuronal oscillations  
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3.1       Abstract 

Phencyclidine (PCP) and the dissociative anesthetic ketamine and elicit symptoms of 

schizophrenia at subanesthetic doses by blocking N-methyl-D-aspartate receptors  (NMDARs). 

This property led to a variety of studies resulting in the now well-supported theory that 

hypofunction of NMDARs is responsible for many of the symptoms of schizophrenia. The ability 

of NMDAR antagonists to increase neuronal oscillations, and disrupt their synchrony between 

regions are thought to contribute to the pathophysiology of schizophrenia. However, the roles 

played by specific NMDAR subunits in modulating the neuronal oscillations and thus their 

contribution to different symptom components are still unknown. To evaluate the potential 

contribution of GluN2D NMDAR subunits to antagonist-induced neuronal oscillations, we 

determined the ability of ketamine, MK-801, memantine and PCP to alter gamma frequency band 

neuronal oscillations in wild-type (WT) and GluN2D-knockout (GluN2D-KO) mice. In the 

electrocorticographic analysis, four NMDA non-selective antagonists induced-gamma oscillations 

increase seen in wildtype mice was abolished in GluN2D-KO mice whereas the MMN response 

was intact in GluN2D-KO mouse. These results suggest a critical role of GluN2D-containing 

NMDARs in neuronal oscillations and ketamine and PCP’s psychotomimetic, dissociative effects 

and hence suggests a critical role for GluN2D subunits in cognition and perception. 
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3.2       Introduction 

The discovery that the N-methyl-D-aspartate receptor  (NMDAR) antagonists ketamine 

and phencyclidine (NA Anis, Berry, Burton, & Lodge, 1983) can mimic the symptoms of 

schizophrenia prompted genetic, biochemical, and pharmacologic studies resulting in the NMDAR-

hypofunction theory of schizophrenia (Joseph T Coyle, Guochuan Tsai, & Donald Goff, 2003; 

Joshua T Kantrowitz & Daniel C Javitt, 2010; John E Lisman et al., 2008). Pharmacologic blockade 

of NMDAR in healthy humans elicits a spectrum of schizophrenia symptoms, and NMDAR 

blockade in laboratory animals provides a model for schizophrenia (Joshua T Kantrowitz & Daniel 

C Javitt, 2010). Further support for the NMDAR hypofunction hypothesis comes from the 

identification of many schizophrenia candidate genes that impair NMDAR function (Darrick T 

Balu & Joseph T Coyle, 2011; Greenwood, Light, Swerdlow, Radant, & Braff, 2012; Sun et al., 

2010) and observations that decreasing NMDAR levels in mice through genetic manipulations 

leads to schizophrenia-associated symptoms  (hyperlocomotor activity, impaired learning, reduced 

social interactions, and altered neuronal oscillations) (Halene et al., 2009; Mohn et al., 1999). 

Precisely how NMDAR blockade induces schizophrenia symptoms is unclear, but many 

studies support the proposal that blockade of NMDARs in GABAergic interneurons containing 

parvalbumin (PV) is responsible for the psychotomimetic actions of NMDAR antagonists 

(Guillermo Gonzalez-Burgos & David A Lewis, 2008; Joshua T Kantrowitz & Daniel C Javitt, 

2010; John E Lisman et al., 2008). Because PV-interneurons provide negative feedback to 

pyramidal neurons, inhibition of NMDAR in PV cells causes an excitation of pyramidal neurons 

by disinhibition and thus alters the excitatory/inhibitory balance in cortical circuits (Homayoun & 

Moghaddam, 2007; Q. Li, Clark, Lewis, & Wilson, 2002; Nakazawa et al., 2012). PV cell activity 

also contributes to gamma frequency band neuronal network oscillations that are important for 

cortical processing, working memory, and perceptual integration (Korotkova et al., 2010; Sohal, 

Zhang, Yizhar, & Deisseroth, 2009; Yizhar et al., 2011). Thus, acute administration of ketamine or 
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phencyclidine  (PCP) enhances excitatory activity in corticolimbic structures and increases basal 

levels of gamma oscillations (Homayoun & Moghaddam, 2007; Hunt & Kasicki, 2013; Bernat 

Kocsis, 2012; Nakazawa et al., 2012). Accordingly, selective reduction of the common GluN1 

NMDAR subunit in PV cells, increases basal gamma oscillations, decreases NMDAR antagonist-

induced gamma oscillations, and promotes schizophrenia-associated behavioral symptoms 

(Belforte et al., 2010; Billingslea et al., 2014; Carlen et al., 2012; Korotkova et al., 2010). Some of 

these effects could also be mediated by PV-containing interneurons in the thalamic reticular nucleus 

(Frassoni et al., 1991; Llinas, Urbano, Leznik, Ramirez, & van Marle, 2005). In schizophrenia, 

NMDAR-hypofunction may thus disturb excitatory/ inhibitory balance, thereby altering neuronal 

oscillations and disrupting cognitive function (Joshua T Kantrowitz & Daniel C Javitt, 2010; John 

E Lisman et al., 2008; Uhlhaas & Singer, 2013). 

The roles played by NMDARs with different subunit combinations in cortical processing 

and schizophrenia-related symptoms are unknown. Such information is necessary for resolving 

individual pathophysiologic components of schizophrenia and for defining appropriate therapeutics. 

NMDARs are tetrameric complexes composed of two GluN1 subunits and two subunits from 

among the GluN2A-D and GluN3A-B subunits (Ikeda et al., 1992; Ishii et al., 1993; Mishina et al., 

1993; Monyer et al., 1994; Traynelis et al., 2010). Pharmacologic studies in vivo have indicated a 

predominant role for GluN2A subunits in NMDAR antagonist-induced neuronal oscillations (B. 

Kocsis, 2012). However, in vitro experiments suggest a greater role for GluN2B subunits (McNally 

et al., 2011), and the roles of GluN2C and GluN2D subunits are unclear. Our group and others 

recently demonstrated that GluN2D NMDA receptors are mainly expressed in PV positive 

interneurons in various brain regions which suggests a critical role of GluN2D NMDA receptors in 

generating and modulating gamma oscillations, thus a critical role on schizophrenia pathology. We 

hypothesized that GluN2D-containing NMDARs may contribute to ketamine-induced 

schizophrenia symptoms because GluN2D NMDAR subunits are localized in PV-containing 
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GABAergic interneurons in cortex, reticular nucleus of thalamus, and hippocampus (Alsaad et al., 

2018; Monyer et al., 1994; Standaert et al., 1996; von Engelhardt et al., 2015; Yamasaki et al., 2014) 

and because ketamine has a higher affinity for GluN2D-containing NMDARs than for NMDARs 

containing the more widely expressed GluN2A and GluN2B subunits (Kotermanski & Johnson, 

2009). GluN2D involvement in schizophrenia could potentially also be mediated by altering 

neuronal-oligodendrocyte signaling (Fields, 2008; Micu et al., 2016). Thus, in the present study, 

we sought to determine whether ketamine-induced gamma oscillations are reduced in GluN2D-KO 

mice. Meanwhile, since the PPI response was not altered in GluN2D-KO mouse (Sapkota et al., 

2016), we also sought to determine if MMN response is influenced by GluN2D-containing 

NMDARs. 
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3.3       Materials and Methods 

3.3.1    Animals 

GluN2D-KO mice (Ikeda et al., 1995) that had been backcrossed onto a C57BL/6 

background to 99.9% homogeneity (Hizue, Pang, & Yokoyama, 2005) were used for these studies. 

The background strain was confirmed to be congenic with C57BL/6 (Charles River Laboratories 

genetic testing service; Willington, MA). Mouse genotype was confirmed by polymerase chain 

reaction followed by sequencing of the reaction product and by Western blot analysis. Male 

C57BL/6 WT and GluN2D-KO mice 10 to 12 weeks of age were used for studies; 10- to 15-week-

old male mice were used for ECoG studies. Mice were handled in accordance with University of 

Nebraska Medical Center’s Institutional Animal Care and Use Committee (IACUC) guidelines. In 

accordance with these guidelines, efforts were made to minimize animal suffering and the number 

of animals used. 

3.3.2    Surgery 

All procedures were approved by the IACUC in compliance with National Institutes of 

Health guidelines.  12-16 weeks old WT and GluN2D-KO mice were surgically implanted with 

tripolar electrodes (MS333/2; Plastics One, Roanoke, VA) under xylazine/ketamine/acepromazine 

anesthesia as required by IACUC regulations. Two holes were made in the skull 3mm posterior to 

bregma at 1mm and 2.5mm lateral. Two electrodes were placed in the medial hole onto the dura 

surface near the retrosplenial cortex, and the third electrode was placed in the lateral hole for ground. 

The electrodes were secured to the skull as described elsewhere (Jeffrey et al., 2013). After 7 days 

of recovery, electroencephalographic  (ECoG) recordings were made with a DP-311 differential 

amplifier  (Warner Instruments, Hamden, CT) with high-pass/low-pass filters set at 0.1 and 300 Hz 

and digitized/recorded  (Digidata 1400, pClamp 10; Molecular Devices, Sunnyvale, CA).  
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3.3.3    Drugs 

We used the general NMDAR antagonists: ketamine (30mg/kg, Par Pharmaceutical, Spring 

Valley, New York or Hospira, Inc., Lake Forrest, IL), MK-801 (0.2mg/kg, kindly provided by 

Merck & Co.), memantine (20mg/kg), and PCP (3mg/kg, Sigma-Aldrich, St. Louis, MO). All drugs 

were dissolved in the saline. The dosage of each drug was determined by prior experiments and 

literature value (M. J. Hunt et al., 2006). These concertation gave similar signal response in WT 

animals. 

3.3.4    ECoG Recordings 

At least one-week after electrode implant surgery, animals in their home cage were placed 

inside a surrounding Faraday cage. The electrode assembly was then connected to the commutator 

by a cable and the animals were allowed to acclimate for 10 minutes.  After 30 minutes of baseline 

recordings, the animals were injected i.p. with NMDA antagonists or saline and recorded for the 

period between 5 and 90 minutes after the injection.  

3.3.5    Oddball response recordings design 

Mice were tested for one half-hour session each day, for three days. The awake mouse 

recovered after 7 days from the surgery was placed in the experimental chamber for 15 min before 

each session to acclimatize. Each session consisted of an ascending and a descending oddball 

sequence separated by a 3 min break. The order of the two sequences alternated for each mouse 

across test sessions. Two sequences were presented in the experiment. These were oddball 

sequences where the roles of the deviant and standard were reversed  (flip-flop condition) resulting 

in either an ascending deviant sequence  (low frequency standard and high frequency deviant) or a 

descending deviant sequence  (high frequency standard and low frequency deviant). In the 

ascending and descending oddball sequences, 87.5% of the tones were standards and 12.5% 

deviants. For all sequences, tones had a 10 ms rise and fall time and a stimulus onset asynchrony  



80 
 

(SOA) of 500 ms. Two tones of 100 ms duration were used: a low frequency tone of 9000 Hz and 

a high frequency tone of 13000 Hz, Each of the sequences consisted of 1800 tones and ran for 20 

minutes. 

3.3.6    Data Analysis 

A power spectrum analysis was performed with Clampfit (Molecular Devices) using a 

Hamming window with 50% overlap.  Spectrogram analysis was performed by Neuroexplorer 

software. Data are expressed as mean of individual experiments along with the standard error of 

the mean. Statistical comparisons were made using one- or two-way ANOVA and multiple t-test. 

Graphpad Prism was used for statistical analysis and graphing the data. 
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3.4       Results 

ECoG recording of awake WT and GluN2D-KO mice displayed mostly typical ECoG 

traces before and after ketamine administration (Figure 3.1). The GluN2D-KO mice displayed a 

more obvious slow oscillation (~ 4 Hz).  Average baseline absolute power of the WT and GluN2D-

KO mice are displayed in (Figure 3.2) and values normalized by WT values are shown in (Figure 

3.3).   Relative to WT mice, GluN2D-KO mice had reduced power in the 5 – 30 Hz range (which 

may account for the distinct appearance of slow oscillations) and higher basal power above 50 Hz 

(Figure 3.3).  
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Figure 3. 1 Example traces of ECoG recordings of wildtype and GluN2D-KO mice before 

(baseline) and after ketamine administration.  
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Figure 3. 2 Baseline power spectrum of WT, GluN2D-KO animals. 

GluN2D-KO mice ( n=8 ) display higher spontaneous oscillatory power than wildtype mice  

( n=22 ), especially in high-gamma frequency range  (60-140 Hz). SEMs are shown by light 

shading. 
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Figure 3. 3 % Power of oscillations in GluN2D-KO normalized by WT mice values. 

GluN2D-KO mice display reduced oscillatory power from 5-30 Hz range, whereas display 

higher oscillatory power than WT mice above 50 Hz. 
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Ketamine administration is followed by increased cortical neuronal oscillations in rodents, 

as we (Sapkota et al., 2016) and others (for review see Hunt et al.) have reported.  The ketamine 

response in WT and GluN2D KO mice is rapid (~1-2 minutes) and decays with a half-life of 15-20 

minutes, consistent with the known half-life for ketamine in mice (Sato et al 2004) (Figure 3.4).  

This suggests that these actions are mediated by ketamine and not an active metabolite of ketamine. 

The ketamine-induced increase in oscillatory power seen in WT mice was significantly reduced in 

the high gamma frequencies in GluN2D-KO mice (Figure 3.5).   
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Figure 3. 4 Ketamine-induced gamma oscillations increase is abolished in GluN2D-KO 

mice.  

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2D-KO mice before and after ketamine administration. Ketamine was injected at time = 0 

(arrow). The color of the spectrogram (from blue to red) represent the power (low to high) of 

the oscillations. 
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Figure 3. 5 The average % oscillatory power increase of WT and GluN2D-KO mice 

after ketamine administration.  

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. Ketamine induced an increase of ~100% between 

50 to 145 Hz in the WT (blue line, n = 10) while ketamine only produced ~20% increase in 

GluN2D-KO (green line, n = 9) mice in the same frequency band. The dotted line represents 

0% increase, no drug-induced change in power.  SEMs are shown by light shading. Bottom 

panel: the statistical significance of the difference between WT and KO animals in oscillatory 

power at different frequencies is shown by a graph of the p values, the dotted line represents p 

= 0.05. 
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We next compared the ability of the potent NMDAR blocker MK-801 to induce oscillations 

in WT and GluN2D-KO mice.  MK-801-induced augmentation of oscillations is greatly diminished 

in GluN2D-KO mice compared to WT (Figure 3.6). In a manner generally similar to ketamine, 

MK-801-induced oscillations were weaker in GluN2D-KO mice than WT mice with p < 0.05 

(Figure 3.7) at most frequencies between 75 and 120 Hz and variably promoted high frequency 

oscillations (~155 Hz) in GluN2D-KO mice (Figure 3.6 and Figure 3.7). 
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Figure 3. 6 MK-801-induced gamma oscillations increase is abolished in GluN2D-KO 

mice. 

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2D-KO mice before and after MK-801 administration. MK-801 was injected at time = 0 

(arrow). The color of the spectrogram (from blue to red) represent the power (low to high) of 

the oscillations. 
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Figure 3. 7 The average % oscillatory power increase of WT and GluN2D-KO mice after 

MK-801 administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. MK-801 induced an increase of ~80% between 

50 to 145 Hz in the WT (blue line, n = 12) while MK-801 only produced ~20% increase in 

GluN2D-KO (green line, n = 7) mice in the same frequency band. The dotted line represents 

0% increase, no drug-induced change in power.  SEMs are shown by light shading. Bottom 

panel: the statistical significance of the difference between WT and KO animals in oscillatory 

power at different frequencies is shown by a graph of the p values, the dotted line represents p 

= 0.05. 
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PCP-induced oscillations were also largely diminished in GluN2D-KO mice compared to 

WT mice (Figure 3.8). PCP-induced oscillations appeared mostly eliminated in GluN2D-KO mice 

(Figure 3.9) with p < 0.05 for frequencies 50 – 70 Hz (Figure 3.9). 
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Figure 3. 8 PCP-induced gamma oscillations increase is abolished in GluN2C-KO mice. 

Representative power spectrum (left) and time-frequency spectrogram (right) of WT and 

GluN2D-KO mice before and after PCP administration. PCP was injected at time = 0 (arrow). 

The color of the spectrogram (from blue to red) represent the power (low to high) of the 

oscillations. 
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Figure 3. 9 The average % oscillatory power increase of WT and GluN2D-KO mice 

after PCP administration.  

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. PCP induced an increase of ~100% over a broad 

range of frequency in the WT (blue line, n = 5) while PCP only produced ~30% increase in 

GluN2D-KO (green line, n = 4) mice in the same frequency band. The dotted line represents 

0% increase, no drug-induced change in power.  SEMs are shown by light shading. Bottom 

panel: the statistical significance of the difference between WT and KO animals in oscillatory 

power at different frequencies is shown by a graph of the p values, the dotted line represents p 

= 0.05. 
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Memantine augmented neuronal oscillations to a similar extent as do other general 

NMDAR antagonists, an approximately 100% increase especially over the gamma frequency band 

(Figure 3.10 and Figure 3.11).  The majority of this increase was eliminated in GluN2D-KO mice 

with the average GluN2D-KO response less than the WT response for all frequencies between 30 

and 200 Hz (Figure 3.11). P-values were < 0.05 for all frequencies between 45 and 94 Hz (Figure 

3.11). High frequency oscillations (~140 – 160 Hz) were variably present after ketamine and MK-

801 administration, but not observed after PCP or memantine. 
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Figure 3. 10 Memantine-induced gamma oscillations increase is augmented in GluN2D-

KO mice. 

Representative power spectrum (left) and time-frequency spectrogram (right) of WT, GluN2D-

KO mice. Memantine was injected at time = 0 (arrow). The color of the spectrogram (from blue 

to red) represent the power (low to high) of the oscillations. 
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Figure 3. 11 The average % oscillatory power increase of WT and GluN2D-KO mice after 

memantine administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. Memantine induced an increase of ~100% 

between 50 to 100 Hz in the WT (blue line, n = 5) while memantine only produced ~15% 

increase in GluN2D-KO (green line, n = 4) mice in the same frequency band. The dotted line 

represents 0% increase, no drug-induced change in power.  SEMs are shown by light shading. 

Bottom panel: the statistical significance of the difference between WT and KO animals in 

oscillatory power at different frequencies is shown by a graph of the p values, the dotted line 

represents p = 0.05. 
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The oddball response in GluN2D-KO mouse is intact. The GluN2D-KO mouse display 

classic oddball response (Figure 3.12) which the deviant tone induced a larger peak response, and 

the latency of each peak is: P1 ~ 19 ms, N1 ~ 31 ms. 
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Figure 3. 12 GluN2D-KO Oddball auditory-evoked response. 

In an ECoG recording from above the GluN2D-KO mouse cortex, the classic auditory evoked 

response is enhanced when an oddball tone is presented. The average of the 13K Hz responses 

is shown for when the tone is presented as a standard (8:1) or a deviant (1:8). The latency of 

the N1 peak left-shifted compared to WT mouse. The P1 wave is at ~19 ms, N1 ~31 ms.  As 

found for WT mice, the deviant tone generated a larger amplitude response. 
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3.5       Discussion 

Our finding that GluN2D deletion reduces NMDAR antagonist-induced gamma 

oscillations suggests that GluN2D-containing NMDARs have an important role in modulating 

neuronal network oscillations. This has significant implications for schizophrenia. Neuronal 

oscillations in the gamma frequency band are thought to be integral to cognition and perception, 

and their impairment has been proposed to underlie the symptoms of schizophrenia (Gonzalez-

Burgos, Hashimoto, & Lewis, 2010; G. Gonzalez-Burgos & D. A. Lewis, 2008; Uhlhaas & Singer, 

2013). Because NMDARs in PV positive cells are important for the modulation of gamma 

oscillations (Carlen et al., 2012; Uhlhaas & Singer, 2013), these results are also consistent with a 

key role of GluN2D subunits in cortical PV cell function. In addition, GluN2D subunits in the 

thalamus are likely to contribute to ketamine-induced dysrhythmias. Nucleus reuniens participates 

in circuits involved in schizophrenia-related symptoms (prefrontal cortex, hippocampus, and 

ventral tegmentum) (Duan et al., 2015; Griffin, 2015; Ito, Zhang, Witter, Moser, & Moser, 2015; 

Lisman, Pi, Zhang, & Otmakhova, 2010) and is enriched in GluN2D subunits (Buller et al., 1994; 

M. Watanabe et al., 1993a). Additionally, inhibition of NMDAR in the reticular nucleus, which 

contains GluN2D and GluN2C subunits (M. Watanabe et al., 1993a; Yamasaki et al., 2014), 

generates telencephalic delta oscillations and potentially schizophrenia-related symptoms (Y. 

Zhang et al., 2009). Thus, GluN2D subunit-containing NMDARs may have an essential role in the 

pathophysiologic expression of NMDAR hypofunction that underlies schizophrenia’s cognitive 

symptoms. This suggestion is consistent with studies associating genetic variants of GluN2D 

subunits with schizophrenia risk (Makino, Shibata, Ninomiya, Tashiro, & Fukumaki, 2005) and 

with reduced GluN2D expression in schizophrenia (Sodhi, Simmons, McCullumsmith, 

Haroutunian, & Meador-Woodruff, 2011) and in an animal model of schizophrenia(Bullock, 

Bolognani, Botta, Valenzuela, & Perrone-Bizzozero, 2009) .  
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Ketamine also produced an increase in oscillations at frequencies corresponding to high-

frequency oscillations (HFO), as previously reported elsewhere (Hunt & Kasicki, 2013). In 

GluN2D-KO mice, the ketamine-induced peak appeared at a higher frequency (∼155 Hz) than in 

WT mice (∼135 Hz). Interestingly, other groups have reported a similar finding in the 

methylazoxymethanol acetate neurodevelopmental model of schizophrenia. In both the nucleus 

accumbens (Goda et al., 2015) and motor cortex (Phillips et al., 2012), ketamine elicited HFO with 

a higher peak frequency in the methylazoxymethanol-treated animals. The significance of this shift 

in peak frequency is unclear, but it may be noteworthy that the atypical antipsychotics (Olszewski, 

Piasecka, Goda, Kasicki, & Hunt, 2013) and glycine (Hunt et al., 2015) were found to reduce the 

peak frequency of NMDAR antagonist-induced HFOs. Thus HFOs peak frequency may be a 

biomarker suitable for monitoring antipsychotic drug activity. 

From our previous experiment, the PPI was not changed in GluN2D-KO mouse. It is not a 

surprise that the MMN response was also not affected by GluN2D. However, proper controls 

should be taken into consideration in obtaining the MMN response. In our experiments, we use one 

control (flip-flop design) to exclude to effect of the frequency of the tones itself. We will use a 

multi-standards control to distinguish between true deviance detection and adaptation in future 

studies. Current GluN2D-KO data show a trend of unchanged oddball response, more experiments 

will be needed to quantify the changes of the peak amplitude and the shifts of the latency to make 

a solid conclusion.  

The ability of GluN2D-deletion to nearly eliminate NMDAR antagonist-induced high 

gamma oscillations may be due to the loss of GluN2D subunits which are normally expressed in 

GABAergic interneurons containing parvalbumin  (PV) (Alsaad et al., 2018; Perszyk et al., 2016; 

Standaert et al., 1999; von Engelhardt et al., 2015; Y. Watanabe et al., 2015) PV cells participate 

in generating gamma oscillations (Buzsáki & Wang, 2012; Cardin et al., 2009) and the blockade  

(Hunt and Kasicki 2013) or the genetic deletion of NMDARs in these cells (Carlen et al., 2012; 
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Korotkova et al., 2010) augments gamma oscillations.  These findings are consistent with the 

observation that NMDAR channel blockers preferentially block interneurons (Homayoun & 

Moghaddam, 2007; Q. Li et al., 2002) thus causing disinhibition of downstream excitatory neurons.  

This greater sensitivity of PV interneurons to NMDAR antagonists may be due to the greater 

sensitivity of GluN2D-containing NMDARs to channel blockers such as ketamine and memantine 

(J. W. Johnson & Kotermanski, 2006). 

Thus, GluN2D-containing NMDARs could be a promising therapeutic target for treating 

schizophrenia. The negative allosteric modulators that act selectively on GluN2D-containing 

NMDARs have the potential to become a new-generation anti-schizophrenia drug. 
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Chapter 4  

The role of CDKL5 (cyclin-dependent kinase-like 5) in modulating the neuronal 

oscillations 
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4.1       Abstract 

CDKL5 (cyclin-dependent kinase-like 5) is a protein with homology to the serine-threonine 

kinases whose function is not-fully characterized. CDKL5 is expressed in the cortex, hippocampus, 

and striatum, localized to synaptosomes and nuclei. Mutations in the CDKL5 gene, encoding 

CDKL5, have been identified in CDKL5 disorder which is a devastating neurodevelopmental 

disorder associated with early-onset epileptic encephalopathy, severe intellectual disability, autism, 

and related phenotypes. Since many of the symptoms of CDKL5 disorder are similar to 

schizophrenia and autism, we hypothesized that there may be NMDA receptor hypofunction in 

inhibitory interneurons. Consequently, we hypothesized that mice with CDKL5 loss-of-function 

may serve as a model for this disorder and that measured oscillations might serve as a biomarker 

for the disorder. If so, then there may be a change in the basal oscillatory power, a reduced impact 

of NMDAR antagonists on oscillatory power, and hopefully an improvement in the behavior in the 

presence of NMDAR potentiators. In this project, we have tested the first two hypotheses. Using 

mice in which CDKL5 has been knockout conditionally, we measured the basal and drug-induced 

neuronal oscillations from CDKL5-KO mice and wildtype mice; our data have shown that CDKL5-

KO mice display reduced basal oscillations in frequency <45 Hz and augmented basal oscillations 

in frequency range > 45 Hz. Moreover, our data also show that both ketamine and pentylenetetrazol 

(PTZ) induce oscillations with reduced power in CDKL5-KO mice compared to WT mice. Taken 

together, these data support the idea that CDKL5 deficient mouse a reduced NMDAR function in 

inhibitory interneurons which may be responsible for some of the symptoms. 
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4.2       Introduction 

CDKL5 disorder is a devastating neurodevelopmental disorder associated with early-onset 

epileptic encephalopathy (Bodian, Schreiber, Vilboux, Khromykh, & Hauser, 2018; C. Kilstrup-

Nielsen et al., 2012), severe intellectual disability, autism, and related phenotypes (Posar, Faggioli, 

& Visconti, 2015).  CDKL5 is a protein with homology to the serine-threonine kinases. Structurally, 

the protein has a kinase domain and putative nuclear localization and nuclear export signals. The 

functional roles of CDKL5 are not fully characterized, but it has been shown to play critical roles 

in regulating postsynaptic localization of NMDA receptors (K. Okuda et al., 2017), surface 

expression of AMPA receptors (Tramarin et al., 2018), neuronal polarization (Nawaz et al., 2016), 

synaptic connectivity in the cortex (Pizzo et al., 2016), dendritic spine stability (Della Sala et al., 

2016), and dendritic architecture (Fuchs et al., 2014). Loss of CDKL5 in mouse models leads to 

phenotypes associated with CDKL5 disorder, including autistic phenotypes (I. T. Wang et al., 

2012), memory impairment (Tang et al., 2017), increased seizure susceptibility (K. Okuda et al., 

2017), and sleep apnea (Lo Martire et al., 2017). Thus, CDKL5 is a critical regulator of neural 

circuit function, and disruption of these functional roles in CDKL5 disorder likely contributes to 

neural circuit deficits and behavioral outcomes associated with the disorder. Schroeder and 

colleagues (Schroeder et al., 2018) demonstrated that loss of CDKL5 has distinct effects on mTOR 

signaling and synaptic compositions on excitatory neurons and inhibitory neurons.  

Neuronal oscillations are modulated by a group of inhibitory neurons that synchronize 

excitatory neuronal assemblies at the same time, and they are related to many higher brain functions, 

such as cognition and perception.  Thus, CDKL5 disorder phenotypes might caused by its 

regulation of NMDARs function in both the excitatory neurons and inhibitory neurons. A reliable 

indicator of NMDARs function in vivo is the neuronal oscillations. Since CDKL5-KO upregulates 

the GluN2B subunits of NMDAR in excitatory neurons, it is plausible that CDKL5 knockout mouse 
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model will display elevated basal neuronal oscillations thus contributes to the neurological 

phenotypes. Additionally, CDKL5 loss-of-function is related to increased seizures, thus by giving 

a sub-convulsive dose of PTZ to CDKL5-KO, we would expect an increase in seizure susceptibility 

and maybe an enhanced augmentation of neuronal oscillations. PTZ, as a GABA receptor 

antagonist, blocking GABA receptors will disinhibit the excitatory neurons and thus make the E/I 

balance shift to more excitatory direction, as such this may increase the neuronal oscillations.  

Our data have shown that CDKL5-KO mice display reduced basal oscillations in frequency 

<45 Hz and augmented basal oscillations in frequency range > 45 Hz. Moreover, our data also show 

that both ketamine and pentylenetetrazol (PTZ) induce oscillations with reduced power in CDKL5-

KO mice compared to WT mice. Our basal oscillatory power data from CDKL5-KO and WT mice 

suggest that loss of CDKL5 function reflect a hypofunction state of NMDARs in inhibitory 

interneurons. From our previous studies, the oscillatory power increase caused by NMDAR 

antagonism may depends on the extent of total NMDARs function that had been inhibited. Taken 

together, our data indicate that CDKL5 disorder associated neurological phenotypes may caused 

by its role in regulating the neuronal oscillations and NMDARs function. 
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4.3       Methods and materials 

4.3.1    CDKL5-KO mouse line generation 

The CDKL5-KO mouse line was generated in the Dr. Arikkath laboratory as previously 

described (Schroeder et al., 2018). In the mouse CDKL5 gene, the fourth exon was targeted for 

creating a conditional knockout allele. The targeting construct was commercially synthesized that 

contained a left and right homology arms along with the upstream LoxP site in intron 3. Upon Cre-

mediated deletion of the exon 4, the transcript will undergo nonsense-mediated decay due to 

frameshift in the protein coding sequence of the downstream exons. A genotyping PCR assay was 

developed for detecting the conditional knockout allele. The floxed mice were bred to Cre mice to 

generate neuronspecific conditional knockout allele for CDKL5.  

4.3.2    Animals 

All animal experiments were approved by Institutional Animal Care and Use Committee 

of the University of Nebraska Medical Center. Mice were housed with 12/12-h dark/light cycle 

with free access to food and water. The heterozygous CDKL5fl females were mated with 

homozygous CaMKIIα-Cre (the Jackson Laboratory, Stock No. 005359) or Gad2-IRES-Cre (the 

Jackson Laboratory, Stock No. 019022) male. Three offspring from homozygous CDKL5fl female 

and heterozygous Gad2-IRES-Cre male were also included and no significant difference were 

observed. Only male mice were included in this study. 

4.3.3    Surgery 

All procedures were approved by the University of Nebraska Medical Center’s Institutional 

Animal Care and Use Committee (IACUC) in compliance with the National Institutes of Health 

guidelines.  12-16 weeks old WT, CDKL5-KO mice were surgically implanted with tripolar 

electrodes (MS333/2; Plastics One, Roanoke, VA) under xylazine/ketamine/ acepromazine 

anesthesia as required by IACUC regulations. Two holes were made in the skull 3mm posterior to 
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bregma at 1mm and 2.5mm lateral. Two electrodes were placed in the medial hole onto the dura 

surface near the retrosplenial cortex, and the third electrode was placed in the lateral hole for ground. 

The electrodes were secured to the skull as described elsewhere (Jeffrey et al., 2013). After 7 days 

of recovery, electroencephalographic (ECoG) recordings were made with a DP-311 differential 

amplifier (Warner Instruments, Hamden, CT) with high-pass/low-pass filters set at 0.1 and 300 Hz 

and digitized/recorded (Digidata 1400, pClamp 10; Molecular Devices, Sunnyvale, CA).  

4.3.4    Drugs 

We used the general NMDAR antagonist: ketamine  (30mg/kg, Par Pharmaceutical, Spring 

Valley, New York or Hospira, Inc., Lake Forrest, IL), and the GABAergic antagonist: 

Pentylenetetrazol  (PTZ)  (15mg/kg, from our cooperator, Dr. Olga Taraschenko). All drugs are 

dissolved in the saline. The dosage of each drug was determined by prior experiments and literature 

values(Mark Jeremy Hunt, Beryl Raynaud, & Rene Garcia, 2006). 

4.3.5    ECoG Recordings 

At least one-week after electrode implant surgery, animals in their home cage were placed 

inside a surrounding Faraday cage, the electrode assembly was connected to a commutator by a 

cable and the animals were allowed to acclimate for 10 minutes.  After 30 minutes of baseline 

recordings, the animals were injected i.p. with ketamine or PTZ and recorded for 60-90 minutes 

after the injection.  Some recordings were pause during drug administration and then resumed 

within 2 minutes using the same recording conditions. 

4.3.6    Data Analysis 

A power spectrum analysis was performed with Clampfit (Molecular Devices) using a 

Hamming window with 50% overlap.  Spectrogram analysis was performed by Neuroexplorer 

software. Data are expressed as mean of individual experiments along with the standard error of 

the mean. Statistical comparisons were made using one- or two-way ANOVA and multi-
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comparison t-tests if the standard deviations varied with frequency. Graphpad Prism was used for 

statistical analysis and graphing the data. 
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4.4    Results 

Relative to WT mice, CDKL5-KO mice, displayed higher average basal oscillatory power at 

frequencies above 45 Hz. In contrast, CDKL5-KO mice had reduced power in the 5 – 45 Hz range 

(Figure 4.1). 

 

  



110 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 1 Baseline oscillations are elevated in CDKL5-KO mice.  

Upper panel: ECoG analysis of baseline power spectrum of WT and CDKL5-KO animals 

before drug administration. SEMs are shown by light shading.  Bottom panel: % Power of 

oscillations in CDKL5-KO mice compared to WT mice. 
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The ketamine-induced increase in oscillatory power was greater in WT mice than in 

CDKL5-KO mice at all frequencies between 5 and 200 Hz (Figure 4.2).  The differences between 

WT and CDKL5-KO mice were most prominent between 50 to 60 Hz and between 80 to 100 Hz; 

all frequencies in this range showed p values < 0.05 by both multiple t-test and two-way ANOVA.   

 

 

  



112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. 2 Ketamine induced power increase on gamma oscillations in CDKL5-KO and 

WT mice.  

Upper panel: the average % increase in oscillatory power is shown for different frequencies in 

response to ketamine injection for WT (blue line, n = 10) and CDKL5-KO (red line, n = 9). 

SEMs are shown by light shading. Bottom panel: the statistical significance of the difference 

between WT and KO animals in oscillatory power at different frequencies is shown by a 

graph of the p values, the dotted line represents p = 0.05. 
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The PTZ-induced increase in oscillatory power was greater in WT mice than in CDKL5-

KO mice at all frequencies between 5 and 200 Hz (Figure 4.3).  The differences between WT and 

CDKL5-KO mice were most prominent between 5 and 35 Hz; all frequencies in this range showed 

p values < 0.05 by both multiple t-test and two-way ANOVA.   
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Figure 4. 3 PTZ-induced power increase on gamma oscillations in CDKL5-KO and WT 

mice.  

Upper panel: the average % increase in oscillatory power is shown for different frequencies in 

response to PTZ injection for WT (blue line, n = 10) and CDKL5-KO (red line, n = 9). SEMs 

are shown by light shading. Bottom panel: the statistical significance of the difference between 

WT and KO animals in oscillatory power at different frequencies is shown by a graph of the p 

values, the dotted line represents p = 0.05. 
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4.5       Discussion 

NMDAR hypofunction in inhibitory interneurons may contribute to the mechanism by 

which CDKL5 loss-of-function leads to behavioral impairments. A reliable electrophysiological 

indicator of NMDARs function in vivo is the change of oscillatory power resulting from NMDAR 

antagonists. From our previous experiments, we propose that the enhancement of oscillatory power 

is directly related to NMDAR hypofunction caused by deletion/blockade to NMDARs by genetic 

modification or pharmacological antagonism. CDKL5-KO is known to cause an upregulation in 

GluN2B-containing NMDAR in excitatory neurons. However, our studies are consistent with a 

hypofunction of NMDAR in inhibitory interneurons. These two actions are not mutually exclusive 

and, both would contribute to increasing the E/I balance and favor seizure generation. The 

upregulation of GluN2B subunits in excitatory neurons may contributes to the enhanced basal 

power of CDKL5-KO mice compared to WT mice.  Having a higher basal oscillatory power, it is 

not surprising that the NMDAR antagonists-induced neuronal oscillations increase in CDKL5-KO 

mice is not as strong as in WT mice. This could be due to other factors and that the reduced impact 

of NMDAR antagonism could be due to a ceiling effect where the higher basal levels limit how 

much oscillations can be further augmented. However, as shown in chapter 2, in the GluN2C-KO, 

the NMDAR antagonist induced more neuronal oscillations increase than WT, even though 

GluN2C-KO also displayed higher basal neuronal oscillations. Thus, the brain is capable of 

stronger oscillations even with elevated basal oscillations.  

Many neurological deficits such as schizophrenia, autism are also associated with impaired 

long-range synchrony. CDKL5 disorder displays various phenotypes, including seizures, autism. 

To test our hypothesis, one future direction is to measure the long-range synchrony when the 

CDKL5-KO mouse is performing cognitive task (e.g. food forging). Additionally, the possibility 

that the CDKL5-KO mouse has NMDA hypofunction is consistent with the behavioral symptoms 

of these mice.  
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Finally, if our hypothesis is correct, NMDAR potentiators of GluN2D-containing 

NMDARs should restore the abnormal neuronal oscillations and improve the behavioral deficits in 

CDKL5-KO mouse. CDKL5-KO mouse could possibly be used to test NMDA receptor modulators 

using neuronal oscillations and behavioral studies. 
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Chapter 5  

Subunit-selective drug-induced neuronal oscillations in GluN2C and GluN2D 

knockout mice 
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5.1       Abstract 

The aim of this chapter is to confirm the findings from chapter 2 & 3. By using GluN2C-

KO, GluN2D-KO mouse, and NMDAR subunits selective antagonists, we are able to confirm the 

opposing roles of GluN2C- and GluN2D- containing NMDARs in modulating neuronal oscillations. 

Specifically, we used NVP-AAM077 (GluN2A-subunit preferring antagonist), Ro25-6981 

(GluN2B-selective antagonist), UBP791 (GluN2C and GluN2D selective antagonist), and SDZ-

220,581 (a general antagonist with higher potency at GluN2A>2B>2C>2D) to determine the effect 

of these drugs on neuronal oscillations in GluN2C- and GluN2D-KO mice. We found that both 

NVP-AAM077 and Ro25-6981 induced power increase in WT mice and that the increased 

oscillations were not altered in GluN2C- and GluN2D-KO mice.  In contrast, the increase in 

oscillations induced by UBP791 in WT mice was eliminated in GluN2D-KO mice and augmented 

in the GluN2C-KO. Lastly, SDZ-220,581 induced an obvious oscillatory power increase in the 

high-gamma range in GluN2C-KO mouse whereas did not induce an ambient change in GluN2D-

KO and WT mouse.  Taken together, these results suggest that inhibition of GluN2A- or GluN2B-

containing NMDARs can enhance gamma oscillations independently of GluN2C/D-containing 

receptors whereas altered oscillatory power due to NMDAR channel blockers (e.g., PCP, ketamine) 

and GluN2C/D-selective competitive antagonists are dependent upon GluN2C/D-containing 

receptors. 
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5.2       Methods and materials 

5.2.1    Drug preparation 

We used the subunit-selective NMDAR antagonists: NVP-AAM077 (20mg/kg), Ro25-

6981 (30mg/kg, Tocris), SDZ220,581 (3mg/kg), and UBP791 (30mg/kg). All drugs were dissolved 

in the saline. The dosage of each drug was determined by prior experiments and literature (Bernat 

Kocsis, 2012; N. Lozovaya et al., 2014; Phillips et al., 2012).  

5.2.2    ECoG recordings 

See details in chapter 2, 3, and 4 

 

5.2.3    Surgery 

See details in chapter 2, 3, and 4 

 

5.2.4    Date analysis 

See details in chapter 2, 3 and 4 
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5.3       Results 

We compared the ability of the GluN2A-selective antagonist NVP-AAM077 to induce 

oscillations in WT, GluN2C-KO, and GluN2D-KO mice.  NVP-AAM077 induced ~50% 

oscillatory power increase in the three mouse lines from 30 Hz to 60 Hz (Fig 5.1). Statistical 

analysis indicates that there is no significant difference between WT and KOs among all 

frequency range.  

The GluN2B-selective antagonist Ro25-6981 displayed similar effects as NVP-AAM077, 

Ro25-6981 induced ~50% oscillatory power increase in the three mouse lines from 60 Hz to 120 

Hz, except it did not induce as much of an increase in oscillatory power at frequencies above ~120 

Hz in GluN2D-KO mice (Fig 5.2). 

We next compared the ability of the GluN2C and GluN2D-preferring competitive 

antagonist UBP791 to induce oscillations in WT, GluN2C-KO, and GluN2D-KO mice.  UBP791 

induced ~80% power increase in GluN2C-KO mouse, while it only induced ~50% power increase 

in WT mouse, and it minor alter the oscillatory power in GluN2D-KO mouse (Fig 5.3).  

Lastly, SDZ-220,581 induced a maximal 300% oscillatory power increase in the high-

gamma range in GluN2C-KO mouse whereas did not induce an ambient change in GluN2D-KO 

and WT mouse (Fig 5.4). 
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Figure 5. 1 The average % oscillatory power increase of WT, GluN2C-KO mice and 

GluN2D-KO mice after NVP-AAM077 administration.  

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. NVP-AAM077 induced an increase of ~40% 

between 30 to 60 Hz in the WT (blue line, n = 6), NVP-AAM077 induced an increase of ~50% 

between 30 to 60 Hz in GluN2C-KO (red line, n = 4) while NVP-AAM077 produced ~30% 

increase in GluN2D-KO (green line, n = 4) mice between 30-60 Hz. The dotted line represents 

0% increase, no drug-induced change in power.  SEMs are shown by light shading. Bottom 

panel: the statistical significance of the difference between WT and KO animals in oscillatory 

power at different frequencies is shown by a graph of the p values, the dotted line represents p 

= 0.05. 

 



124 
 

 

 

 

 

 

 

 

  

Figure 5. 2 The average % oscillatory power increase of WT, GluN2C-KO mice and 

GluN2D-KO mice after Ro25-6981 administration.  

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. Ro25-6981 induced an increase of ~40% between 

60 to 150 Hz in the WT (blue line, n = 12), drug induced an increase of ~50% between 60 to 

150 Hz in GluN2C-KO (red line, n = 7) while Ro25-6981 produced ~30% increase in GluN2D-

KO (green line, n = 3) mice between 60-130 Hz. The dotted line represents 0% increase, no 

drug-induced change in power.  SEMs are shown by light shading. Bottom panel: the statistical 

significance of the difference between WT and KO animals in oscillatory power at different 

frequencies is shown by a graph of the p values, the dotted line represents p = 0.05. 
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Figure 5. 3 The average % oscillatory power increase of WT, GluN2C-KO mice and 

GluN2D-KO mice after UBP791 administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. UBP791 induced an increase of ~80% between 

40 to 60 Hz in the WT (blue line, n = 12), UBP791 induced an increase of ~50% between 40 

to 60 Hz in GluN2C-KO (red line, n = 6) while UBP791 produced ~0% increase in GluN2D-

KO (green line, n = 3) mice between 40-60 Hz. The dotted line represents 0% increase, no 

drug-induced change in power.  SEMs are shown by light shading. Bottom panel: the statistical 

significance of the difference between WT and KO animals in oscillatory power at different 

frequencies is shown by a graph of the p values, the dotted line represents p = 0.05. 
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Figure 5. 4 The average % oscillatory power increase of WT, GluN2C-KO mice and 

GluN2D-KO mice after SDZ administration. 

Upper panel: the average increase in drug-induced oscillatory power relative to the proceeding 

baseline condition as a function of frequency. SDZ induced an increase of ~0% between 40 to 

60 Hz in the WT (blue line, n = 4), SDZ induced an increase of ~200% between 40 to 60 Hz in 

GluN2C-KO (red line, n = 5) while SDZ produced ~0% increase in GluN2D-KO (green line, 

n = 2) mice between 40-60 Hz. The dotted line represents 0% increase, no drug-induced change 

in power.  SEMs are shown by light shading. Bottom panel: the statistical significance of the 

difference between WT and KO animals in oscillatory power at different frequencies is shown 

by a graph of the p values, the dotted line represents p = 0.05. 
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5.4       Discussion 

The present studies are consistent with the results found in Chapters 2 and 3.  Only the 

GluN2C/D-selective antagonist UBP791 enhanced neuronal oscillations that were augmented / 

reduced in the GluN2C-KO and GluN2D-KO, respectively.  The work is also consistent with prior 

studies looking at the ability of NMDAR subtype-selective antagonists to elicit oscillations. In other 

work, NVP-AAM077 and Ro25-6981 were able to elicit oscillations (Bernat Kocsis, 2012).  This 

study, however, reported that GluN2C/D antagonist does not enhance oscillations since the 

compound phenanthrene piperadine 2,3-dicarboxylic acid (PPDA), a GluN2C/D “preferring” 

antagonist did not augment oscillations. This is the only one study that investigates the effect of 

subunit-selective NMDAR antagonists in modulating neuronal oscillations.  Although PPDA has a 

slightly higher affinity for GluN2C- and GluN2D-containing receptors, given the higher affinity of 

L-glutamate for GluN2C/D-containing receptors, this competitive antagonist has very similar 

IC50s for all four GluN2 subunits. Thus, the inability of PPDA to induce neuronal oscillations may 

be due to the inability of PPDA to cross the blood-brain barrier. This is consistent with the doses 

needed to get the structurally-related compound UBP141 into the brain (N. Lozovaya et al., 2014). 

From chapter 2, 3 and 5, we are able to show that both GluN2C and GluN2D subunits play critical 

roles in modulating neuronal oscillations. NVP-AAM077 and Ro25-6981-induced oscillations 

increase are not altered in the GluN2C- and GluN2D-KO mice, which suggest that GluN2A- and 

Glu2B-containing NMDARs can contribute to oscillations but these oscillations may be 

independent of those caused by NMDAR channel blockers (e.g. PCP).  In contrast, UBP791 which 

blocks GluN2C and GluN2D-containing NMDARs, increase oscillations in WT and this effect is 

eliminated in the GluN2D-KO and augmented in the GluN2C-KO. Thus, these results are consistent 

with GluN2D blockade causing increase in neuronal oscillations and GluN2C blockade causing a 

decrease in neuronal oscillations. Interestingly, SDZ-220,581 failed to augment oscillations in WT 

mice, but did enhance oscillations in the GluN2C-KO.  This agent is also a competitive antagonist, 
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its ability to block GluN2C in astrocytes may be relatively enhanced since glutamate concentrations 

near GluN2C-containing receptors is likely to be much lower than at GluN2A/B containing 

receptors in the synapse. SDZ also has its lowest affinity at GluN2D-containing receptors, and these 

receptors are in excitatory synapses on inhibitory interneurons which have relatively high glutamate 

concentrations.  So one would expect that SDZ-220,581 would not be able to induce oscillations 

by blocking GluN2D-containing receptors.  The difference between NVP-AAM077 and SDZ-

220,581 in the ability to augment oscillations in WT mice may be due to relative doses; higher 

concentrations of SDZ-220,581 may show oscillations.  Perhaps the most important observation 

for this chapter is that the psychotomimetic, general NMDAR channel blockers such as PCP and 

ketamine have their actions eliminated in the GluN2D-KO while blockade of GluN2A/B-

containing receptors is not affected by eliminating GluN2D.  Taken together, this suggests that the 

psychosis-producing effects of PCP may be due to blockade of GluN2D while these results do not 

provide a prediction for the impact of blocking GluN2A/B-containing receptors. 
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Chapter 6  

Discussion and conclusions   
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The coordination of neuronal activity into neuronal oscillations is thought to be necessary 

for cognition, perception and memory formation (P. J. Uhlhaas et al., 2008; Uhlhaas & Singer, 

2012). The molecular mechanisms that underlie their apparent disruption in neuropsychiatric 

disorders such as schizophrenia, autism spectrum disorders and intellectual disability may be the 

dysfunction of NMDARs. The numerically minor GluN2C-  and GluN2D- containing NMDAR 

subtypes are ideally situated for modulating oscillations for therapeutic benefit while minimally 

impacting the major populations of NMDARs that are involved in a variety of other processes such 

as synaptic plasticity and whose overactivation is detrimental. 

NNMARs have a central role in the major hypotheses regarding neuropsychiatric disorders. 

They significantly contribute to different neuronal oscillatory generators, they greatly affect the E/I 

balance (both long-lasting changes after developmental NMDAR activity and acutely in the adult) 

and they are central to the NMDAR hypofunction hypothesis of SCZ and ASD (J. T. Kantrowitz 

& D. C. Javitt, 2010; J. E. Lisman et al., 2008). The role played by NMDAR subtypes in each of 

these diseases is still unknown. NMDARs are a subfamily of neurotransmitter receptors for the 

primary excitatory neurotransmitter, L-glutamate. They are tetrameric complexes composed of two 

GluN1 subunits and two subunits from among four GluN2A-2D  (which bind glutamate) and two 

GluN3A-3B subunits which form Ca²⁺/Na⁺/K⁺-permeable ion channel gated by L-glutamate and 

glycine  (or D-serine) (Dingledine, Borges, Bowie, & Traynelis, 1999; Traynelis et al., 2010). 

While NMDARs are most well known for their roles in synaptic plasticity, learning, and initiating 

cell death in pathological states, NMDAR activity markedly affects working memory, perception, 

and cognition quite possibly through modulating neuronal oscillations. Thus, it is not surprising 

that NMDAR antagonists and GluN1 depletion, mimic the symptoms of SCZ and ASD and that 

many psychiatric disease-related genes affect NMDAR function either directly or indirectly (D. T. 

Balu & J. T. Coyle, 2011; Sun et al., 2010). 
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GABAergic interneurons are essential in producing neuronal oscillations (Bartos et al., 

2002; Bartos, Vida, & Jonas, 2007; T. Kim et al., 2015; Sohal et al., 2009). Each interneuron 

innervates a large population of local excitatory neurons and provides a strong simultaneous 

inhibition of that population when excited in a feedback loop from excitatory neurons. Optogenetic 

studies have confirmed these conclusions (T. Kim et al., 2015; Sohal et al., 2009). Even PV 

downregulation by itself leads to increased basal gamma oscillatory power and asynchrony 

(Vreugdenhil, Jefferys, Celio, & Schwaller, 2003) and mimics the core symptoms of ASD (Wohr 

et al., 2015). PV expression and E/I balance are also altered in MeCP2 (-/y) mice (Calfa, Li, 

Rutherford, & Pozzo-Miller, 2015; Tomassy, Morello, Calcagno, & Giustetto, 2014), Down’s 

syndrome (K. Kobayashi et al., 1990), Angelman’s syndrome (Saunders et al., 2013). Confirming 

a central role for NMDARs in PV cell function, many studies have examined the effects of deleting 

the obligatory GluN1 subunit from PV cells and overall, they find altered neuronal function and 

behaviors consistent with these diseases (Belforte et al., 2010; Carlen et al., 2012; Korotkova et al., 

2010; Saunders et al., 2013). Discrepancies between studies may involve the developmental timing 

of the deletion and behavioral study methodology (Bygrave et al., 2016). However, which types of 

NMDAR are in PV cells and what are their functions is unknown. 

Many studies have characterized the effects of NMDA antagonists on the power of 

neuronal oscillations; generally, antagonists increase the power of oscillations in most frequency 

bands  (for a review see (Hunt & Kasicki, 2013)). The most common hypothesis used to explain 

the effects of antagonists on gamma oscillations follows from the observation that commonly used 

NMDAR antagonists  (PCP, ketamine, MK-801) preferentially inhibit NMDARs on cortical PV 

cells (Homayoun & Moghaddam, 2007; Q. Li et al., 2002; Nakazawa et al., 2012). This action 

reduces GABAergic inhibitory activity and thus disinhibits downstream excitatory pyramidal cells 

leading to an augmentation of basal gamma oscillations and impaired synchrony (Hunt & Kasicki, 

2013). This is consistent with the well-documented NMDAR antagonist-induced increase in 
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activity in corticolimbic structures as reflected by 2-deoxyglucose uptake (G. E. Duncan, Miyamoto, 

Leipzig, & Lieberman, 1999; M. A. Duncan & Spiller, 2002). Thus, it is significant that in the 

GluN2D knockout mouse, we find that NMDAR antagonist-augmented high gamma oscillations 

are nearly eliminated and that there is a complete loss of ketamine-induced glucose uptake. These 

results clearly suggest that GluN2D subunits contribute largely to NMDAR antagonist-induced 

oscillations and to brain activation. This finding is consistent with recent neuroanatomical studies 

which show that GluN2D subunits, although rare in the telencephalon, are localized in PV cells in 

the cerebral cortex and hippocampus (Alsaad et al., 2018; Standaert et al., 1996; Swanger et al., 

2018; von Engelhardt et al., 2015; Yamasaki et al., 2014). We have also shown that GluN2C and 

GluN2D do not co-localize in cortex or hippocampus and that GluN2D co-localize with neuronal 

markers in the telencephalon whereas GluN2C does not (Alsaad et al., 2018). 

One recent discovery has demonstrated that glutamate release from astrocytes is essential 

for maintaining low-gamma oscillations (H. S. Lee et al., 2014).  Our group found that GluN2C-

containing NMDARs are mainly found in astrocytes in the cortex (Alsaad et al., 2018), so it is 

reasonable to propose that astrocytic GluN2C-containing NMDARs activated by the spillover of 

glutamate from synaptic cleft, can cause intracellular Ca²⁺ influx, which then causes astrocytes to 

release glutamate as a gliotransmitter to modulate the circuitry excitability and gamma oscillations. 

NMDARs also regulate delta oscillations and high frequency oscillations (HFOs). 

GluN2C-containing NMDARs in the thalamic reticular nucleus have been proposed to control of 

delta oscillations directed to the hippocampus (Y. Zhang, Buonanno, et al., 2012; Y. Zhang et al., 

2009; Y. Zhang, Yoshida, et al., 2012). NMDAR antagonists can also alter the interactions between 

high gamma band and low gamma band oscillations in hippocampus and entorhinal cortex 

(Middleton et al., 2008). Additionally, NMDAR antagonists generate HFOs  (80-200 Hz) in the 

nucleus accumbens that can be recorded from cortex and hippocampus (Hunt et al., 2011). 

Interestingly, we find that in the GluN2D-KO mouse, ketamine-induced HFOs are enhanced and 
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have a peak shift in HFO frequency  (from ~145 to ~155 Hz), which is consistent with the results 

seen in a MAM SCZ disease model (Phillips et al., 2012). 

Receptors containing GluN2C and GluN2D subunits have several distinct mechanistic 

properties that make them ideal to be a tonic modulator of oscillations. They have higher affinity 

for L-glutamate than the major NMDAR populations (GluN2A and GluN2B); they are much less 

sensitive to Mg²⁺, therefore can be activated without concurrent depolarization; they also do not 

desensitize and therefore can retain their activity under tonic or fast-spiking activity. These 

mechanisms explain how neurons in the thalamic reticular nucleus containing GluN2C are 

hyperpolarized by NMDAR antagonists. This shift in the membrane potential can then deinactivate 

T-type Ca²⁺ channels resulting in the delta oscillations (Y. Zhang, Buonanno, et al., 2012; Y. Zhang 

et al., 2009; Y. Zhang, Yoshida, et al., 2012). Compared to GluN2C, GluN2D-containing receptors 

have two additional key distinctions, their deactivation time is > 10X longer and they are expressed 

in PV cells (Alsaad et al., 2018; Standaert et al., 1996; Swanger et al., 2018). Taken together, we 

propose the hypothesis that GluN2D-containing NMDARs generate tonic modulation of the PV 

cell membrane potential due to ambient extracellular glutamate reflecting averaged excitatory 

activity and this determines PV cell excitability and modulates oscillations. This feature may 

account for GluN2D’s disproportionate contribution to gamma oscillations and brain activation 

(Sapkota et al., 2016) despite the presence of other NMDAR subunits in these cells. Thus, this is 

similar to that proposed for GluN2C modulation of thalamic delta generation (Y. Zhang et al., 2009), 

but different because of the differing resulting output  (high gamma oscillations). 

It is virtually certain that there are multiple subtypes of NMDAR in PV cells given the 

strong in situ hybridization, RNA sequencing and pharmacology evidence that GluN2A, GluN2B, 

and GluN2D are present. Thus, there could be six different NMDAR subtypes 2A, 2B, 2D, 2A/2B, 

2A/2D, and 2B/2D receptors present. Arguably, the only one of these that has been tested is 

GluN1/GluN2B heterodimeric receptors by the use of 2B-NAM (Bernat Kocsis, 2012). Only one 

study has evaluated if either GluN2C or GluN2D are involved in NMDAR antagonist-induced 
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oscillations. Since the GluN2C/2D “selective” antagonist PPDA did not cause oscillations, they 

concluded that neither GluN2C or GluN2D is involved (Bernat Kocsis, 2012). However, even 

though it was the first competitive antagonist to have higher affinity (Ki) for GluN2C/2D than 

GluN2A/2B, this compound has very similar IC50s for GluN2A-2D after adjusting for glutamate 

affinities (Feng et al., 2004). As such, PPDA can be useful, but it is not a “selective” agent. Thus, 

the absence of a CNS effect they observed after i.p. injection indicates a lack of brain penetration 

for PPDA at this concentration and does not necessarily suggest the exclusion of GluN2C and 

GluN2D-containing NMDARs in modulating the neuronal oscillations. 

Schizophrenia and NMDAR hypofunction are associated with a reduction in mismatch 

negativity (MMN). In MMN, a component of the auditory-evoked response is larger for an 

unexpected tone than an expected, repeated tone (Featherstone, Melnychenko, & Siegel, 2018; P. 

T. Michie, Malmierca, Harms, & Todd, 2016; J. Todd, Harms, Schall, & Michie, 2013). As this is 

reliably reduced in SCZ patients, and even in asymptomatic siblings of SCZ, it is thought to be a 

highly sensitive measure and is also seen with even partial NMDAR knockdown (R. E. 

Featherstone et al., 2015). NMDAR antagonists likewise cause an impairment in MMN 

(Ehrlichman, Maxwell, Majumdar, & Siegel, 2008; D. C. Javitt, M. Steinschneider, C. E. Schroeder, 

& J. C. Arezzo, 1996), but little is known about the role of different NMDAR subtypes. General 

NMDAR antagonists can cause an enhancement in an early MMN component (P13) while higher 

doses can cause an inhibition of a later component of MMN (N55) (L. Harms et al., 2018). Thus 

NMDAR contribution to MMN modulation is complex and may involve multiple NMDAR 

subtypes. This conclusion is consistent with studies using ketamine and CP-101,606, a GluN2B-

selective NAM. Ketamine reduced MMN by increasing the standard evoked response while CP-

101,606 reduced the deviant response (D. V. Sivarao et al., 2014). While GluN2B-NAMs inhibit 

MMN, they do not readily augment gamma oscillations (Keavy et al., 2016; Bernat Kocsis, 2012). 

Conversely to GluN2B’s actions, we have observed an intact oddball response in the GluN2D-KO 

mouse while GluN2D deletion greatly reduces NMDAR antagonist-induce gamma oscillations. 
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MMN may be similar to prepulse inhibition (PPI) which we and others have found to be unaltered 

in the GluN2D-KO mouse (Sapkota et al., 2016; Takeuchi et al., 2001). Our results shown that 

GluN2D-KO mice display a normal MMN, while GluN2C-KO mice’s MMN response is reduced 

and display abnormal peak distribution at the same time.  

In the GluN2C-KO, memantine only augmented the oscillatory power in the high-gamma 

range, whereas ketamine, PCP, and MK-801 all increase oscillatory power in either the low-

gamma range (ketamine and PCP) or both in the high and low-gamma range (MK-801). This is 

potentially significant because memantine does not cause psychosis as do ketamine, MK-801, and 

PCP. Thus, the effect of memantine on neuronal oscillatory generators may be distinct from the 

effect of the psychotomimetic NMDAR antagonists. Understanding this mechanism may allow 

the design of drugs that are better tolerated in the clinic. 

All in all, the above work has demonstrated that both GluN2C and GluN2D-containing 

NMDARs play critical roles in generating and modulating the neuronal oscillations, particularly, 

GluN2C-containing NMDARs is associated with low-gamma oscillations and GluN2D-containing 

NMDARs is associated with high-gamma oscillations and HFOs. Given the expression pattern of 

GluN2C and GluN2D subtypes and relevant evidence regarding the role of astrocytes and PV cells 

in neuronal oscillations, we propose that GluN2C- and GluN2D-containing NMDAR subtypes have 

distinct, critical roles in modulating neuronal oscillations due to their distinctive physiological and 

anatomical properties (Figure 6.1).  Compared to GluN2A/B-containing NMDARs, GluN2C- and 

GluN2D-containing NMDARs have higher affinity for L-glutamate, show less voltage-dependency 

due to reduced Mg²⁺ sensitivity, and they do not desensitize (Glasgow et al., 2015; Johannes J Krupp 

et al., 1998; Traynelis et al., 2010; Wyllie et al., 2013).  Thus these receptors are well suited for 

being activated by low concentrations of extracellular glutamate and they can retain their activity 

under tonic or fast-spiking activity. With GluN2C in astrocytes, and GluN2D in PV-positive 

GABAergic interneurons, these receptors can provide excitatory feedback, or inhibitory feedback, 

respectively, to the local ensemble of excitatory neurons in response to excitatory drive thus 
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modulating the neuronal oscillations (Figure 6.1).  These subtypes represent numerically minor 

NMDAR subtypes in the forebrain.  Thus, their potential ability to differentially modulate neuronal 

oscillations, while minimally impacting the major populations of NMDARs that are involved in a 

variety of other processes, suggests that these receptors could be useful targets for therapeutic 

applications. 

From chapter 4, CDKL-KO mice displayed elevated basal oscillatory power compared to 

WT mice. Besides, both NMDAR non-selective channel blocker ketamine and the GABA receptor 

antagonist PTZ did not induce as much oscillatory power increase in CDKL5-KO mice as in WT 

mice. CDKL5-KO is known to cause an upregulation in GluN2B-containing NMDAR in excitatory 

neurons which may contribute to the elevated basal neuronal oscillations. This effect would also 

increase excitatory activity and increase the E/I balance. Ketamine and PTZ induce a greater 

oscillatory power increase in WT mice than CDKL5-KO mice which is consistent with a 

hypofunction of NMDAR in inhibitory interneurons.  With NMDAR hypofunction in GABAergic 

cells there would be less of an effect of inhibiting NMDARs and there would be less GABA output, 

so PTZ would have less of an effect by blocking GABA receptors.  With NMDAR hypofunction 

and decreased inhibitory output, there would be increased excitatory activity of excitatory neurons, 

thus increasing the E/I balance. Added to this effect may be the reported upregulation of GluN2B-

containing receptors in excitatory cells, again leading to increased excitatory activity and thus a 

lowering of seizure threshold as seen in this disorder. 

Overall, these studies suggest that neuronal oscillations can serve as an in vivo readout for 

testing subtype-selective NMDAR modulators. Additionally, as the power and synchrony of 

oscillations also reflect dysfunction in neuropsychiatric animal models, ECoG analysis in CDKL5-

KO mouse model might be useful for testing the effectiveness of NMDAR drugs for restoring 

normal function along with behavioral studies.  
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Figure 6. 1 Hypothesis for the opposing roles of GluN2C-and GluN2D-containing 

NMDARs in modulating neuronal oscillations. 

  (Upper insert) Astrocytic GluN2C-containing NMDARs: With sufficient synaptic activation, 

glutamate spillover activates GluN2C-containing NMDARs on astrocytes, leading to increased 

cytoplasmic calcium levels. In response to elevated intracellullar calcium from intracellular 

stores, and possibly from GluN2C currents, astrocytes release glutamate (and other 

gliotransmitters) which acts on extrasynaptic GluN2B-containing NMDARs on the 

postsynaptic structure, and potentially additional neurons, to modulate excitability and 

synchronize the activity of a group of neurons thus causing oscillatory power enhancement.  

(Lower insert) GluN2D-containing NMDARs in PV inhibitory interneurons: Glutamate 

released from presynaptic nerve of excitatory neurons activates GluN2D-containing NMDARs 

on the postsynaptic dendrite of inhibitory interneurons. With sufficient synaptic activation, 

inhibitory interneurons release GABA back onto excitatory neurons.  This negative feedback 

mechanism can thus synchronize the firing of an assembly of excitatory neurons and by 

decreasing their membrane potential, decrease the magnitude of the population spike and 

oscillatory power for that group of neurons. 
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