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Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies 

with an estimated 5-year survival rate of less than 9%. The high lethality of PDAC is due 

to two primary reasons: the discovery of PDAC at later stages, with locally invasive or 

metastatic disease present at the time of initial diagnosis as well as the lack of efficacious 

therapeutic interventions that significantly impact survival. In this dissertation, we sought 

to discover and test novel detection and treatment strategies for PDAC. Firstly, serum EVs 

were investigated as potential non-invasive liquid biopsy biomarkers, to serve as a means 

of early cancer detection. Secondly, a recently discovered form of cell death, ferroptosis, 

was investigated as a means of potentiating radiation therapy.  

The investigation into the potential of extracellular vesicles (EVs) as circulating 

biomarkers began with a label-free analysis of EVs via surface-enhanced Raman 

Spectroscopy (SERS) and principal component discriminant function analysis (PC-DFA), 

to identify tumor-specific spectral signatures. This method differentiated EVs originating 

from PDAC or normal pancreatic epithelial cell lines with 90% overall accuracy. The 

proof-of-concept application of this method to EVs purified from patient serum exhibited 

up to 87% and 90% predictive accuracy for healthy control and early PDAC individual 

samples, respectively. The specific EV surface proteins that may contribute to the observed 

SERS differences were investigated via surface shaving LC-MS/MS. This analysis 

provided protein targets that were selected and validated with a combination of 
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bioinformatics, western blot, and immunogold labeling techniques. The first target protein 

selected for assessment via ELISA, EPHA2, showed elevated expression in complete 

cancer patient serum as compared to benign controls. Further, EV specific EPHA2 

expression was capable of predicting cancer status in 25% (5/20) of the patient samples 

with 100% specificity. These data suggest a potential role of EV surface profiling for the 

early detection of PDAC. However, further work is required to increase the overall 

accuracy. 

Additionally, we sought to investigate the involvement of ferroptosis, in radiation-

induced cell death. Ferroptosis is a non-apoptotic form of cell death that requires labile 

ferrous iron (Fe2+) and is caused by the reactive oxygen species (ROS) mediated build-up 

of lipid hydroperoxides. Further, we tested if the pharmaceutical induction of ferroptosis 

via the small molecule Erastin can potentiate the lethal effects of radiation in vitro and in 

vivo. We observed that radiation produces an increase in ROS and free Fe2+ leading to lipid 

hydroperoxidation, which was enhanced with the addition of Erastin culminating in the 

likely induction of ferroptosis. The combination of radiation and Erastin synergistically 

increased cell death in monocultures and patient-derived organoids as well as significantly 

reduced tumor size in xenograft mouse models. These findings suggest the potential of 

ferroptosis induction to improve radiation therapy, though specific mechanistic 

components require further evaluation. Therefore, further studies must be conducted to 

elucidate the specific role of ferroptosis in radiation-induced cell death.  

The combination of early detection and novel therapeutic intervention strategies 

offers a means of improving the survival of those with this dreaded disease. 
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Chapter 1: Introduction 

Pancreatic Ductal Adenocarcinoma 

 

 

 

 

 

 

 

 

 

Portions of the content covered in this chapter are the subject of a published 

article in Biochim Biophys Acta Rev Cancer by Carmicheal et al. 1. 
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Chapter 1: Introduction - Pancreatic Ductal Adenocarcinoma 

1.1 Statistics and demographics 

 

Pancreatic ductal adenocarcinoma (PDAC) is a devastatingly lethal disease with a 

five-year survival of 9% 2. The patients in the SEER database (1992-2016) have even worse 

mortality ranging from 28.2% of patients remaining alive one year after diagnosis down to 

only 6.2% at the five-year time-point (Figure 1.1). It is currently the third leading cause of 

cancer-related death and is projected to replace colon cancer as the second leading cause 

within the next decade 3.  In fact, the mortality rate of PDAC is one of the highest out of 

all major cancer types including those with the greatest number of total patient deaths such 

as lung, colorectal, breast, and prostate 2. While the incidence of PDAC is not as high as 

many of the other major cancer types at 56,770 in 2019, the number of deaths occurring 

during this same time totaled 45,750, leading to a shockingly high death to incidence (D/I) 

ratio. Where lung, colorectal, breast, and prostate cancers have D/I ratios of 0.63, 0.51, 

0.16, and 0.18 respectively, the ratio associated with PDAC is the worst at 0.81 2 (Figure 

1.2).  

Unfortunately, the early stages of PDAC typically are asymptomatic in nature. 

Further confounding diagnosis of this disease is the fact that when symptoms are present, 

they are often transient or intermittent, as well as frequently mild and quite ambiguous. For 

example, nausea, lethargy, and abdominal pain 4. When patients do start to experience more 

serious symptoms including jaundice, weight loss (cachexia), and migratory phlebitis the 

disease has often advanced to later (and more lethal) stages.  Later stage presentation with 

greater disease burden comes with an inherent increase in the probability of local invasion 

at the primary site preventing surgical resection (currently the only means of curative  
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Figure 1. 1 SEER database overall survival for PDAC patients from 1992-2016 

The overall survival trend observed within the SEER database for the PDAC population 

who underwent surgery and chemotherapy treatments was 28.2% at one year, 13.1% at two 

years, 9.0% at three years, 7.2% at four years, and 6.2% at 5 years.  
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Figure 1.1 
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Figure 1. 2 Organ system distribution of new cancer incidences and deaths in 2019. 

A.  Estimated incidences of major cancer types along with the estimated number of deaths 

caused by that cancer during the same one year time period. The death to incidence ratio is 

presented in panel B.  Notably, PDAC has the worst overall ratio among all the cancers. 

(Numbers sourced from Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA 

Cancer J Clin. 2019;69(1):7-34.). 
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Figure 1.2  
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therapy available) as well as the prevalence of metastasis. Further, it confers a diminished 

probability that adjuvant treatment options, such as chemotherapy, will be efficacious. 

1.2 High-risk groups 

 

Like many other cancers, the general risk of developing pancreatic cancer depends 

on a variety of controllable and non-controllable factors. Some of the controllable clinical 

factors which confer an increased risk of PDAC include tobacco use, being overweight, 

long-standing Diabetes Mellitus Type II, and chronic pancreatitis arising from poor diet 

and/or heavy alcohol use 5-9. Conversely, many uncontrollable factors are present such as 

age, gender, race, chronic pancreatitis resulting from a genetic abnormality, family history, 

inherited genetic syndrome, and those with pancreatic cancer precursor lesions 10. 

However, it is worth noting that the sudden onset of diabetes after the age of 50 is highly 

correlated with the presence of PDAC and not merely an increase in risk 11.  

Only some of these groups confer an increased level of risk large enough, relative 

to the extremely low incidence of PDAC in the general population, to merit identification 

as a high-risk group; that is, only those groups of patients with a greater than 5% lifetime 

risk, or an increased relative risk >5, are considered high-risk as suggested by the 

International Cancer of the Pancreas Screening (CAPS) consortium meeting 12. Along with 

that, the American College of Gastroenterology has recently published clinical guidelines 

regarding the classification of high-risk groups, which ones require continuous 

surveillance, and exactly what that surveillance entails 13.  The six recommendations 

pertaining to PDAC screening and continual surveillance are summarized as follows: 1. 

Warranted for hereditary syndromes associated with PDAC; 2. Should be conducted at an 

experienced center with a multidisciplinary approach; 3. It should be conducted via EUS 
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or MRI and not CT; 4. Begin at 50 years of age or 10 years prior to the earliest age of 

familial onset; 5. Cystic lesions require evaluation at the center with expertise in the area 

of high-risk patients; 6. Surgical intervention decisions must be individualized and made 

via multidisciplinary approach 13. The high-risk groups that will be discussed herein are 

those fitting the criteria of both of these expert panels. They are those with a family history, 

inherited genetic syndromes, and history or current diagnosis of pancreatic cystic lesions 

(a clinically identifiable cancer precursor) 14.   

1.2.1 Family history 

 

 The individuals comprising this group have at least two first-degree relatives (or 3 

relatives of any degree) diagnosed with pancreas cancer but do not fulfill the criteria set 

for a specific genetic syndrome 15. The overall risk for these individuals to get PDAC is 

6.4% for those with two first-degree relatives affected and climbs to 32% if three first-

degree relatives are diagnoses 16, 17. Aside from the increase in general probability, this 

population tends to be diagnosed 10 years earlier than the previous generation 18, which is 

valuable information required for timely monitoring. Congruently, many of these patients 

are diagnosed before the age of fifty compared to those diagnosed without a family history 

19.  

Though a unifying germline mutation or genetic signature is not known for a strong 

hereditary pattern of PDAC (in the absence of a known genetic syndrome), recent studies 

have discovered some genetic germline perturbations present in small subsets of the 

population. One such mutation is in the PALB2 gene which has been detected in around 

3% of those with familial PDAC 20. Other gene mutations and their respective prevalence 

in familial cases of PDAC include BRCA1 at 1.2%, BRCA2 at 3.7%, and CDKN2A at 
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2.5% according to a study by Zhen et al. 21.  Incredibly, germline mutations in these genes, 

along with PALB2, were present in over 10% of those with familial PDAC 21. Roberts et 

al. corroborated these findings in another study incorporating whole-genome sequencings 

of familial PDAC 22. The importance of BRCA1 and 2 is also highlighted by the fact that 

a family's strong family history of breast and ovarian cancer associated with germline 

mutations in one of the two BRCA family members also confers an increased risk of 

developing PDAC 23. Even though they represent a small subset of the total group, the 

discovery of these novel tumor susceptibility genes suggests a possible role for genetic 

testing in the monitoring of this cohort, along with the current imaging and laboratory 

modalities.  

1.2.2 Inherited genetic alterations and syndromes 

 

 Many inherited genetic alterations and syndromes have been acknowledged that 

confer an increased risk of developing PDAC to a level that required screening 

intervention, as per the CAPS consortium recommendation. These include familial atypical 

multiple mole melanoma (FAMMM), hereditary nonpolyposis colorectal cancer 

(HNPCC)/Lynch Syndrome, hereditary pancreatitis, and Peutz-Jeghers Syndrome. These 

syndromes along with their associated mutation and relative percent increase in the 

probability of PDAC are listed in this section.  

1.2.2.1 Familial Atypical Multiple Mole Melanoma (FAMMM) Syndrome 

 

 A germline mutation in the gene that encodes p16/CDKN2A is responsible for 

Familial Atypical Multiple Mole Melanoma (FAMMM) 24. Notably, p16/CDKN2A has 

known tumor suppressor functions and somatic mutations and/or loss of function are 

associated with the progression of early precursor lesions, PanINs, to invasive PDAC and 
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are found in the majority of patients 25. However, p16/CDKN2A germline mutations were 

originally only associated with the occurrence of melanoma and the formation of various 

benign nevi and it was only later when it was found to be implicated in multiple other types 

including sarcoma, breast, lung, and pancreatic cancers 26. These patients harbor a 16% 

lifetime risk of developing PDAC 26. 

1.2.2.2 Hereditary Nonpolyposis Colorectal Cancer (HNPCC)/Lynch Syndrome 

 

As indicated by the name, hereditary nonpolyposis colorectal cancer or Lynch 

Syndrome is more often associated with colorectal cancer than the pancreas. It arises due 

to alterations in the mismatch repair genes MLH1, MSH2 & 6, and PMS2, or germline 

mutation of EpCAM which silences the transcription of MSH2 by epigenetic modification 

27, 28. Usually, one of the alleles is deleted followed by a second mutational hit to the 

remaining allele, thus causing a loss of function and an inability to efficiently repair DNA. 

Many of these patients are identified by high-levels of tumoral microsatellite instability 

(MSI) via polymerase chain reaction (PCR) and/or DNA mismatch repair deficiencies via 

immunohistochemical (IHC) staining 29. While many of these patients are in fact 

characterized by early-onset colorectal cancer, HNPCC also confers an 8.6 fold cumulative 

lifetime risk of developing PDAC compared to the general population 30.  

1.2.2.3 Peutz-Jeghers Syndrome  

 

 A germline STK11/LKB1 mutation, which encodes a member of the 

serine/threonine kinase family and regulates cell polarity, is autosomal dominant and leads 

to the Peutz-Jeghers Syndrome (PJS) phenotype. This is a syndrome characterized by 

hyperpigmentation of mucocutaneous areas as well as the formation of harmartomatous 

polyps throughout the gastrointestinal tract 31. PJS leads to an incredibly high risk of 
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developing a myriad of cancers including esophageal, lung, breast, uterus, ovary, stomach, 

colon, and pancreas 32. Specifically, PJS confers the largest cumulative lifetime risk of 

developing PDAC out of all the familial syndromes at 36% by age 65 33, thus routine 

surveillance is warranted in this population.  

1.2.2.4 Hereditary Pancreatitis 

 

 Hereditary Pancreatitis presents as recurrent bouts of acute pancreatitis manifesting 

with sudden onset of severe epigastric abdominal pain that radiates to the back often with 

concurrent nausea and vomiting 34. This presentation is much like other etiologies of 

pancreatitis (i.e. alcohol/diet-induced and idiopathic) yet differs in a number of key ways. 

One of which is that symptoms often present themselves at far younger ages than other 

forms of pancreatitis (as young as ten-years-old in one study) 35. The hereditary form of 

pancreatitis is thought to occur because of mutations that alter the homeostatic balance 

between secreted proteases and inhibitors, thus leading to autodigestion of the pancreas 

itself and inflammation 36.  

The overwhelming majority of these cases (80%) are caused by an autosomal 

dominant mutation in PRSS1, which is a gene that encodes cationic trypsin 37. The normal 

physiological function of cationic trypsin is the conversion of zymogens into active forms 

when excreted into the duodenum to digest food. PRSS1 mutations likely facilitate the 

premature conversion of trypsinogen (the inactive form of trypsin) into trypsin prior to 

excretion, thus causing autodigestion and the associated symptoms of pancreatitis 37. The 

other known mutation that causes hereditary pancreatitis is SPINK1, which has the same 

result as PRSS1 mutations, i.e. trypsin over activation and autodigestion of the pancreas 

parenchyma, except via a slightly different mechanism. SPINK1 encodes a trypsin 



   
 

32 
 

inhibitor, thus mutations which result in a loss of function or expression of SPINK1 protein, 

cause an over activation of trypsin leading to autodigestion 38, 39. Importantly, hereditary 

pancreatitis, regardless of the mutation that causes it, confers a dramatically increased risk 

of PDAC. Specifically, the cumulative risk by the age of 70 was found to be 40% for all 

patients and up to 75% for those with paternally inheritance 40. Another study corroborated 

this finding and found a 44% cumulative risk by age 70 41.  

1.2.3 Precursor lesions 

 

1.2.3.1 Pancreatic Intraepithelial Neoplasia (PanINs) 

 

  Pancreatic Intraepithelial Neoplasia (PanINs) are asymptomatic lesions < 0.5 cm 

in diameter found inside the intralobular ducts of the pancreas and consist of neoplastic 

proliferation of intraluminal columnar and cuboidal cells 42, 43. These cells often produce 

mucin and have different proportions of cytological and architectural atypia leading to the 

formation of papillary structures 44. PanINs are classified into three distinct grades that are 

predicated on histological characterization with the unifying feature that none of them are 

invasive. PanIN-1A (flat) and 1B (papillary) possess little atypia and are minimally 

dysplastic (low-grade). Progression to PanIN-2 involves mild to moderate nuclear atypia 

and cytoarchitectural changes and these are classified as intermediate-grade lesions. 

Finally, high-grade lesions with extreme mitotic atypia, cribriform structures, and possible 

necrosis comprise PanIN-3 lesions 45. Progression through the PanIN stages to invasive 

cancer is considered the canonical route of pancreatic oncogenesis 46. Notably, almost all 

high-grade PanIN lesions have been reported with concomitant infiltrating PDAC 47. 

However, a recent study has highlighted cases of rare high-grade PanINs in the absence of 

PDAC, which can infiltrate the lumen causing upstream duct dilation 48. 
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Immunohistochemical staining of PanIN lesions displays an elevated expression of mucin 

proteins MUC1 and MUC5AC with a concomitant decrease in the level of MUC6 49, 50. 

PanIN progression is posited to be caused/accompanied by the accumulation of 

sequential genetic alterations that culminate in the formation of malignancy 51 (these 

chronological genetic changes that are associated with the formation of PDAC are 

discussed subsequent sections in this thesis). Those that harbor these precursor lesions 

theoretically represent a high-risk patient population that could be identified prior to the 

formation of cancer. Yet, these lesions are not able to be detected by modern radiological 

assessment methods including cross-sectional imaging [Computerized tomography (CT), 

magnetic resonance imaging (MRI)] and endoscopic ultrasound (EUS). Additionally, as 

mentioned prior, it is only possible to speculate the incidence within the general population 

because almost all of the high-grade PanINs heretofore identified are with concomitant 

PDAC with rare exceptions. Unfortunately, these facts, combined with the asymptomatic 

nature of PanIN lesions, prevent this cohort from being a screenable population from a 

biomarker perspective.  

1.2.3.2 Pancreatic Cystic Lesions 

 

The group that consists of the patients perhaps most amenable to early detection 

among the determined high-risk groups are those with a current or previous diagnosis of a 

pancreatic cystic lesion (PCL) 52. Importantly, this is an identifiable cohort because, unlike 

PanINs, PCLs are clinically observable lesions (via imaging) that can provide a means of 

identification and thus, will be expounded on in this section. Patients harboring a cystic 

lesion are more likely to progress to cancer than even those with a family history of PDAC 

53 making them a prime target population for screening and surveillance modalities. 
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However, complexities arise because PCLs present a variable risk for malignant 

progression: while some PCLs carry up to a threefold increased risk of developing PDAC 

54, 55, others present with a marginal risk or low probability of developing into PDAC 56 

(Figure 1.3). Thus, PCL patients represent one of the ideal populations to screen for 

PDAC.  

It is estimated that 0.7-2.6% of the general asymptomatic population harbors some 

form of PCLs 57. The prevalence of these lesions increases with age; autopsies of 70 to 79-

year-old patients revealed that 25% harbor a pancreatic cyst, increasing to 37% for patients 

older than 80 58-60. These proportions extrapolate to an estimated 3.5 million people with 

cystic lesions in the U.S. alone. The transformation potential of all cysts is minimal and an 

investigation utilizing the SEER database found that 33.2 per 100,000 pancreatic cysts will 

progress to PDAC 61. 

Though screening and intervention are warranted in this high-risk group, the 

pervasiveness of PCLs leads to thousands of unnecessary medical and surgical 

interventions per year. These high-risk procedures carry great comorbidity, especially for 

the elderly. Even if surgery is not required, immense amounts of time and resources are 

utilized to monitor patients for years following initial discovery 62. This monitoring is 

multimodal and can involve expensive sequential imaging methods along with invasive 

procedures such as repeat Endoscopic Ultrasound-guided Fine Needle Aspiration (EUS-

FNA), culminating in eventual excision. This leads to an increased economic burden on 

the health care system. Importantly, the anxiety and stress imparted on the patient after a 

PCL diagnosis cannot be understated, and the ability to ameliorate this burden would be 

immensely impactful 63.  
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Figure 1. 3 Chart depiction of pancreatic cystic lesion types. 

 

All PCLs are divided into three main types, inflammatory, serous and mucinous. Those 

grouped under the “Other” heading are rare cyst types that include pseudopapillary tumors 

(SPT), lymphoendothelial cysts (LEC), and pancreatic neuroendocrine neoplasia (PNEN). 

The inflammatory type is predominately comprised of pseudocysts. Importantly, serous 

type cysts are rarely malignant. Mucinous cysts, however, divided into intraductal 

pancreatic mucinous neoplasms (IPMN) and mucinous cystic neoplasms (MCN), harbor a 

greater potential for malignancy. Thus, this is the primary PCL population that undergoes 

surgical resection. The prevalence of IPMN types (branch, main, and mixed duct), as well 

as sub-classifications (gastric, intestinal, pancreaticobiliary, and oncocytic), are shown 

along with their respective proportions that harbor concurrent malignancy. (Carmicheal J 

et al. Elevating pancreatic cystic lesion stratification: Current and future pancreatic cancer 

biomarker(s). Biochim Biophys Acta Rev Cancer. 2020;1873(1):188318). 
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Figure 1.3 
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As per WHO classification (2000) 64-66 PCL’s can be divided into; A. Serous 

tumors- including serous cystadenoma and serous cystadenocarcinoma B. Mucinous 

tumors- including mucinous cystadenoma, mucinous cystadenocarcinoma, intraductal 

papillary-mucinous adenoma and intraductal papillary-mucinous adenocarcinoma C. Solid 

pseudopapillary tumors.  

A Serous Cystic Neoplasms  

 

Serous cystadenomas/Serious cystic neoplasms (SCAs/SCNs) are benign tumors 

that can be sub-divided into serous microcystic adenoma (SMA) and serous oligocystic 

adenoma 64. SMAs have a proclivity towards body or tail in 50-75% of cases while the rest 

involve the head of the pancreas 67, 68. SMAs account for 1-2% of all exocrine pancreatic 

tumors. Females (70%) are affected more than males with a mean age of 66 years (range 

34-91 years) at presentation. SOAs are far less common than SMA with no sex predilection 

and are located mainly in the head and body of the pancreas 69, 70.  On cross-sectional 

imaging with computed tomography (CT) or magnetic resonance imaging (MRI), SCAs 

are often multilocular with a honeycomb-like appearance and contain a central stellate scar 

71. This characteristic appearance can often lead to a definitive diagnosis via imaging. 

Histologically, the cysts are lined with glycogen-rich simple cuboidal epithelium, which is 

positive on periodic acid-Schiff stain without diastase digestion 72. If imaging results are 

inconclusive, EUS/FNA of cystic fluid can also be done but has low sensitivity though the 

addition of cytobrushing can improve the sensitivity of EUS-FNA 73, 74. SCNs have 

relatively lower carcinoembryonic antigen (CEA) levels than other PCL types with a higher 

risk of malignant progression 71. However, there is no concrete evidence to support a direct 

correlation between CEA levels and the risk of malignant progression 75.  
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SCAs are considered benign lesions that do not communicate with the pancreatic 

ducts 76. Their progression to serous cystadenocarcinoma is exceedingly rare, with an 

incidence rate of less than 1%, including the largest series that reported three cases of 

cystadenocarcinoma out of 2622 patients 77. For this reason, the clinical recommendation 

is to observe serous cystadenomas, with or without serial imaging, to check on the growth 

rate of the tumor. Resection is warranted only if mass effect symptoms are present such as 

abdominal pain, nausea, jaundice, or rapid cystic growth. Palliative resection can also be 

considered if the lesion transforms into a serous cystadenocarcinoma and becomes 

malignant 78.      

B Mucinous Cystic Lesions  

 

B.1 Mucinous Cystic Neoplasms 

Mucinous cystic neoplasms (MCNs) represent 2-5% of all exocrine pancreatic 

tumors 69. The mean age at diagnosis is 49 years (20-82 years) and these lesions are 

predominantly found in women (F: M > 20:1) 69, 79. MCNs are mainly located in the body 

and tail of the pancreas and if present in the head of the pancreas, they are highly suspicious 

for mucinous adenocarcinoma 80, 81. MCN’s are typically a single lesion, that can be 

unilocular or multilocular, which does not communicate with the pancreatic duct 82. 

Morphologically,  MCNs are characterized by a large, solitary, septated, thick-walled cyst 

with a pseudo-capsule containing either mucin or mixture of mucin and hemorrhagic 

material 83. Histological analysis can reveal ovarian-like stroma in addition to columnar 

cells with abundant mucin production 84. As per international consensus in 2004, the 

histological presence of unique ovarian-type stroma was necessary to confirm the diagnosis 

of MCNs 85. In contrast to the aforementioned serous cystic lesions, MCNs have an 
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increased propensity to be malignant or progress to a malignant state. The incidence rate 

of mucinous adenocarcinoma varies between 6-36% 86. If the lesion is multilocular, 

contains papillary projections, and/or contains mural nodules the risk of malignancy 

drastically increases 87. The spectrum of differentiation in terms of histology ranges from 

normal-appearing columnar epithelium to the atypical epithelium. Tumors can be classified 

as MCN with low/intermediate grade dysplasia, MCN with high-grade dysplasia, or MCN 

with an associated invasive carcinoma 88. 

In an analysis of 163 patients with resected MCNs, the prevalence of 

adenocarcinoma was reported to be 17.5% by Crippa et al. 89. The older patients with 

invasive adenocarcinoma in this cohort suggested a progression from adenoma to 

carcinoma. Thus, this group stated that resection should be considered in patients with 

high-risk MCNs and patients with low-risk MCNs, defined as size less than 4 cm and no 

nodules, can be considered for non-radical resections 89.   

B.2 Intraductal papillary-mucinous neoplasms 

Intraductal papillary-mucinous neoplasms (IPMNs) are mucin-producing tumors 

arising from the main pancreatic duct or its branches 90. These lesions are characterized by 

a dilation of the pancreatic duct resulting from immense mucus production and papillary 

growth of ductal epithelium. IPMNs comprise 1-3% of exocrine pancreatic neoplasms, 

with an incidence rate of 1 per 100,000 per year 59, 91, 92 and their frequency is higher in 

males than in females with a median age of diagnosis in the 6-7th decade 82, 93. IPMNs can 

be divided into low-risk and high-risk, with the latter defined as dilated main pancreatic 

duct >5 mm or the presence of a mural nodule. The pooled cumulative incidence of high-

grade dysplasia or pancreatic cancer for low-risk IPMNs is 0.02%, 3.12% and 7.77% at 1 
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year, 5, and 10 years, respectively. While that for high-risk IPMNs is 1.95%, 9.77% and 

24.68 % at 1 year, 5 and 10 years, respectively 94. IPMNs can involve the main duct (MD-

IPMN) or side branches (BD-IPMN) or both, which are known as mixed IPMN. BD-

IPMNs are not only the most common IPMNs but also the most common pancreatic cyst. 

MD-IPMNs carry a higher risk of malignancy than BD-IPMN, with 38-68% of the resected 

specimens of MD-IPMNs showing high-grade dysplasia or cancer 95. The relative risk of 

malignant transformation for multifocal IPMNs is not at higher risk as compared to a single 

cystic lesion 96. Mixed-type IPMNs contain features of both, yet behave most similarly to 

MD-IPMNs in terms of progression and malignant potential and are clinically treated as 

such. Differentiating IPMNs that are malignant/invasive from those that are benign is a 

persistent and important problem to address.  

Based on the cytoarchitectural features and mucin immunohistochemistry (i.e. 

MUC1, MUC2, and MUC5AC), IPMNs have been classified into four histopathological 

types; gastric (49-63%), intestinal (18-36%), pancreaticobiliary (7-18%), and oncocytic (1-

8%) 96-98. Recent investigations showed benign EUS findings (cyst size < 5mm and the 

absence of a mural nodule) are associated with gastric type IPMN 99. Corroborating this 

finding, Furukawa et al. found prognostic relevance to IPMN classification, where patients 

with gastric type had a better prognosis than patients with intestinal-type IPMNs 100. 

Gastric type is associated with the more indolent BD-IPMN, whereas intestinal type is 

often associated with MD-IPMN 101. The pancreaticobiliary type has been regarded by 

some as a high-grade version of the gastric type. These lesions are uncommon, not well 

characterized, and the invasive carcinoma associated with this type is more aggressive 102, 

103.  Oncocytic type is relatively uncommon, tends to be large lesions with obscure 
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intraductal appearance, and is less invasive 104. A retrospective study of patients with cystic 

lesion type verified on pathology found that even though gastric type IPMN had a better 

prognosis than intestinal type, those with the gastric type who developed invasive disease 

had worse outcomes when compared to those with progression arising from intestinal-type 

100. The reason for this phenomenon was that gastric IPMNs had the potential to develop a 

more aggressive tubular (ductal) carcinoma as opposed to the colloid (mucinous) 

carcinoma arising from intestinal IPMNs 100.  

C Other Pancreatic Cystic Lesions 

 

Other cystic lesions of the pancreas include solid pseudopapillary tumors (SPT), 

lymphoendothelial cysts (LEC), and neuroendocrine neoplasms (PNENs). SPT is a rare 

tumor seen most frequently in young women in their 20’s. Less than 10% of SPT’s have 

aggressive tumor behavior pathologically with a 5- year disease-specific survival of over 

98% 105. The tumor is considered indolent given the high survival rates of patients even 

when metastases are present 106. The diagnostic accuracy of preoperative imaging for SPT 

is high with a sensitivity of 95% 107. LECs are extremely rare complex lesions that are often 

round and exophytic that predominately occur in males 108. They are often anechoic or 

hypoechoic on EUS and can present with elevated CEA and amylase levels in the cyst fluid 

aspirate 108. While these lesions can harbor malignancy, their rarity has prevented adequate 

pathological characterization 109. PNENs are also rare and may be solid, cystic, or mixed 

in morphology. They are usually non-functioning and may occur sporadically or in 

individuals with multiple endocrine neoplasia type 1 (MEN1) and/or Von Hippel-Lindau 

(VHL) 110. They usually present in the sixth decade and have equal gender predisposition. 
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Unlike SPTs, the diagnostic accuracy of preoperative imaging for PNEN is low (sensitivity 

of 53.3%) 107. However, EUS-FNA of PNENs has a 90% diagnostic accuracy 111. 

Inflammatory pseudocysts are non-malignant fluid-filled sacs often filled with 

necrotic and hemorrhagic material along with pancreatic enzymes 112. These are not true 

cysts as they do not have an epithelial lining. In the absence of any clinical symptoms, they 

can be monitored with imaging while symptomatic lesions can be effectively treated with 

steroids and/or surgical drainage 113. Notably, pseudocysts are often associated with a 

history of chronic and/or acute pancreatitis 114, alcoholic pancreatitis 115, or autoimmune 

pancreatitis 116. These studies found that 42-56% of pancreatitis patients harbor 

pseudocysts 114, 115. Unfortunately, some cystic neoplasms, including those with malignant 

potential, can initially present with pancreatitis or even cause recurrent bouts of pancreatitis 

63, 117. Along with this, serum amylase and lipase levels, the standard metrics by which 

pancreatitis is assessed in clinics, are unable to differentiate between MCNs and 

pancreatitis without supplemental imaging and invasive procedures 118. Up to 15% of 

IPMN patients present with pancreatitis 119 as well as 9% of those with MCNs 89 and some 

IPMNs can elicit an immune response thus inducing autoimmune pancreatitis 120. BD-

IPMNs, in particular, can be difficult to differentiate from pseudocysts in the setting of 

pancreatitis and thus, many pseudocysts are often mismanaged as IPMNs 63. It has been 

reported that 10-15% of cystic lesions discovered with a background of pancreatitis can be 

malignant 116, 121. Large cyst size and poor response to steroids increase the likelihood of 

the presence of malignancy 116, 121.  

1.3 Genetic and molecular mechanisms of PDAC oncogenesis and progression 
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Recent comprehensive genomic analyses have built upon this foundation and have 

yielded influential insights regarding the genetic alterations associated with pancreatic 

tumorigenesis 122-124. These whole-exome/genome sequencing studies have confirmed the 

importance of traditional somatic oncogenic driver genes but have also elucidated a number 

of less frequently mutated driver genes as well as uncovered germline tumor susceptibility 

genes in PDAC patients without a family history or genetic syndrome 125. Though these 

are important and impactful findings (e.g. National Comprehensive Cancer Network 

(NCCN) guidelines no recommend germline testing for all confirmed PDAC cases), they 

lie outside the purview of this section and the traditional genetic progression model will be 

the focus in this section.   

The first characterized mutation in PDAC was in a cancer cell line (T3M4) in codon 

61 of KRAS (Glu-His) 126. This study initiated the search and eventual discovery of myriad 

genes determined to be involved in various aspects of PDAC including initiation, 

development, and progression. These include oncogene activation/overexpression such as 

KRAS 127 and tumor suppressor gene inactivation/downregulation such as DPC4/SMAD4 

128, TP53 127, and p16/CDKN2A 25. Concurrent telomere dysfunction and shortening have 

also been proven to be a component of PDAC formation 129. These studies culminated in 

the current generally accepted progression model proposed by Hruban and colleagues in 

2000 51.   

Among the earliest events associated with progression to PDAC are alterations in 

the KRAS oncogene, telomeric shortening, and CpG island hypermethylation 130. KRAS 

encodes for a RAS GTP-binding protein family member that dictates cellular proliferation 

and survival 131. Activated KRAS initiates many different pro-survival signaling 
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mechanisms including RAF-MAPK and PI3K pathways 132. KRAS mutations are one of 

the earliest genetic abnormalities in the PDAC progression model and have been well 

characterized as driver mutations the pathogenesis of pancreatic cancer 133 134, 135. The most 

common activating point mutations (most often residing in codons 12 and 13) produce a 

constitutively active protein resulting in unrestricted growth signaling 136, 137. Alterations 

in KRAS are thought to be an early event in IPMN and PanIN biogenesis as it is found in 

all types without significant differences 138, 139.  

Another one of the earliest events in PanIN formation and progression to PDAC is 

telomeric shortening. Telomeres protect the end of chromosomes preventing unwanted 

chromosomal fusion events and telomere shortening can lead to aberrant chromosomal 

fusion resulting in unstable chromosome structures and subsequent DNA fragmentation 129, 

140. Loss of telomere protection can also lead to the accumulation of chromosomal 

amplification and/or deletions causing aberrant protein expression profiles 141. Along with 

KRAS, this telomeric shortening is considered integral to the initiation of PanIN lesions 

formation and the subsequent trajectory towards PDAC. 

CpG island methylation within a gene promoter region is an epigenetic 

modification that leads to a silencing of gene transcription under normal physiological 

circumstances 142. However, hypermethylation of a number of genes (namely tumor 

suppressors) has been observed in the setting of PDAC 143, 144. Additionally, CpG island 

hypermethylation has been observed in low-grade PanIN lesions, thus implicating its role 

in initiation 145.  Some of the important tumor suppressor genes that are affected, and most 

relevant to PDAC progression, include p16/CDKN2A, TP53, and DPC4/SMAD4 42. 



   
 

45 
 

p16/CDKN2A inactivation has been observed in later PanIN 1. The influence of 

p16/CDKN2A as a tumor suppressor (as a function of cell cycle regulation at G1 phase) is 

highlighted by the fact that homozygous deletion of 9p21 locus (location of p16/CDKN2A) 

is seen in up to 40% of PDAC cases and loss of function is seen in 90% of patients (40% 

homozygous deletion, 40% single allele loss with concomitant mutation, and 10% 

hypermethylation silencing) 25. TP53 is mutated in 50-75% of all PDAC patients, and this 

is usually an allelic loss followed by a concomitant missense mutation in the remaining 

allele 146. It functions as a tumor suppressor facilitating and maintaining G2/M arrest as 

well as induces apoptosis, thus the mutations occurring in the gene encoding for this protein 

results in cell cycle and cell death deregulation 147. With this, DPC4/SMAD4 controls 

growth via the transformation growth factor β (TGF-β) pathway and the regulation of pro-

growth genes 128, 148 and loss of this gene leads to a decrease in growth inhibitory signaling. 

In contrast to p16/CDKN2A, TP53 and DPC4/SMAD4 loss seem to arise only at the 

PanIN-3 stage and continue through PDAC, thus emphasizing their functions as key 

molecules preventing malignant transformation to an invasive phenotype 149.  

 Many other somatic mutations in oncogenes have been implicated in PDAC 

progression involving a wide array of signaling pathways. These include G-protein 

signaling (cAMP production) via GNAS 150, transcriptional regulation via MYC 

(chromosome 8q24 amplification) 123, and EGFR signaling via ERBB2 151 and EGFR 152. 

Additionally, many other tumor suppressor gene mutations have been brought to light 

including RNF4 124. The continual discovery of genes along with their diverse mechanisms 

of action, emphasizes the intense complexity associated with PDAC initiation, 

development, and progression.    



   
 

46 
 

1.4 Detection methods 

 

The decades-old challenge still remains to identify the high-risk patients harboring 

early malignancy or precursor lesions that will eventually progress to PDAC. The 

incredibly low incidence of PDAC in the general population prevents wide use of 

conventional screening modalities as the quantities of false positives leading to erroneous 

procedures would eclipse the number of detected cancers 153. Therefore, the high-risk 

groups previously discussed (those with greater than 5% lifetime risk of developing PDAC) 

are the only populations for which screening and possible early detection is recommended. 

Current detection methods used in the clinic are threefold: Imaging, EUS-FNA cytology, 

and the use of molecular markers CA19.9 and carcinoembryonic antigen (CEA).  

1.4.1 Imaging 

 

Various imaging methods including computerized tomography (CT), magnetic 

resonance imaging (MRI), magnetic resonance cholangiopancreatography (MRCP), and 

abdominal ultrasound are integral to the monitoring of high-risk individuals, presenting 

symptomatic patients, and lesion differentiation 154-156. Guidelines regarding surveillance 

of patients with a family history of PDAC, hereditary pancreatitis, genetic syndromes, and 

PCLs all incorporate the use of sequential imaging with EUS and/or pancreas MRI as the 

initial means of patient screening 13, 14. However, the level of clarity proffered by these 

myriad imaging modalities is not adequate for the actual diagnosis of PDAC. Conventional 

imaging does not have the resolution to detect PanIN lesions at any stage and nowhere is 

this problem of ambiguous imagining results more apparent than with the PCL population. 

The overall prevalence of all PCL types in the general population has increased in recent 

years due to the ubiquitous use of cross-sectional imaging modalities. According to the 
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American Gastroenterological Association (AGA), the proportion of incidental PCL 

discoveries in patients who undergo magnetic resonance imaging (MRI) for an unrelated 

reason is 15% 157.  

Any abnormalities found on imaging require further investigation via tissue biopsy, 

laboratory testing, and more invasive/expensive imaging modalities including and 

endoscopic ultrasound (EUS), endoscopic retrograde cholangiopancreatography (ERCP), 

and positron emission tomography (PET). So while imaging is an incredibly important 

component of monitoring those at high-risk and assessing symptomatic patients, it is in no 

way definitive. Inherently this increases the total number of patients that require continual 

monitoring (image-guided) or even subjected to more invasive testing. Imaging will always 

be a mainstay for high-risk patient monitoring and its diagnostic shortcomings will need to 

be reduced. With this in mind, efforts are currently underway to increase the diagnostic 

efficacy of imaging for PDAC including but not limited to radiomics 158, FDG-PET/CT 159, 

and molecular imaging facilitated by mAB conjugated nanoparticles 160. 

1.4.2 Cytology 

 

Historically, cystic fluid has been collected and assessed for markers for two 

primary reasons; discerning between mucinous and serious cysts, and differentiating 

benign from malignant lesions.  Coupled with EUS imaging, fine-needle aspiration (EUS-

FNA) is a procedure used to obtain cystic fluid for analysis. This fluid can be assessed for 

the presence of dysplastic cells. Patients harboring cysts with worrisome features, or those 

greater than 3 cm, are recommended to undergo EUS. Each cyst subtype has discreet 

characteristic cellular typology, morphology, and immunohistochemical staining. 

Pseudocysts demonstrate inflammatory cells while serous mucinous neoplasms 
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demonstrate glycogen-containing cells 76. Mucinous cystadenocarcinomas demonstrate 

cells with malignant features (increased nuclear/cytoplasmic ratio, pleomorphism, 

anaplasia, hyperchromatism, prominent nucleoli, and mitoses) nearly 50% of the time, but 

the yield is usually low 161. MUC2 and CDX2 are indicative of intestinal differentiation 

and can be used as immunohistochemical markers to identify intestinal-type IPMN 103, 162. 

A meta-analysis by Suzuki et al. showed a sensitivity and specificity of EUS-FNA cytology 

to be 65% and 91%, respectively, for distinguishing malignant and benign IPMNs 163. 

There has always been a concern with peritoneal seeding secondary to EUS/FNA; however, 

a study found no significant increase in metastatic disease secondary to the procedure in 

patients with IPMNs who underwent EUS/FNA 164.  

While cystic fluid cytology can help differentiate between various cyst types and 

can be highly specific, the cellular yield is often too low to be diagnostically useful thereby 

greatly diminishing the sensitivity. In the Cooperative Pancreatic Cyst study (CPC study) 

that involved 341 patients with PCLs, the sensitivity of cyst fluid cytology for diagnosing 

mucinous cysts was only 34% because of the low number of cells found in cystic fluid 165. 

In conjunction, a multiloculated cystic lesion leads to the compartmentalization of fluid 

species, thus, FNA may not be representative of the lesion’s gestalt.  

1.4.3 CA19.9 and CEA 

 

CA19.9 is a Sialyl Lewis A glycan present on multiple glycoproteins and is 

currently used in the clinic to monitor patients for PDAC progression and/or evaluation 

after surgical resection. It is often elevated in PDAC making it one of the most clinically 

useful markers to date 107. Carcinoembryonic antigen (CEA) is a secreted glycoprotein 

involved in cell adhesion and has been used as a biomarker for various gastrointestinal 
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malignancies 166, 167. It is one of the most clinically useful cystic fluid biomarkers for PCLs 

and the prediction of malignancy. These proteins are often aberrantly expressed and 

detectable in cystic fluid and serum, and much research has been conducted to discern their 

respective diagnostic and prognostic significance.  

Cystic fluid CEA and CA19.9 levels have also been shown to be higher in 

malignant compared to benign cysts 168.  In this study, the sensitivity/specificity for CEA 

and CA19.9 for predicting malignancy were 92%/64% and 81%/69%, respectively 168. A 

meta-analysis looking at the ability of serum CA19.9 and CEA to identify invasive and 

malignant IPMNs found CA19.9 had a pooled sensitivity of 52% and 40% and specificity 

of 88% and 89%, respectively while CEA has a pooled sensitivity of 18% for both invasive 

and malignant IPMNs and a specificity of 95% and 93%, respectively 169. A combination 

of serum CA19.9 and CEA was used to determine the presence of malignancy in resected 

IPMNs 170. CA19.9 alone had a sensitivity/specificity of 74%/86%, CEA had a 

sensitivity/specificity of 40%/92%, and a combination of CA19.9 (cutoff >37U/mL) and 

CEA (cutoff >5 g/mL) had a sensitivity/specificity of 80%/82% 170.  

While these two markers are the current gold standards and prove beneficial for 

therapeutic monitoring and recurrence detection, they do not exhibit the required sensitivity 

nor specificity levels required for screening purposes. CA19.9 is limited in its diagnostic 

utility as Le(a-b-) patients do not have the necessary fucosyltransferase enzyme to produce 

it and also, this phenotype is highly variable among different ethnic groups: Asian (7%), 

European (8%), African (19%) 171. CEA can be expressed in serum resulting from other 

diseases including lung fibrosis, Alzheimer’s disease, and a variety of other cancers 172. 

Further, neither of these proteins has been capable of adequately differentiating benign vs 
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malignant disease in cystic fluid specimens nor serum. With this, these studies demonstrate 

that clinically used cystic fluid and serum markers are variable in their diagnostic potential 

and that more accurate biomarkers are needed to determine the presence of malignancy. 

1. 5 Therapeutic strategy 

1.5.1 Surgery 

 

 Surgical resection is the mainstay of treatment for PDAC as it is the only curative 

treatment option available 173. This can be accomplished with distal or total 

pancreatectomy, or a pancreaticoduodenectomy (Whipple) procedure, depending on the 

location of the tumor 174. Unfortunately, surgery alone is necessary but not sufficient as 

>80% of patients relapse and succumb to the disease if no other therapy is administered 

175. Further, the overwhelming majority of patients (80-85%) present at a time when 

surgery is no longer a viable option due to the presence of locally advanced and/or 

metastatic disease 176. Thus, while surgery is the cornerstone of PDAC therapy, 

improvements on outcomes have been reliant upon adjuvant and neo-adjuvant 

administration of systemic and/or localized therapies to further improve survival as well as 

decreased tumor volumes to sizes capable of being resected. Current guidelines American 

Society for Clinical Oncology (ASCO) and NCCN guidelines recommend the addition of 

adjuvant chemotherapy for all patients that have undergone surgical resection as well as 

neoadjuvant therapy for those with unresectable tumors 177, 178.  

1.5.2 Adjuvant therapy 

 

 One of the earliest studies investigating the possible role of adjuvant therapy for 

PDAC discovered a significant increase in overall survival from 11 months to 20 months 

with the administration of 5-Fluorouracil (5-FU) after resection compared to resection 
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alone 179. This study also formed the basis for the current opinion that adjuvant radiation is 

not beneficial in terms of survival outcomes as no difference was observed between the 

chemotherapy alone and chemoradiation therapy arms. This was a finding corroborated by 

the ESPAC-1 trial where chemoradiation was reported to provide no additional benefit to 

chemotherapy alone 180. Following this a seminal study, CONKO-001, was conducted 

decades later in which adjuvant gemcitabine was found to be equally as effective as 5-FU, 

but with less toxicity 181. Gemcitabine efficacy was found to be potentiated with the 

addition of capecitabine in the ESPAC-4 trial published in 2017, resulting in 5-year 

survival of 30% for patients undergoing combination treatment following surgery 182. This 

trial set the new standard for PDAC therapy. With these results, this is the recommended 

therapeutic regimen provided by the current ASCO guidelines 177.  

 The combination treatment regimen of folinic acid, fluorouracil, irinotecan, and 

oxaliplatin (FOLFIRINOX) has been used to treat metastatic and recurrent PDAC patients 

with favorable impacts on survival compared to gemcitabine 183. Results of a recent clinical 

trial (NCT01526135) investigating the use of adjuvant FOLFIRINOX compared to 

gemcitabine showed an impressive increase in median overall survival between the two 

groups increasing from 35.0 months in the gemcitabine arm to 54.4 months in the 

FOLFIRINOX arm 184. Additionally, the 3-year overall survival percentage was 39.7% and 

21.4% in the FOLFIRINOX and gemcitabine groups, respectively. Of note, this study used 

a modified version of FOLFIRINOX (decreased doses of the constituent drugs) to try and 

mitigate the associated toxicities, yet 75.9% of patients still experienced high-grade 

toxicities and many had to discontinue treatment 184. This result has led the NCCN to add 

FOLFIRINOX as a consideration for patients that can tolerate the therapy 178. 

http://clinicaltrials.gov/show/NCT01526135
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1.5.3 Neo-adjuvant therapy 

 

 Even with the substantial benefit offered by adjuvant therapy up to 75% of patients 

relapse with disseminated disease 185. Neo-adjuvant therapy could eliminate micro 

metastasis and shrink the primary tumors and thus diminish the probability of disease 

recurrence 186. The NEOPA trial looked at the potential benefits of chemotherapy and 

radiation therapy prior to surgical resection and found that neo-adjuvant combination 

gemcitabine and external beam radiation provided a 12% increase in overall survival 

compared to surgery alone 187. PREOPANC-1 trial is currently underway that aims to 

further expound the role of neoadjuvant therapy in the setting of resectable disease 188.  

  As described previously, the majority of patients present at a borderline or locally 

advanced stage, when surgery is complicated or not possible. Borderline resectable disease 

is often defined as confined to the pancreatic bed with limited involvement of the adjacent 

vasculature where vascular reconstruction is possible 189. Locally advanced disease is often 

defined as involvement of the celiac artery (CA) or >180o encasement of the superior 

mesenteric artery (SMA) and/or superior mesenteric vein (SMV) or portal vein (PV) 190. 

The mean 30-month survival of those with locally advanced disease has been reported as 

low as 8% 191. These two groups of patients comprise 30-40% of initial presentations and 

represent a group of patients that stand to benefit from neo-adjuvant therapy 175, 192.  

 FOLFIRINOX has begun to emerge as an excellent neo-adjuvant chemotherapeutic 

agent in recent studies 193One study found FOLFIRINOX treatment of locally advanced 

PDAC facilitated the eventual surgery of 61% of patients involved in the study 194. Along 

with this, a meta-analysis incorporating data from 253 patients found this strategy to cause 

43% of those treated to become resectable 195. However, a different study found 
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FOLFIRINOX treatment in locally advanced PDAC to facilitate surgery in only 29% and 

a large proportion of participants (86%) had to discontinue or modify the chemotherapy 

regimen due to toxicity (Of note, total sample size was small at 14 and did not have a 

control group comparison) 196. Interestingly, the addition of chemoradiation (25Gy in 5 

fractions and capecitabine) with FOLFIRINOX for patients with borderline resectable 

disease lead to an impressive 67% resection rate (all but one of those had pathologically 

negative margins (R0)) and a median overall survival of 37.7 months 197. Congruently, a 

meta-analysis incorporating 19 studies involving borderline resectable or locally advanced 

disease found that neo-adjuvant treatment (76.9% involving radiation and 74.4% involving 

chemoradiation) facilitated resection in 40.2% of patients 186.  

One of the most prevalent neo-adjuvant therapeutic modalities is the administration 

of external beam radiation therapy (EBRT), in dose ranges from 25-50 Gray (Gy) typically 

in 2Gy fractions, with or without concurrent chemotherapy 198. There have been many 

studies that have reported the benefit of incorporating EBRT into therapeutic regimens and 

these have reported resection rates up to 85% 199-201. Along with this, a greater portion of 

those who are able to undergo surgery after EBRT achieve R0 resections reaching 100% 

in one study 202 and many reported increases in overall survival compared to non-radiated 

control groups 198.  

In contrast to EBRT, stereotactic body RT (SBRT) is a highly conformational 

technique capable of delivering large radiation doses in a small number of fractions (hypo 

fractionated) with concurrent image guidance, thus limiting radiation delivery to 

surrounding tissues thereby abrogating toxicity and facilitating local ablation of the tumor 

203, 204. The benefits associated with SBRT has caused it to become heavily studies in 
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conjunction with traditional chemotherapeutic agents 205. One study even found hypo 

fractionated SBRT spared lymphocytes from radiation-induced cell death compared to 

EBRT with conventional fractionation in PDAC patients 206.  A trial utilizing SBRT to 

deliver 33Gy in 5 fractions (6.6Gy/fraction) achieved a one-year overall survival rate of 

59% with extremely low toxicities 207. Additionally, the high-conformational ability of 

SBRT can be taken advantage of to deliver high-doses along the contours of vasculature 

adjacent to the tumors in borderline resectable and locally advanced patients. For example, 

one trial delivered 30Gy in 5 fractions to the entire tumor and 40Gy in 5 fractions (with 

concomitant gemcitabine) to the tumoral surface abutting the vasculature to increase 

shrinkage 207. Importantly, 51% of borderline resectable patients went on to receive 

surgical treatment and 96% of those achieve an R0 (negative surgical margins) resection 

207. Even with these high doses administered via hypo fractionated, in-field recurrence has 

been found to still occur in 26.1% of patients, which highlights the problem of radiation 

resistance in PDAC 208.  

1.6 Conclusions and perspective 

 

The ability to determine the need and level of intervention in high-risk populations 

depends upon an accurate diagnosis. This must be achieved prior to the onset of symptoms 

as these do not often occur until later-stage disease.  Initial presentation to the clinic is most 

often at stages III and IV 209. Importantly, only stage I and II patients even have a possibility 

of being resected predicated on the structures involved. While tissue-based classification 

can be incredibly accurate and allow for true histological  
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analysis and verification of disease by a pathologist, sample acquisition can carry 

significant comorbidities due to the invasive nature of the procedure.  

Further, single-site biopsies do not account for the entirety of the lesion, thus 

increasing the possibility of missing malignant disease. Conversely, the use of imaging for 

classification is non-invasive and can take into account the holistic state of the lesion. 

Unfortunately, current imaging modalities are expensive, are susceptible to observer 

variation, cannot visual extremely early malignancy, and have limited accuracy in 

differentiating malignant vs non-malignant cysts. Cystic fluid (via EUS/FNA) and serum 

(via blood draw) offer a less invasive means of analysis than biopsy. Yet many FNA 

samples have scant cellularity leading to inconclusive results and the current serum-based 

biomarkers are inadequate for detection.  

An intense investigation into biomarkers for the noninvasive characterization of 

high-risk patients is required and these biomarkers must be able to consider the diversity 

in the genetic origins of PDAC 210. Biomarkers should be used in conjunction with the 

current consensus for imaging guidelines to determine the potential of malignancy. In 

effect, the task remains to identify the most at-risk patients within the high-risk populations. 

These include options such as the assessment of circulating endothelial cells 211, cell-free 

DNA measurements 212, improved imaging/biopsy modalities 165, and extracellular vesicle 

(EV) analysis 213, 214. EVs are an especially attractive target as a means of detecting PDAC 

and further analysis of the intravesicular and surface contents may lead to the discovery of 

unique circulating biomarkers.   

Once detected, medicine must be able to offer a treatment that provides a 

meaningful extension of life to the patients suffering from this dreaded disease. Surgical  
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Figure 1. 4 Survival of SEER patients (1992-2016) treated with currently available 

therapies. 

The 5-year survival of all patients within the SEER database is relatively unchanged 

regardless of therapeutic modality. The addition of chemotherapy and/or radiation to 

surgery marginally improves survival at the one-year and two-year time points but does 

not confer any survival advantage at later time points.  
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Figure 1.4 
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resection of the primary tumor remains the only curative option for pancreas cancer. Only 

marginal increases in the life span of PDAC patients by just a couple of months have been 

achieved over the last 30 years 215. While the current therapeutic strategies (i.e. surgery, 

chemotherapy, and radiation therapy) do confer an improvement in outcomes compared to 

no treatment, the 5-year survival of PDAC patients in the SEER database (1992-2016) is 

still incredibly low, even with combination regimens (Figure 1.5). Traditional mild 

chemotherapeutic options such as gemcitabine and paclitaxel offer very little benefit in 

overall survival and conversely, very few patients are eligible or capable of undergoing 

more effective treatments such as FOLFIRINOX due to intense chemo-toxicities. Along 

with this, many PDAC patients are refractory to radiation treatment and thus, this has not 

been a traditional first-line therapy.  

There exists a fervent need to improve the therapeutic armamentarium when it 

comes to PDAC. One that may take into consideration some of the unique aspects of this 

disease and prevent some of the toxicities associated with pan-cytotoxic chemotherapies. 

With the advent of SBRT, site-directed radiation treatment is possible, at higher doses that 

the past with limited off-target toxicities. Additionally, it was shown capable of reducing 

the volume of non-resectable PDAC tumors, to a size amenable to resection. Unfortunately, 

there remains a portion of the patient population that remains resistant to radiation therapy.  

A means of potentiating this site-specific and targeted therapy would prove highly 

advantages in the fight against this horrible malignancy 216. 

The high lethality of PDAC is due to two primary reasons: 1. the discovery of 

PDAC at later stages, with metastatic disease present at the time of initial diagnosis 177. 2. 

The lack of efficacious therapeutic interventions. In a time when average survival for most 
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cancers is climbing, PDAC continues to remain stagnant 2. The goal of this thesis is to 

develop novel detection and treatment strategies for PDAC. Firstly, serum EVs will be 

investigated as potential non-invasive liquid biopsy biomarkers, to serve as a means of 

early cancer detection. Secondly, a recently discovered form of cell death, ferroptosis, will 

be investigated as a means of potentiating radiation therapy.  
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Chapter 2: Methods 

 

2.1 Cell Culture  

MiaPaCa, CD18/HPAF, T3M4, BxPC3, Panc1, Colo357, AsPC1, and Capan1 

(pancreatic ductal adenocarcinoma) cell lines were cultured in Dulbecco’s modified 

Eagle’s high glucose medium (Hyclone, South Logan, UT, USA) with 10% FBS and 1% 

streptomycin at 37oC in a humidified atmosphere containing 5% CO2. HPDE (human 

pancreatic ductal epithelium) cell line was cultured in keratinocyte serum-free medium 

supplemented with epidermal growth factor (EGF) and bovine pituitary extract (Invitrogen, 

Carlsbad, CA, USA) with 10% FBS and 1% streptomycin at 37°C in a humidified 

atmosphere containing 5% CO2. (Note: This is a nonmalignant pancreatic ductal epithelial 

cell line immortalized from a normal human specimen via retroviral transduction of HPV16 

E6/E7. Neither oncogenic mutations nor neoplastic morphological changes are present in 

this cell line.) At 70-80% confluence the plates were washed with PBS and serum-free 

medium was added. The cells were cultured in serum-free medium for 48 hours followed 

by the collection of medium for the EV isolation experiments.  

2.2 Immunoblotting  

 

Protein was extracted from purified EVs using ice-cold RIPA (50mM Tris-HCl, 

150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate and 0.1% SDS) containing protease 

(1mM phenyl-methyl sulphonyl fluoride, 1mg/ml aprotinin, 1mg/ml leupeptin) and 

phosphatase inhibitors. EV lysates were spun at 13,000 RPM for 30 minutes at 4oC, the 

pellet was discarded the supernatant collected. Proteins were resolved using acrylamide; 

bisacrylamide gels and transferred to a PVDF membrane. The membranes were then 
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blocked with 5% milk, probed with primary antibodies overnight at 4°C. Membranes were 

washed (3 x 8min) with phosphate-buffered saline and .01% Tween 20 (PBST) at room 

temperature and subsequently probed with 1:3000 dilution of horseradish peroxidase-

conjugated anti-mouse or anti-rabbit secondary antibodies (Thermo Fisher Scientific, 

Waltham, Mass, USA). After secondary antibody incubation for one hour, the membrane 

was again washed (4 x 8min) with PBST and the protein of interest was visualized by 

enhanced chemiluminescence detection (Thermo Fisher Scientific, Waltham, MA, USA) 

and exposed on an X-ray film for signal detection.  

2.3 Statistical Methods 

 

 Statistical analysis was conducted using JMP Pro software with either student T-

test, or Mann-Whitney-U and Wilcoxon rank test for non-parametric testing of groups that 

did not meet the normal distribution assumption. Survival curves were evaluated via a log-

rank test with p ≤ 0.05 considered statistically significant.   

2A Extracellular vesicle surfaceome characterization for the early detection of 

pancreatic ductal adenocarcinoma 

2A.1 EV isolation from cell medium and serum  

 

Three hundred ml of cell medium was centrifuged in 50 ml aliquots at 11200G for 

ten minutes at 4°C to remove dead cells and cellular debris. The supernatant was then 

filtered and concentrated with a 100kDA centrifugal filtration to a total of 10ml. The six 

solutions used of different quantities of sucrose by weight% in PBS with respective relative 

densities (g/ml) are as follows: 5% - 1.0178, 15% - 1.0596, 30% - 1.1270, 40% - 1.1765, 

50% - 1.2295, 60% - 1.2884. 500 µl of each mixture was layered into 4 ml ultracentrifuge 

tubes with the highest densities added first. The concentrated cell line supernatant was 
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deposited on top of the sucrose density gradient and the EVs were isolated via sequential 

ultracentrifugation as detailed earlier 217. Notably, the target EV population density ranges 

from 1.15 – 1.19 g/ml. thus the expected population should settle in the 30 and 40% layers 

(i.e. fractions 3 and 4). A flow diagram of this protocol and isolated EVs can be seen in  

Figure 2A.1. The purified particles were washed using 10mM Borate Buffer, suspended 

in 50ul of buffer and stored at -20°C. 

EVs were isolated from benign control patients and pancreatic cancer patients with 

early-stage (IA-IIB) disease (IRB # 517-15-EP). For the isolation of EVs from serum, a 

modified version of the cell line supernatant isolation protocol was used. One ml of patient 

serum was added to 1.5 ml PBS and centrifuged at 500G for 10 minutes at 4°C. The 

supernatant was collected and then centrifuged at 12000G for 20 minutes at 4°C. Again, 

the supernatant was collected and centrifuged at 100000G for six hours at 4°C. The pellet 

that formed was suspended with 3 ml PBS and centrifuged for the final time at 100000G 

for two hours at 4oC. From here the EV pellet was treated with the same density gradient 

steps as described for isolation from cell medium. The particles from each fraction were 

suspended in 50ul of PBS and stored at -20°C.  

2A.2 FiberCell 

 

Though density gradient ultracentrifugation is the currently used gold standard 

method of isolation, it is incredibly time-consuming and few particles are isolated from 

high volumes of conditioned media. In an effort to streamline this process, a High-density 

hollow-fiber bioreactor from FiberCell Systems® (Figure 2A.2) was acquired for the 

large-scale production of EVs to decrease the time spent and increase the yield for 

experiments. Cells grow in high densities on the external portion of the hollow fibers in the  
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Figure 2A. 1 Isolation of EVs via density gradient ultracentrifugation. 

 

Flow diagram depiction of the sequential steps required for EV isolation from the cell-

conditioned media beginning with 150 ml of media and finally ending up with concentrated 

EV samples. The relative densities of the target EV population and the sucrose solutions 

are presented on the right side of the figure along with an image showing isolated EVs 

within the third sucrose layer inside a 4 ml ultracentrifuge tube.   
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Figure 2A.1  
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bioreactor cartridge, while the media is retained on the inside of these fibers. This prevents 

the contamination of cell-line exosomes by bovine exosomes present in fetal bovine serum 

(FBS), allowing complete media to be used during production. This has major advantages 

including 1) no longer requiring serum starvation of cells to prevent FBS contamination 

which is the current method used in the field, 2) nutrient and waste exchange through the 

pores resultant from the constant flow-through of fresh media, and 3) constant production 

and vast increases in the number of exosomes produced compared to standard multi-plate 

cultures. In one week, the equivalent number of EVs as would result from 80 to 100, 

145mm cell culture dishes at 80% cellular confluence may be produced.  The yield of EVs 

ranged from 24-26 µg/ml with the use of the FiberCell system and only 8-12 µg/ml when 

using the conventional isolation method (Figure 2A.2). 

2A.3 Transmission Electron Microscopy (TEM) 

 

Formvar coated copper grids were glow discharged for two minutes to facilitate EV 

binding and even distribution upon deposition. 6 µL of purified EVs were loaded onto each 

grid and allowed to dry for three minutes followed by removal of the excess sample. 

Nanovan vanadium negative stain (6 µL) was then added to the grid and allowed to rest for 

one minute when excess was removed and the grids were then incubated for five minutes 

at room temperature (RT). Samples were then analyzed by a Tecnai G2 Spirit transmission 

electron microscope (FEI Inc., Hillsboro, Oregon, USA) 

2A.4 Immunogold 

 

 EVs were deposited onto a formvar coated copper grid after glow discharge with 

excess removed after 3 minutes and allowed to incubate at RT for 7 minutes. All washing, 

blocking, antibody treatments, and gold nanoparticles binding steps were performed by  

https://en.wikipedia.org/wiki/Hillsboro,_Oregon
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Figure 2A. 2 FiberCell Systems® high-density hollow-fiber bioreactor system 

The picture is of the FiberCell® unit purchased and utilized for some EV experiments in 

this thesis. The close-looped system allows for cells located on the external surface of the 

capillaries to produce EVs that remain uncontaminated from complete medium flowing 

through the internal aspect of the capillaries. The 3-D architecture, release from the 

requirement of serum-free media, and continual culture all allow for the production of EVs 

far superior to conventional methods. Indeed, FiberCell can produce 2-4 times the quantity 

of EVs as compared to conventional isolation via ultracentrifugation.  
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Figure 2A.2 
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floating the grids containing EV samples on 100 µl droplets of the solution with the side 

containing sample facing the surface of the droplet at RT.  Briefly, the grids were washed 

with PBS 2min X 3 and blocked with 3% goat serum for 30min. They were next washed 

2min X 3 in 0.1% BSA-c then transferred to an antibody droplet and allowed to incubate  

for 1 hour at RT while covered to prevent evaporation (antibodies dilutions made in 0.1% 

BSA-c with specific dilution concentrations predicated on target of interest. Isotype control 

species antibodies or no primary antibody deposition served as controls for all immunogold 

experiments). Grids were again washed with .01% BSA-c 2min X 6. They were next 

incubated with Protein-A conjugated 10 nm gold nanoparticles (AuNPs) (Nanocs GP10-

PA-1) at a 1:25 dilution in 0.1% BSA-c for 1 hour. They were washed with 0.1% BSA-c 

2min X 6 and then with PBS 2min X 3. Antibody and protein-A binding were fixed with 

2% glutaraldehyde for 5min, washed with deionized water 2min X 6, and subsequently 

were prepared for TEM analysis as described above (Figure 2A.3). 

2A.5 Atomic Force Microscopy (AFM) 

 

The overall negative charge of EVs was exploited for depositing them on positively 

charged mica substrate modified with aminopropylsilatrane (APS) and prepared as 

described in previous publications 218. EV samples (5 µL) were left to incubate for a total 

of 2 min. Excess samples were washed with DI water and dried under argon flow. AFM 

images were acquired using a MultiMode AFM NanoScope IV system (Bruker 

Instruments, Santa Barbara, CA, USA) operating in tapping mode with a 1.5 Hz scanning 

rate using a TESPA-300 probe from Bruker with a resonance frequency of 320 kHz and a 

spring constant of about 40N/m. Images were processed using the FemtoScan Online 

software package (Advanced Technologies Center, Moscow, Russia).   
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Figure 2A. 3 Schematic of the immunogold TEM staining protocol 
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Figure 2A.3 
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2A.6 Nanoparticle Tracking Analysis (NTA) 

 

The concentration, size, and size distribution of the purified EV samples were 

measured with a NanoSight LM10 Nanoparticle Analysis System and processed with NTA 

2.3 Analytical Software (Amesbury, Wiltshire, UK). The purified samples were diluted at  

1:200 in PBS. A 1 mL syringe was used to inject the particle chamber with the diluted 

sample for NanoSight LM10 readings. For all samples, 60-second videos were recorded 

with the shutter speed set to 250 and gain at 680, and subsequently analyzed.  

2A.7 SERS Measurement 

 

Ti/Au 40 nm/100 nm coated 25mmx75mmx1.1mm microscope slides were 

purchased from Deposition Research Lab Inc. (St. Charles, MO, USA) 10 nm AuNPs 

coated with Branched Polyethyleneimine (BPEI) were purchased from nanoComposix, 

Inc. (San Diego, CA USA). A 250 uL amount of 10-nm-diameter Au nanoparticles were 

centrifuged at 5500RPM for 10 minutes and the supernatant subsequently removed. The 

pellet was suspended with 250 uL of 2 mM Borate Buffer and this mixture was spun at 

5500 RPM for 10 minutes. The supernatant was again removed and the pellet was 

suspended in 250 uL of 2 mM Borate Buffer. EVs from each cell line were then added to 

the mixture in a 1:1 ratio. These samples (5 µL each) were dropped onto the gold slides 

and allowed to incubate overnight at room temperature. They were allowed to dry 

completely and then stored at 4°C prior to SERS measurement.  

The SERS measurements were conducted using a commercial microscope 

(Renishaw InVia Reflection, Wotton-under-Edge, United Kingdom) with 785-nm diode 

laser excitation. The laser power was set to be 10 mW. The laser beam was focused by a 

http://goo.gl/maps/Rtp5m
https://www.google.com/search?client=firefox-b-1-ab&q=Wotton-under-Edge+United+Kingdom&stick=H4sIAAAAAAAAAOPgE-LUz9U3sDTIMDNUAjONCrKzjbS0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxQDGt1HYRAAAAA&sa=X&ved=0ahUKEwi2uIGA0ZrcAhURjq0KHXMYBvUQmxMIvAEoATAY&biw=1908&bih=913
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50×microscope objective with a numerical aperture of 0.75 (Leica n PLAN EPI 50×/0.75. 

Buffalo Grove, IL, USA) to a spot size of around 1 μm in diameter. They were recorded 

with an acquisition time of 1s and accumulated 10 times. 

2A.8 SERS spectra processing and Principal Component –Discriminant Function 

Analysis  

 

The raw spectra were baseline corrected via the Vancouver Raman algorithm with 

5-point boxcar smoothing along with fifth-order polynomial fit. Normalization of spectra 

was conducted via the standard normal variant method thus removing multiplicative error 

while maintaining the same level of contribution to the measurement for each spectrum 219. 

The preprocessed spectra were then analyzed by the PC-DFA method utilizing the 

“mixOmics” package in R software. The PCA reduced the dimensionality of the SERS 

spectrum from 1004 variables (from 719 cm-1 to 1800 cm-1) to 20 PCs. These 20 PCs were 

further analyzed by DFA for the development of a classification model. Classification 

efficacy was evaluated by cross-validation and external validation for the cell lines and 

patient serum samples, respectively.  

2A.9 EV surface proteomics 

EV surface protein profiling of the EV proteins was conducted through an outside 

partner, System Biosciences Inc (SBI). EVs isolated from four pancreatic cancer cell lines, 

CD18/HPAF, MiaPaCa, T3M4, and Capan1 as well as EVs isolated from an immortalized 

normal human pancreatic ductal epithelium cell lines, HPDE were used for these 

experiments. Briefly, 100 µg of purified EVs were treated with proteinase-A to cleave the 

surface proteins from the external surface of the EV membranes and the EVs were 

separated from the cleaved proteins via size exclusion chromatography. The cleaved 
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surface proteins were treated with trypsin to facilitate proteolytic cleavage into peptides at 

lysine and arginine residues. Purified peptide samples were analyzed via liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). Given the possibility of 

ultralow concentrations of proteins present on the EV surfaces, two peptides were set as 

the determiner cutoff for the presence a protein, in an effort widen the size of the initial 

pool utilized for subsequent analyses. Of note, EVs isolated from the Capan1 cell line were 

excluded from further analyses due to Golgi-marker 130 (GM-130) protein being present, 

which is not found in EVs and is a marker of cellular contamination.  

2A.10 Bioinformatics Pipeline 

Surface proteins identified by LC-MS/MS from HPDE EVs were compared to the 

pooled protein population found on all cancer cell line EVs. Proteins shared between the 

two populations were subtracted from being possible targets. Remaining proteins within 

the cancer population that were expressed on the surface of two or three of the cancer EV 

populations were considered for further analysis. The expression level of the genes 

encoding each protein was compared between PDAC tissue and adjacent normal tissue 

from 45 individual patients in the publicly available GSE28735 dataset. The genes with the 

greatest difference between the two tissues were further paired down by determining which 

were able to make a Receivers Operator Characteristics (ROC) curve with the largest AUC 

using The Cancer Genome Atlas (TCGA) dataset. The target genes were then assessed for 

cancer stage-based expression level, correlations, and impact on survival as well as 

pathway analysis in both datasets. Further, GO analysis was performed on the EV surface 

proteins to determine their functional implications 220.  
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2A.11 Sandwich enzyme-linked immunosorbent assay (ELISA) 

The in-house ELISA assay was produced as previously described 221. Briefly, a 96-

well microplate was coated with .25ug/well of capture antibody against an EV target 

protein (i.e. CD63, EPHA2, TSG101) diluted in carbonate buffer (0.05M, pH 9.2). The 

microplate was allowed to incubate overnight at RT then washed X 3 with phosphate-

buffered saline and 0.1% Tween-20 (PBS-T) in an automated plate-washer. The plates 

underwent blocking with 3% filtered bovine serum albumin (BSA) in PBS for 3 hours at 

37oC and again washed 3 times. EVs purified from cell lines or patient serum samples were 

diluted with 1% BSA, added to each well (in duplicates), allowed to incubate overnight at 

4oC, and again washed 3 times. A mixture of biotinylated anti-CD63 and ant-CD9 

antibodies diluted 1:2500 in 1% BSA served as the detection cocktail and incubated at 37oC 

for 2 hours. After washing, Pierce Streptavidin conjugated Poly-HRP (Thermo Scientific) 

was added to each well, covered, and allowed to incubate for 30 minutes at RT, then 

washed the final 3 times. 3,3′,5,5′-Tetramethylbenzidine (TMB) solution was deposited 

into each well and allowed to react in the dark for 20 minutes at RT. 1M sulfuric acid was 

used to stop the reaction and absorbance at 450 and 650 nm was measured. Further EPHA2 

measurement in cell line EVs, patient serum, and patient serum EVs was conducted with a 

commercial kit (RayBio®).  

2A.12 Lectin array 

 A 40-lectin array (RayBiotech) was used to investigate possible cancer-specific EV 

glycan patterns. EVs isolated from HPDE and CD18/HPAF were used to discriminate 

possible targets. Amines and azides inhibit the biotinylation reaction thus EV samples were 

dialyzed in PBS (pH 8.0) using a floating rack, dialysis tubes provided, and a stir plate. 
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The first dialysis period was 3 hours, fresh buffer was added, and continued overnight at 

4oC. BCA protein analysis was then completed and 30µg of sample was biotinylated with 

the reagents provided according to the manufacturer’s recommendations. The glass slide 

containing the lectin array was blocked for 2 hours, blocking solution decanted away, and 

10 µg of biotinylated sample added and to each well and incubated overnight at 4oC. The 

slide was washed and incubated with Cy3 equivalent dye-streptavidin for one hour at room 

temperature. The slide was washed, dried with compressed N2, and sent to the manufacturer 

for fluorescence measurement.  

2A.13 Isolation of genomic DNA from EVs 

 

 DNA was extracted from HPDE and Panc1 EVs using QIAamp DNA Micro Kit 

(Qiagen) according to the manufacturer's instructions. DNA was quantified with a 

NanoDrop One spectrophotometer (Thermo Scientific). 130ng of EV DNA was 

subsequently utilized for KRAS G12D and TP53 R273H mutation analysis by digital 

PCR.  

2A.14 Mutation detection by digital droplet polymerase chain reaction (ddPCR) 

 Two probe-based mutation detection assays were conducted for KRAS G12D and 

TP53 R273H mutants in genomic DNA isolated from HPDE and Panc1 EVs: respective 

probe sequence COSMIC_ID and unique assay ID are as follows: KRAS G12D -  

COSM521, dHsaMDV2510596; TP53 R273H – COSM10660, dHsaMDV2010109. 

Mutant target and WT assays are provided mixed together, with FAM conjugated to the 

probe for the mutant allele and HEX attached to the probe for the WT allele. The reaction 

mixture was made containing 10µl probe supermix, 1µl probe, 1µl restriction enzyme, and 

130ng EV DNA diluted in 10µl nfH20 (22µl total). (Of note, sample DNA was able to be 
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digested directly in each ddPCR reaction with 5 units of HaeIII restriction enzyme diluted 

in 1µl of dilution buffer at room temperature prior to thermocycling). Sample mixture and 

70µl of droplet generation oil were added to a DG8 cartridge and droplets generated with 

the QX200 automatic droplet generator. After droplet generation, samples were carefully 

transferred to a 96-well ddPCR plate, sealed, and underwent thermocycling with the 

following conditions: Enzyme activation at 95oC for ten minutes – 1 cycle, denaturation at 

94oC for 30 s followed by annealing/extension at 55oC for 1 minute – 40 cycles, enzyme 

deactivation at 98oC for 10 minutes – 1 cycle, and held at 4oC indefinitely. All cycles were 

conducted with a 2oC ramp rate. QX200 ddPCR droplet reader and QuantaSoft Software 

were used for data acquisition and analysis.  

2B Radiation potentiation via ferroptosis for the improved treatment of pancreatic  

      ductal adenocarcinoma 

 

2B.1 Bioinformatics 

 

 The expression levels of genes of interest were analyzed in publicly available RNA 

sequencing data from PDAC patients within The Cancer Genome Atlas (TCGA) acquired 

from the UCSC Xena portal (http://xena.ucsc.edu) as well as in the GSE2783 (preprocessed 

with R-preprocessing and affy package version 1.50.0) microarray dataset. TCGA was 

additionally used for elucidation of genes of interest effects on survival. Further, MiPanda 

222 and Gepia 223 webserver tools were used to investigate the expression of GPX4 and 

SLC7A11 with a merged dataset containing TCGA data and GTEx cell lines sequencing 

data. The protein-protein interaction information was extracted with the Biological General 

Repository for Interaction Datasets (BioGRID) homo sapiens database 224. Along with this, 
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Project DRIVE (a database built to uncover cancer genetic dependencies with large scale 

deep RNAi screening) was used to investigate the effects of SLC7A11 inhibition in the 

setting of PDAC 225.  

2B.2 MTT 

 

 The cytotoxic effect of Erastin treatment was assessed using a 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. 2,500 cells were 

seeded per well in a 96-well plate and allowed to adhere and proliferate for 24 hours. Two 

plates were treated with Erastin at various concentrations (100 nM – 10 µM) for 24 and 48 

hours. Subsequently, 10ul of MTT (5mg/ml PBS) was added to each well and incubated 

for 3-5 hours at 37oC. The media was aspirated out of each well and replaced with 100 µl 

DMSO and mixed vigorously to release the intracellular contents. Cytotoxicity values were 

measured with a Spectramax 190 (Molecular Devices) microplate reader at a wavelength 

of 520 nm.  

2B.3 In vitro cell migration assay 

 

 The ability of Erastin to inhibit CD18/HPAF cell migration was tested using a 

wound-healing assay. Cells were seeded in each well of a six-well plate and allowed to 

gain 80-90% confluence. A 1-ml pipet tip was used to make cross-pattern scratches in the 

cell cultures at which point fresh media with different concentrations (0, 1, 5, and 10 µM) 

of Erastin were deposited into three wells for technical replication. Pictures of the 

cruciform scratch were taken at 0, 24, 48, and 72 hours and the percent wound closure 

recorded at each time point.  

2B.4 Immunohistochemical staining of human tissues 
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 Formalin-fixed normal pancreas, PDAC, and irradiated PDAC tissues were 

embedded in paraffin and sectioned at 5 µm thickness. Slides were incubated overnight at 

58oC and deparaffinization of tissue sections was facilitated 10 min X 4 incubations in 

xylene with subsequent rehydration via sequential graded ethanol (20-100%). A solution 

of 3% hydrogen peroxide and methanol was used for 30 minutes to quench endogenous 

peroxidases. Then, sections were deposited into 90OC 0.01% citrate buffer (pH 6.0) for 15 

minutes for antigen retrieval. Once the samples cooled to room temperature, they were 

washed with PBS and blocked with horse serum for 2 hours (IMMPRESS kit; Vector 

Labs). The sections were incubated overnight in primary antibody (either anti-GPX4 at 

1:500 dilution in PBS or anti-SLC7A11 at 1:500 dilution in PBS). They were washed in 

PBS for 10 minutes x 4 and incubated with universal anti-rabbit/anti-mouse peroxidase-

labeled secondary antibody (IMMPRESS kit; Vector Labs) for 1 hour at room temperature. 

Slides were again washed and developed via DAB as a substrate. Hematoxylin counterstain 

was applied and slides were washed with tap water. Subsequently, they underwent 

dehydration with decreasing ethanol concentration (100-20%) and finally incubated in 

xylene for 5 minutes. The slides were mounted with permount mounting medium (Fisher 

Scientific) and photographed using an EVOS FL Auto Microscope (Life Technologies). 

Slides were graded by a licensed pathologist and H-scores were obtained by application of 

the formula: 3 x percentage of cells with strong staining + 2 x percentage of cells with 

moderate staining + percentage of cells with weak staining resulting in a range of 0-300.  

2B.5 siRNA knockdown and transient transfection 

 

 Glutathione peroxidase 4 (GPX4) siRNA was purchased from Ambion with 

sequences as follows; sense: GGCAAGACCGAAGUAACUtt; antisense: 
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AGUUUACUUCGGUCUUGCCtc. Cells were seeded in a six-well plate 24 hours prior to 

transfection. They underwent serum starvation for 4 hours when Lipofectamine 2000 

reagent (Invitrogen) was used for transient transfection as per the manufacturer’s protocol. 

Six hours following transfection, serum-containing media was added to the wells. Proteins 

were collected or all experiments (i.e. colony-forming assays) were performed 48hours 

post-transfection to allow for optimal GPX4 KD.  

2B.6 In vitro irradiation  

 

 Cells were plated in T75 flasks and allowed to become 50-60% confluent. A linear 

accelerator in the Radiation Oncology Department at the University of Nebraska Medical 

Center was utilized to irradiate the cells. Flasks were placed onto the LINAC couch within 

a 40 cm2 radiation field on the top of a 10 cm solid water block (a material used for radiation 

beam calibration). X-rays were delivered with 6MV at 2.73 Gy min-1 through the bottom 

of the flask (aspect containing the cell monolayer) which was located 100cm from the X-

ray target. Cell lysates were collected at 6, 12, 24, 48, and 72 hours post-radiation exposure.  

2B.7 In vitro radiation response determination  

 

 Colony survival assay was used to determine the effect of radiation and the ability 

of Erastin (Tocris) to act as a potentiator. Briefly, 500 cells/well were seeded in triplicates 

in separate 6-well plates and treated with various concentrations of Erastin (0.0, 0.1, 0.5, 

1.0, and 2.0 µM). The separate plates were exposed to different dosages of radiation (0, 1, 

3, 5, and 7 Gy) and allowed to proliferate until the no treatment control colonies were in 

close proximity to each other and were near to merging. Cells were washed, fixed in 

MeOH, and stained with 0.4% crystal violet in 25% MeOH. Colonies (defined as >50 cells) 

were counted for each well separately and the numbers associated with each technical 
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replicate (same radiation and Erastin doses) were averaged. The colony numbers from each 

experimental condition were divided by the total colonies in the no treatment control to 

yield proportional survival. The log of the proportional surviving fraction was plotted 

against radiation dose. The linear-quadratic model used to fit the clonogenic survival curve 

for each experimental condition was Y=e^-[α*X+β*X2]. Where α and β were calculated 

according to the Fertil method 226, which was also used to determine the radiation 

enhancement ratio (ER) (i.e. the area under the curve) for each Erastin concentration. The 

ER was calculated as the ratio of the mean inactivation dose without any drug divided by 

the mean inactivation dose under various experimental conditions such as Erastin treatment 

and differing cell lines) where values >1 are indicative of radiation sensitization. This was 

plotted using GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA).  

2B.8 Combenefit analysis 

 

 Erastin synergistic and/or additive effect on radiation-induced cell death was 

determined with the publicly available Combenefit web server 227. This free software 

analyzed the colony survival assay data with three known synergy assessment methods: 

Highest single agent (HSA) 228, BLISS 229, and Loewe 230 models. The interpretation of 

synergy scores can be assumed as follows: < -10 is considered likely antagonism, -10 to 

10 is considered likely additivity, and >10 is considered likely synergism. The Combenefit 

package offers myriad graphical representations of the survival and synergy scores and 

from these, the contour and matrix views are presented herein.  

2B.9 Patient-derived organoids 
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 Patient derived organoids graciously supplied by Dr. Michael Bouvet from the 

University of San Diego were revived and maintained in complete  DMEM/F12 medium 

supplemented with HEPES [Invitrogen], Glutamax [Invitrogen], penicillin/streptomycin 

[Invitrogen], B27 , Primocin [1 mg/ml, InvivoGen], N-acetyl-L-cysteine [1 mM, Sigma 

Aldrich], mouse recombinant Wnt3a [100ng/ml, EMD Milipore], human recombinant 

RSpondin1 [1μg/ml, PeproTech], Noggin[0.1 mg/ml, PeproTech], epidermal growth factor 

[EGF, 50 ng/ml, PeproTech], Gastrin [10 nM, Sigma], fibroblast growth factor 10 [FGF10, 

100 ng/ml, PreproTech], Nicotinamide [10 mM, Sigma], and A83- 01 (0.5 mM, Tocris 

Biosciences). Once healthy and proliferating the organoids were seeded into 4-wells each 

(8 total) of two black walled 96-well plates.  

2B.10 Patient derived organoid radiation response determination 

 

 After seeding, both plates of organoids were allowed to grow for 48 hours at which 

point one well on each plate was treated with various concentrations of Erastin (0.0, 1, 2.5, 

and 5 µM). One of the plates was irradiated with 5Gy radiation using a linear accelerator 

in the University of Nebraska Medical Center Department of Radiation Oncology (as 

described above) 24 hours after the initiation of Erastin treatment, and the other plate 

remained radiation free. Organoids were then allowed to proliferate for 4 days and pictures 

of each experimental condition were taken with an EVOS FL Auto Microscope (Life 

Technologies) at 24, 48, 72, and 96-hour time points. At 4 days post-radiation treatment, 

CellTiterGlo® 3D cell viability assay (Promega) to detect the presence and quantity of 

ATP as an assessment of overall organoid survival. The assay was conducted according to 

the manufacturer’s recommendations and luminescence measurements were taken with a 

SynegyNeo2 Multimode Reader (BioTek). The relative luminescence was compared 
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between the no treatment control and the various experimental conditions and plotted using 

GraphPad Prism (GraphPad Software Inc., La Jolla, CA, USA). 

2B.11 In vivo orthotopic xenograft model  

 

 Eight-week-old nude mice were used for orthotopic implantation of CD18/HPAF-

L luciferase transfected cells. Mice were anesthetized by intraperitoneal injection of 

xylazine (10mg kg-1) and ketamine (100mg kg-1) and a laparotomy performed on the left 

lateral flank to expose the head of the pancreas. 2.5 X 105 CD18/HPAF-L cells were 

suspended in 50 µl of PBS and injected into the head of the pancreas and the incision 

closed. Monitoring of tumor growth was performed via in vivo bioluminescence imaging 

using the Xenogen IVIS-100 (Xenogen Corporation) after intraperitoneal injection of D-

luciferin (150 mg kg-1) while mice were anesthetized with isoflurane.   

2B.12 Treatment plan and experimental design 

 

On day 10 post-implantation, the mice were randomized into four groups of five 

mice each, based on luminescence intensity on IVIS imaging. Group 1: no treatment 

control, Group 2: Radiation only, Group 3: Erastin (SelleckChem) only, and Group 4: 

Radiation plus Erastin. A total of 42 Gy of radiation was administered to groups 2 and 4 in 

six fractions over the course of six sequential days in a Strahl Small Animal Radiation 

Research Platform (SAARRP). This unit provides onboard 3D volumetric image guidance 

via high-resolution cone beam-CT for target localization and dose delivery. In addition, the 

precision beam radiation source can be arced around the animal, thus conferring conformal 

dose distributions in three dimensions with limited off-target dose spillage. The tumor and 

other tissue contouring, isocenter, beam arrangements, and dose calculations were 

conducted with MuriPlan Software (Figure 2B.1). Beginning post-implantation day 14 
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(radiation day 4) groups 3 and 4 received intraperitoneal injections of Erastin (25 mg kg-1) 

for 6 consecutive days. IVIS monitoring was conducted again at days 18 and 26 at which 

point it was determined the no treatment group tumors were getting to a size that required 

sacrifice. On post-implantation day 29, all animals were sacrificed and the tumors 

harvested and weighed. The University of Nebraska Medical Center Institutional Care and 

Use Committee approved the procedures for all experiments performed with mice.  

2B.13 Glutathione assay  

 

 A GSH/GSSG ratio and detection assay kit (Fluorometric – Green, Abcam) was 

used to determine the total glutathione (GSH) present in cells after treatment with Erastin 

and radiation exposure as per the manufacturer’s protocol. Briefly, Panc1 and CD18/HPAF 

cell lines were treated with Erastin and irradiated and cells were collected and lysed after 

24 hours. These lysates were next deproteinated with 4M perchloric acid (PCA) and 

subsequently neutralized with 2M KOH to prevent enzymatic degradation of cellular GSH. 

Total glutathione was measured with a provided dye that fluoresces only in the presence of 

GSH. Fluorescence was measured at excitation/emission wavelengths of 490/520 nm using 

a SynegyNeo2 Multimode Reader (BioTek) and has been reported in this thesis as the 

relative proportional fluorescence of Erastin and radiation treatment groups compared to 

no-treatment controls.  

2B.14 Measurement of reactive oxygen species production 

 

 Cells undergoing ROS evaluation were first washed with PBS and a 10 μM solution 

of H2DCFDA in HBSS was added to each well of a 96-well plate and allowed to incubate  
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Figure 2B. 1 Small animal radiation machine and treatment planning 

A. Still image captured from a video of the Strahl Small Animal Radiation Research 

Platform (SAARRP). This image displays the ability of the radiation source to 

circumnavigate the treatment couch where the mouse is positioned to provide increased 

dose delivery to the tumor while limiting off-target delivery. B. A screenshot of the 

MuriPlan software displaying the capability of the real-time CT imaging and determination 

of the dose isocenter relative to tumor location. Importantly, the software also allows the 

user to visualize the percentage of the prescribed dose (in our case 7Gy) received within 

the colored contours. For example in the image provided, the tumor is falling within the 

red-colored line and thus is receiving the entire 7Gy prescribed dose.  
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Figure 2B.1 
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for 30 minutes at room 37oC in the dark. Non-fluorescent H2DCFDA is cleaved by 

endogenous esterases into the DCF which is trapped inside the cell and is oxidatively 

sensitive. When DCF interacts with ROS it gets oxidized into the fluorescent dye 

fluorescein. The fluorescence was visualized using the Cy3 filter with an EVOS FL Auto 

Microscope (Life Technologies) and the intensity was assessed at an excitation/emission 

of 480/529 using a SynegyNeo2 Multimode Reader (BioTek).  

2B.15 Intracellular free iron (Fe2+) assessment via FeRhoNox™-1 

 

 The effect of radiation and Erastin treatment on the level of unbound catalytically 

active iron (Fe2+) was determined via assessment with FeRhoNox™-1 (Goryo Chemical) 

as per the manufacturer’s protocol. Briefly, the solid dye was reconstituted with 109 µl of 

DMSO to make a 1mM stock solution. This was diluted with Hank’s Balanced Salt 

Solution (HBSS) to make a 5 µM working solution. Cells under the previously described 

experimental conditions were washed twice with HBSS and 100 µl of the 5µM FheRhoNox 

solution per well was added and allowed to incubate at 37oC for 1 hour. The fluorescence 

was measured at excitation/emission of 520/570 nm using a SynergyNeo2 Multimode 

Reader (BioTek). 

2B.16 In vitro assessment of lipid peroxidation via BODIPY™ 581/591 C11 

 

 Lipid peroxidation was determined by measuring the alteration in the fluorescence 

of C11-BODIPY 581/591 from red to green 231. Cells were seeded on slide coverslips at 

the bottom of a 12-well plate. They were treated with 1 µM or 2 µM Erastin, 5Gy radiation, 

or both, and lipid peroxidation was assessed at 12 and 24-hour time points. 10µM of C11-

BODIPY dye (Invitrogen) was added to the cells (diluted in DMEM) and they were 

allowed to incubate for 30 minutes at 37oC. They were then washed with PBS and nuclei 
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stained with DAPI mounting media and mounted onto slides. Cells were imaged with a 

710 Confocal Laser Scanning Microscope (Zeiss) and dye fluorescence analyzed via Zen 

software (Zeiss). Determinations regarding the red/green ratio are the result of three 

independent location measurements in each sample.  

2B.17 Thiobarbituric acid reactive substances (TBARS) assay 

 

When lipid peroxidation cannot be directly visualized (i.e. when the system being 

evaluated is a cancer patient), byproducts of peroxidation such as malondialdehyde (MDA) 

can be used as a surrogate marker to estimate the relative level of lipid peroxidation. A 

commonly used method of doing so is with a thiobarbituric acid reactive substances 

(TBARS) assay232. When TBA and MDA interact, they form an adduct that can be 

measured in a colorimetric or fluorometric manner. A TBARS assay was purchased and 

used according to the manufacturer’s protocol (Caymen Chemical). For the experiments in 

this thesis, 100µl of irradiated patient serum samples were pipetted in sealable 5 ml vials 

and the equivalent volume of SDS solution was added then mixed. 4 ml of the provided 

TBARS reagent was added to each vial, which was subsequently placed in a styrofoam 

floating rack and boiled in water for one hour, then incubated on ice for 10 minutes. After 

incubation, the samples were centrifuged for at 1,600G at 4oC for 10 minutes then allowed 

to come to room temperature. 150 µl from each vial was loaded in duplicates into a 96-

well black-walled plate for fluorometric evaluation. Fluorescence was measured at 

excitation/emission wavelengths of 530/550 nm with a SynegyNeo2 Multimode Reader 

(BioTek). 
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Chapter 3: Overview of the extracellular vesicle surfaceome and its implications in 

cancer 

3.1 Biogenesis 

 

All mammalian cells and human tissues secrete membranous-organelles 

nanometers in diameter which are collectively classified as extracellular vesicles (EVs) 233. 

This group is comprised of two primary vesicle populations, exosomes (50-150 nm) and 

microvesicles (100-1000 nm), distinguished by separate mechanisms of biogenesis. EVs 

begin as the inward budding of late endosomes to create a multi-vesicular body (MVB) 

harboring intraluminal vesicles (ILVs). The MVB is trafficked to and fuses with the plasma 

membrane, releasing its ILV content into the extracellular space where these vesicles are 

referred to as EVs 234 (Figure 3.1). Conversely, microvesicles are the results of direct 

plasma membrane budding into the extracellular space and subsequent release 235. 

Traditionally, size-based classifications for EVs and microvesicles were utilized in studies. 

However, a preponderance of evidence has shown that overlap in sizes can lead to the 

assumption of homogeny in an incredibly heterogeneous vesicle population in relation to 

biogenesis 236, vesicular content 237, and biological functions 238.  

While the author recognizes that these categorical differences are important, 

biologically pertinent, and warrant further investigation, they lie outside the purview of 

this thesis. Along with this, many studies specifically investigating “exosomes” were doing 

so in the setting of size-based categorization which may inadvertently yet incorrectly 

muddle the differences between attributable vesicle subpopulation contents and functions. 

Vesicles of different origin with synonymous size ranges harbor synonymous biophysical 

attributes including size, density, and membrane orientation making disparate populations 

difficult to differentiate 239.  Thus, the reference of “extracellular vesicles” will be used as  
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Figure 3. 1 Mechanisms of EV biogenesis and secretion 

The EV population of interest for this thesis is comprised of exosomes and microvesicles 

and each arises from separate mechanisms of creation. Where exosomes result from the 

inward budding of the late endosomal membrane facilitated by ESCRT proteins and 

subsequent trafficking and fusion with the plasma membrane with aid of Rab GTPases, 

microvesicles form from direct outward budding of the plasma membrane. While these 

biogenesis pathways differ, they produce a heterogeneous population of EVs that contain 

a variety of nucleic acids and proteins. Many of the proteins involved in these biogenesis 

pathways have become the accepted EV markers in the field including Rabs, TSG101, 

ALIX, and various tetraspanins including CD9, CD63, and CD81.   
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Figure 3.1 
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an all-encompassing nomenclatural designation, unless otherwise specified throughout the 

manuscript.  

One of the best-studied mechanisms of EV biogenesis is the endosomal sorting 

complex required for transport (ESCRT) family of proteins (ESCRT 0-III) 240. The 

ESCRTs, along with other proteins including tumor susceptibility gene 101 (TSG101) and 

ALIX, are required for cargo sorting and the formation of ILVs within the MVB (Figure 

3.1) 234. For years these proteins were used as EV specific markers, however, all of these 

complexes are required for other vesicular formation events and are not exclusive to EV 

biogenesis 240, 241. Additionally, tetraspanins, such as CD9, CD63, and CD81 have also 

been shown to impact EV cargo packaging as well as MVB formation 242-244. Of note, these 

are the consensus markers and most frequently used metrics by which the presence of EVs 

is assessed.  After ILV formation, transport of MVBs throughout the cell, as well as to the 

plasma membrane, is facilitated by Rab GTPases 245 including Rab35 246 and Rab27a/b 247. 

Finally, Rab11 248 and soluble N-ethyl-maleimide-sensitive fusion attachment protein 

receptors (SNAREs) 249 facilitate MVB membrane fusion with the plasma membrane.  

Conversely, ESCRT independent EV biogenesis has also been reported. Trajkovic 

et al. found that vesicular contents form separate subdomains on the membrane of the late-

endosome and observed that the molecular cargo present within these subdomains required 

the sphingolipid ceramide for transport into vesicles, sans the requirement of ESCRT 250. 

Along with ceramide, further implicating the role of lipids in EV biogenesis is the enriched 

of a variety of other lipid species in EV membranes, as compared to their cell of origin, 

including phosphatidylserine (notably often with reverse orientation) 251, sphingomyelin 

252, phosphatidyl inositides 253, and cholesterol 254. Indeed, the presence and orientation of 
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specific lipid moieties are shown to be required for vesicular biogenesis. For example, 

syndecan/syntenin complex-mediated phosphatidic acid manipulation, which requires 

phospholipase D (PLD2), is required for ILV formation (again, independent of ESCRT) 

255. Congruently, ARF6, a small G protein that activates PLD2, mediates microvesicle 

formation and shedding from the plasma membrane 235. Finally, Cholesterol and 

sphingomyelin interaction with ostreolysin A (OlyA), a cholesterol/sphingomyelin 

nanodomain binding protein, which is required for the formation of MVs 256. Notably, 

many of the aforementioned sorting machinery, mechanisms, and molecular species are 

shared between exosome and microvesicle biogenesis 257. 

3.2 General Contents and Functions 

 

EVs were originally thought to have only one function, which was providing a 

means of cellular waste disposal and the removal of contaminants 258. However, it was 

discovered decades later that these entities harbor a variety of molecular species that impact 

recipient cell functions. Some of the initial examples of this were antigen presentation and 

the associated molecules including MHC Class I 259 and MHC Class II 260 from monocytes 

and B lymphocytes, respectively. Understanding of EV content continued to evolve when 

it was discovered that they contain deliverable mRNA and miRNA that remain functional 

when delivered to target cells 261. Since the time of these important initial findings, EVs 

have been found to contain many deliverable biologically impactful molecules including 

proteins 262, nucleic acids 263, and lipids 264 (Figure 3.2).  

EV mechanisms of creation and selective cargo sorting necessitates that their 

components reflect the cell of origin and produce vesicles with shared intrinsic properties. 

Some of the specific EV protein contents include adhesion molecules, such as integrins,  
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Figure 3. 2 EV surface and intravesicular content 

The surface of EVs is decorated with a wide array of proteins including the aforementioned 

tetraspanin markers, immunoregulatory molecules such as PDL-1 and MHCs, annexins, 

and adhesion proteins such as integrins. However much of the research to date has been 

completed on the intravesicular content of EVs and its implications in cancer. EVs can 

harbor metabolically active enzymes, a variety of nucleic acid species including DNA, 

mRNA, miRNA, and lncRNA, biogenesis molecules ALIX and TSG101, and many 

proteins with chaperone functions or signaling capabilities. 
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Figure 3.2 

 

 
 

 

  



   
 

97 
 

which are present in many EV subpopulations 237. Mentioned previously, as a result of their 

biogenesis, these vesicles harbor various tetraspanin markers, namely CD9, CD63, and 

CD81 243, which have become the consensus markers for EVs throughout the field. Other 

proteins involved in ILV formation, cargo sorting, and trafficking are found including Rab 

GTPases 245, TSG101, and ALIX 265.  Additionally, membrane-binding proteins such as 

annexins 266 and carbohydrate-binding proteins such as galectins 267, are also present in 

EVs. Along with these, heat-shock proteins, including HSP70 and HSP90, are often 

observed 268. Signaling molecules are also often present such as EGFR 269 and HIF-1α 270.  

Along with proteins, a variety of nucleic acid molecules are frequently present 

within EVs. These include microRNA (miRNA) 271, messenger RNA (mRNA), long non-

coding RNA (lncRNA), and circular RNA (circRNA) 272. The deposition of the different 

RNA types into the recipient cells (either by receptor-mediated endocytosis of the EVs or 

direct membrane fusion) can alter endogenous gene expression patterns 261. Along with 

these, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA), 273 from 

genomic and mitochondrial sources have also been found in vesicles 274. Kahlert et al. 

found EVs to contain genomic DNA spanning all 23 chromosomes as well as harbor 

identifiable mutant (mt) KRAS and mtP53 DNA 275. One of the primary roles that EVs fill 

includes cell-to-cell communication 276.  An elegant experiment by Lai et al. utilized 

fluorescent-tagged mRNA within a donor cell being packaged into EVs, the fluorescent 

EVs subsequently were observed in the tumor microenvironment (TME) and were taken 

up by recipient cells, where the fluorescent-tagged mRNA was still able to be detected 277.   
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While many of the EV constituents' functional implications have not yet been fully 

appreciated they have attributions to cellular homeostasis 278. EV components have proven 

capable of altering recipient cell functionality via delivery of their cargo 279, target cell 

signaling initiation 280, and propagation of disease process 281. With these discoveries, EV 

implications in cancer progression 282, metastasis 283, 284, and drug resistance 285 have 

become an incredibly ubiquitous and highly informative area of research.  Many of these 

EV functions are influenced or are directly facilitated by the vesicle surface and its 

necessary interaction with a target cell 286. However, heretofore, a preponderance of studies 

and reviews have focused on the functional implications of cancer EVs ascribed to 

intravesicular cargo transfer 287, 288. Further, traditional methods of EV assessment have 

often neglected to segregate the intravesicular vs. surface constituents. With this 

dissertation, I aim to highlight the recent investigations into the EV surfaceome in the 

setting of cancer and subsequent elucidation of EV surface-specific isolation techniques, 

characterization techniques, surfaceome effects on cancer biology, EV biomarkers, and 

therapeutic implications.  

3.3 Surface-based Isolation Methods  

 

The recognition that EVs possess cancer-associated surface characteristics has led 

to the emergence of myriad novel surface profiling techniques. These methods often exploit 

surface features such as the presence of specific target proteins, lipid composition, and 

carbohydrate moieties for EV isolation, characterization, or a combination thereof. Some 

of these are the simple product of the new application of old technology to EVs while others 

have been fabricated and engineered from the bottom-up. This section will give examples 

of the EV surface profiling methods heretofore attempted.  
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3.3.1 Traditional EV Isolation Techniques 

 

One of the most commonly utilized EV isolation methods is sequential 

ultracentrifugation (UC), first outlined by Théry where conditioned media or biological 

fluid specimens are subjected to multiple centrifuge steps that increase in speed and relative 

gravitational force 289. This method first removes unwanted cellular contaminants from the 

vesicle population (i.e. cell membrane particles, apoptotic bodies, etc.) and then vesicles 

are pelleted at very high rotation speeds topping 100,000G. A sucrose gradient can be 

utilized to further differentiate the vesicle population predicated on size and relative density 

289. This is the most frequently used isolation method for EVs and is considered the current 

gold standard. However, this method is incredibly time-consuming, expensive, requires 

large starting samples volumes, and special equipment. The ultracentrifugation process can 

also lead to EV clustering upon pelleting under such force, thus making it difficult to 

suspend the individual vesicles in solution. This clumping can diminish overall EV yield 

as well as hinder downstream analyses (e.g. flow cytometry, ELISA, SERS) and functional 

studies (e.g. target cell uptake) 290. 

Another frequently used method is commercial EV isolation kits that utilize 

polymer-based precipitation and subsequent column isolation, which facilitates high-

throughput and facile EV isolation from conditioned media as well as biological fluid 

samples 291. However, these commercially available kits, while efficient at removing EVs 

from solution, can be contaminated by various non-EV debris including apoptotic bodies 

and cellular plasma membranes, protein aggregates (e.g. bovine serum albumin (BSA) 

from media 292, albumen and lipoproteins from serum 293, Tamm-Horsfall protein in urine 

294, lipids from non-vesicular sources, and extra-vesicular nucleic acids. 
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Another traditional method involves the incorporation of isolation predicated on 

size through modification of various techniques including size exclusion chromatography 

(SEC) 295, ultra-filtration 296, and microfluidics. For example, the application of 

microfluidics to an obstacle array can be utilized for vesicle isolation with a specific size 

cutoff 297. The combination of microfluidics and size exclusion filters is also able to 

efficiently separate EVs based on the size as well as decrease exogenous protein 

contamination within the sample 298. A new technique pioneered by the Lyden group uses 

asymmetric flow field-flow fractionation (AF4) for size-based EV isolation 238, 299. 

Interestingly, this method yielded a new subpopulation of EV (< 50 nm in diameter), which 

has been termed an “exomere” 238. Two main problems persist when considering size-based 

isolation methods: 1. size is not mutually exclusive to a specific subpopulation (i.e. size 

overlap between exosomes and microvesicles). 2. an inherent lack of site-specificity, which 

is important when considering EV use as biomarkers or as vehicles for therapeutic delivery.  

3.3.2 Surface-based techniques for EV isolation 

 

Other methods have begun to take advantage of various EV surface characteristics 

including protein content, lipid composition, and surface charge. Importantly, the exposed 

EV surface is amenable to interaction with lipid probes, antibodies, lectins, heparin-binding 

proteins, and aptamers. In addition, these vesicles often harbor a negative surface charge 

(as measured by ζ-potential), thus making them behave in a predictable manner when 

interacting with an electric field or charged particle. All of these features allow for the 

incorporation of EV surface features into novel isolation techniques with increased 

specificity and the capability of direct isolation from biofluids without the need for prior 

UC.  
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3.3.2.1 Immunoaffinity 

 

The EV surface proteome has become one of the primary methods by which 

vesicles are isolated from various biofluids and/or cell culture supernatant. The majority of 

these techniques utilize immunoaffinity capture methods in some manner. Usually, these 

involve surfaces functionalized with antibodies against EV surface proteins including 

printed antibody arrays on various substrates (e.g. glass or metal slides), antibody decorated 

magnetic beads, and antibody decorated latex beads. Samples containing EVs (i.e. biofluids 

or conditioned media) can be directly deposited onto the antibody decorated substrates, or 

beads can be added directly into the solution. The antibodies can then be pulled out of 

solution via centrifugation or a magnet. Aside from the obvious time saving and simplicity 

of direct isolation, another primary benefit of these surface isolation techniques as 

compared to conventional ultracentrifugation is that individual EV’s can be chemically 

released from the antibody functionalized substrate/beads with minimal morphological or 

structural changes and subsequently utilized for functional experiments.  

Many of the first attempts at EV surface protein-based isolation techniques utilized 

the consensus tetraspanin markers including CD9, CD63, and CD81 for vesicle 

sequestration. Specifically, magnetic beads decorated with antibodies against these three 

proteins have proven capable of separating EVs from solution. Isolation and release of EVs 

by magnetic beads were determined to be superior to that of conventional techniques 

including ultracentrifugation and polymerization kits, as determined via flow cytometry, 

immunogold TEM, and western blot 300. While this technique allows for facile and 

immediate isolation from fluids, it still requires a release step where some EVs may be lost 

or damaged, and EVs must undergo an additional processing step for further analyses, i.e. 
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rebinding to latex beads for flow cytometry assessment. A slightly different approach 

involved EVs isolated from conditioned media directly with anti-CD9, anti-CD63, and 

anti-CD81 functionalized latex beads with these vesicles able to be directly assessed by 

flow cytometry 301.  

The same direct assessment capabilities have been demonstrated with other EV 

specific proteins. For example, anti-epithelial cell adhesion molecule (EpCAM), another 

known EV protein, coated beads have successfully isolated EVs 302. Also, vesicle capture 

with anti-EpCAM on a solid substrate, in combination with microfluidics, has also proven 

capable of adequate EV isolation and can facilitate further vesicle characterization by SEM, 

AFM, and SERS 303. Along these same lines, a synthetic peptide capable of binding 

canonical heat-shock proteins (venceremin, Vn) also proved capable of adequately 

isolating EVs directly from samples and was multiparametricly validated 304.  Though quite 

promising and a needed step towards facile EV isolation, immunoaffinity capture with a 

single antibody (our few antibodies) may be too selective and will prevent the acquisition 

of EVs which lack the known surface protein. In conjunction, large scale isolation can be 

difficult and large antibody cocktails are quite cumbersome and diminish reproducibility.   

3.3.2.2 Heparin isolation techniques 

 

One of the alternatives to immunoaffinity EV capture that has recently been brought 

to light takes advantage of studies interpreting the effect of heparin sulfate proteoglycans 

(HSPGs) on vesicular uptake in target cells. HSPGs are known cell-surface receptors whith 

structural homology to heparin 305. It has been shown that ligand binding to HSPG on the 

cell surface can be blocked by the addition of heparin. The addition of heparin has proven 

capable of preventing the uptake of labeled EVs into target cells 306 and further, mitigate 
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EV mediated migration of cancer cells when added contemporaneously with EVs 307. 

Congruently, HSPG expression on the surface of cells was found to be required for 

recipient cell uptake of EVs 308. These findings led Balaj et al. to investigate if heparinized 

agarose beads can bind to vesicles for large scale and facile isolation 309. Indeed, EVs from 

conditioned media as well as human serum could bind to and be isolated by heparin beads 

with 60% efficiency compared to conventional UC. This binding was prevented when 

beads were pre-washed with a heparinase solution. They validated these findings via 

western blot, TEM, and RNA yield/quality. Further, the isolated EVs were subsequently 

labeled with red fluorescent lipid dye and their internalization was not hindered by this 

isolation process 309. Thus, heparin isolation provides a platform for the investigation of all 

EVs from a sample, agnostic of protein expression. 

3.3.2.3 Lipid nanoprobes 

 

Another surface-based isolation method seeks to exploit the enrichment and altered 

orientation of lipid species in EVs as compared to parental cells. Lipid probes, which 

tightly intercalate with EV phospholipid bilayers, can be conjugated to a variety of species 

including magnetic beads or biotin to facilitate isolation. One such probe used a biotin-

conjugated 1, 2-di-stearoyl-sn-glycero-3-phosphoethanolamine-poly (ethylene glycol) 

(DSPE-PEG) probe which tagged EVs from serum-free cell culture supernatant as well as 

human serum 310. NeutrAvidin coated magnetic particles were added to the solution and 

were able to bind to the biotin-conjugated lipid probes and separate EVs from the 

media/serum. This lipid nanoprobe was able to rapidly and efficiently isolation EVs with 

a dramatic reduction in the procedure time (as compared to UC) to only 15 minutes 310.  
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Microfluidics, in conjunction with lipid probes conjugated to a substrate with a 

silica nanostructured surface, has proven capable of efficient vesicle isolation 311. This 

method was able to isolate EVs and characterize the intravesicular DNA content (measured 

by KRAS point mutations) directly from pancreatic cancer patient serum samples 311. 

Along the same lines, another group was able to immobilize individual EVs on PEG-lipid 

“brushes” conjugated to a silica surface 312. Another interesting microfluidics-lipid-based 

assay is ExoChip®, a commercial product from the company BioTEK, and is marketed as 

an on-chip isolation method that is capable of both quantifying and characterizing 

circulating EVs. It accomplishes this by targeting exposed phosphatidylserine (PS) on the 

surface of EVS (a lipid species that is normally on the intracellular leaflet of a plasma 

membrane unless undergoing apoptosis 313) with the PS specific protein, annexin V 314. A 

unique aspect of this design is the simple procedure for the release of EVs from annexin V 

with Ca2+ chelation. While this assay was capable of isolating 90% of cancerous EVs (and 

a larger total quantity than an anti-CD63-functionalized system), it also isolated 38% of 

healthy EVs, thus limiting its use for diagnostic and functional assessment of cancerous 

vesicles 314. Importantly, Annexin V functionalized beads have been utilized for flow 

cytometry analyses 315 as well as another PS specific protein Tim4 316.  

All of the surface-based isolation techniques heretofore discussed have proven to 

be simple tools for easy and timely EV isolation in vitro as well as from human biofluids. 

Efficient yield, minimal impact on surface features, and maintenance of a vesicular 

structure, coupled with ease of release and vesicle recovery, allows the EVs isolated with 

these methods to be utilized for subsequent analyses. Congruently, surface-based isolation 

allows for the preservation of EV functional characteristics, organ specificity, and 
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propensity to interact with target cells, which are required for EV use as therapeutic 

delivery systems (discussed later in the text). These combined advantages are causing 

surface isolation and characterization methods to become preferred over traditional means 

and as such, they are becoming more ubiquitous throughout the field. What remains to be 

seen is if these isolation methods are specific enough to be viable separation methods for 

research as well as in the clinic. Immunoaffinity based assays are limited by the fact that 

only a certain number of EVs express the target proteins and those that do express them 

have variations in the quantity. Thus, immunoaffinity can yield a heterogeneous EV 

population in regard to biogenesis, tissue/cell of origin, or pathological involvement. While 

the lipid composition is different in EVs as compared to parental cells, these lipid species 

are not mutually exclusive to EVs, thus allowing for the possibility of diminished assay 

specificity.  

3.4 Surface-based characterization techniques  

 

Given the promise of the surface-based isolation techniques described in the 

previous section, many have been mingled with existing technologies to yield more 

efficient, lower cost, timely, and specific profiling assays. Specific techniques include; 

mass spectroscopy (MS), which has been able to elucidate a vast array of protein, glycan, 

and lipid targets for EV isolations and/or profiling. Microfluidics, which has provided an 

excellent means of increasing sample volumes tested and increases the ability of 

multimarker assessment within a single sample. Surface plasmon resonance (SPR), flow 

cytometry, and labeled-nanoprobe studies, which have improved quantitative analysis of 

specific EV proteins in total populations as well as on individual vesicles. Surface-

enhanced Raman spectroscopy (SERS), which has proven capable of assessing the EV 
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surface in a labeled (antibody-mediated) or label-free manner. Finally, various electro 

kinetic and impedance-based biosensors, which have been able to semi-quantitatively 

assess EVs in a facile and reproducible manner.  

The remainder of this section will describe some of these methods used to profile 

the EV surfaceome. The discussed studies are not an exclusive or exhaustive list, yet seek 

to emphasize some of the key examples of techniques utilized for surface-based 

characterization of EVs. Further, many of these techniques are used to determine EV 

associated cancer biomarkers, which will be further highlighted within that section. 

3.4.1 Mass spectrometry 

 

Mass spectrometry (MS) has been in existence and utilized for many years for the 

discernment of protein components within a sample. This sensitive technique has 

successfully been applied to extracellular vesicles in an effort to determine their general 

(internal and external) protein content 317.  These studies have shown that EV proteins are 

dramatically altered predicated on the conditions under which the originating cell exists 

including stress 318, immune-inflammatory state 319, and pathological state such as cancer 

320. These differences have thus provided valuable insight into disease processes including 

oncogenesis, tumor progression, and metastasis as well as provided novel targets for EV 

based biomarkers. 

Though few in number, recent studies have utilized LC-MS/MS to determine the 

surface proteomic profile of EV populations. These studies have provided valuable insight 

into the morphology as well as possible functions of EVs after cellular uptake. One such 

study utilized a triple proteomic profiling method that combined LC-MS/MS of in vitro 
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purified EVs analyzed directly, after proteinase K surface protein separation, and after 

biotinylation with trypsin digestion followed by subsequent column-based separation 321. 

Notably, luminal proteins are not affected by enzymatic digestion due to the protection 

from the vesicle membrane, thus this method allowed for the identification of proteins 

expressed on the vesicular membrane as well as presumptions about the membrane location 

of these proteins (luminal or external surface).  They found a distinct population of proteins 

on the vesicle surface relative to the intravesicular contents. Interestingly, they found that 

some of these proteins could have a “reverse topology” where the cytosolic domains were 

located on the superficial aspect of the vesicle surface. Unexpectedly, surface proteins were 

enriched in nucleic acid binding proteins and nuclear proteins (i.e. histones). These MS/MS 

findings were further verified via flow cytometry and fluorescent microscopy 321 and this 

was one of the first studies to elucidate the luminal and external proteomic differences.  

Surface-specific proteomic profiling of EVs isolated from a variety of biofluids 

have also been conducted. MS/MS analysis of serum EV surfaces have yielded specific 

proteomic signatures used to isolate cancer-specific vesicles from patient samples 322. 

Urinary EV surface proteomes have also been investigated and it has been found that at-

least forty-nine proteins are unique to the urinary vesicle surface 323. Further, these results 

corroborated the aforementioned Cvjetkovic et al. findings that vesicular surface proteins 

may have an inverted topology compared to expected cellular membrane orientation. The 

majority of these surface proteins were glycosylated, much like cell-surface proteins, 

implying similar protein-protein interactions and functional mechanisms 323. Thus 

providing another aspect of surface profiling that may be elucidated via mass spectroscopy, 

that of glycosylation status.  
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With the realization that one of the primary topographical constituents of EV 

membranes are carbohydrate moieties, it stands to reason to investigate and characterize 

their glycosylation profiles.  One such study outlined and utilized an approach with 

MALDI MS to measure the number and quantity of N-glycans of urine EVs after enzymatic 

digestion and permethylation 324. They found Paucimannosidic, high-mannose, and 

complex type glycans in the EV samples and further structural details of N- as well as O-

glycans were assessed via LC-MS/MS 324. A materials engineering approach taken by 

another group allowed for further clarification of their MS/MS illuminated glycoproteome 

associated with EVs by utilizing a hydrazide thermosensitive polymer that selectively binds 

to N-glycans 325. The polymer couples with oxidized glycoproteins present in solution and 

self-assembles into large aggregates that fall out of solution at room temperature and may 

be pelleted via centrifugation. These polymer chains decouple and again become soluble 

when heated. Thus, facilitating the selective enrichment of the N-glycans present within 

the mixture. This technique was applied to EVs isolated from healthy and glioma patient 

serum samples by with a commercial isolation kit and found that 26 N-glycoproteins to be 

significantly different between the two populations 325.  

Another application of mass spectroscopy that has proved advantageous for EV 

surface characterization is lipid constituent assessment. Many studies have found 

differential lipid compositions in EVs relative to parental cells 252, 254. Ratiometric increases 

in the relative amounts of many lipid species have been realized between parental cell 

membranes and EVs including cholesterol, sphingomyelin, ceramide, phosphatidylserine, 

and phosphatidylethanolamine 326, 327. Lipid species differences have also been observed 

between vesicle subpopulations such as exosomes (enriched in glycolipids and free fatty 
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acids) and microvesicles (enriched in ceramides and sphingomyelins) 328. Importantly, 

several studies have profiled the lipid content of EVs isolated from human biofluids 

including urine and found differences between cancer and healthy cohorts 329. Of note, co-

isolation of lipid droplets and lipoproteins present a problem for many of these MS 

techniques and as such, require further laboratory validation.  

The majority of these LC-MS/MS EV studies conducted to date have focused on 

the presence of proteins and glycosylations, agnostic as to their location. The select few 

that have chosen to focus on the surface proteome/glycome and EV membrane lipidome 

have proven the capability of this global technique to identify unique surface features 

linked to specific EV populations, both in vitro as well as in patient samples. Increased 

application of mass spectroscopy could provide novel insight into the proteomic, glycomic, 

and lipidomic differences observed in EVs isolated from various biofluids and in different 

pathological settings, including cancer. This, in turn, could identify novel biomarkers, 

improve isolation capabilities, help discern EV functions in target cells, and aid in the 

understanding of how EVs interact with their surroundings. One must remain cognizant 

that MS data can be muddled and much uncertainty persists upon data collection. Any 

result found with these methods must be further experimentally validated.  

3.4.2 Microfluidics 

 

Microfluidics platforms have become integral to EV isolation and content 

assessment. When combined with antibodies, lectins, or aptamers microfluidic platforms 

offer an easy and high-throughput method of profiling the EV surface. Importantly, this 

technique can be combined with various electrochemical analyses to improve overall 

sensitivity and population characterization. One study utilized immunoelectrophoresis to 
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detect EV bound antibodies via alterations in surface ζ-potential, without the requirement 

of fluorescent labeling 330. Additionally, microfluidics facilitates ease in multiplexed 

analyses within a single sample involving the quantitative detection of specific markers. 

Vaidyanathan et al. used a tunable alternating current electrohydrodynamic method to 

detect multiple cancer-associated molecules including epidermal growth factor receptor 2 

(HER2) and prostate-specific antigen (PSA) 331. Concurrently, He et al. has produced a 

microfluidics platform for the concurrent analysis of EV surface and internal contents 332. 

The design incorporates an integrated cascading circuit of analytical procedures including 

immunoisolation (surface protein profiling), EV lysis, protein immunoprecipitation 

(intravesicular protein profiling), and chemifluorescent sandwich assays. They were able 

to apply this technology for the direct assessment of EVs in patient plasma samples, 

accurately characterize EV subpopulations based on surface proteins, and determine 

Insulin-like growth factor 1 receptor (IGF-1R) phosphorylation status 332.  

3.4.3 Flow cytometry 

 

 Flow cytometry is an ideal candidate for individual vesicle analyses with the simple 

yet impactful caveat that EVs are too small to be accurately assessed. Therefore, many 

different methods have been proposed to increase the accuracy and reproducibility of flow 

cytometry analysis 333, 334. Many of these methods evolve directly from the antibody 

functionalized beads used for EV isolation by flow cytometry 301, 302, 335. In these instances, 

EVs can be isolated directly from the media or patient sample with EV consensus proteins 

and subsequently profiled with a second probe antibody/antibodies against a protein(s) of 

interest. A profile of protein expression on EV populations can be compiled specifically 

for discriminating the tissue of origin and/or pathological involvement (i.e. cancerous vs 
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non-cancerous). However, due to the possibility of multiple EVs binding onto a single 

bead, or not harboring both distinct analytes for antibody binding, this method is considered 

to be only semi-quantitative.  

 Evolving from this notion, Yoshioka et al. produced an assay coined “ExoScreen”, 

whereby EV specific antibodies on two distinct photosensitizer beads are combined to 

produce a fast and facile profiling technique 336. Briefly, streptavidin-conjugated donor 

beads are bound to a biotinylated antibody against an EV protein of interest. A second 

bead-antibody conjugate for the same EV specific protein will act as an acceptor bead. The 

first bead (donor) is excited with a laser, which releases oxygen causing the excitation of 

the second bead (acceptor) when in close proximity (within 200nm). This proximity 

requirement is a benefit, particularly when one is hoping to assess smaller EV populations 

such as exosomes and smaller microvesicles, and improve the accuracy of quantitative 

assessment 336.  

Another evolution from standard bead-based flow cytometry is the recent 

development of high-resolution flow cytometry (hr-FC). This is a technique with great 

potential in profiling EV surfaces because it is a mass through-put method capable of 

analyzing individual EV in a multiparametric fashion. Perhaps most importantly, hr-FC 

has a dynamic range of size assessment within the EV range (50-1000nm), thus abrogating 

the requirement of bead conjugation a priori 337. Unfortunately, the reproducibility of EV 

characterization via hr-FC is minimal and attempts are still being made and standardizing 

fluorescent labeling methods and inter-instrumental variations 338. For instance, highly 

concentrated samples can cause an underestimation of particle number 339. Never-the-less, 

with the inherent benefits hr-FC possesses, along with the potential of combining with 
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affinity-based methods, this is a technique that holds great promise in the future of 

individual EV surfaceome analysis.  

3.4.4 Surface plasmon resonance 

 

Surface plasmon resonance (SPR) is a long-known method for the sensitive 

detection of molecular components within a sample. Importantly, SPR sensors can be 

functionalized with antibodies against a protein of interest 340, lectins for carbohydrate 

moieties 341, or aptamers reactive to particular nucleotide sequences 342. Given the potential 

it has of specifically identifying and quantifying a wide array of biological molecules, 

coupled with its long-time use for sensitive detection, SPR has recently been used to 

characterize EV surfaces 343, 344. For example, Gool et al. found that SPR analysis was 

capable of detecting far more antibody-EV pairs compared to flow cytometry, due 

primarily to high blank and isotype control signals in the latter technique 345.  

Recently, localized SPR (LSPR, where light is incident with metal nanostructures 

thus producing an extremely high electromagnetic field in the local environment which can 

be detected with an interferometer 346) has been highlighted as an ultrasensitive technique 

that is an excellent method of assessing EV surfaces with aptamer conjugated metal 

nanoparticles 347 or with nanostructured metal surfaces 348. Interestingly, one group was 

able to optically differentiate via LSPR, exosomes from microvesicles, without the 

requirement of a functionalized antibody using a self-assembled monolayer of gold 

nanoislands (SAM-AuNIs) 349. Conversely, Wang et al. were able to use labeled LSPR (i.e. 

aptamer reactive to CD63 for capture and conjugated gold nanoparticles AuNPs) to isolate 

and characterize EVs with AuNP proximity ligation (via aptamer interaction) signal 

amplification 350.  



   
 

113 
 

3.4.5 Surface-enhanced Raman spectroscopy 

 

Surface-enhanced Raman spectroscopy (SERS) is another ultrasensitive technique 

predicated on vibrational patterns of molecules present within a sample producing inelastic 

photonic scattering that is amplified by the presence of surface plasmon on a noble metal 

surface 351. Scattered photons are identifiable to the molecular species with which they 

interact, thus yielding a highly specific spectral shift 352. In the label-free SERS approach, 

Raman shifts are measured from endogenous molecules present within the EV samples. 

While these spectra necessarily depend on the vibrational patterns of the molecules present, 

the abundance of molecular species and heterogeneity of the system produce an intensely 

complex pattern. A myriad of statistical methods have been applied to deduce EV 

population-specific patterns such as principal component analysis (PCA) 353 and partial 

least squares discriminant analysis (PLS-DA) 354, within the Raman spectra. Nanoparticle 

alterations (i.e. silver-shelled AuNPs) have been produced that increase the specificity of 

label-free signals thus facilitating accurate population discrimination 355. Conversely, the 

labeled SERS approach uses mAB conjugated metal nanoparticles to increase assay 

specificity when a specific marker is known 356. This comes with the obvious requirement 

of knowing the molecule that you looking for, and in the case of cancer-associated species, 

remains quite elusive.   

Recent progress in the SERS field has allowed for the analysis of individual 

vesicles, rather than the bulk EV solution. Many of these use optical tweezers to trap 

vesicles and conduct SERS measurements on each distinct vesicle 357. This technique was 

able to further categorize CD9+ EVs into subpopulations based on Raman shifts as a 

function of differences in surface molecules including proteins, lipids, and nucleic acids 
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358. One of the primary benefits that may be attributed to individual vesicle analysis is 

increasing the discriminatory potential between distinct populations, whether that is within 

the same biological sample or within the same sample grouping such as serum from healthy 

donors or cancer patients.  

3.4.6 Nanoprobes 

 

One of the most prevalent of these techniques involves brute force investigation of 

EV surfaces by large numbers of antibody arrays. In a large study involving 431 lung 

cancer patient samples and 150 healthy controls, an antibody array consisting of 49 

different mABs was used to capture EVs from serum samples 359. The arrays were then 

probed with detection antibodies against the consensus EV markers CD9, CD63, and CD81 

and surface proteins were identified that separated cancer patients from controls based on 

area under curve (AUC); CD151: AUC = 0.68; CD171: AUC = 0.60; and tetraspanin 8 

(TSPAN8): AUC = .60) 359.  

Yang et al. engineered a surface profiling method called Exosome-Oriented 

Aptamer Nanoprobe-Enabled Surface Proteins Profiling and Detection (ExoAPP) 360. EVs 

are immobilized onto surfaces of aldehyde sulfate beads and treated with the ExoAPP 

nanoprobes, which are linked to quenching graphene oxide (GO) surfaces conjugated to 

fluorescent aptamers. When aptamers come into proximity with EVs they preferentially 

bind the proteins of interest thus restoring fluorescence. Once the signal is measured, 

DNase can be used to digest the aptamers thereby facilitating repeat probing for different 

targets in the same EV population. This sequence can then be repeated with different 

aptamers thereby facilitating multi-marker profiling and delineation of patterns between 

disparate populations (i.e. healthy vs cancer). This has allowed for ultrasensitive protein 
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marker detection and profiling (as few as 1.6 x 105 vesicles) 360. Similarly, another group 

combined microfluidic size separation with γ-DNA/aptamers protein assessment and 

machine learning, to yield a profiling assay predicated on EV EpCAM and Her2 expression 

361. 

In an effort to detect ultralow quantities of proteins on individual vesicles, Wu et 

al. composed a proximity-dependent barcoding assay (PBA) to sensitively assess the EV 

surface proteome 362. They selected 38 protein targets which are converted to DNA 

sequences by antibodies conjugated to DNA. The bound oligonucleotide conjugates 

polymerize with rolling circle amplified (RCA) protein tags and amplified by PCR. The 

amplified RCA-PBA complex is decoded with next-generation sequencing (NGS), which 

identifies the specific proteins present within the sample 362. This elegant fusion of 

immunoaffinity and barcoding techniques was able to discern distinct surface protein 

patterns predicated on cells of origin, even at ultralow quantities as determined by the 

percentage of the total sample. The group posited this assay could improve EV 

characterization studies by first identifying the tissue from whence the vesicle originated 

and isolating the population of interest from the myriad others within a biofluid sample. 

Some researchers have begun to utilize lectin arrays to profile the surface glycome 

of EVs 363. In an evolution from the traditional lectin array method, one study again took 

advantage of RCA mediated conversion of EV surface molecules into DNA mediated 

fluorescent detection moieties, but this time with lectin profiling of surface glycans 364. 

Briefly, EVs were isolated via UC and deposited in hydrophilic wells. These EVs were 

probed with various lectin-oligonucleotide conjugates (i.e. sialic acid, fucose, and 

truncated O-glycans) and in situ RCA was performed for glycan signal DNA conversion 
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and amplification. They validated these findings with sialidase treatment and subsequent 

re-analysis as well as flow cytometry. They were able to improve the limit of detection 

(LOD) from traditional lectin array performance. The assay was able to distinguish 

between vesicles arising from different cell sources (HeLa and Panc1 cell lines) based on 

glycan signaling intensities (i.e. Siaα2-6Gal/GalNac and truncated O-glycans) as well as 

differences between EVs and parental cell lectin affinities (i.e. Jacalin, PNA, & HPA) 364. 

Thus, providing a novel method by which EV glycans can be monitored and their 

functional impact investigated.  

3.4.7 Biosensors 

 

 An increasingly wide variety of other biosensors take advantage of electrochemical 

and physics principals to efficiently segregate and characterize EV surfaces. A 

representative sample of some of these innovative and novel technologies including electro 

kinetics, electro generated chemiluminescence, and thermophoretics are described thusly. 

  Electro kinetic microarrays combine alternating AC current dielectrophoretic 

separation with aptamer/mAB capture for surfaceome profiling of vesicle subpopulations 

requiring ultralow quantities of patient fluid 365, 366. Electro generated chemiluminescence 

(ECL, materials/chemicals capable of emitting light in the presence of electro generated 

redox reactants) combined with mAB functionalized electrode surfaces has also been 

applied for the successful characterization of EV surfaces 367. Astoundingly, this group has 

reported an ultrasensitive limit of detection (LOD) of 125 particles µL-1 with an in-house 

ECL nanoprobe produced from Ti3C2 MXenes nanosheets 367.  

Finally, thermophoresis is a phenomenon found in mixtures of distinct and movable 

particles, where particle subpopulations behave differently in response to gradation in 
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temperature. In an elegant study, Liu et al. took advantage of this property of physics and 

thermophoretically enriched from patient plasma samples and subsequently profiled their 

surface with aptamers 368. These various biosensor technologies have been briefly 

discussed herein to provide insight into some of the newer technologies that have the 

potential to play a greater role in EV surface profiling in the near future. 

3.5 Cancer Biology  

 

 Many studies have uncovered the role of EVs in cancer 287, 369. Unfortunately, most 

of these neglect to differentiate between the intravesicular and surface contents of EVs 

leading to a relative paucity in surface-specific studies relative to the compendium of EV 

research. However, interactions that take place at the EV surface and cell surface interface 

are critical in cancer biology as these are the initial events that dictate EV-cell binding 

resulting in the eventual intake of vesicular contents or signal transduction 370. Conversely, 

some of the surface molecules themselves are biologically active and thus can interact with 

and affect the tumor microenvironment (TME) as well as augment the surrounding stroma. 

This section will discuss some of the EV associated impacts on cancer biology that have 

been attributed to the vesicle surface.  

3.5.1 Signaling and crosstalk 

 

EVs can directly interact with cell surface receptors without the need to deliver 

their intravesicular cargo 371. The same holds true in cancer. HSP90α on the surface of 

breast cancer EVs interacts with low-density lipoprotein receptor-related protein-1 (LRP-

1) receptor in an autocrine manner (of note, these EVs have a paracrine function and 

interact with the surrounding stroma as well but will not be included in the crosstalk 

subsection) 372. Conversely, EVs can also carry molecules on their surface which initialize 
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pro-tumorigenic signaling after internalization. Case in point, a highly-glycosylated form 

of extracellular matrix metalloproteinase inducer (EMMPRIN) on EV surfaces initiates 

p38/MAPK signaling after internalization 373. One of the most interesting aspects of this 

particular study is that the putitive primary function of EMMPRIN is to induce MMPs in 

the tumor microenvironment 374, yet the form found on the EV surfaces only had an effect 

once internalized into cancer cells and did not induce MMP degradation of the TME 374.  

Much of the cancerous phenotype including tumor initiation and progression is 

propagated by crosstalk between the cancer cells themselves as well as between the 

malignant cells and the surrounding tumor milieu 375, 376. EVs have a substantial role in 

cellular crosstalk and the initiation of signaling events throughout normal homeostasis and 

just as integral, if not to an even greater extent, in the setting of cancer 377, 378. There is a 

paucity of studies regarding specifically the surfaceome yet some groups have begun to 

investigate its impact on cellular communication. For example, heparin sulfate 

proteoglycans (HSPGs) residing on the surface of tumor-associated EVs and recipient cells 

have been found to be integral for EV uptake across different cell types 379. Christianson et 

al. corroborated this finding and observed that HSPGs on the surface of EV are necessary 

for both internalization and functional delivery of cargos including signaling molecules, 

metabolites, and RNA 308. This led the authors to posit that HSPG could be a novel 

therapeutic target for the treatment of cancer.  

Another example of tumor EV crosstalk with the tumor microenvironment (TME) 

is TGFβ-1 bound to the surface of tumor-associated EVs induced a migratory phenotype 

in surrounding mesenchymal stem cells (MSCs) 380. Further, EV-TGFβ-1, which gets 

trafficked into the cell and remains in the endocytic compartment, induced this phenotype 
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via SMAD dependent signaling for a longer period of time compared to free TGFβ-1 380. 

In the same direction, a separate study uncovered that fibroblasts within the TME can gain 

malignant characteristics including resistance to cell death and invasive properties (through 

the FAK pathway) when exposed to tissue transglutaminase (tTG) cross-linked fibronectin 

(FN) on the surface of EVs from breast cancer and glioma cell lines 381. Endothelial cells 

can also be affected by tumor-associated EVs. E-cadherin on the surface of ovarian tumor 

EVs has been shown to heterodimerize with vascular E-cadherin on the surface of 

endothelial cells thus activating β-catenin and NFκB mediated angiogenesis 382.  

Of course, cellular communication within the TME also occurs in the other 

direction, from the surrounding stromal cells to the cancer cells.  One study found that EVs 

arising from senescent cells within the TME push breast cancer cells to a more aggressive 

phenotype via EphA2 mediated interaction with ephrin-A1 at the surface interphase. 

Ephrin-1 activation initiates reverse signaling through the Erk pathway leading to cell 

proliferation 383. Congruently, glioma-associated stem cells (GASCs) release vesicles that 

produce an invasive and migratory phenotype in glioma cells through the presence of 

Semaphorin7A (SEMA7A) on the EV surface 384. This effect was mediated by SEMA7A 

interaction with integrinβ-1 and activation of the focal adhesion kinase (FAK) pathway 

leading to the increase in cell motility 384. Finally, EVs from cancer-associated fibroblasts 

(CAFs) contain fibronectin which facilitates invasion and promotes anchorage-

independent growth of cancer cells 385. Interestingly, the promotion of invasion was not 

accomplished when fibronectin was located inside vesicles but only when it was on the 

surface via direct interaction with its receptor, integrin α5β1, thereby initiating the FAK 

and Src family kinase pathways 385. 



   
 

120 
 

The TME is not the sole origin of EVs that interact with and affect cancer cells in 

patients. Shtam et al. conducted a study with interesting implications. They found that 

plasma EVs, isolated from healthy donors, were able to stimulate breast cancer 

aggressiveness, again via FAK 386. By combining enzymatic EV surface modification 

(trypsinization) with mass spectrometry, they deduced that this signaling was mediated by 

EV surface proteins that had previously been shown to be involved in FAK signaling 

including extracellular matrix protein 1 (ECM1), fibrinogen (FGA), and fibronectin (FN1) 

to name a few 386. This study has far-reaching implications regarding the effects of normal 

EVs on cancer cells, thus warranting further investigation. 

3.5.2 Extracellular matrix remodeling 

 

Augmentation and refinement of the extracellular matrix (ECM) surrounding a 

tumor are required for migration, invasion, and metastasis 387. A few studies have shown 

how the EV surfaceome facilitates some of the manipulations of the ECM compartment. 

Proteases and glycosidases have been observed on the surface of EVs providing direct 

implications of ECM remodeling 388. Slightly more nuanced is CD44+ EVs released by 

tumors that can bind with hyaluronic acid (HA) and accumulate at the invadopodia, thereby 

effecting stroma and increasing the ability of cancer cells to invade 389. EVs harboring 

CD151 and Tspan8 on their surfaces have been shown to support matrix degradation and 

activate the stromal cells to release a variety of cytokines and proteases that propagate an 

invasive phenotype 390.  

The ECM remodeling capability of EVs can be modified/enhanced with the 

introduction of chemotherapy. Bandari et al. found that heparinase on the surface of EVs 

collected from myeloma cells was impressively elevated after the administration of various 
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standard chemotherapies. The surface localization was a requirement to allow for 

heparinase mediated degradation of heparin sulfate found in the ECM. Further, they found 

that uptake of these EVs by untreated cells activated ERK signaling and caused a 

concomitant increase in heparinase loaded EVs as well as enhanced shedding of the heparin 

sulfate proteoglycan syndecan-1 (SDC1) 391. This is an incredibly informative finding with 

huge implications in possible therapeutic resistance and/or disease recurrence.  

3.5.3 Metastasis 

 

 One of the initial studies to delineate EV implications in cancer metastasis involved 

the formation of a premetastatic niche by EVs released from pancreatic cancer cells in the 

liver 392. This study, while not concerned specifically with the EV surface, was a seminal 

finding in the field and ignited an explosion of research revolving around EVs in 

metastasis. Following this, the same group discovered that integrins on the EV surface are 

responsible for metastatic organ tropism 393. They showed that EVs from specific organ-

tropic tumor cells are selectively up taken by or cells within that organ to form a 

premetastatic niche. Further, they were able to change the tropism of cancer by pretreating 

with EVs from a different organ-tropic cancer (i.e. bone-tropic to lung-tropic), specifically 

integrins α6β1 and α6β4 facilitate lung metastasis and integrin αvβ5 is correlated with 

metastasis to the liver 393.  

 An addition to the EV integrin story was provided by Zhao et al. when they 

investigated the role of two tetraspanins located on the EV surface previously implicated 

in metastasis: Tspan8 and CD151 394. They found that metastasis was drastically reduced 

in an MCA tumor induced in a Tspn8-/- and CD151-/- knock out (KO) murine model. Tspn8-

/-/CD151-/- EVs interactions with integrins, CAMs, and selectins were inhibited and cancer 
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cell migration and invasion were diminished. Along with this, no change in the growth rate 

and survival of the primary tumor was observed. This resulted in the conclusion that 

Tspan8 and CD151 mediate their metastatic enhancement via EV-Tspan8/CD151-

integrin/CAM interactions 394. Another group corroborated the notion that EVs facilitate 

cellular adhesion and found that small EVs harbor extracellular matrix and adhesion 

proteins 395. They went one step farther and observed that tumor cells that were deposited 

onto surfaces coated with EVs showed and improved adhesion, thus displaying the 

functional relevance of their findings 395.  

3.5.4 Immune Impact 

 

Seemingly contrarian to the majority of EV studies conducted in recent years, a 

much larger proportion of research investigating the role of EVs on the immune system 

specifically involves their surface. EV surfaces have been shown to contain 

immunologically impactful molecules such as complement 396, MCH class I & class II 397, 

and bioactive lipids 398, as well as act as damage-associated molecular patterns (DAMPS) 

themselves 399. Conversely, responses mediated by immune cells can be mediated by EV 

surfaces including PMN release of EV-neutrophil elastase (NE) 400, macrophage release of 

EV-histones that activate toll-like receptor 4 (TLR4) 401, and myeloid-derived suppressor 

cell (MDSC) chemotaxis facilitated by MDSC release of EV-CD47, TSP1, and SIRPα 402.  

 With the prevalence of EV surface-mediated immune effects, it is natural to 

investigate some of these in the setting of cancer. Indeed, the EV consensus markers, CD9 

and CD81, along with other tetraspanins including CD151, CD53, CD37, and Tssc6 seem 

to have a defining role in antitumor immunity 403. B-cell surface antigens including CD19, 

CD20, CD24, CD37, and HLA-DR are on the surface of EVs from B-cell lymphoma cell 
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lines, which could feasibly diminish the efficacy of immunotherapy 404. An incredibly 

impactful finding was made in the field of EV immunology when it was discovered that 

tumor-associated EV surface expression of PD-L1 contributes directly to tumor mediated 

immune suppression in melanoma 405. It was also observed that EV-PD-L1 surface 

expression was positively correlated with IFN-γ and modulates the effect of anti-PD-L1 

therapies. Further, EV-PD-L1 expression can also be used as a predictor of response to 

anti-PD-L1 therapy 405. This result was corroborated by the findings by separate groups 406, 

407.   

Another impactful study by Muller et al. found that the regulation of regulatory T-

cell (Tregs) functions mediated by tumor-associated EVs was facilitated by interactions at 

the EV surface Cell surface interface and did not require EV uptake 408. Interestingly, other 

immune cell types including B-cells, NK cells, and monocytes internalized many of the 

EV originating from cancer cells but Tregs did not. This surface interaction sustained Ca2+ 

influx into Treg cells which translated increased conversion of extracellular ATP to inosine 

by the Treg, thus suggesting functional consequences of the interaction 408.  

3.6 Biomarkers  

 

Liquid biopsy-based biomarkers for the successful detection of cancer in a less/non-

invasive manner has become a subject of increasing interest 409, 410. EVs hold many 

advantages for use as liquid-based biomarkers. They are expressed by every tissue/cell in 

the body and are present in almost all biofluids including serum/plasma 411, urine 412, breast 

milk 413, semen 414, ascites 415 and bronchiolar lavage 416, and can even cross the blood-

brain barrier (BBB) 417. EVs also contain proteins, carbohydrates, lipids, and RNA/DNA 

molecules that reflect their cell of origin and have a measure of tissue specificity 418. This 
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feature can be taken advantage of to provide a means for the peripheral assessment of 

residing cancer. Importantly, many of these molecules can be found on the surface of EV, 

which has led to the use of surface profiling and characterization for the diagnosis and 

prognosis of cancer.  

3.6.1 Proteins 

 

 A preponderance of the studies attempting to evaluate the potential of EVs as 

biomarkers do so by characterization the surface proteome. Predefined antibody 

microarrays are widely used for experimental biomarker discovery. An array of 49 

antibodies against EV proteins found that NY-ESO-1, EGFR, PLAP, EpCAM, and ALIX 

were able to prognosticate non-small cell lung cancer (NSCLC) patient survival 419. 

Another prognostication study was able to accurately predict High-grade and low-grade 

glioma patients using an array identified EV protein, syndecan-1 (SDC1), with a  71% 

sensitivity (SN), 91% specificity (SP), and an area under ROC curve (AUC) of 0.81 

(30679164).  Another study used an antibody array on cancer cell line EVs [LIM1215- 

colon cancer, MEC1- B-cell chronic lymphocytic leukemia (CLL)] to select protein targets 

used to probe EVs isolated from CLL patient serum. A subset of the targeted proteins 

including an assortment of tetraspanin markers and HLA molecules were expressed at 

high-levels on the surface of CLL patient EVs and not expressed at all on those of healthy 

individuals 420.  

 As eluded to in the profiling and characterization section found herein, mass 

spectrometry can also be used as a global approach to identify EV surface proteins capable 

of serving as biomarkers. However, special requirements are necessary, such as proteinase 

K treatments and size exclusion chromatography to compare with untreated EVs, in order 
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to assure an external EV membrane location. For example, Castillo et al. used proteomics 

to identify multiple pancreatic cancer EV markers: CLDN4, EpCAM, CD151, 

LGALS3BP, HIST2H2BE, and HIST2H2BF. They were able to use antibodies against 

these surface proteins to selectively isolate cancer-associated EVs from patient plasma, as 

determined by the enrichment of detectable KRAS mutations 322. Glypican-1 is another 

pancreatic cancer EV surface marker that was discovered by MS proteomics and verified 

by flow-cytometry 421. Along with pancreas cancer, EV surface proteins identified by MS 

and have also been able to facilitate target identification in gliomas (with surface location 

validation conducted by proximity extension assays) 422 and colorectal cancer 423. Of note, 

much more mass spectrometry proteomic assessment has been conducted on EVs but 

almost all of them have been concerned with the complete vesicle proteome and the 

proteins identified are unable to be specifically attributed to the EV surface.  

Other protein profiling techniques have been utilized as well. Logozzi et al. used 

an enzyme-linked immunosorbent assay (ELISA) to assess the levels of specific proteins: 

CD63, Rab-5b, and caveolin-1 in EVs purified from melanoma patient serum. They found 

a consistent increase in the expression level of CD63 and caveolin-1, as well as an increase 

in the abundance of caveolin-1 within the CD63+ population, in EVs from cancer patient 

serum as a comparison to healthy controls 424. High-sensitivity flow-cytometry is another 

technical approach that has also been adapted to help identify cancer-associated proteins 

on the surface of EVs. This study found CD147 expression to be significantly increased on 

the surface of EVs from colorectal cancer patients as compared to healthy donors 425. 

Another group utilized plasmonic profiling EVs from pancreatic cancer patients, to find a 

five-marker signature able to predict patient cancer status with some accuracy. The assay 
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sensitivity of 86% and specificity of 81% offered produced higher accuracy than the current 

gold standard marker CA19-9 426. Congruently, Liang et al. were able to use labeled LSPR 

(i.e. anti-EphA2 mAB conjugated metal nanoparticles) to discriminate between healthy and 

pancreatic cancer patient serum requiring only 1uL of sample 427. 

3.6.2 Carbohydrates  

 

Aberrant glycosylation of cells and the extracellular matrix in the setting of cancer 

has been known for many years 428, 429 and the presence of glycans on the surface of EVs 

has been discussed in previous sections. With this, investigations into the presence and 

patterns of carbohydrate moieties on the surface of EVs have proven fruitful for use as 

cancer biomarkers 430.  For example, the presence of sialic acid on EV-CD133 isolated 

from ascitic fluid of pancreatic cancer patients was linked with a better prognosis in 

advanced-stage patients 431. In a related experiment, a lectin array that focused on tumor-

associated glycans such as sialic acids, fucose, and truncated O-glycans was able to 

determine differential expression of surface glycans between EVs and parental cervical and 

pancreas cancer cells 364.  

Likewise, flow cytometry mediated lectin evaluation of melanoma EVs revealed an 

increase in the presence of fucose and complex N-glycans with bisecting GlcNAc 432. 

Along with the serum-based studies, urine N-glycosylation status was found to be 

associated with EVs released in the setting of prostate cancer 433. The majority of these 

studies are starting points of glycosylation-based biomarkers in cancer because just as with 

proteins, many more studies involving EV glycosylation status have been conducted 

without necessarily focusing on surface localization of the moieties.  
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3.6.3 Lipids 

 

Lipids offer another means of EV population differentiation. Targeted lipidomic 

analysis of EVs isolated from non-tumorigenic prostate cells and prostate cancer cells 

elevation in the presence of fatty acids, glycerolipids and prenol lipids in the former while 

the latter harbored more sterol lipids, sphingolipids, and glycerolipids 327. “Shotgun” 

lipidomic profiling of EVs isolated from a different cancer type, colorectal, corroborated 

these prostate cancer findings and found an increase in sphingolipids, sterol lipids, 

glycerolipids, and glycerophospholipids 434. A final study applied lipid characterization to 

the actual diagnosis of prostate cancer patients. The abundance of nine lipid species was 

altered in urinary EVs isolated from healthy donors and prostate cancer patients. The two 

lipids with the most differential expression levels were phosphatidylserine (18:1/18:1) and 

lactosylceramide (d18:1/16:0), and when combined phosphatidylserine (18:0/18:2) were 

capable of predicting patient cancer status with 93% sensitivity and 100% specificity 329. 

Importantly, the overlap in lipid species between these two individual studies, while not 

complete, reinforces the notion of selective lipid species incorporation into EVs and 

supports their use as possible biomarkers.  

3.6.4 Label-free 

 

An increasingly ubiquitous label-free method of treating the EV surface as a cancer 

biomarker is surface-enhanced Raman spectroscopy (SERS). This technique, in 

combination with a variety of statistic methods discussed previously in the profiling 

section, has allowed for the reproducible, non-destructive, and non-targeted assessment of 

EVs isolated from cancer cell supernatant and patient samples. Examples include SERS 

measurements and PCA analysis of EV surfaces isolated from NSCLC cells, which were 
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similar in pattern to SERS spectra of the EGFR protein. Thus, the authors concluded that 

much of the cancer EV spectra is conferred by the presence of EGFR on the surface of the 

EVs 435. SERS was again applied to cell line EVs and proved capable of distinguishing 

between lung cancer and non-malignant origins with very high accuracy (95.3% sensitivity 

and 97.3% specificity) 436. Another study took another step towards the application of 

SERS technology to patient samples and involved SERS-based analysis of pancreatic 

cancer cell line EVs that was used to train a PC-DFA (discriminant function analysis) 

algorithm, which was subsequently applied to SERS spectra collected from EVs isolated 

from patient samples. This method was able to predict patient status with up to 87% 

accuracy for healthy controls and up to 90% accuracy for early pancreatic cancer 353. SERS 

characterization has also been successfully applied to EVs originating from breast cancer 

cells 437 as well as prostate cancer cells 438.    

3.7 Therapy  

 

 A plethora of studies have investigated the use of EVs as a delivery vehicle for 

various therapeutic molecules including cytotoxic drugs and inhibitory RNA with a variety 

of loading techniques 439, 440. EVs have many advantages which make them ideal candidates 

for cancer therapy including protection of intravesicular contents (i.e. prevention of RNA 

degradation), minimal immunogenicity (especially when of autologous origin), ability to 

be loaded with therapeutic cargo, and the capability of surface modification for selective 

targeting 441. The methodology and effectiveness of these strategies lie much out of the 

purview of this thesis, with the exception of the role the EV surface may play in the 

facilitation of drug delivery or enhancement of vaccine potency.   
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3.7.1 The endogenous EV surface 

 

Generally speaking, EV surface proteins are important for their pharmacokinetic 

profile. EVs treated with proteinase k which significantly lowered the volume of 

distribution as well as diminished EV lung localization, presumably through enzymatic 

cleavage of integrin α6β1 442. This study highlighted the importance of the EV surface on 

vesicle distribution and its use as a therapeutic delivery method.  The distribution of 

tetraspanin expression on the surface of EVs is another factor that contributes to target 

selection and uptake 443. Another observation that holds immense therapeutic importance 

is the fact that cancer cells seem to have a preference for the uptake of EVs originating 

from themselves, that is, they possess a degree of autologous tropism 444.  

Some EV-based therapies take advantage of the importance of endogenous surface 

profiles. For example, Li et al. bound doxycycline loaded superparamagnetic iron oxide 

nanoparticles to the surface of EVs with antibodies against A33, a protein expressed in 

cells of origin as well as the EV surfaces. These duplex particles were preferentially up 

taken by the parental cells thereby facilitating delivery 445. Another method is isolating EVs 

from a patient and loading them with various cargos using different methods including 

electroporation, sonication, and freeze-thaw cycles 446, 447. Notably, some of the traditional 

isolation methods such as UC, polymer-based precipitation kits, and ultrafiltration can 

cause vesicle lysis, aggregation, and morphological changes 290 all of which, could be 

ameliorated by the surface-based isolation methods previously discussed herein.  

3.7.2 Functionalized the EV surface 

 

One of the most prevalent strategies is the use of surface modification to influence 

the tissue-tropism, stability, and/or cancer specificity of EVs. EV surfaces can be decorated 
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directly with myriad exogenous targeting molecules through biochemical engineering 

facilitated by linker molecules 448. Some of the surface functionalization methods that have 

had success include deposition of tumor-specific antibodies 449 and aptamers 450. Notably, 

the PEGylation of EV surfaces after modification can serve the dual purpose of preserving 

the conjugation as well as increase the stability and circulation time of EVs in the body 451.  

A slightly more refined approach to increase EV tumor homing is a genetic vector 

transfection harboring construct coding for the expression of tumor-targeting molecules on 

the surface of EVs. For example, a vector coding for anti-EGFR nanobodies linked to 

glycosylphosphatidylinositol (GPI) was transfected into cells and their EVs subsequently 

isolated 452. These EVs successfully displayed the nanobodies on their surface and resulted 

in selective internalization by EGFR overexpressing tumor cells 452. Interestingly, a 

different surface modification made with RNA nanotechnology induction of folate 

expression on the EV surface did not necessarily increase the uptake of EVs in cancer cells 

but prevented their subsequent trapping in the endosomal compartment. This facilitated the 

EV delivery of functional siRNA which subsequently inhibited tumor cell growth 453.  

Along with targeting cancer cells for improved therapeutic delivery, EV surface 

modifications can be conducted that facilitate targeting of antigen-presenting cells, thus 

improving antigen delivery as a vaccine 454. Lactadherin binds to the external EV surface 

via interaction of its C1C2 domain with EV lipids 455. Hartman et al. took advantage of this 

by constructing a vector expressing the extracellular domains of tumor-associated antigens 

(TAAs) linked with lactadherin. They found that indeed, this caused the TAAs to be located 

on the surface of EVs and further, that administration of these EVs provided a significant 

enhancement of the antigen-specific immune response in vivo 456. Importantly, this study 
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suggested EV surfaces as a possible method of anti-cancer vaccine. Congruently, if the 

glycocalyx is modified on tumor-associated EVs to possess high-manno glycans, they are 

preferentially take up by dendritic cells and result in a higher degree of CD8+ T cell 

priming than compared to unmodified EVs 457. 

3.7.3 Targeting the EV surface 

 

Since EVs have been proven to facilitate cancer progression, invasion, and 

metastasis (see previous sections), some researchers have attempted to target the EVs 

themselves in an effort to slow disease progression. For example, targeting integrin α3β1 

expressed by EVs originating from ovarian cancer cells by peptide LXY30 reduced uptake 

into the parental cancer cells, thus demonstrating a possible use in therapy 458. A functional 

application of this notion came when heparinoids added to EVs, bound to their surface and 

subsequently prevented uptake into cancer cells. Further, the cancer cells exposed to 

heparinoid treated EVs displayed inhibited migratory potential 307. In a slightly different 

approach, EV surface molecules can be targeted to prevent undesired downstream 

signaling. For example, activated T-cells release EVs with Fas ligand (Fas-L) on their 

surface which induces T-cell apoptosis. Cai et al. showed that targeting FAS-L on the 

surface of EVs with a mAB prevents T-cell dying and mitigates the tumor growth rate 459. 

Few studies have been conducted that investigate this notion of targeting EVs yet this is a 

novel concept with great potential that requires further exploration.  

3.8 Conclusion and perspective  

 

 The biological implications of the EV surfaceome in the setting of cancer are just 

beginning to come to light. The mechanism of biogenesis for these particles provides a 

window into the cancer cell from whence they came and thus, is inherently is a close look 
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into the processes and mechanisms of tumor biology. Surface-based isolation and profiling 

techniques have proved invaluable in the study of these EVs and continue to provide 

information on tumor biology including initiation, progression, and metastasis as well as 

how they interact with target cells, affect the tumor microenvironment, alter the 

extracellular matrix, and impact immune cells. Additionally, the surface of these vesicles 

provides a platform for the discovery of liquid biopsy-based biomarkers to facilitate the 

early detection of cancer. They are ubiquitous in human biofluids and possess cancer-

specific signatures. Finally, understanding the surface of EVs facilitates their utilization as 

drug delivery vehicles. Surfaces can also be modified to improve cellular uptake or increase 

target specificity. Thus, given these many attributes, further study involving the surface of 

EVs and its impact in all these areas is highly warranted, if not required.  
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Portions of the content covered in this chapter are the subject of a published 

article in Nanomedicine: Nanotechnology, Biology, and Medicine by Carmicheal et al. 353 
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Chapter 4: Extracellular vesicle surfaceome characterization for the early detection 

of pancreatic ductal adenocarcinoma 

4A Label-free characterization of extracellular vesicles via Raman spectroscopy 

4A.1 Synopsis 

 

Pancreatic cancer is a highly lethal malignancy and early detection is key to 

improved survival. Lack of early diagnostic markers makes timely detection of pancreatic 

cancer a highly challenging endeavor. EVs have emerged as information-rich cancer-

specific biomarkers. However, the characterization of tumor-specific EVs has been 

challenging. This study investigated the potential of extracellular vesicles (EVs) as 

circulating biomarkers for the detection of pancreatic cancer. Label-free analysis of EVs 

purified from normal and pancreatic cancer cell lines was performed using surface-

enhanced Raman Spectroscopy (SERS) and principal component discriminant function 

analysis (PC-DFA), to identify tumor-specific spectral signatures. This method 

differentiated EVs originating from pancreatic cancer or normal pancreatic epithelial cell 

lines with 90% overall accuracy. The cell line trained PC-DFA algorithm was applied to 

SERS spectra of serum-purified EVs. SERS spectral signatures of circulating EVs, with 

PC-DFA analysis, exhibited up to 87% and 90% predictive accuracy for HC and EPC 

individual samples, respectively.  

4A.2 Background and Rationale 

Pancreatic cancer is characterized by insidious onset and relentless progression. 

According to the American Cancer Society (ACS), this disease is the third-leading cause 

of cancer death in both men and women, with an estimated 44,330 deaths in 2019 2. As per 
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ACS statistics, for all pancreatic cancer diagnoses, the five-year survival rate is 9% and 

falls to 3% when the diagnosis is made after metastasis has occurred 2. 

The only curative option for this lethal malignancy is surgical resection. Surgical 

resection of the primary tumor, before it has given off metastases, confers the largest 

increase in overall patient survival 177. Unfortunately, surgery is often not possible. At the 

time of initial discovery, primary tumors have often locally invaded to the point of being 

nonresectable and/or have produced metastases. The primary reason for this is the 

predominantly asymptomatic nature of early disease. Congruently, symptoms, when 

present, are mild and ambiguous such as nausea, malaise, and right upper quadrant pain 

460. Only in later stages do patients experience more dramatic clinical symptoms such as 

jaundice, cachexia, and migratory phlebitis. Thus, it is important to develop non-invasive 

and label-free tools for the early detection of pancreatic cancer. A liquid biopsy-based 

tumor biomarker for the screening and early diagnosis of pancreatic cancer is a promising 

area of research that could change the outcome of this lethal malignancy and improve 

patient survival.  

Among a variety of serum-based cancer markers put forth as a possible means of 

pancreatic cancer detection 461, extracellular vesicles (EVs) are highly sought after and 

valuable targets. EV genesis begins as vesiculation of late endosomes. They are a product 

of the inward pinching of the endosomal membrane and subsequently are released to the 

extracellular space via direct fusion with the external cellular membrane 462. Inherent in 

this mechanism of creation is that the intravesicular contents of EVs mirror the cell of 

origin. A variety of functions have been attributed to EVs including intercellular 
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communication 463, pathogen transmission 464, and immune response induction 465. And 

recently, the functional capabilities of EVs have been extended to include a role in the 

progression and metastasis of various cancers 393, 466, 467.  Because of this, many 

investigators have begun to examine the potential of EVs as cancer markers 421, 468-470.  

 A portion of circulating RNA and DNA (extracellular nucleic acids found in 

serum) is located within these membrane-bound vesicles, and studies have focused on their 

genomic profiles 471, 472. Further, these vesicles are easily accessible via non-invasive liquid 

biopsies involving saliva, blood, urine, breast milk, and ascitic fluid 473, 474. Due to these 

myriad attributes, EV purification and characterization are imperative in the ongoing 

pursuit of liquid biopsy-based cancer biomarkers. New techniques are being investigated 

for better characterization and analysis of cancer-derived EVs to distinguish them from 

those of normal physiologic origin.  

One technique that has unique attributes that make it a promising candidate for EV 

analysis is Raman spectroscopy 475, 476. This is a vibrational technique that measures 

inelastically scattered photons after a sample interacts with incoming monochromatic laser 

light. These photons change their energy by exciting vibrational modes of molecules. The 

result is a Raman spectrum that corresponds with known vibrations of specific chemical 

groups. Such a spectrum can accurately identify the molecular composition of a sample.  

Raman spectroscopy has several advantages making it ideal for EV 

characterization. Of great importance is that it is a label-free and a non-destructive 

technique. This holds a translational advantage in that immediate analysis of EVs is 

possible without undue risk for the patient nor long waiting periods. Raman scattering can 
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also provide a unique fingerprint signature based on the molecular composition of a 

sample. Hence, this method can differentiate EVs as a function of membrane lipid/protein 

content along with other various surface modifications. Finally, the Raman signal can be 

enhanced by several orders of magnitude by employing noble metal nanoparticles (Au/Ag) 

or rough nanostructures. As a result, only a small concentration of EVs in a sample is 

needed for detection and analysis.  

The primary limitation of this method is weak Raman scattering efficiency (lower 

than 1 in 107 photons). In the presence of surface plasmon on metallic (usually Au or Ag) 

nanoparticles or nanostructured surfaces, Raman signals can be significantly enhanced. 

This phenomenon is called surface-enhanced Raman scattering and the technique is called 

surface-enhanced Raman spectroscopy (SERS) 477, 478. This technology has been widely 

studied and applied for many years; however, it has only recently been employed to analyze 

EVs 436, 479. When combined with multivariate analytical techniques that can condense a 

large amount of spectral information gathered, SERS can serve as a valuable tool to 

separate EV subpopulations and can potentially be utilized for the characterization of EVs 

for cancer diagnoses. 

One method for the mathematical processing of SERS data is principal component 

discriminant function analysis (PC-DFA) 219. With this technique, principal component 

analysis (PCA) is performed initially on SERS spectra. This reduces total variables 

considered and accentuates the amount of variation within a data set. In so doing, it allows 

for the determination of which combination of variables contributes the greatest to the 

overall variance measured between samples. PCA conducts a linear (orthogonal) 



   
 

138 
 

transformation on the SERS data, compressing a multitude of correlated variables (i.e. 

Raman shift peaks) into linearly uncorrelated variables known as principal components 

(PCs). PCs can then be used as input independent variables for discriminant function 

analysis (DFA). This applies yet another linear discriminant transformation to the SERS 

data that further differentiates EV subpopulations and provides classification efficacy via 

a cross-validation or external-validation method. 

In this experiment, SERS and PC-DFA were utilized to characterize subpopulations 

of EVs from various cellular origins as well as patient sera. The SERS spectra of EVs 

derived from one healthy and two pancreatic cancer cell lines were successfully 

characterized and classified by a PC-DFA algorithm. Further, the PC-DFA algorithm 

trained from the three cell lines was applied to the SERS spectra of EVs isolated from 

pancreatic cancer patient serum samples to investigate the diagnostic efficacy of EV 

spectral signatures. 

4A.3 Results 

4.3.1 EVs of appropriate size can be isolated from cell line conditioned media  

 

EVs were isolated from the cell culture supernatants of representative pancreatic 

cancer cell lines CD18/HPAF and MiaPaCa, as well as from the untransformed pancreatic 

epithelial cell line HPDE, by diffusion gradient ultracentrifugation as described in the 

methods section. Size distribution and concentration of the EV isolates were discerned 

through the use of nanoparticle tracking analysis (NTA) that revealed the CD18/HPAF cell 

line-derived EVs modal hydrodynamic size to be 132 nm, those from MiaPaCa to be 221 

nm, and HPDE EVs to have a modal size of 261 nm (Figure 4A.1).  
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Figure 4A. 1 Nanoparticle tracking analysis of cell line EVs 

EVs were purified via density gradient ultracentrifugation from cell line supernatant as 

described in the methods section. Nanoparticle tracking analysis (NTA) was conducted on 

EVs isolated from two pancreatic cancer cell lines, CD18/HPAF and MiaPaCa, as well as 

one normal human immortalized epithelial cell line, HPDE. The results showed size 

distributions within the expected range for heterogeneous EV isolation ranging from 50-

500 nm in diameter. Importantly, the quantities of each EV population were sufficient to 

be used in subsequent experiments.  
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Figure 4A.1 
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4.3.2 Isolated EVs maintain morphological characteristics  

 

Morphology and size of the extracellular vesicles were visualized with transmission 

electron microscopy (TEM) (Figure 4A.2). Imaged EV isolated from all three cell line 

supernatants contained particles with diameters ranging from 40 nm to 200 nm as can be 

seen by the individual vesicle measurements on the TEM images. The mounting, fixing, 

and staining process required for TEM visualization of EVs results in dehydration creating 

a concavity in the center of the vesicles where vanadium negative stain can pool. This 

pooling increases the electron opacity at that location thereby conferring the characteristic 

“saucer shape” morphology 480. Fewer EVs were noted in the HPDE isolates as compared 

to those isolated from the two cancer cell lines. Of note, the larger EV sizes measured via 

NTA can be attributed to the combination of possible vesicular agglomeration in NTA 

making them measured larger and/or the preparation of the samples required for TEM with 

the aforementioned dehydration and resultant shrinkage making them look smaller than 

their true hydrodynamic size.  

4.3.3 EV consensus marker validation and substrate distribution assessment   

 Further characterization of the EVs was conducted via immunoblotting in order to 

validate the presence of the accepted EV markers as well as their increased concentration 

compared to the respective EV whole cell lysate (CD18/HPAF) (Figure 4A.3A). 10 µg of 

protein from each of the six fractions formed via the density gradient was utilized. The 

accepted tetraspanin protein markers, CD9 and CD63, along with the adhesion molecule 

EpCAM 420, were used as proof of the presence and increased concentration of EVs by the 

ultracentrifugation process. As seen in the figure, all three of these markers were prominent 

in sucrose layers three and four, denoting high EV concentration within these fractions.  
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Figure 4A. 2 TEM images of EVs isolated from conditioned media 

TEM images of EVs isolated from CD18/HPAF, MiaPaCa, and HPDE, show spherical 

consistency and size homogeneity of each population. Notably, morphology is unaltered 

with the exception of the characteristic “cup” shape due to dehydration from the TEM 

mounting/staining procedure. These images prove the ability to efficiently isolate EVs 

from cell-conditioned media via density gradient ultracentrifugation. 
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Figure 4A.2 
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Figure 4A. 3 EV surface marker validation and substrate distribution verification 

A. EV samples residing in the various layers/fractions of the sucrose density gradient were 

tested for the presence of known EV protein markers CD9, CD63, and EpCAM along with 

pancreatic cancer-associated molecule glypican-1 via western blot. The results showed the 

consensus markers along with glypican-1 settled in sucrose layers 3 and 4 (as predicted by 

comparable density with EVs, 1.15 – 1.19 g/ml). Thus, subsequent experiments were 

conducted on one EV population produced by the combination of EVs collected in fractions 

3 and 4. B. Atomic force microscopy (AFM) of EVs isolated from CD18/HPAF verified 

that the ionic interactions between the EV surface and the gold substrate allowed for strong 

and efficient binding of EVs to the substrate surface which is required for eventual SERS 

analysis. Further, AFM provided verification that the EVs were adequately and evenly 

dispersed over the surface, which is another prerequisite for accurate SERS measurement. 
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Figure 4A.3 
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Thus, fractions three and four were merged and subsequently utilized in the SERS 

experiments. Interestingly, EVs from both CD18/HPAF as well as MiaPACa (data not 

shown) were positive for Glypican 1, a marker previously was shown to be 100% specific 

to pancreatic cancer 421, however, this specificity is currently a matter of some debate in 

the field.  

 Finally, the characterization of purified EVs was conducted via atomic force 

microscopy (Figure 4A.3B). The ionic interactions between the surface of the EVs and the 

gold substrate provide a strong enough electro attractive force to bind EVs to the surface 

of the gold. AFM confirmed that the EVs bind to the gold surface which is required for the 

SERS process. Further, AFM shows that the EVs adequately and evenly disperse over the 

gold surface giving the necessary spatial distribution required for accurate SERS 

measurement.     

4.3.4 Surface-enhanced Raman spectroscopy (SERS) spectral shifts from EVs are 

predicated on the cell type of origin. 

 

For characterizing SERS signatures of EVs, Raman shifts in the range of 719-1800 

cm-1 were measured from 33 samples of EVs derived from CD18/HPAF, 31 samples from 

MiaPaCa, 35 samples from HPDE, and 22 from the control (AuNPs only) were obtained 

with the Raman shift range of 719-1800 cm-1. Standard deviations associated with the 

means for each of the samples and control are shown in Figure 4A.4A. The individual 

SERS spectra were averaged for each EV population, as well as for the control (Figure 

4A.4B). Interestingly, variations in peaks (amplitude and Raman shift value) were noted 

both between the control and EV populations and also between the EV population  
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Figure 4A. 4 SERS spectra of cell line EVs 

For this experiment, 33 sample spectra of CD18/HPAF, 31 from MiaPaCa, 35 from HPDE, 

and 22 from the control were obtained and pre-processed. A. Individual SERS spectra 

collected from CD18/HPAF, MiaPaCa, and HPDE EVs in addition to gold nanoparticles 

(GN) only. B. The averages for all the technical replicate SERS spectra. The GN spectra 

serve as a control to elucidate what spectral features are associated with particles alone, 

and subsequently factored out of any variance observed in the spectra collected from the 

various EV populations. Differences in peak presence and amplitude are observed between 

all the EV groups. Amplitude does fluctuate over repeated measurements, as noted by the 

red dotted line representing the standard deviation but importantly the pattern does not 

change.  
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Figure 4A.4 
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samples themselves thus providing the foundation for differential characterization of the 

particles.  

In the 719-1800 cm-1 region, spectra exhibited peaks characteristic of vibrations 

corresponding to lipids and proteins which are the major contributors of EV surface 

composition.  For example, vibrations due to the C-C skeletal stretching appear as peaks at 

1051 cm-1 and 1124 cm-1. Another peak that can be clearly distinguished lies at 1450 cm-1 

that is due to CH2 bending vibration and is very typical of lipids 481. The peaks in the 1300-

1400 cm-1 region can be attributed to CH2 twisting vibrations. An intense peak at 830 cm-

1 is also observed corresponding to C-O-O vibration typical of phospholipids 475.  

4.3.5 EV SERS spectra are highly reproducible  

 High reproducibility and consistency of SERS spectra were observed (Figure 

4A.5) providing validity to each individual SERS peak as specific to that sample EV 

population and not merely arising from background noise. Although most repeated peaks 

of each group were identified, not every spectrum exhibited all of these specific peaks and 

not every specific peak was surface-enhanced. The possible reason for this variable peak 

enhancement could be the randomness in the interaction and subsequent bonding between 

gold nanoparticles and EVs. To address this issue, adequate spectral numbers and whole 

fingerprint spectral data were acquired for multivariate analysis. Of note, in addition to 

common spectral features across EV populations,  distinct differences in peaks’ profiles 

and intensities were observed in SERS. This observation highlights the ability of Raman 

spectroscopy to distinguish EVs by their lipid composition. To increase the SERS output, 

we have used gold nanoparticles as well as gold substrate as an improvement over the  
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Figure 4A. 5 Repeated SERS spectra collections from cell line EVs and gold 

nanoparticles 

Repeated collections of SERS spectra are plotted for each experimental condition. 

Importantly, the spectral shifts arising from different EV populations are highly 

reproducible. Overlapping peaks are appreciated in each sample by a thickening of the 

black patternation, denoting spectral continuity and specific peaks unique to each 

population, which is required for eventual use as a means of differentiation.  
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Figure 4A.5 
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previous design 420. To identify differential peaks associated with pancreatic cancer, 

principal component, and discriminant function analyses were conducted on the collected 

SERS data. 

4.3.6 Principal Component - Discriminant Function Analyses can discriminate 

between PDAC and normal cell line EV SERS spectra with high accuracy  

After pre-processing of the raw SERS spectra, PCA was used to reduce the number 

of variables considered from 1004 variables to 20 PCs, which counted for 88.2% of the 

total variance. Principal Component #1(PC #1) contained the most important data with 

35.4% of the total variance. The next two PC #2 and PC #3 represented 14.4% and 6.6% 

of the total variance, respectively. A three dimensional (3D) PCA plot for the first three 

PCs (PC #1, PC #2, and PC #3) is shown in Figure 4A.6. Although these three PCs 

contributed 56.4% of the total variance, it is still not enough for high-efficiency 

classification. Twenty PCs were chosen for the trade-off between low data dimensionality 

and high variance observed in samples. 

The PC-DFA plots for the three discriminant function classifiers (DA1, DA2, and 

DA3) of the total 121 spectra from four groups (HPDE, CD18/HPAF, MiaPaCa, and 

Control) are shown in Figure 4A.7. The EV groups and control group are clearly separated 

by DA1 and DA2 (the two upper plots in Fig. 4A.7) due to the absence of EV peaks within 

the control group, leading to a distinct spectral pattern. The EV subpopulations formed 

discrete clusters and separated from each other by all the classifiers, as shown in the 3-

dimensional PC-DFA plot (lower right plot in Fig. 4A.7). The classification accuracy was 

calculated via the cross-validation method and is shown in Table 4A.1. As shown, only 

one spectrum of healthy cell-derived EVs was misclassified as having a cancer cell origin.  
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Figure 4A. 6 Principal component analysis of cell line SERS spectra 

Principle component analysis (PCA) was first conducted on raw SERS spectra from both 

normal human pancreatic ductal epithelial cell line (HPDE) and pancreatic cancer cell lines 

(CD18/HPAF, MiaPaCA) to reduce the dimensionality of the data from 1004 individual 

wavenumber variables (from 719 cm-1 to 1800 cm-1) to 20 PCs. The 3D plot shows the 

SERS measurements segregated as a function of the first three PCs which account for 56% 

of the total spectral variance. Spectra collected from HPDE and GNs are beginning to 

efficiently cluster yet their remains widespread dissemination of cancer EV spectra 

dispersed throughout the area. Notably, this suggests a degree of similarity between the 

EVs isolated from cancer cell lines as compared to those from HPDE. To increase the 

population clustering the PCs were used as the input independent variables for DFA.  
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Figure 4A.6 
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Figure 4A. 7 Discriminant function analysis of SERS generated principal 

components 

The PCs were used as the input independent variables for the DFA. A. 2D DFA plot of 

DA1 vs. DA2. B. 2D DFA plot of DA1 vs. DA3. C. 2D PC-DFA plot of DA2 vs. DA3. D. 

3D DFA plot of DA1 vs. DA2 vs. DA3. Especially in the last 3D plot it can be observed 

that all four EV populations have clustered into distinct areas predicated cell of origin. 

These graphical representations visually display the capability of the PC-DFA algorithm 

to efficiently separate differing EVsubpopulations based on SERS spectra.  
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Figure 4A.7 
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Table 4A. 1 Prediction of cell line cancer status via SERS PC-DFA 

The table depicts the number of EV sample spectra taken from each cell population (in the 

two left columns) as well as the population with which each cell was clustered via PC-

DFA. The number of spectra out of the total that was correctly classified as the EV 

population of origin is joined with the percent correct in parenthesis in each of the 

subsequent columns. The accuracy associated with classifying SERS spectra as arising 

from CD18/HPAF, MiaPaCa, HPDE, and GN control was 97%, 93%, 71%, and 100%, 

respectively.  
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Table 4A.1 
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Congruently, six spectra of cancer cell-derived EVs were misclassified as having a 

healthy cellular origin, with none of these being CD18/HPAF spectra (MiaPaCa spectra 

were classified as healthy six times, and as CD18/HPAF spectra 3 times). The overall 

accuracy of PC-DFA classification was 90.0% for the three cell lines and the control. Since 

CD18/HPAF and MiaPaCa are cancer cell lines and HDPE is a healthy cell line, the 

sensitivity and specificity are calculated to be 90.6% and 97.1% respectively, regardless of 

the control.  

4.3.7 EVs can be isolated from patient sera and are elevated in cancer patient 

samples compared to benign controls 

To investigate the potential diagnostic efficacy, EVs were isolated as described in 

the experimental section from the sera of ten healthy subjects and ten early-stage pancreatic 

cancer patients. The quantity of EV protein isolated from equivalent quantities of serum 

from each of the three groups can be seen in Figure 4A.8. Corroborating previous work, 

the quantity of EVs is significantly higher in early and late-stage PDAC patients as 

compared to healthy controls. The presence, size, and number of EVs in these samples 

were verified with NTA (Fig. 4A.9A). Though the size and concentration were less than 

what was measured for cell line-derived EVs, their presence was confirmed by direct 

visualization by TEM, where the vesicles exhibited the characteristic “cup shape” 

morphology (Figure 4A.9B). Adhesion to the gold substrate surface and adequate SERS 

address distribution was verified by AFM (Figure 4A.9C).  

4.3.8 The cell line trained PC-DFA algorithm can be applied to SERS spectra of 

serum EVs to predict patient cancer status 
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Figure 4A. 8 Serum isolated EV quantification via protein concentration 

The relative quantity of EVs present in 500 µl of human serum isolated via 

ultracentrifugation was estimated by protein concentration. While the median EV protein 

concentration of healthy individuals was below 0.2 mg/ml, and an equivalent volume of 

early-stage (I-IIB) and late-stage (III-IV) PDAC patient serum harbored EV protein 

concentrations above 0.7 and 0.6, respectively. This 3-4 fold increase in the setting of 

cancer is in line with previous findings and is important for the justification of utilizing 

seromic EVs as cancer-specific biomarkers.    
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Figure 4A.8 
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Figure 4A. 9 Morphological validation of EVs isolated from patient serum 

A. NTA showing size distribution and concentration of EVs purified from patient sera. The 

hydrodynamic size ranged from 50-200 nm in diameter, which is synonymous with those 

isolated from cell line supernatant. B. TEM showing spherical individual vesicle 

morphology purified from patient sera displaying the capability of ultracentrifugation to 

isolate EVs from serum without damage. C. AFM of the substrate surface (gold) displaying 

presence and adequate coverage of EVs for SERS. 
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Figure 4A.9 
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For each of the twenty EV samples purified from sera, 10-20 SERS measurements 

were collected for external validation. The PC-DFA algorithm, trained from the previous 

SERS of cell line EVs, was applied to the SERS measurements of the patient sera EV 

samples. With the application of this algorithm, the SERS spectra measured from EVs 

derived from serum exhibited a range of predictive accuracies. HC samples ranged from 

20-87% characterization efficiency while EPC sample characterization efficiency was 

from 30%-90% (Table 4A.2).   

4.4 Discussion 

 

 Label-free technologies offer many advantages that are amenable to the 

characterization and utilization of liquid biopsies as diagnostic markers. Conventional 

methods such as immunohistochemistry, flow cytometry, PCR, and immunoblotting use 

known targets of interest which require predetermined markers or probes. This narrow 

focus inherently limits the possible information gathered from a given sample and 

precludes the possibility of discovery. Conversely, label-free modalities circumvent the 

requirement of predetermination, thereby offering a universal metric by which all species 

are measured and compared. Further, novel species characteristics can be elucidated that 

can be quantified and used as a biomarker metric.  

  Many investigators have recognized the value in label-free techniques and as such, 

a variety of methods have recently been evaluated. Surface plasmon resonance is used in 

the quantification and detection of multiple serum-based biomarkers by refractive index 

changes predicated on binding interactions 482. Surface proteomics is a technique that 

involves “shaving” proteins off the surface of EVs 322. Mass Spectrometry is then utilized 

to discern the identity of the shaved proteins that may subsequently be used as cancer- 
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Table 4A. 2 Application of cell line PC-DFA algorithm on SERS of EVs isolated 

from patient serum 

The left part of the table shows the PC-DFA predicted cancer status of EVs isolated from 

the SERS of ten different healthy individual serum controls (HC) while the right part of 

the table shows the PC-DFA predicted cancer status from the SERS of EVs isolated from 

the serum of ten different early pancreatic cancer patients (EPC). Note: The number in 

parentheses in the population type column is the total number of SERS measurements taken 

from serum samples of each healthy individual or pancreatic cancer patient. The number 

in parentheses in the predicted columns is the number of SERS measurements with that 

predicted characterization. Individual assay efficiency ranged from 20%-87% and 30% to 

90% for HC and EPC samples, respectively. 
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Table 4A.2 
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specific biomarkers. Also, species-specific impedance biosensors have been utilized in the 

pursuit of biomarkers 483. This study utilizes the label-free technique of SERS which is 

uniquely suited for EV characterization due to its high sensitivity, molecular signature 

specificity, and ability to be amplified. This method can take advantage of the differing, 

yet unknown, characteristics of EVs and separate EVs predicated on spectral differences.  

 Though the specific molecules that contribute to the variance in SERS spectra are 

unknown at this time, the Raman spectral shifts offer an insight into possible species. 

Lipids and proteins are the primary molecules that comprise the EV surface.  This surface 

composition is highly variable between cancer and normal EVs and is the reason behind 

SERS spectral variance. For example, peaks associated with C-C skeletal stretching and 

CH2 bending are characteristic for the presence of lipids and a peak associated with C-O-

O vibrations alluded to the presence of phospholipids. Changes in the relative amounts of 

these molecular species, or even species ratios, can confer a measurable and useful amount 

of spectral variance.  

Previously, Park et al. conducted an elegant study that investigated the PCA of 

SERS and the ability to differentiate EVs originating from healthy cells vs. those 

originating from lung cancer cells 436. Their work proved the utility of PCA of SERS to 

accurately characterize EVs originating from healthy or lung cancer cells. However, the 

study was unable to translate the findings from pure cell line EV populations to those 

purified from patient sera. Another study conducted by Stremersch et al. combined partial 

least squares discriminant analysis to SERS of EVs 354. They showed that pure populations 

of EVs purified from melanoma or red blood cells could be accurately separated. Just as 

the previous group, their method was not applied to EVs from patient sera. The study put 
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forth in this paper is a proof-of-concept experiment, proving the power and potential for 

PC-DFA of EV SERS to serve as a means to diagnose pancreatic cancer at an early stage, 

when curative resection is still possible, that heretofore had not been successful.  

Lower prediction efficacies were observed when the PC-DFA was applied to SERS 

of patient sera. This is a direct result of the diverse origin of EVs in patient serum. In 

addition, the sera from cancer patients, especially from those with early-stage disease, 

inherently have a larger portion of EVs arising from normal epithelium rather than tumor 

cells. This increases the complexity of the SERS spectra and therefore the difficulty of 

algorithmic determination increases significantly. Even so, this study opens the door to a 

novel cancer detection method. Congruently, the trend of multiple testing outcomes (i.e. 

characterization as HC or EPC) from a single patient could serve as a means of allying or 

increasing suspicion of cancer. The use of this technique in high-risk patients and/or those 

with high-risk features could give insight into the disease gestalt.  

4.5 Conclusions and future directions 

 

 Surface-enhanced Raman spectroscopy, in conjunction with PC-DFA 

methodology, was applied for the classification of EVs derived from a healthy cell line and 

two pancreatic cancer cell lines via a cross-validation method in the present study. The 

sensitivity and specificity were 90.6% and 97.1%, respectively. Moreover, a proof-of-

concept experiment was conducted to investigate the diagnostic efficacy of the SERS 

spectra of EVs collected from pancreatic cancer patient serum samples when the PC-DFA 

algorithm was applied. The present work demonstrates that EVs can be analyzed by SERS 

and combined with PC-DFA as a liquid biopsy-based detection of pancreatic cancer. 
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The practical use of this technology and lack of specificity can be ameliorated via 

multiple means and are possible future directions for the continuation of this research. The 

first will be to conduct and intragroup comparison between well-characterized and poorly 

characterized samples, as determined by the current PC-DFA algorithm. This will elucidate 

peaks or areas within the spectra that may be diminishing assay efficacy. Second, we will 

establish an EV SERS spectral library collected from a large sample set of healthy 

individuals and pancreatic cancer patients of various stages and use those for the basis of 

the PC-DFA predictive algorithm. The multiple spectra would then be utilized to enhance 

the accuracy and power of the data and further solidify what Raman shift peaks contribute 

the greatest to the overall variance between healthy and tumor purified EVs. Additionally, 

larger serum sample volumes may be used to increase the total amount of pancreatic cancer 

originating EVs. Further investigation is planned to discover if different metrics such as 

proteomics, metabolomics and RNA sequencing of EV contents, in combination with  

SERS, would improve on the aforementioned sensitivity and specificity. Isolation of EVs 

via ultracentrifugation is expensive and time-consuming. Alternative methods of 

purification include EV specific ELISA and magnetic bead isolation, to purify directly 

from serum. Implementing these methods would allow for more facile isolation. Finally, 

we plan to investigate other various biological sources of EVs, such as urine and ascites, 

and apply PC-DFA. This could uncover novel EV sources for noninvasive liquid-based 

biopsies. 
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4B: Biomarker discovery via extracellular vesicle surface profiling 

4B.1 Synopsis 

The experiments presented herein (Chapter 4B of this thesis) began with EV surface 

proteomic profiling using a novel “surface shaving” technique via proteinase-A trypsin 

digestion, size exclusion chromatography, and liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), which allowed for the specific analysis of proteins exposed on 

the external membrane compartment. Clinical significance and reduction of potential 

biomarkers from the LC-MS/MS detected proteins were determined by bioinformatics 

assessment of The Cancer Genome Atlas (TCGA) and GSE28375 microarray datasets. 

Protein target presence was validated in cell lines and patient samples via western blot and 

their surface localization with immunogold TEM.  The first target protein assessed via 

ELISA analysis, EPHA2, showed elevated expression in complete cancer patient serum as 

compared to benign controls. Further, EV specific EPHA2 expression was capable of 

predicting cancer status in 25% (5/20) of the patient samples with 100% specificity.  

4B.2 Background and rationale 

 Experiments in Chapter 4A of this thesis utilized EVs from normal pancreatic 

ductal epithelial cells (HPDE) and two pancreatic cancer cell lines (MiaPaCa, 

CD18/HPAF) representing the wide mutational spectrum of PDAC were isolated via 

density gradient ultracentrifugation. Surface-enhanced Raman spectroscopy (SERS), in 

conjunction with principle component-discriminant function analysis (PC-DFA), was used 

to classify EVs originating from cells in vitro high overall accuracy. The proof-of-principal 

application of the cell line-derived PC-DFA algorithm to SERS spectra collected from EVs 
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isolated from patient serum samples proved the possibility of using EV surface differences 

as a biomarker for the early detection of PDAC.  

However, the limited overall accuracy of the label-free SERS PC-DFA algorithm 

requires further investigation into the surface of EVs to discover specific molecular species 

that may be used as biomarkers. Many studies have illustrated the potential of discovering 

cancer-specific markers in EVs including proteins, miRNA, lncRNA, and genomic DNA 

484. However, the majority of these studies investigate the entirety of the EV contents 

without specific consideration of the EV surface. Studies that have investigated the EV 

surface per se are limited in number yet have provided valuable prospects for biomarker 

discovery. Much like the studies assessing EVs in their entirety, surface profiling has 

elucidated myriad cancer-associated molecular species including proteins, DNA, glycans, 

and lipids, many of which have been comprehensively discussed in Chapter 3 of this thesis.  

Surface characterization of EVs has many benefits that make it an ideal method for 

the discovery of clinically useful biomarkers. Molecular species positioned on the exposed 

surface of the EV membrane are capable of being targeted by immunoaffinity techniques 

485, 486 thereby providing a means of rapid isolation and characterization directly from 

patient samples. The presence of specific surface proteins can also provide clues into the 

organ tropism of particular cancer as in the case of integrin αvβ5 association with liver 

metastasis in the setting of PDAC 393. Congruently, therapeutic efficacy can be surmised 

from the EV surfaceome as when the response to PD-L1 blockade predicted via the 

quantity of EV surface PD-L1 487. These attributes are in addition to the general EV 

advantages previously described including presence in all biofluids, the capability of use 
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as a non-invasive liquid-biopsy, present at higher concentrations in cancer patients, and 

contents mirroring the cell of origin.  

Given the promising yet limited results of our SERS PC-DFA study, the dearth of 

surface-specific characterization studies, and the potential of EV surface biomarkers, we 

sought to profile the surface of PDAC cell line EVs in an effort to uncover a novel clinically 

useful biomarker.  

4B.3 Results 

4B.3.1 LC-MS/MS EV surface proteomic profiling identifies proteins of interest pool 

 EVs from four PDAC cell lines (CD18/HPAF, MiaPaCa, T3M4, and Capan1) and 

HPDE were isolated via density gradient ultracentrifugation and underwent surface 

proteomic profiling as described in the methods section. Notably, Capan1 EV proteins were 

withdrawn from subsequent analyses because of the presence of GM-130 protein, which is 

a Golgi marker that is not present in EVs and thus, is indicative of cellular contamination. 

Interestingly, gene ontology (GO) pathway analysis confirmed that the top upregulated 

pathways associated with the remaining proteins identified on the EV surface (other than 

those directly involved with EV biogenesis and transport) were involved in adhesion and 

binding (Figure 4B.1). This finding is in line with previous studies implicating EVs in 

cancer dissemination and metastasis 393, 488.  

 A total of 114 surface proteins were detected on HPDE EVs and a total of 229 on 

the surfaces of the pooled EV population comprised of the three remaining cancer EV 

populations. Of these, 101 proteins were shared between the two groups yielding a unique 

cancer-associated pool of 128 proteins of interest (Figure 4B.2). This total pool was further 

evaluated to find the proteins that were present on the surface of all three cancer EV 
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Figure 4B. 1 Gene ontology pathway analysis of EV surface proteins 

GO pathway analysis showed that other than the expected presence of proteins associated 

with EV biogenesis and transport, the primary upregulated pathways involved cellular 

adhesion and binding. These pathways, including cell-substrate junction, focal adhesion, 

and cell adhesion molecule binding, have been highlighted with a red box in the figure.  
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Figure 4B.1 
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Figure 4B. 2 Identification of cancer EV surface proteins of interest  

Venn diagrams depict 114 proteins from the healthy (HPDE) EV population in light blue, 

the 239 pooled cancer EV protein group (all three PDAC cell lines) in purple, and the 204 

from CD18/HPAF, the 135 from MiaPaCa, and the 104 from T3M4 in yellow, blue, and 

red, respectively. The overlap of 101 proteins between the healthy and cancer group was 

removed from subsequent analysis followed by identification of the proteins present on all 

three PDAC cell line EVs (n = 86) as well as those present on two of the three EV 

population surfaces. After factoring in redundancy in these four subgroups, a total of 30 

proteins of interest proceeded to undergo bioinformatics analysis.  
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Figure 4B.2 
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populations individually as well as to find the proteins that were expressed on the surface 

of at least two of the individual cancer EV populations (Figure 4B.2). In the end, 30 surface 

proteins met all these criteria and underwent further bioinformatics evaluation.  

4B.3.2 Bioinformatics discernment of eight specific target EV surface proteins 

4B.3.2.1 Proteins of interest gene expression in adjacent normal and PDAC tissues 

 The GSE27385 microarray dataset was used to determine the relative expression 

levels of the 30 proteins of interest in the setting of PDAC. This dataset is comprised of 45 

matching tumor and adjacent tumor samples, from the same patient, which provides a 

unique opportunity to assess what genes may be selectively upregulated or downregulated 

in PDAC utilizing an internal patient control. The gene expression for each of the proteins 

was internally normalized (i.e. each gene individually) and the z-scores were used to 

determine relative expression levels. Many of the genes associated with the LC-MS/MS 

identified proteins are upregulated in the setting of PDAC compared to adjacent normal 

tissue (Figure 4B.3). Among these, those with the most consistent pattern of increased 

expression were cluster of differentiation 151 (CD151), galectin-1 (LGALS1), cofilin 

(CFL1), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta 

(YWHAZ), extracellular matrix protein-1 (ECM1), ephrin A2 (EPHA2, integrin alpha 3 

(ITGα3), and heat-shock protein family B (small) member-1 (HSPB1) (these have been 

identified by red boxes in Figure 4B.3).  

4B.3.2.2 Target genes are correlated in two distinct datasets 

 In an attempt to further evaluate the potential of these eight markers to serve as 

clinically relevant biomarkers all 30 of the proteins of interest were correlated with one  
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Figure 4B. 3 Gene expression profiles for EV proteins of interest  

Heat map representation of Z-scores of internally normalized (within gene normalization) 

genes coding for the 30 EV surface proteins of interest. Many of the selected genes were 

overexpressed in the setting of PDAC. Eight of the most consistently overexpressed targets 

in cancer tissue compared to adjacent normal tissue are CD151, LGALS1, CFL1, YWHAZ, 

ECM1, EPHA2, ITGα3, and HSPB1 and these are highlighted with red boxes in the figure.   
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Figure 4B.3 
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another The Cancer Genome Atlas (TCGA) RNA sequencing dataset was analyzed along 

with the GSE23785 microarray dataset. TCGA was not used in the previous analyses 

because it contains only 3 samples from healthy pancreas tissue but can serve for evaluation 

of cancer patient expression levels. In both of these datasets CD151, LGALS1, CFL1, 

YWHAZ, ECM1, EPHA2, ITGα3, and HSPB1 proteins were among the most correlated 

genes with each other (Figure 4B.4). Additionally, they were highly correlated with the 

consensus EV marker, CD9 in both sets. The black boxes within the figure highlight the 

size and intensity of the blue circles for the target proteins. This suggests that the eight 

target proteins are upregulated in the setting of PDAC and could serve as an additive 

combinatorial biomarker platform.  

4B.3.2.3 Target protein genes have high diagnostic accuracy  

Finally, these target genes were also assessed for their ability to differentiate between 

normal and tumor samples in the GSE27385 dataset. Impressively, the combination of the 

tissue expression profiles of these eight genes identified by EV surface proteomics 

produces a receiver operator characteristics (ROC) curve with an area under the curve 

(AUC) of 0.9136 (Figure 4B.5). For reference, the current gold standard blood-based 

protein biomarker used in clinics, CA19.9, produces an AUC ranging from 0.66-0.836 489-

492. Importantly, these results enhance the findings of our in vitro EV proteomics data by 

displaying the real-world validation of our target proteins. With this bioinformatics 

analysis, the target protein list was able to be efficiently narrowed down from 30 to eight 

which is a much more manageable and testable quantity.  
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Figure 4B. 4 Correlation of target proteins in two distinct datasets 

Correlation plots of the genes coding for the targets of interest in GSE27385 microarray 

datasets and TCGA RNA sequencing dataset. A pattern emerged in both datasets of 

significant correlations between the eight target proteins: CD151, LGALS1, CFL1, 

YWHAZ, ECM1, EPHA2, ITGα3, and HSPB1. Additionally, these proteins were also 

correlated with the consensus EV marker, CD9. The eight target proteins, along with their 

correlations between themselves, are highlighted with black boxes.  
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Figure 4B.4  
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Figure 4B. 5 Receiver operator characteristics curve of the eight target protein 

genes 

The ROC curve generated from the combination of the tissue expression profiles of CD151, 

HSPB1, CFL, LGALS1, YWHAZ, ECM1, ITGα3, EPHA2 results in an AUC of 0.9136. 
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Figure 4B.5 

 

 

            
 

                    

 

 

 

 
  

Gene components of ROC curve: 

CD151, HSPB1, CFL, LGALS1,  
YWHAZ, ECM1, ITGα3, EPHA2 
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4B.3.3 All target proteins are present in greater concentrations in EVs from PDAC 

cell lines compared to those from HPDE 

 EVs used for these experiments were isolated via density gradient 

ultracentrifugation as well as the FiberCell® hollow-fiber bioreactor system. Verification 

of EV enrichment was initially conducted by assessing the protein levels of a variety of 

consensus markers including CD9, CD63, and TSG101 (Figure 4B.6). These markers were 

markedly increased in the EV samples as compared to the paired whole cell lysates, 

regardless of the cell type of origin. Suggesting an adequate collection of EVs from both 

cancer and healthy cell lines. Importantly, calnexin, a chaperone protein found only in the 

endoplasmic reticulum, was absent in the EV samples and present in whole-cell lysates 

(Figure 4B.6). This served as a positive marker of lysate loading as well as making the 

possibility of cellular contamination in the EV samples is far less likely.   

Next, the presence and amount of all eight of the target proteins were assessed via 

western blot analysis (Figure 4B.7). CD151 and HSPB1 were enriched in EVs from T3M4, 

MiaPaCa, and CD18/HPAF as compared to their matched whole cell lysates. Additionally, 

the expressions of CD151 and HSPB1 were greatly diminished in HPDE EVs, suggesting 

possible cancer specificity (Figure 4B.7A-B). Conversely, ITGα3 was expressed in EVs 

and cell lysates in the cancer cell lines as well as HPDE, although EVs from CD18/HPAF 

and MiaPaCa harbored a greater quantity. ECM1 is far more concentrated in cancer EVs 

than in lysate (Figure 4B.7C). EPHA2, CFLN, LGALS1, and YWHAZ seem to be 

virtually absent in HPDE EVs, which is an important feature for possible use as PDAC 

specific biomarkers (Figure 4B.7D).  
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Figure 4B. 6 Evaluation of consensus EV markers via western blot analysis 

A-B. Isolated EV populations from T3M4, MiaPaCa, CD18/HPAF, and HPDE were 

verified with the consensus markers CD9 and CD63. Selective enrichment can be seen in 

the EV samples and is minimal/absent in equivalent quantity (10 µg/well) of cell lysate. C. 

Measurement of a third marker, TSG101, in EVs isolated via density gradient 

ultracentrifugation as well as with the FiberCell® system. D. Blot showing the absence of 

calnexin (a marker for cellular contamination) in isolated EV samples.  
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Figure 4B.6  
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Figure 4B. 7 Evaluation of EV surface target proteins via western blot 

Equal protein concentrations (20 µg) of EV samples and cell lysates were loaded in each 

well. The relative expression of each protein was assessed between cancer EV samples and 

matched whole-cell lysates. Concurrently, the number of target proteins were compared 

between EVs isolated from cancer cells and EVs isolated from the normal HPDE cell line. 

Each panel displays a unique protein(s) as follows. A. CD151. B. HSPB1. C. ITGα3 and 

ECM1. D. EPHA2, CFLN, LGALS1, and YWHAZ.  
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Figure 4B.7  
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4B.3.4 EPHA2, ECM1, CD151, and HSPB1 are verifiably present on the EV surface 

 Vesicular rupture during EV isolation, sample preparation, surface shaving, and/or 

the LC-MS/MS procedure can contaminate the surface molecules with intravesicular 

contents. Thus, immunogold staining and TEM evaluation were conducted in order to 

verify the location and accessibility of the target proteins on the external aspect of the EV 

membrane outer leaflet. Briefly, protein-A conjugated gold nanoparticles 10 nm in size 

interact with primary antibodies bound to a protein of interest and appear as black spheres 

on the TEM image. This provides a means of directly visualizing the location of a protein 

within a sample. The immunogold protocol was first standardized with EV proteins known 

to be present on the EV membrane, CD63, and TSG101 in CD18/HPAF EVs (Figure 4B. 

8). Next, the eight target proteins were evaluated with this method. Four out of the eight, 

EPHA2, ECM1, CD151, and HSPB1 were observed to be definitively located on the 

external surface of the EVs (Figure 4B.8).  

4B.3.5 EPHA2, ECM1, CD151, and HSPB1 expression in TCGA and effects on 

survival 

 In an effort to discern which one of the targets would provide the most diagnostic 

and prognostic significance, stage-wise FPKM expression levels and survival analysis was 

conducted using the TCGA datasets on the proteins verified via immunogold staining to be 

present on the EV surface: EPHA2, ECM1, CD151, and HSPB1 (Figure 4B.9). The gene 

expression levels for CD151, ECM1, and EPHA2 were increased in cancer patients 

compared to healthy patient tissue samples, even in stage I disease. Notably, the increase 

in EPHA2 expression was greater than the other two targets. HSPB1 expression was not 

about the same between healthy samples and throughout tumor progression. Congruently,  
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Figure 4B. 8 Immunogold staining of EV surface proteins 

TEM images of immunogold staining showing the surface localization of consensus EV 

protein markers CD63 and TSG101 as well as the four out of the eight target proteins: 

EPHA2, CD151, ECM1, and HSPB1. The black spheres in the images are protein-A 

conjugated 10 nm gold nanoparticles bound to the IgG primary antibodies against the target 

proteins in question. Importantly, the isotype control (mouse IgG not reactive with target 

proteins) is lacking the presence of black spheres around the EV surface, thus supporting 

the observed positive staining.  
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Figure 4B.8 
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Figure 4B. 9 EPHA2, ECM1, CD151, and HSPB1 expression in TCGA and effects 

on survival 

TCGA stage-specific gene expression and survival curves were generated for the proteins 

that were verified to be on the EV surface: ECM1, HSPB1, CD151, and EPHA2. No 

difference in gene expression nor a significant impact on survival was observed for HSPB1. 

However, the other three proteins were differentially expressed in PDAC as compared to 

normal samples and all had a significant negative impact on survival. Notably, EPHA2 had 

the largest discernible difference in expression between the two groups and the associated 

survival curve was the most significant of all the proteins assessed (Log-Rank test p = 

0.0137, Wilcoxon test p = 0.0111).  
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Figure 4B.9 
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the associated Kaplan-Meier curves for the three overexpressed proteins show that high 

expression of CD151, ECM1, and EPHA2 are significantly correlated with worse overall 

survival (Figure 4B.9). The most significant effect on survival was EPHA2, as determined 

by both Log-Rank test, p = 0.0137 as well as Wilcoxon test, p = .0111. These findings 

regarding the potential of EPHA2 were supported by results from the MiPanda Portal (a 

combination database containing both TCGA and GTEx datasets) where EPHA2 was 

found to be the most significantly upregulated in pancreas cancer (p = 2.48 e-36, relative to 

normal tissue) when compared to other major cancer types (Figure 4B.10).  

4B.3.6 EPHA2 is present on CD63 positive EVs and is reliably detected with ELISA 

With the verified surface location of the protein, differential gene expression, and 

prognostic capability EPHA2 became the first protein analyzed via ELISA. An in-house 

sandwich-based ELISA was produced (specifics on in-house ELISA production are 

presented in the method chapter of this thesis) utilizing an mAB antibody against EPHA2 

(R&D Systems: MAB3036) to capture EVs and biotinylated CD63 (Abcam: ab134331) for 

the detection antibody [CD63 was chosen because of the high level of expression in EVs 

compared to the other consensus markers (CD9 and TSG101) in the previous western blot 

analysis]. As a positive control, another ELISA was developed using CD63 as both the 

capture and detection antibodies.  

EVs isolated from the MiaPaCa cell line were deposited in duplicates into wells at 

serially diluted concentrations beginning at 100 µg/well and ending at 1.6 µg/well. EPHA2 

capture was able to efficiently capture EVs as well as produce a concentration-dependent 

curve (Figure 4B.11). Interestingly, the signal intensities associated with EPHA2 capture 

and CD63 detection were far greater than those produced from CD63 capture and detection  
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Figure 4B. 10 EPHA2 expression in cancer vs. normal tissue across major cancer 

types 

MiPanda portal was used to assess the relative level of EPHA2 expression in cancer vs. 

normal tissues and cells of various origins. EPHA2 is the most significantly upregulated in 

the setting of pancreas cancer (p = 2.48 e-36) compared to the other major cancer types.  
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Figure 4B.10 
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Figure 4B. 11 EPHA2 ELISA of CD63 positive EVs 

A sandwich ELISA platform utilizing EPHA2 capture antibody and CD63 detection 

antibody proved efficacious for the quantification of EPHA2 on CD63 positive EVs 

isolated from CD18/HPAF supernatant. 100 µg of CD18/HPAF EVs were serially diluted 

down to 1.6 µg and produced a concentration-dependent curve. Interestingly, the signal 

amplitude achieved by EPHA2 capture and subsequent detection with CD63 was far 

greater than what was produced by CD63 capture and detection (red and black bars, 

respectively).  
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Figure 4B. 11 
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(Figure 4B.11). Possible reasons for this unforeseen observation could that CD63 harbor 

a large quantity of surface EPHAS or conversely, CD63 is present in small numbers and 

thus is unavailable for detection antibody binding when utilized for capture. 

4B.3.7 EPHA2 is increased on EVs originating from PDAC cell lines compared to 

HPDE cells 

 

In order to minimize technical variation in the assay set up as well as to facilitate 

both capture and detection with EPHA2 antibodies, a commercial EPHA2 ELISA kit was 

purchased for subsequent experiments (RayBiotech).  50 µg/ml of EVs isolated from 

CD18/HPAF, MiaPaCa, and HPDE, along with the same quantity of matched respective 

whole cell lysates, were assayed in duplicates. Indeed, EPHA2 is enriched in EVs 

compared to cell lysates and further, EPHA2 enrichment is far greater in cancer EVs 

compared to EVs originating from HPDE (Figure 4B.12).  

4B.3.8 Complete PDAC patient serum has a greater concentration of EPHA2 

compared to healthy controls 

 

39 completed patient serum samples from benign controls (comprised of chronic 

pancreatitis, cystic lesion, biliary obstruction, and family history patients, n =13), early-

stage PDAC (I – IIB, n = 13), and late-stage PDAC (III-IV, n = 13) were diluted 1:1 in 

PBS and assessed with the EPHA2 ELISA kit. The median expression of EPHA2 in 

complete patient serum was 0.14 ng/ml for benign controls while the medians for early and 

late-stage PDAC patient serum was 0.53 ng/ml and 0.57 ng/ml, respectively (Figure 

4B.13). Using a cutoff above the benign control median value of 0.15 ng/ml, the assay 

accuracy had a sensitivity of 76% and specificity of 62%. These data suggest a role for 

EPHA2 assessment for PDAC diagnosis and monitoring but requires further refinement. 
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Figure 4B. 12 EPHA2 ELISA of PDAC and HPDE cell lines 

50 µg/ml of isolated EVs and matched whole cell lysates from CD18/HPAF, MiaPaCa, 

and HPDE cell lines were analyzed. EPHA2 was present in all whole cell lysate samples 

(black bars). However, HPDE EVs had far less concentration of EPHA2 that the EVs 

isolated from the two PDAC cell lines (red bars).  
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Figure 4B.12 
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Figure 4B. 13 EPHA2 ELISA of complete patient serum samples 

ELISA analysis of complete patient serum samples from 13 patients each in benign control, 

early-stage PDAC (I-IIB), and late-stage PDAC (III-IV) groups showed increased 

expression of EPHA2 in cancer patient serum samples as compared to benign control. The 

median for each cohort is denoted by the thick red bar in the middle of each violin plot and 

is 0.14 ng/ml, 0.53 ng/ml, and 0.57 ng/ml for benign control, early-stage, and late-stage 

PDAC, respectively.  
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Figure 4B.13 
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4B.3.9 EV surface EPHA2 evaluation is more specific than complete serum EPHA2 

levels for predicting patient cancer status 

 

 In an effort to further refine the results of the complete serum analysis, ELISA was 

next conducted on patient seromic EVs. EVs were isolated from ten patient serum samples 

each from the benign control, early-stage PDAC, and late-stage PDAC groups to total 30 

individual EV samples. Just as with complete serum, the levels of EV specific EPHA2 

were higher in both cancer cohorts as compared to benign controls (Figure 4B.14). 

However, the assessment of EPHA2 only on the EV surface facilitated a dramatic shift in 

EPHA2 sensitivity and specificity as a PDAC diagnostic marker. Notably, the majority of 

the EV samples from benign controls produced zero or negative (after blank subtraction) 

O.D. values with only two samples achieving detection above the level of the blank. When 

an O.D. cutoff was applied just above the highest benign control sample reading at 0.0036 

to ensure 100% specificity, five out of the 20 (25%) PDAC EV samples were able to 

correctly predict cancer status. (Of note, one of the O.D. values in the early stage cohort is 

not shown on that graph because of a comparatively high reading relative to other samples 

at 0.45).  

4B.4 Discussion 

 Ever since the discovery that EVs are more than a simple mechanism to eliminate 

intracellular waste and harbor functional molecules within their vesicular cargo, attempts 

have been made to take advantage of them for a variety of purposes, including for use as 

cancer-specific biomarkers 493. EVs hold myriad advantages for use as biomarkers 

including being present in all biofluids, ease of collection, present at higher concentrations 

in cancer patients, and mirroring their cell of origin.  Recent studies have underscored 
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Figure 4B. 14 EPHA2 ELISA of patient seromic EVs 

EPHA2 expression was increased in EVs isolated from both cancer cohorts as compared 

to benign controls. Only two O.D. values in the benign control group achieved a level of 

detection above blank. The median of each group is demarcated by the thick red line in the 

center of each violin plot. Of note, one of the O.D. values in the early stage cohort is not 

shown on that graph because of a comparatively high reading relative to other samples at 

0.45. 
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Figure 4B.14  
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this potential of EVs to serve as non-invasive liquid biopsy-based biomarkers in the setting 

of cancer 484. However, the majority of these studies to date have investigated the complete 

EV contents for this purpose.  

 Specifically focusing on the EV surface hold many advantages making it an ideal 

method for biomarker discovery. Identified targets are present on the external surface of 

the EVs and thus, can be targeted for cancer-specific EV isolation and/or profiling, as 

illustrated by previous studies. The preferred organ of metastasis can be predicted 

predicated on what integrin proteins are present on the surface of cancerous EVs 284. 

Conversely, specific EV surface molecules can impact the efficacy of therapeutic 

modalities such as the case with PD-L1 487.   

 EVs possess great potential to serve as concurrent biomarkers with the currently 

used clinical biomarker, CA19.9. Specifically for the screening of groups at high-risk for 

developing PDAC, i.e. those with a strong family history, genetic syndrome, or a pancreatic 

cystic lesion is primarily conducted via serial imaging and/or cystic fluid analysis 

(discussed in Chapter 1 of this thesis). Notably, CA19.9 has limited accuracy and therefore 

offers limited clinical advantage, especially for screening 492. Not all patients express the 

appropriate fucosyltransferase enzyme required for CA19.9 synthesis 171 and this, 

combined with the fact that many other disease processes cause increase expression of 

CA19.9 494, 495, has relegated its use mostly as a monitoring marker for PDAC recurrence 

after resection.  Efforts have been made to increase the sensitivity and/or specificity of 

CA19.9 in the diagnostic setting 489, 490. Unfortunately, to date, none have proven successful 

enough to become integrated into clinical practice. Combination screening could increase 

the diagnostic accuracy to a level amenable to high-risk population screening. This is quite 
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pertinent to this study since the low sensitivity precludes the use of the elucidated EV 

surface marker, EPHA2, from being used as a single agent biomarker, yet may provide a 

means of increasing the overall accuracy of CA19.9. For example, ruling out diseases other 

than PDAC, which also cause an increase in CA19.9 expression. Thus, further investigation 

into the concurrent assessment of EV surface EPHA2 and complete serum CA19.9 is 

warranted. 

4B.5 Conclusions and future directions 

 In this study, we built upon the previous finding that EV surface analysis via 

surface-enhanced Raman spectroscopy is capable of discriminating between EVs isolated 

from healthy and PDAC patient serum, although with limited accuracy (discussed in part 

A of this chapter). This proof-of-concept study warranted further investigation into what 

specific molecular species of the EV surface contribute to the SERS spectral shifts.  

We began by first elucidating a pool of cancer-specific proteins via EV surface 

shaving followed by LC-MS/MS analysis. Determination of the real-world significance of 

each marker was conducted by expression profiling, gene correlations, ROC curve 

assessment using data from TCGA as well as GSE27385 microarray datasets. This process 

allowed for the reduction of 229 possible proteins down eight target proteins: cluster of 

differentiation 151 (CD151), galectin-1 (LGALS1), cofilin (CFL1), tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ), 

extracellular matrix protein-1 (ECM1), ephrin A2 (EPHA2, integrin alpha 3 (ITGα3), and 

heat-shock protein family B (small) member-1 (HSPB1). All eight proteins were validated 

to be present in EVs via western blot, many of which were increased in EVs from cancer 

cells compared to normal immortalized human epithelial cells (HPDE). Four of these eight, 
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EPHA2, ECM1, CD151, and HSPB1, were able to be visualized on the surface of EVs via 

immunogold labeling and TEM imaging. TCGA expression and survival analysis of these 

four protein genes were assessed leading to the selection of EPHA2 to be used for 

subsequent experiments, due to the greatest difference in expression in cancer vs. normal 

tissue as well as the most significant impact on survival. ELISA conducted on EVs from 

PDAC cell lines and HPDE showed elevated expression of EPHA2 in PDAC EVs 

compared to match lysates as well as HPDE EVs. Additionally, EPHA2 was found to be 

elevated incomplete cancer patient serum compared to benign controls resulting in a 

diagnostic sensitivity of 76% and specificity of 62%. Finally, EV specific EPHA2 

expression isolated from patient serum samples proved capable of identifying 25% of 

PDAC patients with 100% specificity.  

 Future studies will be undertaken in order to increase the diagnostic efficacy of EV 

surface characterization. Firstly, the other three protein markers that were immunogold 

validated to be on the surface of EVs: CD151, ECM1, and HSPB1 will be assessed in 

patient serum samples to determine if they offer any additive benefit to EPHA2, especially 

the low sensitivity (25%). Congruently, initial lectin array assessment identified four 

lectins that bound far more CD18/HPAF EVs than EVs from HPDE (AAL, Con A, EEL, 

and UEA-1) and one that preferentially bound with HPDE EVs (PNA) (Figure 4B.15). 

Thus, providing new targets to be used in multiparametric profiling of the EV surface. 

Finally, we have recently been able to analyze DNA isolated from EVs originating from 

Panc1 pancreatic cancer cell line and HPDE via digital droplet polymerase chain reaction 

(ddPCR), and detect PDAC associated mutation, KRAS G12D, in an accurate and 
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Figure 4B. 15 Preliminary lectin array of CD18/HPAF and HPDE EVs 

Out of the 40 lectins analyzed as a part of the microarray, four were found to preferentially 

bind EVs isolated from CD18/HPAF: AAL, Con A, EEL, and UEA-1, as determined by 

relative fluorescence (red bars). Additionally, one lectin, PNA, bound HPDE EVs with 

greater avidity (black bars). This is meant to serve as the preliminary investigation into 

possible new surface markers to be used concomitantly with the elucidated protein markers 

in a multiparametric analysis.  
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Figure 4B.15 
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Figure 4B. 16 Digital droplet PCR analysis of cell line EVs 

 

The detected KRAS G12D mutation (blue boxes) and KRAS WT (brown boxes) are 

presented in the graph as copy number/µl for each sample, which is enumerated above the 

boxes in the graph. DNA isolated from Panc1 EVs and HPDE EVs was combined in the 

following respective proportions: 1.0/0.0, .5/.5, .25/.75, .125/.875. and 0.0/1.0. As the 

proportion of Panc1 EV DNA decreases the amount of KRAS G12D mutation detected 

also decreases in a concentration-dependent manner. Importantly, no mutant KRAS is 

detected in the sample containing only HPDE EV DNA, thus supporting assay specificity.  
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Figure 4B.16 
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concentration-dependent manner (Figure 4B.16). The detected copy number of the mutant 

KRAS decreases as the percentage of Panc1 EV DNA comprising the sample decreases. 

Future studies will combine this ddPCR technique with the identified EV surface proteins, 

in an effort to isolate and identify PDAC specific EVs from patient serum samples.  
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Chapter 5: Radiation potentiation via ferroptosis for the improved treatment of 

pancreatic ductal adenocarcinoma 

5.1 Synopsis 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies 

with an estimated 5-year survival rate of less than 9% 2. A primary reason why PDAC is 

so deadly is because of ineffective standard treatment options including chemo and 

radiotherapy 215. Therefore, in this study, we investigated the involvement of ferroptosis, a 

newly identified form of iron-dependent cell death 496, in radiation-induced cell death and 

further, if pharmaceutical induction of ferroptosis with the small molecule Erastin can 

potentiate the lethal effects of radiation. Analysis of PDAC samples in The Cancer Genome 

Atlas (TCGA) RNA sequencing database revealed GPX4 and system Xc (vis-à-vis 

SLC7A11) expression levels (two proteins integral in preventing ferroptosis) to be elevated 

in PDAC compared to healthy controls. Further, SLC7A11 expression was significantly 

correlated with worse overall survival in those who received radiation. IHC staining of 

patient tissue samples showed significantly higher SLC7A11 levels in PDAC and 

irradiated tissue compared to normal. Expression of GPX4 and SLC7A11 at the protein 

level were variable yet high in all cancer cell lines. Microarray analysis across multiple 

PDAC cell lines demonstrated increased GPX4 expression post-radiation, with 3 out of 4 

showing GPX4 to be in the top 10 most upregulated genes. NRF2 phosphorylation and 

subsequent SLC7A11 protein expression increased in a time-dependent manner in 

CD18/HPAF, and Panc1 PDAC cells following 5Gy radiation treatment. Radiation was 

shown to increase the labile Fe2+ pool and the level of ROS in cells. Lipid peroxidation (the 

only known inducer of ferroptosis) was also increased with radiation and to a greater extent 
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with combination treatment. Combination treatment synergistically reduced cell and 

organoid viability, compared to RT alone. Finally, the combination of Erastin and radiation 

significantly reduced the size of tumors in xenograft mouse models.   

5.2 Background and rationale 

Surgical resection is the most effective treatment technique for PDAC 497. 

Unfortunately, the vast majority of pancreatic cancer cases are detected in later stages, 

when resection is no longer a viable option 176. Congruently, current chemotherapeutic 

options are either ineffective or extremely toxic and thus provide little added survival 

benefit 215. Radiation therapy (RT) is primarily utilized in the neoadjuvant setting to shrink 

borderline resectable and unresectable non-metastatic tumors to a size amenable to 

resection 200, 201, with initial attempts recently being made to definitively treat those with 

nonresectable disease via stereotactic body radiation (SBRT) 203. Unfortunately, many 

pancreatic tumors remain refractory to radiation treatment 208 (for more information 

regarding current PDAC therapies, see section 1.5 Therapeutic strategy, in Chapter 1 of 

this thesis). The combination of these factors has initiated the search for new treatment 

sensitizing agents to increase the effectiveness of current non-surgical treatments.  

Ferroptosis is a recently discovered form of programmed cell death that requires 

labile intracellular ferrous iron (Fe2+) 496, 498. An abundance of reactive oxygen species 

(ROS) present within a cell, either endogenous or exogenous in origin, results in a lethal 

buildup of peroxidated lipid species, specifically phosphatidylethanolamine (PE), inducing 

ferroptosis 498. Glutathione peroxidase 4 (GPX4) converts lethal PE peroxides to nontoxic 

lipid alcohols and this enzymatic activity of GPX4 is depended on the availability of 

glutathione (GSH) 499, 500.  One of the primary mechanisms of GSH synthesis requires the 
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import of extracellular cysteine into the cell via the cysteine-glutamate antiporter, System 

Xc (a complex of SLC3A2 and SLC7A11 proteins) 501. Pharmacological inhibition of 

SLC7A11 with the small molecule Erastin, prevents the adequate production of GSH, thus 

inhibiting GPX4 enzymatic activity, which, in turn, causes the lethal lipid peroxides to 

accumulate, culminating in ferroptosis induction 502 (Figure 5.1).  

This method of ferroptotic induction has become an increasingly popular area of 

study for use as a therapeutic adjuvant for a variety of cancer therapies including chemo 

503 and radiation therapies 504, 505. One of the advantages of targeting SLC7A11 is a degree 

of cancer specificity is offered by an increased level of ROS in the setting of cancer 

compared to normal and the inherent reliance on a variety of antioxidative mechanisms 

(including SLC7A11) 506-510. Moreover, SLC7A11 CRISPR knock out does not affect the 

gestation or morphology of mice, thus implying systemic SLC7A11 blockade may be well 

tolerated 511. Additionally, many cancers that have resistance to conventional cytotoxic 

chemotherapeutics seem sensitive to ferroptotic induction 503, 512, 513.  

Radiation therapy is an excellent candidate for potentiation with ferroptosis as one 

of its primary mechanisms of inducing cell damage is mediated by the production of ROS 

514. With the advent of hypo fractionated SBRT, highly conformational large doses of 

radiation can be administered at a given time thereby producing higher levels of ROS at 

once, specifically within the tumor. These two therapeutic modalities are ideally suited to 

complement one another in their mechanisms of action where and increase in ROS 

generation is provided by radiation and a diminished capability of eliminating the 

associated lipid toxicity is provided by SLC7A11 inhibition. In accordance with this 

background and rationale, we hypothesize that in the setting of radiation, system Xc  
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Figure 5. 1 Schematic of Erastin induced ferroptosis 

 Erastin induction of ferroptosis is mediated by the blockade of SLC7A11, a 

component of the cystine-glutamate antiporter System Xc, thereby preventing glutathione 

(GSH) synthesis. GSH is required as a substrate for glutathione peroxidase 4 (GPX4) 

enzymatic conversion of toxic lipid hydro peroxides into non-toxic lipid alcohols. The 

build-up of lipid hydro peroxides culminates in ferroptotic death. NRF2, the transcription 

factor responsible for SLC7A11 and GPX4, is depicted. Cellular ferroptotic susceptibility 

is also determined by the availability of free ferrous iron (Fe2+) and its ability to produce 

ROS via Fenton chemistry.  The majority of iron existing in the ferritin bound non-ferrous 

form as depicted. 
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Figure 5.1 
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inhibition with Erastin will facilitate ROS mediated lipid peroxidation and subsequent 

ferroptosis induction, thus increasing the lethal effect of radiation therapy in the setting 

PDAC.  

5.3 Results 

5.3.1 GPX4 and SLC7A11 are differentially expressed in pancreas cancer 

 As mentioned above, it is known that SLC7A11 and GPX4 act in concert as the 

primary mitigators of ferroptosis induction. As such, the expression levels of each protein 

were initially assessed through the Gepia and MiPanda Portals which both combine The 

Cancer Genome Atlas (TCGA) RNA sequencing data from patient tissue samples with the 

cell line genetic data found in the GTEx database. When both pancreas cancer tissues and 

cell line data are considered, GPX4 is present at far higher quantities as compared to 

healthy samples. Figure 5.2A displays the percentage of samples that have GPX4 

expression levels >100 and 200 TPM in both cancer and healthy tissues. The difference 

between the percentage of samples with >100 TPM in cancer and healthy tissues can be 

better visualized in Figure 5.2B. Notably, the pancreas is one of the top three organs in 

terms of increased expression of GPX4 with 98% of cancer samples having a TPM >100 

compared to only 8% of healthy samples. Congruently, the expression level of SLC7A11 

in the combination TCGA and GTEx dataset is elevated in the setting of pancreas cancer 

as compared to healthy samples (Figure 5.3).  

Interestingly, the expression of GPX4 was not found to be significantly altered in 

the setting of PDAC as compared to healthy tissue samples, nor did it have any significant 

effect on survival, when only considering patient samples in TCGA (Figure 5.4A-B).  
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Figure 5. 2 GPX4 expression in pancreas cancer compared to normal pancreas and 

relative to cancers of various origin 

A. GPX4 expression is shown as transcripts per million (TPM) in cancer and normal tissues 

among a wide array of different organ types. The percentage of samples assayed with 

GPX4 expression >100 and >200 TPM are displayed as a heat map. Notably, the difference 

in expression in pancreas cancer and normal pancreas is one of the highest in both 

categories. B. Bar graph depiction of the difference between cancer and normal tissues with 

GPX4 expression >100 TPM. The pancreas is the third highest out of all tissue types with 

98% of cancer and only 6% of normal tissue (92% difference) achieving this expression 

level. Notably, these data combine patient PDAC neuroendocrine samples (TCGA) and 

PDAC cell line (GTEx) data.  
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Figure 5.2  

 

 

 
 

 

 

 

 

  



   
 

225 
 

Figure 5. 3 SLC7A11 expression in pancreas cancer compared to normal pancreas 

and relative to cancers of various origin 

The expression of SLC7A11 is shown as TPM. SLC7A11 is increased in cancer 

compared to normal in a wide array of tissue types. Specifically, it is increased over two-

fold in pancreas cancer. Notably, these data combine patient PDAC neuroendocrine 

samples (TCGA) and PDAC cell line (GTEx) data. 
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Figure 5.3  
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Conversely, SLC7A11 expression was indeed elevated in PDAC patients, yet also 

with no effect on survival (Figure 5.4C-D). Of note, the TCGA only has RNA sequencing 

data of four healthy pancreas tissue samples within the database, thus limiting its utility for 

PDAC vs healthy comparisons when used in isolation. Further, the pancreas cancer cohort 

is comprised of PDAC and pancreatic neuroendocrine tumor samples. The neuroendocrine 

samples have not been taken out of the datasets in the MiPanda and Gepia Portals and have 

been for our in house TCGA analysis to specifically discern the expression patterns in 

PDAC.  

5.3.2 SLC7A11 protein expression is increased in the majority of PDAC cell lines 

compared to HPDE 

 The amount of GPX4 and SLC7A11 protein present in cell lines was next analyzed 

via western blot. This was conducted in many different PDAC cell lines that covered a 

wide mutational spectrum, differentiation statuses, as well as from primary and metastatic 

origins including CD18/HPAF, MiaPaCa, Colo357, AsPC1, Panc1, Capan1, T3M4, and 

BxPC3. Along with these, an immortalized human pancreatic epithelial cell lined, HPDE, 

was also assessed. GPX4 was present in roughly equal quantities across the PDAC cell 

lines as well as HPDE (Figure 5.5). Conversely, SLC7A11 expression was increased in 

five out of the eight PDAC cell lines assessed: CD18/HPAF, MiaPaCa, Panc1, T3M4, and 

BxPC3 (Figure 5.5). The increased expression of SLC7A11 in a majority of PDAC cell 

lines suggests an increased reliance on the cysteine import facilitated by System Xc and 

could prove to be an actionable target for the induction of ferroptosis.   
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Figure 5. 4 GPX4 and SLC7A11 expression and survival in the TCGA PDAC cohort  

As mentioned prior, the previous figures showed data combining a wide variety of pancreas 

cancer specimens. PDAC specific expression was assessed in the TCGA dataset and is 

displayed as FPKM values. A. GPX4 expression in normal and tumor samples is not altered 

and survival is not impacted. B. SLC7A11 expression is higher in tumor samples as 

compared to normal but also does not have any correlation with overall survival. Of note, 

the limitation of the TCGA dataset is the presence of only four normal samples for 

comparison.   
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Figure 5.4  
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Figure 5. 5 GPX4 and SLC7A11 protein expression in PDAC cell lines 

GPX4 and SCL7A11 protein expression were analyzed via western blot in CD18/HPAF, 

MiaPaCa, Colo357, AsPC1, Panc1, Capan1, T3M4, and BxPC3 PDAC cell lines and one 

immortalized normal human pancreatic ductal epithelium cell line, HPDE. There was no 

significant difference observed in GPX4 expression between the PDAC cell lines and 

HPDE. SLC7A11 protein level was increased in CD18/HPAF, MiaPaCa, Panc1, T3M4, 

and BxPC3 cell lines (5 out of 8).  
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Figure 5.5 
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5.3.3 Most PDAC cell lines are more sensitive to Erastin than HPDE 

 Given these bioinformatics and protein data, we next sought to determine the 

efficacy of ferroptotic induction via pharmacological system Xc inhibition. Prior to the 

initiation of the in vitro experiments, the effect of SLC7A11 knockdown was queried in a 

publicly available RNAi screen conducted on 398 diverse cancer cell lines put forth by the 

Broad Institute called Project DRIVE 225. This compendium was designed to elucidate 

dependencies and vulnerabilities associated with specific cancer types. Notably, five out 

of the top 25 most sensitivity cancer cell lines to SLC7A11 KD were PDAC and are 

highlighted by the red bars in Figure 5.6.  

 In vitro assessment of pharmaceutical inhibition of System Xc was conducted with 

Erastin, a small molecule inhibitor of SLC7A11 known to induce ferroptosis. The lethality 

of 0.312, 0.6125, 1.25, 2.5, 5, and 10 µM concentrations of Erastin in the eight PDAC cell 

lines, as well as HPDE, was measured by MTT assay at 24 and 48-hour time points. A non-

linear fit of the MTT data allowed for the adjudication of the 48 hour IC50 values (Figure 

5.7A). All but two of the PDAC cell lines (MiaPaCa and BxPC3) were more sensitive to 

ferroptotic induction via Erastin than HPDE cells. The 24 and 48-hour non-linear fit graphs 

are also presented for HPDE and the two cell lines that were used for the remainder of the 

studies (Panc1 and CD18/HPAF) in Figure 5.7B. Of note, HPDE is unaffected by Erastin 

treatment for 24 hours and the slope at 48 hours is not nearly a precipitous as the two PDAC 

cell lines. These data together suggest that PDAC cells are more sensitive to Erastin 

treatment that normal immortalized pancreatic epithelium. 
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Figure 5. 6 Project DRIVE analysis of RNAi SLC7A11 knockdown in PDAC cell 

lines 

SLC7A11 RNAi screening of 398 cell lines from different cancer types showed that PDAC 

cell lines were 5 of the top 25 (including the 1st, 3rd, 8th, 20th, and 23rd) most susceptible 

cell lines. It is displayed here as the Project Drive susceptibility score. The more negative 

the score the more reliant upon SLC7A11 the cell line is. The PDAC cell lines are 

highlighted in red.    

 

 

 

  



   
 

234 
 

Figure 5.6  
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Figure 5. 7 Erastin MTT survival curves in PDAC cell lines and HPDE 

Cell survival with different µM concentrations of Erastin (10, 5, 2.5, 1.25, 0.625, and 

0.3125) was determined by MTT assay at 24 and 48-hour time points. It is displayed here 

as % viability relative to untreated control. A non-linear regression analysis was applied 

and IC50 concentrations elucidated A. The 48-hour survival curves of all the PDAC cell 

lines CD18/HPAF, MiaPaCa, Panc1, Colo357, T3M4, AsPC1, and BxPC3 along with the 

listed IC50 concentrations. B. 24 and 48-hour survival curves for HPDE as well as the two 

PDAC cell lines used in the remainder of the experiments, CD18/HPAF and Panc1. Of 

note, the normal cell line HPDE was far more resistant to Erastin induced cell death with 

no effect at 24 hours, even at 10 µM concentration and a far less steep slope at 48 hours 

compared to the PDAC cell lines. 
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Figure 5.7  
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5.3.4 Erastin inhibits cellular migration 

 

 A scratch migration assay was conducted over the course of 72 hours on 

CD18/HPAF cells in the presence of various Erastin concentrations (1, 5, and 10 µM) to 

assess its functional ability to prevent cell migration. The area of the cruciform scratch was 

evaluated on day one and at 24, 48, and 72-hour time points with Image J software.  The 

percent wound closure was calculated by dividing the measured area remaining at a given 

time point by the initial scratch area. Indeed, the wound closure percentage was decreased 

in a concentration-dependent manner at all three-time points (Figure 5.8). 

5.3.5 Erastin treatment decreases intracellular GSH  

 The mechanism by which Erastin is said to induce ferroptosis is by preventing 

cysteine import required for GSH synthesis 515. Thus, we next sought to verify that this was 

true by testing total glutathione levels after 24-hour treatment with Erastin in CD18/HPAF 

and Panc1 cancer cell lines. Treatment concentrations for each cell line were adjusted to 

below the projected 24 hour IC20 (as determined by the previous MTT assays) to 1 µM for 

Panc1 and 2 µM for CD18/HPAF (of note, these are the cell line-specific concentrations 

that will be used for the remainder of the experiments). Indeed, Erastin effectively reduced 

the total glutathione (GSH) concentrations to 61.7% of the untreated control in 

CD18/HPAF cells and 26.6% in Panc1 cells (Figure 5.9). Interestingly, even at the higher 

concentration, total GSH in CD18/HPAF was less effected by Erastin treatment, which 

mirrors the respective sensitivities to Erastin induced cell death as determined by MTT. 

These data suggest that CD18/HPAF may not have as much reliance upon SLC7A11 as 

Panc1 for the production of GSH and could be supported by an alternative pathway, i.e. 

transsulfuration.  
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Figure 5. 8 Erastin impact on CD18/HPAF migration 

The ability of 1 µM, 5 µM, and 10 µM concentration of Erastin to reduce CD18/HPAF cell 

migration was assessed via scratch assay with images taken at 24, 48, and 72 hours. It is 

displayed here as the total percentage of wound closure at the given time. An impressive 

reduction in cellular migration was noticed at the 10 µM concentration at all times 

measured.  
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Figure 5.8  
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Figure 5. 9 Erastin depletion of glutathione  

Panc1 was treated with 1 µM Erastin and CD18/HPAF with 2 µM Erastin for 24 hours at 

which point the total amount of glutathione present was determined. Erastin concentrations 

for each cell line were based on the IC20 values measured from the previous MTT 

experiments. Erastin treatment caused a 70% reduction and 40% reduction in proportion to 

the no treatment control in Panc1 and CD18/HPAF, respectively.  
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Figure 5.9  
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5.3.6 Radiation promotes GPX4, SLC7A11 expression and the phosphorylation of 

NRF2 in vitro  

 Publicly available microarray data of four PDAC cell lines (Panc1, AsPC1, 

MiaPaCa, and BxPC3) 6 hours after receiving a 2Gy dose of radiation was analyzed for 

our genes of interest. While SLC7A11 was not present in the microarray platform, GPX4 

was highly upregulated in the irradiated cells compared to the non-radiated controls 

(Figure 5.10A). Specifically, GPX4 was the second most upregulated mRNA in both 

Panc1 and AsPC1, and the tenth and 111th most in MiaPaCa and BxPC3, respectively. 

Thus, suggesting an integral role of GPX4 in the response to radiation as well as the 

possibility of radiation-induced ferroptosis. Many genes involved in the induction of 

ferroptosis were down-regulated such as fatty acid-CoA ligase 4 (ACSL4/FACL4) 516, 

voltage-dependent anion channels (VDAC) 1-3 517, and nuclear receptor coactivator 4 

(NCOA4) (Figure 5.10A). Notably, NCOA4 is the known inducer of ferritinophagy 

(specific autophagy of iron-bound ferritin that releases free Fe2+) thereby facilitating iron-

mediated lipid peroxidation and eventual ferroptosis 518. Concurrently, the iron 

sequestration molecule heat shock protein family B (small) member 1 (HSPB1) was 

upregulated (a known ferroptosis inhibitory molecule capable of binding free Fe2+ 519 as 

was glutathione synthetase (GSS) in the setting of radiation. Of not, GSS and GPX4 are 

transcribed by the transcription factor NRF2 503. 

 Assessment of GPX4 and SLC7A11 at the protein level was conducted on Panc1 

and CD18/HPAF cell lines at 6, 12, 24, 48, and 72 hour time points following the 

administration of 5Gy radiation. GPX4 expression was slightly increased in both cell lines 

though at an earlier time point in the Panc1 cell line compared to CD18/HPAF (Figure 
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5.10B). A more impressive increase was found in the time-dependent expression of 

SLC7A11 as well as the phosphorylation of NRF2 (the transcription factor responsible for 

GPX4, GSS, and SLC7A11 transcription 520) in both cell lines (Figure 5.10B). 

Phosphorylation of NRF2 has been shown to increase nuclear localization and promotes 

transcription 521. Taken together, these data suggest the importance of the SLC7A11-GSH-

GPX4 axis in the response to radiation.  

5.3.7 SLC7A11 is increased in PDAC and radiated patient tissues 

 The protein expression of GPX4 and SLC7A11 was next assessed via 

immunohistochemistry (IHC) staining in 8 healthy, 21 PDAC, and 12 irradiated PDAC 

patient tissue samples graciously provided by Dr. Chi Lin in the Department of Radiation 

Oncology at the University of Nebraska Medical Center. Slides were graded by a certified 

pathologist and H-scoring conducted as described in the methods chapter. GPX4 

expression was not significantly different between the three cohorts (Figure 5.11A). 

SLC7A11 was relatively unchanged between the healthy and PDAC samples but 

significantly increased in the irradiated samples compared to both PDAC and healthy 

controls (Figure 5.11B).  

5.3.8 SLC7A11 gene expression is significantly correlated with survival in radiated 

patients 

 Since SLC7A11 was increased so dramatically in the irradiated patient samples, we 

next determined its correlation with survival using the radiation patient PDAC cohort 

within the TCGA dataset. For those PDAC patients that underwent radiation treatment, 

SLC7A11 was significantly correlated with worse survival outcomes (Log-Rank test p = 

0.0344, Wilcoxon test p = 0.0478, Figure 5.12A). The median survival time for patients  
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Figure 5. 10 mRNA and protein analysis of PDAC cell lines after radiation 

A. A publicly available microarray dataset of mRNA analysis from 4 PDAC cell lines 

(Panc1, AsPC1, MiaPaCa, and BxPC3) exposed to 2Gy radiation and collected after 6 

hours was used for this analysis. Radiation exposure caused an increase myriad molecules 

involved in ferroptosis including GPX4 and glutathione synthetase (GSS) (notably, both 

are transcription products of NRF2 transcription factor). Additionally, mRNA encoding 

the iron liberating protein implicated in ferroptosis, NCOA4, was decreased while that for 

HSPB1, an iron sequestration protein known to inhibit ferroptosis, was upregulated. B. 

GPX4 and SLC7A11 expression in Panc1 and CD18/HPAF cell lysates collected from cells 

at 6, 12, 24, 48, and 72 hours after 5Gy radiation exposure was measured via western blot. 

While GPX4 showed a marginal increase in both cell lines, SLC7A11 was dramatically 

increasing upon radiation exposure. Also, phosphorylation of NRF, a modification that has 

been shown to increase nuclear translocation and facilitate transcription, was increased 

after exposure to radiation. Of note, Along with GPX4 and GSS, NRF is responsible for 

the transcription of SLC7A11.  
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Figure 5.10 
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Figure 5. 11 GPX4 and SLC7A11 protein expression in patient tissue samples 

Immunohistochemical (IHC) analysis was conducted on 8 healthy, 21 PDAC, and 12 

irradiated PDAC patient samples to assess the levels of GPX4 and SLC7A11. The tissue 

level of each protein is presented as an H-score (for more on how H-scores were calculated 

see Chapter 2). A. No significant difference in tissue expression of GPX4 was observed 

between all three groups. B. SLC7A11 was significantly increased in irradiated samples 

compared to healthy (p < 0.005) and non-irradiated PDAC (p < 0.005).  
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Figure 5.11 
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Figure 5. 12 SLC7A11 survival of radiated PDAC patients in TCGA 

The PDAC patient RNA sequencing data in TCGA was revisited and the correlation 

between SLC7A11 expression and survival was assessed within the patient cohort that 

received radiation therapy. A. An impressive shift occurred from the survival analysis of 

SLC7A11 in the complete PDAC population. Its expression became significantly 

correlated with survival. A finding made all the more impressive by the fact that the total 

patients who received radiation and were analyzed were 12 (6 high and 6 low expressers). 

B. The previously presented SCL7A11 survival curve for the entire PDAC population 

provided for reference.  
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Figure 5.12 
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with low expression was 668 days while those with high expression were only 345.5 days. 

This is made even more interesting by the fact that no significant difference was observed 

in the entire PDAC patient cohort when considering SLC7A11 expression. The Kaplan-

Meier curve presented at the beginning of this section is provided in panel B of this figure 

for reference (Figure 5.12B). 

5.3.9 GPX4 knockdown sensitizes cells to radiation-induced cell death in vitro 

 Given the observed impact of radiation on GPX4 and SLC7A11 expression in cell 

lines and patient samples, we next evaluated the effect of GPX4 knockdown (KD) in the 

setting of radiation on cellular viability in vitro. 50 nmol GPX4 siRNA was transfected 

into CD18/HPAF and Panc1 PDAC cells using lipofectamine, allowed to incubate for 48 

hours to achieve adequate KD, and clonogenic colony-forming assays conducted in the 

manner described in the methods chapter of this thesis. GPX4 KD had a dramatic effect in 

Panc1 by itself, resulting in almost zero colony formation (Figure 5.13A). This is not 

unexpected given the high sensitivity of the Panc1 cell line to Erastin. While GPX4 KD 

alone did affect the colony-forming capacity of CD18/HPAF, this was noticeably enhanced 

with the concurrent delivery of 5Gy radiation treatment (Figure 5.13B). Congruently, the 

combination treatment dramatically reduced the number of colonies as compared to 

radiation treatment alone.  

5.3.10 Erastin and radiation synergistically induce cell death 

 To determine the radiation potentiation effect of pharmacological inhibition of 

System Xc with Erastin, colony-forming viability assays were next conducted on Panc1 

and CD18/HPAF. Erastin effectively potentiated the lethality of radiation in a 

concentration depended manner, in both cell lines (Figure 5.14A-B). As can be seen in the  
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Figure 5. 13 Impact of GPX4 knockdown on CD18/HPAF and Panc1 survival in the 

setting of radiation 

Colonies are presented on the left side of the panel and how the effect of GPX4 knockdown 

on the viability of cells with and without 5Gy radiation treatment. The quantification of 

colony number is presented as a proportion of the untreated control and is displayed on the 

right. A. Unfortunately, GPX4 knockdown in the Panc1 cell line proved too lethal to be 

able to assess any impact in the setting of radiation. This is not unexpected and is in line 

with our previous findings of Panc1 hypersensitivity to upstream GPX4 inhibition via 

Erastin treatment B. For CD18/HPAF GPX4 KD was able to sensitize cells to radiation 

treatment resulting in a greater proportion of cell death with the combination treatment.  
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Figure 5.13 
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graphical representation of the data, the highest concentration of Erastin tested, 2 µM,  was 

required for adequate radiation potentiation in CD18/HPAF cells but was overtly lethal 

alone in Panc1 cells (this is directly in line with the previous MTT result for each cell line 

and their respective IC20 concentrations, Figure 5.7). A direct comparison of the survival 

of each cell line at 5Gy radiation is provided in Figure 5.15. In Panc1, 1 µM Erastin causes 

a significant reduction in survival at 5Gy while 2 µM is required to reach significance in 

CD18/HPAF. The difference in the respective radiation enhancement ratios (ER) for each 

concentration of Erastin are also presented to show the relative inter-concentration and 

individual cell efficacy, as determined by the Fertil linear quadratic method as described 

in Chapter 2 of this thesis (Figure 5.14A-B).  

 The online software Combenefit utilizes three individual synergy models, BLISS, 

Loewe, and HSA to determine if true synergism exists (and not merely additivity) between 

two treatments. The BLISS model takes into account the effect of each treatment 

independently and determines the level of synergism predicated on efficacy above the 

product of the combination lethality, i.e. LC < LT1LT2; where Lc is the lethality of the 

combination treatment, and LT1 and LT1 are the lethality of treatment 1 and treatment 2, 

respectively. The Loewe model assumes linearity and is predicated on the IC50 values 

while the HSA model has the loosest definition for synergism where any death above single 

treatment is considered synergistic. Because of these reasons the BLISS model was chosen 

for subsequent analysis. The interpretation of BLISS synergy scores can be assumed as 

follows: < -10 is considered likely antagonism, 10 to 10 is considered likely additivity, and 

>10 is considered likely synergism.  
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Figure 5. 14 Response of CD18/HPAF and Panc1 to combination radiation and 

Erastin treatment 

Colonies are presented on the left side of the panel and show the effect 0.0, 0.1, 0.5, 1.0, 

and 2.0 µM Erastin at 0, 1, 3, 5, and 7Gy radiation. The resultant survival curves are 

presented on the right as well as the associated radiation enhanced ratio (ER). Erastin 

displayed the ability to potentiate radiation induces cell death in a concentration-dependent 

manner in both cell lines A & B. Although, notable yet as expected, the 2 µM concentration 

was too high by itself in Panc1 leading to almost complete cell death by itself. 
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Figure 5.14 
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Figure 5. 15 Direct comparison between CD18/HPAF and Panc1 response to Erastin 

with 5Gy radiation treatment 

Viability is presented as the proportional survival relative to untreated control. All 

treatment provides a significant reduction in cell viability as compared to control in both 

cell lines. However, 1 µM and 2 µM Erastin provide a significant increase in the level of 

cell death at 5Gy above that of radiation alone in Panc1 while only 2 µM Erastin treatment 

does so in CD18/HPAF.  
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Figure 5.15 
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Our survival data was utilized to determine if any additive and/or synergistic 

lethality exist with combination Erastin and Radiation treatment, compared to either 

treatment alone. Indeed, a high degree of synergism was found with combination treatment 

in both CD18/HPAF and Panc1 cells, each attaining a BLISS score exceeding 40 (Figure 

5.16A-B). The percent decrease in viability is presented in the subpanel i of each panel and 

topographic representation of the BLISS scores as a function of treatment concentrations 

are presented in subpanels ii and iii. These are presented as a matrix in subpanel iv where 

one can see the actual numerical representation of the synergism present. Interestingly, a 

comparison between the CD18/HPAF matrix in Figure 5.16Aiv and the Panc1 matrix in 

Figure 5.16Biv brings to light the difference in the synergy pattern. Where the highest 

level of synergy occurs in CD18/HPAF at 2 µM Erastin and 3Gy radiation (BLISS score 

42), the most efficient synergy observed in Panc1 occurs at 500 nM Erastin and 1Gy 

radiation. This is indicative of the relative sensitivities of each cell line to radiation as well 

as Erastin. Of not, synergy is observed (BLISS scores above 10) across a wide array of 

treatment combinations, though they are not as extreme.  

5.3.11 Combination radiation and Erastin treatment-induced cell death is mitigated 

with the addition of Ferrostatin-1 

 In an effort to determine if the cell death resulting from the combination treatment 

is attributable to ferroptosis specifically, we repeated the colon forming assays (both cell 

lines with 5Gy radiation, CD18/HPAF with 2 µM Erastin and Panc1 with 1 µM Erastin) 

along with the addition of Ferrostatin-1 (Tocris), a lipophilic antioxidant that inhibits 

ferroptosis, Necroastain-1 (Sigma), a compound that binds RIPK and inhibits necroptosis, 

and Z-VAD-FMK (Tocris), a pan-caspase inhibitor and apoptosis inhibitor. The  
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Figure 5. 16 The lethal effects of radiation and Erastin combination are synergistic 

Synergy scores predicated on the BLISS independence model were determined for both 

cell lines as a part of the online Combenefit Software package. The analysis of Panc1 and 

CD18/HPAF are presented in panels A and B, respectively. The subpanels are demarcated 

as follows: i- color map predicated on the percentage of the surviving cells in any given 

treatment condition, relative to the no treatment control. ii- color map of the BLISS synergy 

scores associated with each treatment condition. iii- topographical map depicting the 

percentage of cell death overlaid with the BLISS synergy score color map. iv- Matrix and 

numerical representation of the BLISS synergy scores associated with each specific 

treatment condition. The interpretation of BLISS synergy scores can be assumed as 

follows: < -10 is considered likely antagonism, 10 to 10 is considered likely additivity, and 

>10 is considered likely synergism.  
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Figure 5.16 
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proportional survival with the inhibitors, relative to each treatment condition (i.e. radiation, 

Erastin, and radiation + Erastin) are shown in Figure 5.17. For CD18/HPAF, the lethality 

of radiation and Erastin alone was not diminished by any of the inhibitors but cell death 

produced by the combination treatment was partially rescued by the administration of 

ferrostatin-1 (Figure 5.17A). Alternatively, for Panc1, a partial rescue of treatment-

induced cell death by ferrostatin-1 was observed in the radiation only and Erastin only 

groups, with a significant increase in cell viability in the combination treatment group 

(Figure 5.17B). The ability of ferrostatin-1 to abrogate cell death in both cell lines suggests 

that ferroptosis is a contributor to the overall cell death under combination treatment 

conditions.   

5.3.12 Erastin potentiates radiation-induced cell death in patient-derived organoids 

 The next experimental evolution involved the transition from a cell monoculture to 

a patient-derived organoid culture, in order to more closely recapitulate real-world PDAC. 

Organoids derived from three separate PDAC patients were treated with 5Gy radiation, 5 

µM Erastin, and a combination thereof and followed for 96 hours. Representative images 

of organoids (from a single patient) under the four different treatment conditions are 

provided in Figure 5.18A. While a noticeable increase in organoid size can be appreciated 

in the no treatment and single treatment groups, the combination treatment produced 

organoid shrinkage, increase opacity, and membrane dissolution which are common signs 

of death. The viability in each treatment group was determined by measuring the associated 

ATP levels with the CellTiterGlo 3D assay (Promega).  The radiation and Erastin 

treatments alone produce a slight decrease in organoid ATP levels but the combination 

elicited a far more dramatic decrease that was near significant (p = 0.06, Figure 5.18B).  
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Figure 5. 17 Effect of combination treatment in the setting of apoptosis, necroptosis, 

or ferroptosis inhibition 

Colonies are presented on the left side of the panel and show the effects 5Gy radiation, 

Erastin (1 µM for Panc1 and 2 µM for CD18/HPAF), and the combination treatment with 

the addition of Ferrostatin-1 (Tocris), a lipophilic antioxidant that inhibits ferroptosis, 

Necroastain-1 (Sigma), a compound that binds RIP1 and inhibits necroptosis, and Z-VAD-

FMK (Tocris), a pan-caspase inhibitor and apoptosis inhibitor. The quantification of colony 

number is presented as a proportion of the treatment control (i.e. Radiation only, Erastin 

only, or the combination) and is displayed on the right. A. CD18/HPAF shows rescue of 

cell death with Ferrostatin-1 in combination treatment only B. Panc1 shows Ferrostatin-1 

rescue of cell death in the single-agent treatment groups as well as in the combination arm.  
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Figure 5.17 
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Figure 5.18C shows the individual measurements taken for each of the three patient-

derived organoids to illustrate how the differences in response more closely resemble the 

true disease as encountered in patients.   

5.3.13 Erastin potentiates radiation treatment in vivo  

 An orthotopic murine model of PDAC was generated by implanting CD18/HPAF 

cells modified with a luciferase vector into the pancreas of athymic nude mice. Mice were 

randomized into four groups that either received, no treatment, radiation, Erastin, or 

radiation + Erastin (the generation of the orthotopic model as well as the treatment schedule 

is discussed at length in Chapter 2 of this thesis). The luciferase positivity allowed for the 

in vivo visualization and monitoring of the implanted tumors using an IVIS imager via IP 

injection of luciferin and fluorescence measurements as a surrogate for tumor size. The 

combination of radiation and Erastin not only showed a reduction in tumor growth but 

produced tumor shrinkage between the last two IVIS imaging studies conducted eight days 

apart (Figure 5.19A). Since the tumor growth was merely slowed and not reversed in both 

of the single treatment arms, the difference in relative fluorescence intensity (R.F.I.) of the 

combination treatment group was the only on measurement significantly less than no 

treatment control on day 26 post-implantation (p = 0.0317). Importantly, the actual tumor 

size (as determined by weight after excision) was also significantly different between the 

control and combination groups (p = 0.008, Figure 5.19B).  

5.3.14 Radiation increases intracellular reactive oxygen species (ROS)  

 To verify the production of reactive oxygen species (ROS) at the radiation doses 

being utilized in the majority of the experiments herein (5-7Gy), the ROS levels were 

measured in each cell line after treatment with 5Gy of radiation via DCF-DA assay.  
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Figure 5. 18 Response of patient-derived organoids to combination treatment 

A. Images of patient-derived organoids at 0 and 96 Hours after no treatment, 5Gy radiation, 

5 µM Erastin, or a combination thereof. Noticeably organoids in the no treatment and 

single-agent groups have increased in size while those in the combination group have 

shrunk, increase in opacity, and experienced membrane dissolution. B. The relative 

viability in each of the treatment conditions of a combination of three patient-derived 

organoids as determined by the relative ATP level. The combination treatment has a near 

significant reduction in viability with p = 0.06. C. Each of the three organoid experiments 

presented singly.  
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Figure 5.18 
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Figure 5. 19 Effect of Erastin and radiation in an orthotopic PDAC murine model 

A. In vivo IVIS measurements of tumor size collected at days 10, 18, and 26 post-

implantation. Presented as relative fluorescent intensity (R.F.I.). The difference in R.F.I. 

on day 26 between no treatment control and combination groups is significant with p = 

0.0317. B. Images of excised tumors from each group are presented on the left with the 

quantification of their weights presented on the right side of the panel. Again, the only 

group to be significantly reduced from no treatment controls was the combination with p = 

0.008.  
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Figure 5.19 
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Radiation alone increases the production of ROS by 1.5 to 2 fold compared to untreated 

controls (Figure 5.20). While the addition of Erastin interestingly did not increase the 

overall ROS levels, the lipophilic antioxidant Ferrostatin-1 did reduce total ROS measured 

(Figure 5.20).  

5.3.15 Combination treatment causes lipid peroxidation in vitro  

 

  As mentioned early, the defining feature of ferroptosis is the requirement of a 

buildup of ROS mediated lipid hydro peroxides. With the observed increase in ROS, we 

next sought to determine the level of lipid peroxidation occurring in each treatment 

condition via C11-BODIPY 581/591 assay, which has previously been used for the 

elucidation of ferroptosis 231. This is a dye that intercalates with lipids and the fluorescence 

changes predicated on the peroxidation state of the lipid: red if non-peroxidated and green 

if peroxidated, thus the relative level of peroxidation can be determined by the red/green 

ratio of the signal amplitudes. The lipid species in CD18/HPAF were resistant to 

peroxidation by radiation or Erastin monotherapy however a significant increase was 

observed when these were given in combination (Figure 5.21). On the other hand, Panc1, 

which we have shown to be more sensitive to radiation and Erastin, experiences a high 

level of lipid peroxidation with single-agent treatment as well as with the combination 

treatment (Figure 5.22). Also, the amount of lipid peroxidation was reduced back to 

normal levels in the setting of radiation when supplemented with Ferrostatin-1 (Figure 

5.22).  

5.3.16 Radiation increases intracellular free iron (Fe2+) 

 Given the requirement of free intracellular Fe2+ for the induction of ferroptosis, we 

determined its level using a FeRhoNox Assay.  Rapidly after (3 hours) the administration  
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Figure 5. 20 Radiation production of reactive oxygen species (ROS) 

DCF-DA fluorescent probe was utilized to detect the level of ROS in cells in the various 

treatment conditions. Representative images are provided on the left of each panel to allow 

a comparison between the relative level of fluorescence between the radiated and untreated 

controls. The quantification of ROS in each group is presented as a proportion of the total 

fluorescence measured in the untreated controls. A. Radiation-induced the expression of 

ROS nearly twofold that of untreated controls in Panc1 cells. B. Radiation-induced the 

expression of ROS nearly twofold that of untreated controls in CD18/HPAF cells. 
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Figure 5.20 
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Figure 5. 21 Effect of combination therapy on lipid peroxidation in CD18/HPAF 

cells 

C11-BODIPY 581/591 dye analysis was used to determine the relative level of lipid 

peroxidation in cells. This is a dye that intercalates with lipids and the fluorescence changes 

predicated on the peroxidation state of the lipid: red if non-peroxidated and green if 

peroxidated, thus the relative level of peroxidation can be determined by the red/green ratio 

of the signal amplitudes. The lipid species in CD18/HPAF were resistant to peroxidation 

by radiation or Erastin monotherapy however a significant increase was observed when 

these were given in combination as can be observed in the provided images and graphical 

representation of the fluorescence amplitude ratios.  
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Figure 5.21 
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Figure 5. 22 Effect of combination therapy on lipid Peroxidation in Panc1 cells 

C11-BODIPY 581/591 dye analysis was used to determine the relative level of lipid 

peroxidation in cells. This is a dye that intercalates with lipids and the fluorescence changes 

predicated on the peroxidation state of the lipid: red if non-peroxidated and green if 

peroxidated, thus the relative level of peroxidation can be determined by the red/green ratio 

of the signal amplitudes. Panc1, which we have shown to be more sensitive to radiation 

and Erastin, experiences a high level of lipid peroxidation with single-agent treatment as 

well as with the combination treatment and this phenotype was rescued with the addition 

of Ferrostatin-1 as can be observed in the provided images and graphical representation of 

the fluorescence amplitude ratios. 
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Figure 5.22 
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of 5Gy radiation, the level of unbound Fe2+ increases by 20-30% from pretreatment levels 

(Figure 5.23). Interestingly, this process was reversed in both cell lines and the amount of 

free Fe2+ reduced back down to or below, pretreatment level. Along with this, the addition 

of Erastin was shown to increase the free iron even further (Figure 5.23). 

5.3.17 Lipid peroxidation can be measured in radiated PDAC patient serum samples 

 

 With the realization that ferroptosis contributes to the efficacy of radiation, 

circulating lipid peroxide metabolites, namely, malondialdehyde (MDA), offer a potential 

biomarker for the real-time monitoring of response to radiation therapy 522. To test this, we 

analyzed malondialdehyde in 17 serum samples from patients that underwent radiation via 

TBARS assay. We found that not only was the level of malondialdehyde elevated after 

radiation treatment as compared to pretreatment (n = 8), but the addition of the radiation 

sensitizing agent zoledronic acid (an FDPS inhibitor that affects the mevalonate pathway 

523) showed comparatively higher levels (n = 9) (Figure 5.24A). In vitro C11-BODIPY 

analysis of zoledronic acid treatment and radiation found an increase in lipid peroxidation 

with the combination thus supporting the clinical sample results (Figure 5.24B). A likely 

reason for this is that the mevalonate pathway is the primary mechanism for CoQ10 

synthesis 524. Recently it was discovered that CoQ10 and its associated enzyme ferroptosis 

suppressor protein 1 (FSP1) are integral for the detoxification of lipid peroxides and 

ferroptosis inhibition 525. Thus, the inhibition of the mevalonate pathway by zoledronic 

acid via FDPS, likely results in increased lipid peroxidation and a proclivity towards 

ferroptosis.    
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Figure 5. 23 Effect of treatment on intracellular free iron (Fe2+)  

The relative amount of labile intracellular Fe2+  was assessed using a FeRhoNox Assay after 

5Gy radiation, with Erastin, and the combination thereof. The values are presented as a 

proportion of the untreated control. A. The level of unbound Fe2+ increased in Panc1 cells 

by 30% when exposed to combination treatment over pretreatment levels, as depicted by 

the bar graph of measurements at the 3 hour time point. B. The level of unbound Fe2+ 

increased in CD18/HPAF cells by 20% when exposed to combination treatment over 

pretreatment levels, as depicted by the bar graph of measurements at the 3 hour time point. 

Interestingly, both cell lines experience increases in the free iron level with single-agent 

treatment. Additionally, these levels returned at or below pretreatment levels by hour six.  
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Figure 5.23 
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Figure 5. 24 Malondialdehyde (MDA) assessment in radiation patient samples 

The level of Malondialdehyde in 17 serum samples from patients that underwent radiation 

was assessed via TBARS assay. A. We found that not only was the level of 

malondialdehyde elevated after radiation treatment as compared to pretreatment (n = 8), 

but the addition of the radiation sensitizing agent zoledronic acid (an FDPS inhibitor that 

affects the mevalonate pathway) showed comparatively higher levels (n = 9). This is 

presented as the proportion of pretreatment levels. B. In vitro C11-BODIPY analysis of 

zoledronic acid treatment and radiation found an increase in lipid peroxidation (decrease 

in red/green ratio) with combination treatment in CD18/HPAF cells.  

 

 

 

 

 

 

  



   
 

280 
 

Figure 5.24 
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5.4 Discussion 

A major challenge in PDAC treatment is how to increase the efficacy of currently used 

therapeutic modalities to increase the survivorship of those diagnosed. Recent studies have 

reported PDAC specific sensitivity to Erastin induced ferroptosis 526. Radiation therapy 

classically mediates cell death via double-stranded DNA breaks leading to mitotic 

catastrophe, however, studies have reported ferroptosis to be implicated in radiation-

induced cell death 504, 505, 527. By coupling these two treatment strategies together, we have 

been able to increase the ability of radiation to induce cellular death in vitro and in vivo, in 

this traditionally radiation-resistant cancer.  

Herein we proposed a putative mechanism by which radiation and Erastin are inducing 

ferroptosis; the combination of lipid peroxidation mediated by radiation-induced ROS 

production and free ferrous iron (Fe2+) release, coupled with Erastin mediated depletion of 

GSH. ROS is known to cause the disassociation of KEAP1 from NRF2, thereby preventing 

its degradation. Also of note, radiation was found to increase the phosphorylation of NRF2 

along with a concomitant increase in its transcription products GPX4, GSS, and SLC7A11. 

Thus, Erastin blockade of SLC7A11 thwarts the cell’s attempt at protecting itself from 

radiation leading to synergistic cell death. In other words, the Erastin synergism with 

radiation may not necessarily be the direct and simple result of increased ROS, but takes 

advantage of the increase in the ROS generated by radiation, coupled with GSH depletion 

provided by Erastin, and the prevention of NRF2 transcription products (i.e. GPX4, GSS, 

and SLC7A11) from actualizing their role in lipid deperoxidation. In so doing, combination 

therapy tips the balance towards a level of lipid peroxidation that triggers  
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Figure 5. 25 Schematic of the proposed mechanism of Erastin potentiation of 

radiation via ferroptosis 

Radiation was found to increase ROS which causes KEAP1 to disassociated from NRF2 

preventing its degradation. Along with this, radiation was shown to increase the 

phosphorylation of NRF2 along with a concomitant increase in its transcription products 

GPX4, GSS, and SLC7A11. SLC7A11 inhibition by Erastin nullifies any upregulated 

produced by NRF2 nuclear localization. Thus, Erastin blockade of SLC7A11 thwarts the 

cell’s attempt at protecting itself from radiation leading to synergistic cell death. Along 

with this, radiation causes an increase in free Fe2+ and, in association with the concomitant 

production of ROS, Erastin prevents the synthesis of GSH thereby inhibiting the enzymatic 

conversion of lipid hydro peroxides to lipid alcohols by GPX4. In so doing, combination 

therapy tips the balance towards a level of lipid peroxidation that triggers ferroptosis. 
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Figure 5.25 
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ferroptosis. A schematic representation of the overall mechanism is provided in Figure. 

5.25.  

5.5 Conclusions and future directions 

 Since the discovery of ferroptosis in 2012 496 its role has been investigated in the 

setting of cancer and cancer treatments 508, 528. The potential of ferroptosis as a therapeutic 

adjuvant has only just begun to be uncovered. Importantly, cancer cells seem to be far more 

susceptible to induced ferroptosis via SLC7A11 inhibition compared to normal cells, 

regardless of the organ of origin. A fact reiterated by the normal development of SLC7A11 

knock out mice. The present study takes advantage of these observances and utilizes 

ferroptotic induction via SLC7A11 inhibition to potentiate cell death caused by radiation 

in the setting of PDAC. The significance of this lies in the elucidation of a novel 

sensitization mechanism that can increase RT efficacy, thereby increasing the importance 

of radiation in the PDAC treatment armamentarium. 

 While this study has provided valuable insight into the interplay between 

ferroptosis and radiation, many questions are still left unanswered and many new questions 

have arisen. Studies are planned to elucidate what kinases phosphorylation NRFs and 

where this occurs within the molecule to further elucidate the mechanism by which 

ferroptosis resistance arises with radiation. Further, given the recent insight that radiation 

and immunotherapies work together to induce ferroptosis in cancer cells 529, we will also 

repeat these experiments using a syngeneic immunocompetent mouse model to understand 

the local and distant immune effects of this therapy. Finally, the bioavailability of Erastin 

is very low and it is also not FDA approved. As such, we will investigate the utility of well-
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tolerated FDA approved drugs known to block SLC7A11, such as Sulfasalazine and 

Sorafenib, as easily translatable radiation potentiation drugs.  
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Chapter 6: General conclusions and future 

directions 
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 In this dissertation work, we sought to address the two primary causative challenges 

related to the high lethality of PDAC: the lack of an accurate early detection biomarker and 

the ineffectiveness of modern non-surgical therapeutic modalities. The first part of this 

dissertation investigated the use of the extracellular vesicle (EV) surface to serve as a 

PDAC biomarker. In the second part, we studied the implications of ferroptosis on radiation 

mediated cell death and tested whether radiation could be potentiated via pharmacologic 

ferroptotic induction. In this chapter, a summary and future directions for each of these 

aspects are provided. 

A. Extracellular vesicle surfaceome characterization for the early 

detection of pancreatic ductal adenocarcinoma  

 The sole curative option for PDAC remains surgical resection. Unfortunately, 

patients often have late-stage disease at the time of initial when the primary tumor can no 

longer be resected or it has already metastasized. One of the reasons this is true is because 

of the lack of clinically useful diagnostic markers. The current gold standard marker, 

CA19.9, offers limited accuracy because it is also expressed in a variety of other diseases 

and some patients do not have the necessary fucosyltransferase enzyme to produce it. Over 

the past several decades there have been continuous efforts by our lab and many others to 

discover a PDAC biomarker that is capable of detecting early-stage resectable disease. 

However, the progress has been limited and a detection marker with the necessary 

sensitivity and specificity has yet to be found. Recently, many studies have begun to 

investigate the potential of extracellular vesicles (EVs) to serve as PDAC biomarkers.  

All cell types and tissues in the human body produce and secrete EVs, 50-1000 nm 

diameter sized membranous-organelles. EVs harbor many biologically active molecules 
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including proteins, RNA species, DNA, and lipids. Inherent in their mechanism of creation 

is that the vesicular components mirror that of their cell of origin. These components are 

able to alter recipient cell functionality through the delivery of their cargo 279, target cell 

signaling initiation 280, and propagation of disease process 281. Elucidation of their functions 

has prompted many investigations into their implications in cancer progression 282, 

metastasis 283, 284, and drug resistance 285. Additionally, EVs are increased in the setting of 

cancer and are present in all biofluids including saliva, serum/plasma, urine, and ascitic 

fluid 473, 474.  Due to these many attributes, EVs are considered to be attractive targets to be 

used as cancer biomarkers.  

Evaluation of the EV surface specifically holds several advantages for use as a 

cancer-specific biomarker. Firstly, surface evaluations can be conducted via a variety of 

label-free methods. Conversely, molecules present on the external surface are easily 

accessible and can be utilized for affinity-based isolation methods or high-throughput 

profiling techniques.  EV surface biomarkers can also provide insight into their interaction 

with the immune system thereby dictating therapy choice as well as predict metastatic 

organ tropism. However, the majority of studies investigating EVs as potential biomarkers 

have focused on the entire vesicular contents and have neglected to separate the 

intravesicular and surface components. Towards this end, we have attempted to 

characterize the EV surface with a variety of methods for use as early detection PDAC 

biomarkers.  

In the first part of this dissertation, we initially utilized a label-free technique for 

EV surface characterization called surface-enhanced Raman spectroscopy (SERS) and 

subsequent analysis by principal component discriminant function analysis (PC-DFA) to 
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identify PDAC EVs. Further attempts at identifying specific molecular contributors to 

observed SERS spectral variation were made via LC-MS/MS proteomics followed by 

bioinformatics and various surface profiling techniques. Our findings suggest a potential 

role for EV surface characterization as a PDAC biomarker but the limited accuracy requires 

further evaluation.  

 SERS holds many advantages for the profiling of EV surfaces in addition to being 

label-free. Namely, it is non-destructive, requires very small sample volume, is highly 

sensitive compared to traditional assays such as ELISA, and can produce a sample-specific 

Raman signature. Previous studies have proven the ability of SERS to determine if EVs 

originated from healthy or cancer cells. However, these experiments were only carried out 

on EVs purified from in vitro cultures and were not applied to EVs isolated from patient 

sera. We have been able to conduct a SERS based characterization on cell line EVs that 

was able to be applied to EVs isolated from patient serum samples. Isolation of EVs from 

two PDAC cell lines (CD18/HPAF and MiaPaCa) and an immortalized human pancreatic 

ductal epithelial cell line (HPDE) were isolated via density gradient ultracentrifugation. 

These EVs underwent multiparametric validation beginning with nanoparticle tracking 

analysis (NTA) to assess the quantity and size distribution of isolated EVs. Transmission 

electron microscopy (TEM) was used to visualize EVs with the characteristic cup shape 

and verify no morphological changes occurred during isolation. Western blot analysis was 

conducted to verify that the consensus EV markers, CD9 and CD63) were concentrated 

compared to whole cell lysates. Finally, atomic force microscopy (AFM) showed EVs to 

bind to the gold substrate and adequately distribute over the surface in a manner capable 

of undergoing SERS analysis.   
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 We next conducted SERS measurements at Raman shift ranges of 719-1800 cm-1 

on 33, 31, and 35 separate EV samples purified from CD18/HPAF, MiaPaCa, and HPDE, 

respectively. Variations in peaks (amplitude and Raman shift value) were noted both 

between the control and EV populations and also between the EV population samples 

themselves thus providing the foundation for differential characterization of the particles. 

Notably, these spectral shifts were found to be highly reproducible thus allowing for PC-

DFA to discriminate differences across multiple measurements. The initial application of 

principal component analysis (PCA) to 1004 peaks in the SERS spectra collected from the 

cell line purified EVs efficiently reduced the total number of variables to 20 principal 

components (PCs). These PCs accounted for 88.2% of the total spectral variance. 

Specifically, principal component #1(PC #1) contained the most important data with 35.4% 

of the total variance. The next two PC #2 and PC #3 represented 14.4% and 6.6% of the 

total variance, respectively. The application of these three PCs was not able to isolated EVs 

into distinct populations predicated on the cells of origin. Thus, the PCs were used as the 

input independent variables for discriminant function analysis (DFA) to further separate 

the populations based on spectral shift. PC-DFA proved capable of accurately clustering 

SERS spectra from specific EV subpopulations. Thes formed discrete clusters and 

separated from each other as a function of the PC-DFA classifiers. This lead to a prediction 

sensitivity of 90.6% and a specificity of 97.1%.  

 Serum EVs were next isolated via ultracentrifugation from healthy, early PDAC 

(stage I-IIB), and late PDAC (stage III-IV) patients. The EV concentrations were found to 

be increased in the cancer patient serum as compared to healthy. Seromic EVs were 

assessed by NTA, TEM, and AFM just as cell line purified EVs. The PC-DFA algorithm 
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trained from the cell line SERS spectra was applied to 60 spectra collected from 4 different 

healthy patient serum EV isolations and 55 spectra collected from 4 different early PDAC 

serum EV isolations. This proved capable of predicting patient cancer status with 66.7% 

sensitivity and 67.3% specificity. This was a proof-of-concept study that displayed the 

possibility of label-free characterization of EVs for PDAC detection.  

 However, the limited overall accuracy of the label-free SERS PC-DFA algorithm 

required us to investigate the surface of EVs to discover specific molecular species that 

contribute to the observes variance and could also be used as specific biomarkers. We 

isolated EVs from four PDAC cell lines (CD18/HPAF, MiaPaCa, T3M4, and Capan1) and 

HPDE. We elucidated a pool of cancer-specific proteins via EV surface-specific liquid 

chromatography-tandem mass spectrometry (LC-MS/MS). Notably, Capan1 EVs were 

excluded from further analysis as evidence of cellular contamination was found. To 

determine the clinical significance of the identified markers we analyzed the gene 

expression pattern, correlations, and receiver operator characteristic (ROC) curve for each 

protein in the GSE27385 microarray datasets. This process allowed for the reduction of 

229 possible proteins down eight target proteins: cluster of differentiation 151 (CD151), 

galectin-1 (LGALS1), cofilin (CFL1), tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein zeta (YWHAZ), extracellular matrix protein-1 (ECM1), 

ephrin A2 (EPHA2, integrin alpha 3 (ITGα3), and heat-shock protein family B (small) 

member-1 (HSPB1).  

To validate the presence of these 8 targets, we analyzed EV isolates from each cell 

line by western blot. Indeed, all were present and enriched in EV samples compared to 

whole cell lysates and were increased in EVs from cancer cells compared to HPDE. Four 
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of these eight, EPHA2, ECM1, CD151, and HSPB1, were able to be visualized on the 

surface of EVs via immunogold labeling and TEM imaging. This was set as a requirement 

for subsequent analyses because this sufficiently proved the localization of each marker on 

the external surface of the EVs. Of note, immunogold staining requires much individual 

protocol standardization and because of this, immunogold was used to rule markers in and 

not out. Those that failed to be stained required further study. 

The gene expression for the four selected markers along with survival analysis was 

conducted using data from TCGA. Among these four markers, EPHA2 was the most 

differentially regulated in cancer compared to normal and was the most significantly 

correlated with overall survival. To assess the ability of a high-throughput and sensitive 

screening modality detect EV surface EPHA2, we next conducted an ELISA on cell line 

EVs. Those from PDAC cell lines showed an elevated concentration of EPHA2 as 

compared to HPDE. The ELISA analysis was extended to complete serum samples from 

benign control patients, early PDAC, and late PDAC. EPHA2 was found to be elevated in 

cancer patient serum compared to benign controls resulting in a diagnostic sensitivity of 

76% and specificity of 62%. Finally, EV specific EPHA2 expression isolated from patient 

serum samples proved capable of identifying 25% of PDAC patients with 100% specificity. 

While these results are promising, the generally low sensitivity requires continued 

evaluation of the EV surface.   

Future directions 

1. Development of a surface EV multimarker panel to be used in conjunction with 

CA19.9 
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 A single marker will never be sensitive nor specific enough to be capable of 

identifying PDAC. The current accuracy provided by the SERS PC-DFA and EPHA2 

analyses is too low to be clinically applicable. Therefore, we would like to continue our 

study of the identified EV surface markers (beginning with ECM1, CD151, and HSPB1) 

as well as investigate newly elucidated markers (glycans) to improve the sensitivity and 

specificity of our assay. Along with this, the current gold standard, CA19.9, is also not 

sufficient for the liquid biopsy-based detection of PDAC.  Therefore, we would like to 

ascertain if our multimarker panel may provide an additive benefit when supplemented 

with CA19.9 assessment. The eventual aim would be the production of a multimarker panel 

capable of detecting PDAC at an early stage. 

2. Determine the functional implications of the EV surfaceome 

Many studies have found that the EV surface directly interacts and affects its 

surrounding environment. Further, interactions at the EV surface are capable of initiating 

signaling cascades, promoting receptor-mediated endocytosis, and effecting the immune 

milieu. Therefore, we would like to assess the functional implications associated with our 

identified surface proteins. These include studies such as determining if these proteins 

facilitate cellular uptake, initiate cancer-associated signaling pathways, impact local and 

distant immune cells, and if any of these functions can be blocked.  

B. Erastin potentiates radiation therapy via the induction of ferroptosis in the setting 

of PDAC 

 Along with the inability to detect early-stage disease, another major reason why 

PDAC is so lethal is because of the lack of effective treatment options. As mentioned in 

section A of this chapter, the only curative therapeutic option is surgical resection of the 
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primary tumor. Most chemotherapy options provide little benefit or are extremely toxic 

thus only can only be given to the fittest patients. Radiation therapy is traditionally reserved 

for borderline resectable or locally advanced disease to try and shrink the tumor to a size 

amenable to resection. The recent progress of stereotactic body radiation therapy (SBRT) 

has improved response rates by administering highly conformational doses of radiation in 

fewer fractions with less off-target toxicity. However, many PDAC patients still remain 

refractory to radiation treatment. This has ignited the search for a potential means of 

enhancing radiation therapy efficacy for the treatment of PDAC.  

 Ferroptosis is a recently discovered non-apoptotic form of cell death. It is caused 

by the buildup of lipid hydro peroxides mediated by reactive oxygen species (ROS) and 

free ferrous iron (Fe2+). Glutathione peroxidase 4 (GPX4) converts the toxic lipid hydro 

peroxides to non-toxic lipid alcohols, using glutathione (GSH) as a substrate. GSH 

synthesis requires cystine, which is transported into the cell via the cystine glutamate 

antiporter System Xc. System Xc inhibition facilitated by the blockade of one of its 

constituents, SLC7A11, is becoming a highly investigated area of study for use as a 

therapeutic adjuvant with a variety of cancer therapies including chemo and radiation. 

Many cancers that proved resistant to conventional cytotoxic therapies are susceptible to 

ferroptotic induction. Importantly, cancer cells seem to have an increased reliance on 

SLC7A11 expression compared to healthy cells, likely due to the higher levels of 

endogenous ROS. Along with this, whole-body SLC7A11 knock out does not affect the 

development of mice. Taken together, SLC7A11 may provide a cancer-selective means of 

inducing ferroptosis. One of the primary mechanisms that radiation induces cellular 
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damage is with the production of ROS. Thus, radiation therapy seems well suited for 

potentiation via ferroptosis induction.  

These two therapeutic modalities are ideally suited to complement one another in 

their mechanisms of action, where an increase in ROS generation is provided by radiation 

and a diminished capability of eliminating the associated lipid toxicity is provided by 

SLC7A11 inhibition. Thus, in the second part of this dissertation, we investigated the 

involvement of ferroptosis, in radiation-induced cell death. Additionally, we tested if the 

pharmaceutical induction of ferroptosis with the small molecule Erastin (SLC7A11 

blockade) can potentiate the lethal effects of radiation.  

 To determine the clinical viability of ferroptosis in the setting of pancreas cancer, 

we first analyzed the GPX4 and SLC7A11 expression in pancreas cancer samples in a 

combination of TCGA and GTEx dataset. Both GPX4 and SLC7A11 were found to be 

significantly upregulated in the setting of cancer compared to normal tissue as well as in 

comparison to cancers of various origin. This analysis was conducted on patient data from 

PDAC as well as neuroendocrine tumors in addition to cell line data. Since we are 

specifically interested in PDAC, we surveyed only the PDAC cohort within the TCGA 

dataset next. While GPX4 was not differentially expressed in PDAC compared to healthy 

tissue, SLC7A11 was. However, neither had a significant impact on survival. The protein 

expression of these two molecules was assessed via western blot in eight different PDAC 

cell lines: CD18/HPAF, MiaPaCa, Colo357, AsPC1, Panc1, Capan1, T3M4, and BxPC3 

as well as the immortalized normal human pancreatic ductal epithelial cell line HPDE. 

Again, the expression of GPX4 was not observed to be different between PDAC cell lines 

and HPDE but SLC7A11 expression was increased in the majority of PDAC cell lines.  
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 Project DRIVE, a database designed to provide insight into cancer dependencies 

based on RNAi screening, showed that 3 of the top 20 (including the top 2) cell lines most 

sensitive to SLC7A11 knockdown were PDAC line. We tested this finding by 

pharmaceutically inhibiting SLC7A11 via Erastin in all eight PDAC cell lines along with 

HPDE and measuring the viability via MTT assay. PDAC cell lines were observed to be 

more sensitive to SLC7A11 inhibition at 24 and 48 hours compared to HPDE. Of note, the 

cell lines selected for additional experiments based on these data were CD18/HPAF and 

Panc1. Additionally, Erastin treatment was able to inhibit the migration ability of 

CD18/HPAF cells and also resulted in a significant decrease in total GSH in both 

CD18/HPAF and Panc1 cell lines.  

 To determine the effects of radiation on genes important in ferroptosis, publicly 

available microarray data conducted on samples from PDAC cells (Panc1, MiaPaCa, 

AsPC1, and BxPC3) collected 6 hours after 2Gy radiation exposure was used. We found 

that many NRF2 transcription products including GPX4 and GSS are upregulated along 

with HSPB1, an iron sequestration protein known to inhibit ferroptosis. Concurrently, 

NCOA4, a protein involved in the release of free Fe2+ via ferritinophagy, was 

downregulated. Assessment at the protein level found GPX4 to be slightly increased in 

both CD18/HPAF and Panc1 but SLC7A11 and phosphorylation of NRF2 were 

dramatically increased in a time-dependent manner. Notably, NRF2 is also the transcription 

factor responsible for SLC7A11 production. A significant increase in SLC7A11 expression 

was also observed in irradiated patient PDAC tissue compared to non-radiated PDAC and 

healthy patient tissues. Following this result, survival analysis was conducted only on 
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patients who received radiation in the TCGA PDAC cohort, and SLC7A11 expression was 

significantly correlated with overall survival.  

 Next, the ability of GPX4 knockdown to potentiate radiation was assessed via 

clonogenic survival assay. GPX4 KD was able to enhance the lethal effects of radiation in 

CD18/HPAF but was not able to be assessed in Panc1 as the KD itself was lethal. This 

result is directly in line with Panc1 sensitivity to Erastin as determined by the MTT 

analysis. Congruently, SLC7A11 inhibition with Erastin was found to synergistically 

enhance the effects of radiation, as determined by the BLISS independent synergy model 

in vitro. The repetition of this experiment was conducted with the addition of Ferrostatin-

1, a lipophilic antioxidant that inhibits ferroptosis, Necroastain-1, a compound that binds 

RIPK and inhibits necroptosis, and Z-VAD-FMK. This lead to the observation that cell 

death caused by combination treatment was abrogated by the addition of ferrostatin-1, 

which suggests that ferroptosis is at least a partial contributor to the overall lethality of the 

combination treatment. Additionally, the combination of Erastin and radiation decreased 

the viability of three individual patient-derived organoids. In vivo assessment was carried 

out in an orthotopic xenograft mouse model of PDAC where tumor sizes were significantly 

reduced with combination treatment compared to no-treatment controls (single-agent 

treatment with radiation or Erastin alone was not significant).  

 To gain some mechanistic insight into how combination therapy is synergistically 

inducing cell death, we assessed the levels of ROS, intracellular free ferrous iron, and lipid 

peroxidation in untreated CD18/HPAF and Panc1 cells and those treated with radiation, 

Erastin, or a combination thereof. The relative level of ROS increases immediately after 

radiation administration (3 hours) compared to pre radiation levels and stays elevated for 
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at least 24 hours. On the other hand, free ferrous iron rises immediately after radiation (3 

hours) and falls back to or below pre radiation levels by 6 hours. Finally, since lipid 

peroxidation is the initiator of ferroptosis, we measured its level with C11-BODIPY 

581/581 dye. This is a lipophilic dye that intercalates with lipids and fluoresces red when 

interacting with a normal lipid and green when interacting with a peroxidated lipid. The 

red/green ratio can be thus be utilized to determine the relative amount of peroxidation 

between samples. Notably, Panc1 experiences a relative increase in lipid peroxidation in 

both single-agent treatment groups as well as the dramatic increase in the combination 

treatment group compared to no treatment control. For CD18/HPAF cells, an increase in 

the level of lipid peroxidation was only observed in the combination group.  

With these results we propose a putative mechanism by which radiation and Erastin 

are inducing ferroptosis; the combination of lipid peroxidation mediated by radiation-

induced ROS production and free ferrous iron (Fe2+) release, coupled with Erastin mediated 

depletion of GSH. Radiation was found to increase the phosphorylation of NRF2 (a factor 

known to increase the nuclear localization and facilitate transcription) along with a 

concomitant increase in its transcription products GPX4, GSS, and SLC7A11. Thus, 

Erastin blockade of SLC7A11 thwarts the cell’s attempt at protecting itself from radiation 

leading to synergistic cell death. In other words, the Erastin synergism with radiation may 

not necessarily be the direct and simple result of increased ROS, but takes advantage of the 

increase in the ROS generated by radiation, coupled with GSH depletion provided by 

Erastin, and the prevention of NRF2 transcription products (i.e. GPX4, GSS, and 

SLC7A11) from actualizing their role in lipid deperoxidation. In so doing, combination 

therapy tips the balance towards a level of lipid peroxidation that triggers ferroptosis.  
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Future directions 

1. Elucidating the role of NRF2 phosphorylation in ferroptosis resistance 

While this study has provided valuable insight into the interplay between 

ferroptosis and radiation, many questions are still left unanswered and many new questions 

have arisen. Phosphorylation of NRF2 can be facilitated by many different kinases (GSK-

3β, AMPK, PKC, etc.). With this, the specific residue that is phosphorylated is integral to 

determining if it promotes or prevents nuclear translocation, e.g. serine 550 specific 

phosphorylation promotes translocation into the nucleus. Therefore, we hope to investigate 

what kinase phosphorylates NRF2 and where this occurs in the setting of radiation 

exposure. This could further be assessed in myriad other settings where ferroptosis may 

occur to determine the mechanism of resistance 

2. Investigate FDA approved SLC7A11 inhibitors for possible radiation potentiation  

The bioavailability of Erastin is quite low and it also is not an FDA approved drug, 

thus the translational utility of it is limited. With the success of Erastin at enhancing 

radiation lethality, it warrants the investigation of alternative drugs that block SLC7A11 as 

radiation potentiators. For example, Sulfasalazine (a commonly used anti-inflammatory) 

and Sorafenib (a pan kinase inhibitor) have been shown to inhibit SLC7A11. Therefore, 

we hope to assess the effectiveness of these compounds to be easily translatable radiation 

enhancing drugs. 

3. Increase the bioavailability and targeted delivery of Erastin via EV loading 

 Importantly, these two aspects of early detection and treatment enhancement 

presented in this thesis merit union. A theranostic approach could be contrived whereby 
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PDAC specific EVs are isolated using one of our elucidated surface markers for diagnostic 

and prognostic purposes. These EVs could then be loaded with Erastin to increase its 

cellular uptake, bioavailability, and prevent degradation in circulation. The loaded EVs 

could then be used as an autologous means of radiation potentiation and tested in vivo.  

Conversely, we have observed that GPX4 is increased in EVs from Panc1 cells treated with 

radiation compared to untreated controls (data not shown). This finding merits further 

investigation into the role of EVs in ferroptosis resistance after radiation treatment.  
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