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ABSTRACT 

Alzheimer’s Disease is a neurodegenerative condition featuring neural cell death 

and a decline in cognitive capacity caused by elevated inflammation and production of 

reactive oxygen species. The glyoxalase pathway is an endogenous antioxidant system 

that neutralizes reactive methylglyoxal through sequential reactions. Dysfunction of the 

glyoxalase pathway contributes to oxidative stress and the accumulation of inflammatory 

metabolic byproducts. Plant-produced compounds with antioxidant activity can enhance 

endogenous antioxidant pathways and protect cells from elevated ROS production. We 

hypothesize that flavonoids and limited Cannabis Sativa-produced cannabidiol can 

enhance glyoxalase pathway function through regulation of antioxidant and pro-apoptotic 

signaling pathways to prevent methylglyoxal-mediated cellular damage. This research 

investigates the effects of flavonoids and cannabidiol on glyoxalase pathway function. 

We also investigated the influence of structural modifications in flavonoid morin to 

improve its inherent antioxidant activity. We evaluated the effect of flavonoids and CBD 

on expression of glyoxalase constituents and cell signaling pathways in vitro utilizing 

primary mouse cerebellar neurons, and in vivo with C. elegans. Our research provides 

evidence of antioxidant compounds enhancing endogenous glyoxalase pathway activity, 

and the specific mechanism of cellular signaling pathway modulation.  
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INTRODUCTION 

The progression of neurodegenerative disorders is heavily influenced by the 

cellular microenvironment, where excessive production of reactive oxygen species 

(ROS) results in states of oxidative stress (OS) and inflammation.1-8 Elevated ROS is a 

contributing factor to the severity and pathology of neurodegenerative disorders, and is a 

prominent feature in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington’s 

disease (HD), multiple sclerosis (MS), and ischemia. Prolonged states of OS are a 

causative and underlying factor in many inflammatory diseases, however it is especially 

insidious in neural tissues, where the brain’s high metabolic requirements render the 

organ highly vulnerable to damage mediated by excessive concentrations of ROS and 

other inflammatory metabolic byproducts.4-7,9-14 OS results from the imbalance between 

pro-oxidant and antioxidant compounds, causing a sustained inflammatory response in 

cells and tissues.1,6,8,10,14-18 Chronic states of inflammation irreversibly damages cells, 

disrupts reduction-oxidation (redox) signaling, prevents integral cellular processes, and 

directly impacts and influences the progression and severity of disease.6,13,19 Retention 

of endogenous neural antioxidant systems is paramount to proper maintenance and 

function of the brain and cognitive processes, which are susceptible to the accumulation 

of inflammatory compounds. Ubiquitously produced metabolic byproduct methylglyoxal 

(MG) is a dicarbonyl, oxoaldehyde compound and highly reactive glycating agent. 20-26 

Due to its highly reactive nature, it is able to spontaneously and irreversibly bind to 

proteins, lipids, nucleic acids, metal ions, and other cellular macromolecules forming 

advanced glycation endproducts (AGEs).26-29 Compared to their unmodified 

counterparts, AGEs have altered chemical structures which prevents their proper 

functioning in cellular processes.21,30-34 Accumulation of MG damages cellular 
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components through inducement of chronic inflammation and OS.21,24,25,33,35,36 The body 

possesses multiple mechanisms to prevent accumulation of carbonyl compounds, but 

none are more important or integral in detoxification of MG than the glyoxalase pathway 

(GP).1,3,20,21,26,34,37,38   
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CHAPTER 1: FLAVONOIDS AS GLYOXALASE 

PATHWAY ENHANCING AGENTS  
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This chapter will provide information about the function of the GP and its role in aging 

and disease, and the mechanism of flavonoid mediated neuroprotection and GP 

enhancement. The GP is a well-conserved antioxidant defense system found in all cells 

of the body that facilitates the neutralization of highly reactive and oxidizing dicarbonyl 

molecules, with MG being the most critical target.3,21,22,37 Through a series of reactions – 

involving reduced glutathione (GSH), glyoxalase 1 (Glo-1), and glyoxalase 2 (Glo-2) – 

MG is neutralized and detoxified into D-lactate.1,21,22,34,37,39 (A less understood 

mechanism of MG detoxification utilizes glyoxalase 3 (Glo-3) to directly convert MG into 

D-lactate, which will be examined further in Chapter 4.) Efficient GP function is crucial in 

preventing ROS-mediated inflammatory cellular environments, and is implicated in a 

wide range of maladies including the previously mentioned neurodegenerative 

conditions, psychiatric and neurological disorders, diabetes mellitus, cancer, and 

cardiovascular diseases.21,22,27,36,40-44 The brain is susceptible to MG accumulation due to 

the high rate of metabolism and low content of antioxidant systems, and is a target for 

MG-mediated cellular damage due to the high concentration of oxidizable substrates, 

including metal ions, lipids, and polyunsaturated fatty acids.1,21,32,34,37,45-47 GP dysfunction 

results in accumulation and decreased neutralization of MG; conversely, accumulation of 

MG can be prevented through enhancement of the GP making it a valid target for 

pharmacological intervention.22,38,48,49 Increasing the capacity and efficiency of the GP 

appears to be an effective means of reducing the onset and severity of aging and 

neurodegenerative disease. 22,38,48,49 Pathological hallmarks of these diseases are also 

shared in GP dysfunction: production of ROS and inflammatory cytokines, decreased 

expression of antioxidant proteins, elevated macromolecule oxidation, and 

apoptosis.2,15,17,23,39  
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Flavonoids are a class of polyphenol compounds and naturally occurring secondary 

plant metabolites, with over 5000 identified compounds possessing a wide range of 

biological activity. 50-52 These potent antioxidant compounds exhibit the ability to directly 

bind and neutralize ROS and MG, however their primary mechanism of cellular 

protection is enhancement of endogenous antioxidant systems - including the GP - and 

modulation of anti and pro-apoptotic signaling pathways.53-56 1,37,50,51 Compounds in this 

chemical family are currently being investigated as a means to prevent and mitigate OS-

mediated cellular damage commonly found in neurodegenerative disorders.1,37,54,57-63   

Glyoxalase pathway 

The GP consists of a series of 

sequential reactions involving 

GSH, Glo-1, Glo-2, and a 

dicarbonyl substrate, often MG 

(FIG 1-1).1,21,22,34 MG 

spontaneously reacts with GSH 

to form a hemithioacetal, which 

is converted  by Glo-1 into an 

intermediate compound S,D-

lactoylglutathione.1,21,22 Glo-2 

participates in the final reaction producing D-lactate and recycling GSH into the pathway. 

1,21,22 The GP is a dynamic system able to respond to changes in cellular redox states, 

with the rate of glyoxalase activity and expression varying based on the tissue type, 

location, and environment of the cell.20,38,64 The GP is ubiquitously present in cells, and 

in addition to antioxidant defense it is implicated in cancer cell proliferation, maintenance 

 
 

FIGURE 1-1: GLYOXALASE PATHWAY SCHEME.  

 
Methylglyoxal spontaneously reacts with reduced 
glutathione forming a hemithioacetal adduct. Glyoxalase-1 
uses hemithioacetal as a substrate to form S,D-
lactoylglutathione. Glyoxalase-2 reacts with this intermediate 
compound to produce D-lactate, while also reducing 
glutathione to be recycled back into the pathway. 
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of blood glucose, liver enzymes, and cardiovascular and renal function.3,38 While the 

primary function of the GP is antioxidant defense, the D-lactate produced can be 

converted to pyruvate and utilized as an energy substrate in the citric acid cycle.1,22,34 In 

a functioning glyoxalase system MG is detoxified into D-lactate, however GP dysfunction 

results in decreased neutralization and accumulation of MG.3,20,38,64 This can be caused 

by a reduction in GP constituent protein expression, dysregulated metabolism, or during 

states of disease, resulting in both elevated production of MG and a reduction in its 

neutralization.21,24,25,34,64 MG is ubiquitously generated through both enzymatic and non-

enzymatic mechanisms.21,22,34 MG is generated through the metabolism of amino acids 

glycine, threonine, and tyrosine, protein catabolism, and lipid peroxidation.21,65 Its 

primary production occurs through the glycolytic pathway, via elimination of 

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate.22,25,65 The glycolytic 

pathway is a ten step process of converting glucose into pyruvate, which is then utilized 

for ATP production in the citric acid cycle or Krebs cycle.21,32,66 The D-lactate produced 

from the GP – also known as the glycolysis shunt - can be directly converted to 

pyruvate, thus bypassing glycolysis and providing energy substrates without the 

production of inflammatory glycolytic byproducts.22,25,36,66 The GP directly detoxifies 

dicarbonyl compound and prevents their interaction with cellular macromolecules, and 

has an indirect influence on oxidation levels and metabolic energy production.1,21,22,38,65 
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MG is an electrophile and 

highly reactive glycating 

agent, able to irreversibly 

modify proteins, lipids, 

and nucleic acids, forming 

advanced glycation 

endproducts (AGEs).27,30-

32,65 These structural 

modifications to molecules 

can significantly reduce 

function, and may lead to 

degradation by immune 

cells.21,25,30,67 AGEs influence the severity of disease pathology, with the pathological 

hallmarks of AD and PD are colocalized to AGEs.30,31,33,35 MG is stable and membrane-

permeable compound, capable of  leaking into surrounding cells and tissues and 

impairing the function of cellular antioxidant systems.21 MG is also able to modulate 

important signaling pathways, resulting in excessive ROS, inflammation, apoptosis, and 

ultimately chronic oxidative stress, leading to death of brain cells, tissues, and 

disease.20,33-35,46 ROS can be directly produced during MG’s formation and degradation, 

and MG can also deplete the concentration of antioxidant enzymes.23,64 MG can 

neutralize enzymes that are able to catalyze reactions and scavenge substrates, 

including GSH.23,68-70 MG can also increase NADPH oxidase activity, preventing the 

reduction of GSH and its recycling back into the GP.22,23,52,69 GSH is one of the most 

important endogenous antioxidants involved in regulation of redox signaling, DNA and 

protein repair and synthesis, metal ion metabolism, and cellular survival.68,69,71,72 

 
 
FIGURE 1-2: MG-MEDIATED INFLAMMATION IN DISEASES.  

 
Elevated production and accumulation of MG contributes to 
the underlying inflammatory processes in neurodegenerative 
diseases, including disruption of endogenous antioxidant 
systems, mitochondrial dysfunction, production of ROS, 
AGEs, and cytokines, activation of apoptotic signaling 
pathways, and apoptosis. 
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The Glyoxalase Pathway in Neural Diseases 

The GP exerts control over antioxidant mechanisms that are paramount to maintaining 

neural redox homeostasis and preventing the buildup of inflammatory compounds that 

drive ROS production.1,21,48,57,58 While the GP is not a direct cause of neurological 

disorders, its impaired function can exacerbate the severity of accelerated aging, 

neurodegenerative disorders, and neuropsychiatric disorders (Fig. 1-2).3,6,10,16,69 

Accumulation of cytotoxic MG directly contributes to the elevated production of ROS, 

which drives and sustains apoptotic signaling pathways.3,6,8,10,13,46,73,74 Chronic OS is a 

self-perpetuating cycle of damage to cells resulting from the corresponding immune 

response, which can be directly linked to elevated concentrations of MG.21-24,32 Under 

normal cellular conditions, ROS are utilized in cell signaling and pathogen defense; 

during states of disease and metabolic dysfunction their unchecked production disrupts 

redox signaling and results in inflammation.2,10,15 ROS and free radicals possess 

unpaired electrons and act as nucleophiles to target cellular macromolecules, 

irreversibly altering their structures and result in diminished cellular function - similar to 

the process of MG-mediated glycation that produces AGEs19,75,76 Structural changes to 

proteins, lipids, or nucleic acids reduces the biological activity of macromolecules, and 

are often identified as misfolded or damaged and labeled for proteolytic 

degradation.21,30,31,38 Lipids are easily oxidizable, and membranes - being rich in lipids - 

are prone to these modifications.10,77,78 MG induces mutations in DNA and nucleic acids, 

culminating in telomere shortening, loss of heterochromatin, and altered gene 

expression patterns.17,25,79 Metabolic defects and mitochondrial dysfunction can result 

from MG-mediated damage involving mitochondrial DNA strand breaks, mutations, and 

impaired repair mechanisms.74,79,80 Mouse hippocampal neurons treated with MG 

exhibited altered neurogenesis, adversely impacting neural differentiation, survival, and 
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proliferation.46 Mice treated with MG exhibited impaired locomotor activity, depressive-

like behavior, and deficits in cognition and memory; these abnormalities were correlated 

to significantly decreased Glo-1 expression and dopamine levels in the prefrontal 

cortex.65 While the specific mechanisms of MG in behavioral and psychiatric disorders 

remains to be elucidated, GP dysfunction is also implicated in psychiatric disorders 

including ASD, schizophrenia, anxiety, bipolar disorder, and depression.73,81,82 

Aging 

Aging is a progressive decline in physiological, structural, and metabolic functions of an 

organism, and decreased efficiency of homeostatic processes 3,13,15,20 While aging is a 

normal biological process, the presence of disease can exacerbate and accelerate the 

rate of aging.15,83 The aging process is characterized by chronic, low-level inflammation 

which can be influenced by genetic, environmental, and pathological 

factors.3,13,15,20,48,64,74,84-86 In the brain, accumulation of genetic and cellular damage 

occurs throughout the lifespan, resulting in functional losses in cognitive processes.15,83  

Proper and efficient functioning of endogenous antioxidant systems can reduce the 

severity of inflammatory processes that contribute to premature and pathological 

aging.7,19,74 The GP exhibits dynamic activity in response to aging-related inflammatory 

insults, with glyoxalase activity differentially expressed based on age, cell type, and 

disease state.64,86,87 Damage mediated by oxidation and glycation of cellular molecules 

steadily increases throughout aging, with a concomitant increase in the adaptive 

processes that offset inflammatory damage.3,26,86 Glyoxalase activity increases during 

aging, however a progressive decline in Glo-1 expression occurs after age 55.64,86 



 10 

This age-related reduction in GP efficiency results in production of dicarbonyl 

compounds, accumulation of AGEs, and elevated biomarkers of oxidative and 

inflammatory damage.26,64,86,87 

Alzheimer's Disease 

AD is the most common neurodegenerative disorder, and the leading cause of dementia 

in the elderly, and places a significant financial burden on the healthcare system.6,88-90 

While the underlying genetic causes for familial AD have been determined, over 90% of 

AD cases are classified as late onset or sporadic with no known cause for onset.88-91 It is 

a multifactorial disease characterized by progressive neural loss of the hippocampus 

and cortex, memory and learning impairment, and changes in behavior and personality, 

exhibiting pathogenic hallmarks of beta amyloid (Aβ) plaques, neurofibrillary tangles 

(NFT), and loss of brain volume.6,89,90,92 Cognitive impairment reflects synapse loss in 

dentate gyrus of hippocampus, and neuron loss in frontal and parietal lobe of 

cortex.6,12,93-95 The amyloid precursor protein (APP) is a membrane protein involved in 

neural plasticity, synapse formation and repair, and export of metal ions.88,89,93,96 The 

APP present in the brain can be cleaved by three different secretases: cleavage of APP 

first by a-secretase and then g-secretase results in a functional protein; while cleavage 

by b-secretase results in insoluble Aβ peptides.89,93,95 The product formed from this 

improper cleavage will aggregate into extracellular plaques, disrupt neural function, 

induce ROS production, and trigger apoptotic pathways.6,12,93,95 Aβ plaques can be 

modified by MG and AGEs, forming crosslinks, affording them stability and defense 

against protease cleavage.35,95 The Aβ plaques activate microglia, causing them to 

cluster and localize around the plaques, and release inflammatory cytokines.77,95  The Aβ 

plaques cause additional production of AGEs, which reduce the activity of mitochondrial 



 11 

enzymes and proteins causing increased production of ROS and improper APP 

cleavage.21,30-32,35 Age is the biggest risk factor for development of AD, and is correlated 

with an increase in ROS formation, oxidized proteins and lipids, and apoptosis.6,12,13 

Impairment of the GP can directly impact the severity of AD, with Glo-1 and GSH 

expression inversely correlated to severity of disease pathology.26,86,87 In a comparison 

of glyoxalase activity between healthy and AD brain tissue, the AD group had a 

significantly lowered Glo-1 activity and expression, at both the mRNA and protein 

level.26,86,87 Tissue from AD brains exhibits high amounts of AGEs and oxidized lipids 

and proteins, with a positive relationship between MG and AGEs and severity of 

pathology.31,97 Microtubule associated protein tau is responsible for promoting and 

stabilizing microtubule formation in cells, however hyperphosphorylation of tau 

destabilizes and disrupts the proper assembly of microtubules, resulting in intracellular 

NFT formation.94,98,99 MG can also disrupt cell signaling pathways that control kinases 

and phosphatases used to regulate phosphorylation of tau.33,88,97 MG derived AGEs 

aggregate in NFT and Aβ plaques, and Aβ plaques have an influential and contributing 

role in the production of NFT, and they are both stable molecules prone to 

glycation.30,31,35,38 MG concentration can act as a biomarker of severity of disease, as AD 

patients were found to have increased MG in CSF compared to healthy aged controls.26 

Parkinson's Disease 

The second most common neurodegenerative disease, PD, is characterized by 

degeneration of dopamine producing neurons in the substantia nigra and deregulation in 

ganglion cell circuits, reducing dopamine levels in brain areas associated with 

movement.5,14,79,100  The disease is characterized by motor deficiencies - including 

tremors, rigidity, and slowness of movement –  pathological accumulation of a-synuclein 

(aS) into Lewy bodies, and cognitive deficiencies.4,84,100 aS is a protein located in 
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presynaptic terminals of neurons that functions in recycling and storage of 

neurotransmitters.5,101 Under conditions of inflammation and OS, aS proteins misfold and 

accumulate into aggregates which oligomerize into Lewy bodies; these aggregates are 

cytotoxic, disrupt connections between neurons, and deplete levels of 

neurotransmitters.4,11,14,79 Accumulation of aS and Lewy bodies have a detrimental 

impact on mitochondria activity, causing an elevation of ROS production and deficit in 

metabolic activity. The degeneration of dopaminergic neurons and oxidation of 

dopamine causes altered mitochondrial respiration, inducing a state of OS in neural 

tissue.47,79,101,102 aS also reacts with dopamine quinones leading to accumulation of toxic 

fibrils in the dopaminergic neurons, which have impaired activity and contribute to 

degeneration.12,14,47,84 MG accumulation can lead to elevated production of ROS, 

oxidation of dopamine, and depletion of NADPH, which is critical for reducing glutathione 

for use in the GP.5,17,71,84 Patients with PD have been found to have depleted levels of 

GSH, and disruption of GSH metabolism has been found to progress neurological 

disorders.11,69,71,84,102 The decline in synthesis of dopamine also causes disruption in 

vesicle transport, and makes the cell prone to damage and mtDNA mutations.78,102,103  

There is a correlation between progression of disease and biomarkers of oxidative 

stress, and post-mortem studies of PD brains show high levels of oxidized substrates, 

and colocalization of AGEs to Lewy bodies.7,14,17,79 AD and PD have different clinical 

pathologies but share similar causes and symptoms and Aβ plaques can be commonly 

found in PD brains.12,13  

Autism Spectrum Disorder 

ASD is a multifactorial neurodevelopmental disorder categorized by impairment in 

communication, language, social behaviors and relationships.104-107 The basis for the 
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disease is still misunderstood, but it is known that mutations in over 100 genes can 

contribute to ASD, with the presence of genetic mutations in specific brain regions can 

affect emotional formation, learning and memory, cognitive control, and social 

orientation.39,73,81,104,106,108,109 ASD exhibits mitochondria-mediated metabolic dysfunction 

and physical abnormalities and alterations in brain tissue.109-112 DNA and mtDNA 

mutations and abnormalities are common in ASD, resulting in electron transport chain 

(ETC) dysfunction, low ratios of Bcl-2/Bak, elevated production of ROS, increased 

apoptosis, impairments in mitochondria membrane polarization, molecular transport, and 

protein translocation.81,105,109,111-113 ASD is characterized by elevated OS and abnormal, 

chronic immune activation of microglia and astroglia which exert negative effects on the 

production of neurotransmitters, inflammatory cytokines, and brain specific growth 

factors.73,81,110,111 Elevated levels of MG disrupted the function of GABA-producing 

Purkinje neurons through elevated production of ROS, high concentrations of AGEs, 

lipid peroxidation, and apoptosis, resulting in a disruption of the balance of inhibitory and 

excitatory neurotransmission.39,43,104-106,110,114 Elevated MG concentrations in ASD brains 

was inversely correlated to levels of GSH; while it’s unknown whether GSH deficits were 

due to reduced synthesis or regeneration, MG-mediated signaling pathway activation 

was determined to be the culprit.43,69,72,104,108,114,115 The environment of OS present in 

ASD is driven in part by MG production, which could be alleviated and attenuated in a 

GP dependent manner.1,39,43,69,104,108   
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Flavonoid Function 

Flavonoids belong to a family of polyphenol compounds and are secondary plant 

metabolites commonly found in fruits and vegetables, and have been found effective in 

combating elevated production of ROS.1,51,116 Antioxidants are compounds - when 

present at a lower concentration compared oxidizable substrate - that delay or prevent 

oxidation of the substrate by acting as nucleophiles to prevent interaction with other 

molecules.1,19,51,75,76,117 Endogenous antioxidants produced by the body function in 

prevention and neutralization of ROS and free radicals, repair of damaged 

macromolecules, and redox signaling; exogenous antioxidants consumed through food 

and drink also play an important role in cellular defense and survival, and have shown to 

aid the body in combating OS and inflammation.15,19,51,55,75,76 Classes of flavonoids are 

distinguished by the presence of multiple phenol rings, C=C double bonds, and hydroxyl 

 
 

FIGURE 1-3: ANTIOXIDANT FUNCTION OF FLAVONOIDS. 

 
Flavonols possess antioxidant and anti-inflammatory functions mediated through 
antioxidant action and modulation of cell signaling pathways. 
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groups.1,37,118-120 These structural characteristics confer the antioxidant function of 

flavonoids, and the number and location of hydroxyl groups influence the biological 

activity of the flavonoids, and lipophilicity is also influenced by structure, which allows 

some flavonoids to favorably pass through the blood brain barrier.1,37,50,51,119-121 This 

class of antioxidant molecules possesses several distinct mechanisms of protection from 

OS: flavonoids can directly scavenge and neutralize ROS and free radicals, increase 

intracellular GSH, prevent glutamate mediated Ca2+ influx, and modulation of signaling 

pathways involved in cellular survival.1,51,52 Oxidative modification irreversibly changes 

structure and prevents normal function of macromolecules, however the presence of 

flavonoids is able to protect these molecules from MG mediated modification into AGEs 

through direct neutralization of ROS and prevents the oxidation of proteins, amino acids, 

lipids, metal ions, and other macromolecules.37,51,55 Flavonoid treatments induce 

expression of antioxidant proteins and exhibit the ability to influence intracellular GSH 

concentrations, increase GSH protein expression, and increase mRNA transcript levels 

of both GSH constituent subunits.68-71,114 GSH is a primary constituent of the GP, and 

one of the most important endogenous antioxidants for neutralization of dicarbonyl 

compounds and maintaining redox balance in cells.52,68,69,71,122 GSH is also an essential 

substrate of astrocytic MG detoxification in the brain, and is critical for prevention of 

glutamate mediated apoptosis.23-25,68,114 Elevated levels of glutamate are cytotoxic and 

deplete intracellular stores of GSH, leading to a decrease in activity of Glo-1 and 

induction of apoptosis via influx of Ca2+, however flavonoids reduce intracellular Ca2+ 

influx in the presence of toxic levels of glutamate.23,114  

Flavonoid molecules can regulate cellular, immune, and metabolic processes through 

modulation of cell signaling pathways including nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB), mitogen activated protein kinases (MAPK), and 
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nuclear factor erythroid 2-related factor 2 (Nrf2).37,123-127 Flavonoids can reduce gene 

expression of proapoptotic and proinflammatory products and also inhibit activation of 

kinases and phosphatases that contribute to apoptotic cell death.128 ROS are used as 

signaling molecules during immune responses, and the presence of antioxidants can 

prevent ROS mediated phosphorylation of molecules and pathway targets, preventing 

their activation and transcription.2,8,10,15,70 Flavonoids exhibit neuroprotective activity and 

can enhance the GP by modulating signaling pathways involved in cellular proliferation 

and survival, GSH synthesis, and expression of antioxidant proteins.1,37,51,128 

After a flavonoid is oxidized by a free radical, the resulting quinones are involved in 

signaling pathways involved in cellular antioxidant and repair activities (FIG 1-3).8,13,15,129 

Flavonoids have shown effectiveness in modulation of GP and MG detoxification; our 

previous research (Chapter 2) has shown treatment with catechin, morin, and quercetin 

was able to attenuate the effects of MG toxicity while retaining cellular function.1,37 The 

flavonoids increased Glo-1 activity and GSH concentration, while reducing the 

concentration of MG.1,37 While a lack of flavonoids does not cause any disease, 

exogenous antioxidants can influence cellular health and offer protection against 

inflammatory and degenerative diseases.18,19,75,76,117,130 A correlation exists between 

flavonoid consumption and low levels of dementia and neural pathology.19,92,120,131,132 

Silymarin and naringin are flavonoids that have shown efficacy in protection against 

excitotoxicity in dopaminergic neurons.78,101,102,133 Silymarin protected mice against 1-

methyl-4-phenylpyridinium (MPP+) induced toxicity by attenuating production of 

inflammatory cytokines, and prevented mitochondrial dysfunction.78,101,102,133 Naringin 

protected neural cells from toxicity mediated by 6-Hydroxydopamine (6-OHDA), 

mediated by an increase in Nrf2 activation.134 Morin has also shown to mitigate the 

damage caused by ischemia and stroke by downregulating expression and release of 
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proinflammatory cytokines.135,136 A grape powder extract was shown to reduce anxiety-

like behavior, depression, and memory impairments caused by elevated OS.63 

Dietary habits are an influential factor in developing diseases, including neurological 

disorders, diabetes, and cardiovascular disease.75,130 Several longitudinal, cohort studies 

determined an inverse relationship between flavonoid intake and all-cause mortality and 

cardiovascular disease associated deaths, and also determined that dietary flavonoid 

intake positively influenced markers of cardiovascular disease.137 Intake of flavonoids 

catechin and quercetin were associated with lower all-cause mortality, and moderate to 

high intake of dietary flavonoids in groups with unhealthy lifestyle activities (tobacco use, 

alcohol consumption, obesity, and physical inactivity) significantly reduced the all-cause 

mortality in research subjects.137  

Flavonoid compounds have shown tremendous potential in vitro, and in vivo with animal 

models, however their clinical effectiveness in humans has not exhibited the same 

successes.131 Animal models utilizing flavonoid compounds as pharmacological agents 

are commonly administered through I.P. injection or dietary intake; however, the oral 

treatment concentrations are much higher than could be achieved through regular 

dietary intake.131 While flavonoids are ubiquitously produced in plants, fruits, vegetables, 

nuts and seeds, the relative inefficiency of their breakdown and utilization by the human 

body results in circulatory concentrations below the therapeutic dose – no doubt a 

contributor to the less-than-stellar clinical results.50,116,131 The bioavailability of flavonoids 

and concentrations in blood and tissue are dependent upon absorption, distribution, 

metabolism, and excretion, all of which are influenced by the chemical structure of the 

flavonoid compounds.138 After ingestion, flavonoids are modified by enzymes in the 

digestive tract and liver, which can alter the flavonoids’ biological functions; the 

breakdown and metabolism of flavonoids limits the physiological concentrations to levels 
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below a therapeutic threshold, preventing their efficient distribution and accumulation 

into critical tissues, including the brain.50,138-140 The blood-brain-barrier (BBB) is a 

dynamic membrane that limits and prevents molecules in circulatory system from 

reaching the brain.141 While flavonoids have lipophilic characteristics, they often exhibit 

the inability to permeate the BBB.131,141,142 Extensive digestive and hepatic modifications 

- in addition to limited BBB permeability - contribute to the relatively low bioavailability 

and activity of dietary flavonoids in humans.50,116,138 Thus, efforts have been made to 

improve the bioavailability of flavonoids through modification of chemical structures, and 

the use of enhanced drug delivery techniques including nanoparticle encapsulation 

(covered in further detail in Chapter 3).50,138 
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Nrf2 Activation by Flavonoids 

Under states of inflammation and cytotoxicity, cells initiate protective mechanisms 

through activation of antioxidant signaling pathways; the Nrf2 pathway is one of the 

primary cytoprotective mechanisms utilized to counteract the damaging effects of 

OS.56,70,129,143-146 Nrf2 function is dependent upon the cellular environment, making it 

highly responsive to changes in oxidative state: normal cellular conditions cause Nrf2 to 

be degraded in the cytoplasm, whereas oxidative conditions cause it to translocate to the 

nucleus.53,56,70,144,147,148 Nrf2 forms a cytoplasmic complex with Kelch-like ECH-

associated protein 1 (Keap1) and E3 ubiquitin ligase Cullin-3 (Cul-3).53, 56, 72 Cul-3 

 

 
 

FIGURE 1-4: NRF2 SIGNALING PATHWAY.  

 
The Nrf2 pathway is activated in response to ROS and oxidative compounds. Nrf2 is 
retained in the cytoplasm through interaction with Keap-1 and Cul-3. Under normal 
cellular environments, Nrf2 is ubiquitinated and degraded. During states of OS, ROS 
disrupt the Nrf2 complex and Nrf2 is translocated to the nucleus for gene transcription. 
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facilitates ubiquitination and degradation, while Keap1 functions as an adaptor for both 

proteins, and a sensor of OS. 53, 56, 72 Under normal physiological conditions, 

unstimulated Nrf2 is sequestered in the cytoplasm through interaction with the Keap1-

Cul3 complex.53, 56, 72 Cul-3 is a protein in the E3 ubiquitin ligase family, and functions to 

ubiquitinate Nrf2 and cause it to be degraded in proteasomes.53,56,70,144,147,148  In an 

oxidative environment, ROS enter the cell and phosphorylate cysteine residues located 

on Keap1, preventing interaction between components of the Nrf2 complex; this 

disruption of the Keap1-Cul-3 ubiquitination process prevents the degradation of 

Nrf2.53,56,70,144,147,148 Nrf2 is released from the complex, revealing multiple nuclear 

localization signals and subsequently translocates to the nucleus.70,129,144 Nrf2 

heterodimerizes with transcription factor Maf, and binds to the antioxidant response 

element (ARE) in promoter regions of gene targets, initiating transcription of antioxidant 

proteins, including Glo-1, heme oxygenase-1 (HO-1), catalase (CAT), superoxide 

dismutase (SOD), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione peroxidase 

(GPx) and enzymes involved in GSH function and synthesis, glutathione-S-transferase 

(GST), l-glutamylcysteine ligase (GCL) (FIG 1-4).58,132,144-147 

The Nrf2 pathway is highly responsive to changes in the redox state of cells, and is 

critical for mediating expression of cytoprotective proteins during states of 

OS.58,129,144,145,147 Activation of Nrf2 in response to elevated MG concentrations can 

prevent cellular damage and cytotoxicity, and Nrf2-ARE interaction increased Glo-1 

mRNA transcription, protein expression, and activity, resulting in decreases of both MG 

and AGEs.70,129,143,144,147,148 Treatment with Nrf2 activators prevented apoptosis, and 

reduced the accumulation of levels MG-mediated protein carbonylation, while 

significantly elevating mRNA expression of GCL, an enzyme involved in GSH 

synthesis.58,70,144,145 The observed cytoprotection against MG was a result of GSH 
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expression - in a GP dependent mechanism - as evidenced by the increase in D-lactate 

after Nrf2 activation.1,37 Cells treated with Nrf2 inhibitor buthionine sulfoximine did not 

exhibit a protective effect.1,37 Flavonoid curcumin demonstrated the ability to induce Nrf2 

activation by inhibiting ubiquitination, through direct interaction with Keap1 and 

subsequent disruption of complex proteins.149  

Flavonoids are able to indirectly induce Nrf2 expression by activation of kinase pathways 

resulting in phosphorylation of Nrf2 and induction of dependent genes.37,135,147,150-152 

Flavonoid mangiferrin upregulated Glo-1 via activating Nrf2/ARE signaling 

pathway.67,123,152 Flavonoids are able to prevent ROS production and apoptosis through 

interaction with signaling pathways.1-3,10,53,60,133,135 Flavonoids modulate proinflammatory 

signaling pathways, and can inhibit expression of TNF-α by modulating NF-κB, and 

reduce activation of the JNK/AP-1 pathway, inducing expression of antioxidant 

molecules like mitochondrial PNO2, which exerts its neuroprotection primarily through 

protecting against mitochondrial-mediated OS.129,132,144,146,151 Flavonoids were found to 

reduce MG, and also inhibit AGE formation by preventing formation/presence of 

dicarbonyl compounds, and enhance GP activity.37,51,55,147  The GP is an integral part of 

the body's antioxidant system, and dysfunction can have deleterious and catastrophic 

events, resulting in elevated production of ROS which can further and exacerbate 

neurodegenerative disease.5,45,46,48,49,69,86,97 This pathway found in all cells of our body 

can be responsible for production and formation of toxic intermediaries that alter a cell's 

normal function and contribute to the severity of aging and neurodegenerative 

diseases.1,3,20,21,37,40,48,102,153 The GP is a promising drug target for inflammatory diseases, 

making it an attractive target for neurodegenerative disease.  
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CHAPTER 2: FLAVONOIDS ENHANCE NEURAL 

GLYOXALASE PATHWAY IN A METHYLGLYOXAL 

MODEL OF AGING AND ALZHEIMER’S DISEASE  
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INTRODUCTION 

The GP involves sequential reactions – utilizing GSH, Glo-1 and Glo-2 - to prevent the 

buildup of MG and other carbonyl molecules, reducing the driving factors of ROS-

mediated inflammation (FIG 1-1).1,20-22,34,37,38 The resulting inflammation is fed by a 

perpetual cycle of elevated ROS production, inflammatory cytokine and chemokine 

signaling, and chronic immune activation.2,8,10,13,15 Accumulation of MG results in 

disequilibrium of the body’s redox environment, resulting in an inflammatory state of OS, 

known to drive the progression of neurodegenerative diseases and accelerate the aging 

process.7,13,19  The GP antioxidant system is crucial in neural defense against OS and 

inflammation mediated by MG and other reactive dicarbonyl compounds. 

Pharmacological modulation of antioxidant pathways can bolster their effectiveness and 

prevent the accumulation and production of ROS and other inflammatory 

compounds.19,75,76,117,129 Flavonoids are a class of polyphenol molecules with anti-

inflammatory activity, and have emerged as viable candidates for enhancement of 

endogenous antioxidant systems.1,37,51,55,122,130 This family of naturally-produced, 

secondary plant metabolites consists of over 4000 identified compounds, and possess a 

wide range of biological activity.51,55,116 Their effects are contingent upon cell and tissue 

type, the surrounding microenvironment, and the composition and configuration of 

chemical structure.37,51,55,116,130 For example, flavonoid treatment can increase the 

viability of normal cells, while also acting as inhibitors in some cancer cell lines.55,67,123,126 

Quercetin (3,3’,4’,5,7-pentahydroxy flavone) and morin (2’,3,4’,5,7-pentahydroxy flavone  

(FIG 2-1) treatments were found to be cytoprotective in primary cerebellar neurons, but 

promoted apoptosis in glioblastoma cells and colon cancer cells, respectively.37,123,126 
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The polyvalent, versatile activity of 

flavonoids and their ubiquitous 

production in nature has 

increasingly made these 

compounds the focus of drug 

related research. 28,54,61,62,147,155 The 

anti-inflammatory activity of some 

flavonoids, relatively efficient 

bioavailability, and ability to cross 

the BBB has resulted in their 

therapeutic use for 

neurodegenerative 

diseases.1,9,116,154 Flavonoids’ 

antioxidant activity allows them to 

directly bind and neutralize ROS, 

reactive nitrogen species (RNS), 

and metal ions, and are incredibly 

efficient at promoting cell viability in 

the presence of highly oxidizing 

agents, like H2O2 and 

MG.28,54,61,62,147,155 While flavonoids 

can directly reduce ROS and free 

radicals, the mechanism of their 

protective function is mediated 

through modulation of antioxidant and apoptotic signaling pathways, chiefly Nrf2 and NF-

kB.58,62,123,127,143,144,146,147,152,156-161 MG plays a role in the progression of AD, and 

A 

 
 
B 
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FIGURE 2-1: FLAVONOID STRUCTURES. 

 
The chemical structures of flavanol catechin (A), 
and flavonols morin (B), and quercetin (C).  
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negatively contributes to disease pathological hallmarks Ab, NFTs, and loss of neuronal 

viability.26,32,33,35,87,97,162  

Quercetin is a widely distributed and common polyphenol flavonoid (found in high 

concentrations in capers, sorrel, radishes, red onions, and kale), with a wide range of 

bioactivity, and exhibits anti-inflammatory, anti-viral, anti-cancer activity, and has found 

to be cytoprotective in cells of the liver, kidneys, heart, and brain.28,163,164 Its 

neuroprotective effects have been documented in a variety of disorders, including HD, 

MS, diabetes, PD, and AD, and has been shown to protect against cognitive 

deficits.9,164,165 Quercetin was shown to be neuroprotective – through a GP-mediated 

mechanism - in a rat model of streptozotocin-induced diabetic cognitive decline.57 

Quercetin treatment reduced levels of blood glucose, and inflammatory signaling 

molecules COX-2, IL-1b, and TNF-a, while elevating antioxidant activity of superoxide 

dismutase (SOD).57 Quercetin was found to directly modulate the GP by increasing Glo-

1 activity and GSH levels, decreasing AGEs, and reducing expression of RAGE.57 

Quercetin has shown potent neuroprotective activity in AD.9,53,124,166 Mouse hippocampal 

neurons insulted with Ab and H2O2 showed markedly reduced neurotoxicity and ROS 

production when treated with quercetin.167 It also prevented metabolic dysfunction by 

protecting mitochondrial membrane integrity and morphology.167 Transgenic AD mice 

treated with quercetin exhibited attenuated disease pathology and neurobiological 

deficits.166 Histological analysis of brain tissue from triple-transgenic AD mice (3xTg-AD) 

revealed a retention of cell morphology and cell density.166 Quercetin treatment was 

remarkably efficacious against pathological hallmarks of AD, reducing levels of both Ab 

and NFTs in the cerebellum and hippocampus of 3xTg-AD mice.166 The neuroprotective 

effect of quercetin was evident through a reduction in activated astrocytes and microglia, 

mediators of neuroinflammation in neurodegenerative diseases.166 The functional results 
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of these reduced pathologies were improvements in spatial learning, memory, and 

anxiety-like behavior.166 Quercetin protected mouse hippocampal neuron morphology 

and viability in an okadaic acid-mediated OS model of AD.124 The anti-inflammatory 

effects of quercetin were evidenced by an elevation in GSH and SOD, reductions of 

malondialdehyde (a marker of glycation) and ROS, retention of mitochondrial membrane 

permeability, and reduced caspase-mediated apoptosis.124 Hyperphosphorylation of tau 

– the initiating factor in NFT formation – was significantly suppressed in neurons treated 

with quercetin.124 Apoptotic signaling pathways commonly associated with AD – Akt, 

GSK-3b, and MAPK – were inhibited by quercetin treatment.124 Hypoxia-induced 

mitochondrial dysfunction in rats was prevented by quercetin supplementation, with 

quercetin treated animals exhibiting drastically reduced memory impairments compared 

to the control cohorts.159 Acrylamide is known neurotoxin and induces OS through the 

same mechanism as MG, the generation of reactive carbonyls through the Maillard 

reaction.168 Quercetin treatment in rats insulted with acrylamide exhibited normalized 

expression of neurotransmitters serotonin and dopamine, and reduced concentrations 8-

hydroxy-2-deoxyguanosine (8-OHdG), a marker of OS-mediated DNA damage.168 

We hypothesize that treatment of neurons with exogenous antioxidant compounds 

reduces the oxidative burden of MG by enhancing the GP. To test this hypothesis, we 

utilized three well-known flavonoid compounds – flavanol catechin and flavonols morin 

and quercetin – and investigated their effects on GP function in mouse primary 

cerebellar neurons induced to a state of OS with MG. The purpose of this study is to 

provide evidence of flavonoids’ ability to enhance the GP and elucidate the functional 

mechanisms. Through evaluation of GP substituents, signaling pathway activation, 

apoptosis, and neurotransmitter function, we determined all three flavonoids to be 

neuroprotective in an MG-mediated OS model of AD.37 The specific mechanisms of 
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protection involved: Nrf2-mediated upregulation of Glo-1, Glo-2, GSH, and MG 

detoxification, retention of excitatory and inhibitory neurotransmission, reduction of 

caspase-mediated apoptosis, and inhibition of NF-κB signaling.37   
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MATERIALS AND METHODS 

Care and use of animals  

Animal studies were approved and performed in accordance with the UNMC Institutional 

Review Board (IRB) and Institutional Animal Care and Utilization Committee (IACUC). 

C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME). 

Chemicals and compounds  

Morin was purchased from MP Biomedicals (Solon, OH). Quercetin dehydrate was 

purchased from Pfaltz & Bauer, (Waterbury, CT). Sodium D-lactate was purchased from 

Santa Cruz Biotechnology (Dallas, TX). Lactate dehydrogenase was purchased from US 

Biological (Salem, MA). Catechin Hydrate, Poly-D-lysine hydrobromide, β-nicotinamide 

adenine dinucleotide hydrate, methylglyoxal, and 2,4-Dinitrophenylhydrazine were 

purchased from Sigma Aldrich (St. Louis, MO). Unless otherwise noted, chemicals for 

this study were purchased from Thermo Fisher Scientific (Fair Lawn, NJ). 

Cerebellar neuron culture  

Primary cultures of cerebellar neurons were prepared from P3-5 C57/BL6 mice. Six well 

culture plates (Falcon, Indianapolis, IN) were coated with poly-D-lysine and seeded with 

cerebellar neurons at a density of 1.5 × 106 cells/well, and maintained with DMEM media 

supplemented with L-glutamine, pen-strep, 30% sucrose, B-27, and N-2. Ara-C was 

added 24 hours after seeding to produce a homogenous neuronal culture. Cells were 

grown to confluence for 6 days, with half media changes every 48 hours. The negative 

control received no treatment, the vehicle was treated with 500 μM MG. Antioxidant 

treatment groups were treated for 24 hours by adding 500 μM MG first and followed by 

10 μM flavonoid.37 

Western Blot Analysis.  
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Cerebellar neuron cultures were washed with ice cold PBS three times and lysed using 

RIPA buffer (50 mM Tris, pH 7.4, 150 mM NaCl, 1% Triton X100, 1% Na deoxycholate 

0.1% SDS, 1 mM EDTA) and a protease inhibitor cocktail (Thermo-Fisher). A BCA assay 

(Pierce) was used to ensure equal protein loading content. Samples were added to a 

loading buffer (LDS sample buffer 4X, b-mercaptoethanol, PBS) and denatured at 90 °C 

for 5 minutes. Proteins were resolved on a 4–20% tris-glycine gel (Bio-Rad) using SDS-

PAGE, and transferred to a PVDF membrane (Immobilon). Membranes were blocked for 

1 h in TBST and 5% fat free milk (BioRad), washed in TBST, and incubated overnight at 

4 °C with antibodies directed against Glo-1 (Rabbit polyclonal, Santa Cruz), Glo-2 (Goat 

polyclonal, Santa Cruz), and p-Akt (Rabbit polyclonal, Cell signaling). Blots were washed 

and incubated with the appropriate HRP-conjugated secondary antibody (Santa Cruz). 

β-actin expression (Rabbit monoclonal, Cell Signaling) was assessed to ensure equal 

protein content.37 

Determination of D-lactate concentration 

Media samples from cerebellar cultures were collected prior to lysing the cells. D-Lactate 

released into the extracellular space following treatment with MG and antioxidant was 

measured spectrophotometrically. Culture media samples of 70 µL were loaded on a 96-

well plate with 180 µL of glycine buffer (0.2 M glycine, 0.2 M semicarbazide, pH 10), 

containing 2 mg/mL NAD and 5 U/mL D-lactate dehydrogenase. Samples were 

incubated at room temperature for 2 hours. A spectrophotometer (340 nm excitation, 450 

nm emission) was used to measure conversion of NAD to NADH. Absolute values were 

determined from a standard curve of D-Lactate concentrations.34 

Determination of MG concentration 

A 10 mM stock solution of 2,4-DNPH (Sigma-Aldrich, St. Louis, MO, USA) in 100% 

ethanol was used to create a working solution of 0.2 mM 2,4-DNPH with 12 mL HCl 
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(36%) per 100 mL ethanol. A working solution of 1 mM MG (Sigma) was prepared from a 

stock solution. The reaction consisted of 950 µL 0.2 mM 2,4-DNPH with different 

volumes of 1 mM MG, filled to 1 mL with media for the blank, or 50 mL of media from 

cerebellar neuron culture. The samples and blanks were heated in an Eppendorf 

Thermomixer at 42 °C for 45 mins and 600 rpm, and were incubated at room 

temperature for 5 minutes. Spectrophotometer measurements were performed at 432 

nm, according to absorbance of MG-bis- 2,4-DNPH-hydrazone for calculating 

concentration of MG.169 

Glo-1 activity 

Neurons were plated in 12 well plates at 5 × 105, and grown to maturity at 6 days. Cells 

were treated with 500 μM MG and 10 μM antioxidant for 24 hours. Media was removed, 

and cells were rinsed with ice cold PBS. Cells were lysed with buffer containing: 10 mM 

HEPES (pH 7.0), 0.02% Triton X-100, and 100 μg/ mL BSA. Samples were briefly 

sonicated and centrifuged at 16,000 g for 30 minutes at 4 °C. Cellular lysates were 

added to a 96 well plate at 50 µL per well. Reaction mix consisted of 60 mM sodium 

phosphate pH 6.6 containing 4 mM GSH and 4 mM MG. Two hundred µL reaction mix 

was added to the 96 well plate and incubated for 10 minutes at 37 °C, and 50 µL of 

sample lysate was added to the plate. S-lactoylglutathione synthesis was determined by 

measuring absorbance at 240 nm every 15 seconds for 5 minutes. Protein concentration 

was determined using a BCA protein assay reagent kit (Thermo Scientific).37 

Determination of GSH concentration 

Total intracellular glutathione levels were determined spectrophotometrically. Levels of 

total glutathione and oxidized glutathione (GSSG) were determined and used to 

calculate levels of GSH. Values were calculated from a standard curve of GSSG.37 
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Immunocytochemistry 

Primary cerebellar neurons were harvested from P5 C57/BL6 mice. Neurons were plated 

in 8 well imaging plates at 300,000 cells/well. After growing for 6 days, cells were treated 

with 500 μM MG and 10 μM flavonoids for 24 hours. Media was removed and cells were 

fixed with 4% PFA/30% sucrose solution in PBS for 10 mins. Wells were washed with 

PBS (0.1% Triton 100-X) in PBS for 10 mins. Wells were again washed with PBS, and 

blocked with 5% BSA in PBS at room temperature for 1 hour. Primary antibodies for 

NeuN (mouse monoclonal) and cleaved caspase-3 (mouse monoclonal), and VGLUT1 

(guinea pig polyclonal) and GAD65 (rabbit monoclonal) were added in 1% BSA in PBS 

overnight. Wells were washed with PBS, and incubated with the appropriate IgG (H + L) 

conjugated secondary antibodies at room temperature for 1 hour. Wells were washed, 

and covered with DAPI stain for 30 seconds. DAPI stained cells were washed and 

aspirated, and Prolong Gold Antifade (Thermo Fisher Scientific, MO) was added directly 

to each well. Plates were imaged on a confocal microscope (LSM 710 Zeiss Confocal 

Microscope) at 20-40x.37 

Statistics 

Statistics were performed using Excel (Microsoft) and SPSS (IBM Corporation). Data 

were expressed as the mean +/− SEM of multiple experiments performed in triplicate. 

Statistical differences between means were analyzed using a student’s t-test or one-way 

analysis of variance (ANOVA). Data with at least p<0.05 was considered statistically 

significant.37  
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RESULTS 

MG and Flavonoid Cytotoxicity  

Accumulation of MG is commonly 

present during aging and in 

neurodegenerative disorders, and 

mediates an inflammatory cellular 

environment.24,25,64 In this study, we 

utilized MG as a means to induce the 

OS that contributes to the 

pathogenesis of AD. To determine the 

appropriate concentration of MG for 

induction of OS, we treated cerebellar 

neuron cultures with a range of MG 

concentrations to determine the most 

appropriate concentration for induction 

of OS. Through an MTT assay, we 

determined 500 µM was the optimal concentration to induce OS without excessive 

cytotoxicity.37  

 
 
FIGURE 2-2: CYTOTOXICITY OF MG AND FLAVONOIDS. 

Determination of treatment dosage level for cerebellar 
neurons was determined through an MTT assay using 
various concentrations of MG (A) and flavonoids (B). 
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Flavonoids Increase MG Detoxification 

GP function can be assessed by measuring the concentration and activity of substituent 

proteins. The concentration of D-lactate in the extracellular space provides a means to 

measure the detoxification of MG by the GP. D-lactate concentration was determined by 

spectrophotometrically measuring the conversion of NAD to NADH. To induce a state of 

OS, cerebellar neuron cultures were insulted with MG [500 µM] for 24 hours, and treated 

with flavonoids [10 µM] to determine its effect on GP function. Catechin, morin, and 

 
 

FIGURE 2-3: ANALYSIS OF GP FUNCTION.  

 
Cultured cerebellar neurons were induced to a state of OS with MG [500 µM], treated with 
flavonoids [10 µM] (Control = no MG, Vehicle = only MG) and markers of GP function were 
measured. (A) D-lactate release into extracellular space #P < 0.05 (vs Control), *P < 0.05 (vs 
Vehicle). (B) Concentration of MG [μM/mL] #P < 0.05 (vs Control), *P < 0.05 (vs Vehicle). (C) 
Concentration of GSH ##P < 0.01 (vs Control), *P < 0.05 (vs Vehicle), **P < 0.01 (vs 
Vehicle). (D) Glo-1 activity #P < 0.05 (vs Control), *P < 0.05 (vs Vehicle). Values are means 
+/− standard error of samples performed in triplicate from several independent experiments.  
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quercetin treated cerebellar neurons had a significantly higher concentration of D-lactate 

than the MG treated control (FIG 2-3A). The media from MG treated cells contained 0.7 

mM of D-lactate, while the flavonoid treated groups had D-lactate concentrations in 

excess of 1 mM. The increase in D-lactate concentration in the presence of flavonoids 

indicates that the GP is enhanced and MG has been detoxified in high amount. The 

reaction of MG with 2,4-DNPH produces dinitrophenylhydrazone, which was measured 

spectrophotometrically to determine the MG content. Catechin, morin, and quercetin 

were able to significantly decrease the concentration of MG compared to the MG-treated 

control (FIG 2-3B). Flavonoid treatment attenuated MG accumulation, with MG 

concentration in flavonoid treated cells similar to levels of the non-treated control. This 

result matches when correlated with increase in lactate concentration. 

Flavonoids Increase GSH Concentration and Glo-1 Activity 

GSH is a protein utilized for antioxidant defense. In the GP, it catalyzes the first step in 

the conversion of MG to D-lactate. High concentrations of MG deplete the intracellular 

concentration of GSH, preventing efficient functioning of the GP. MG treatment 

drastically decreased the concentration of GSH in neural cell cultures, however this 

effect was prevented significantly by flavonoid treatments (FIG 2-3C). Catechin resulted 

in a significant increase in GSH, and morin and quercetin were able to increase GSH 

levels to that of the untreated control. The glyoxalase activity assay evaluated the 

capacity of the cerebellar neurons to detoxify MG. Glyoxalase activity measures the 

mU/mg protein of Glo-1 needed to catalyze the conversion of the GSH-MG 

hemithioacetal into S-D-lactoylglutathione. MG treatment of 500 μM significantly reduced 

the activity of Glo-1 in cerebellar neurons, while flavonoid treatment decreased the Glo-1 

activity inhibition caused by MG (FIG 2-3D). Catechin, morin, and quercetin were found 

to significantly increase Glo-1 activity compared to the MG treated control.  
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Flavonoids Prevent Cleaved Caspase-Mediated Apoptosis 

 

 
 
FIGURE 2-4: EFFECTS OF FLAVONOID TREATMENT ON CELL VIABILITY AND APOPTOSIS.  

 
Cerebellar neurons were treated with flavonoids [10 μM] and MG [500 μM]. Data was determined via 
immunocytochemistry (A). Viability was assessed through detection of cleaved caspase-3 (C-Cas-3) 
(B) and neuronal specific nuclear protein (NeuN) (C). Control = no MG, Vehicle = only MG. Values 
are means +/− SEM of samples performed in triplicate from several independent experiments, n = 3–
4. #P < 0.05 (vs Control), *P < 0.05 (vs Vehicle). Images were quantified with ImageJ, and resulting 
data were analyzed using an ANOVA. Morin treatment significantly decreased the presence of 
apoptosis, and catechin and morin significantly increased cell viability. 
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MG promotes the activation and subsequent cleavage of caspase-3 (Cas-3), which is a 

regulator of apoptosis and triggers cell death through a mitochondrial-mediated 

pathway.34,46 Cerebellar neuron cultures underwent a 24 hour treatment with MG and 

flavonoids, and were fixed for immunocytochemistry. Cells were conjugated with 

antibodies directed towards cleaved caspase-3 (C-Cas-3) and neuronal specific nuclear 

protein (NeuN) to determine apoptosis and survival, respectively. Relative fluorescence 

was determined through confocal microscopy imaging. MG treatment significantly 

increased the amount of Cas-3 positive cells, and decreased the amount of NeuN 

positive cells compared to the non-treated control. This increase in apoptotic cells was 

prevented by flavonoid treatment. A significant decrease in the amount of Cas-3 positive 

cells was found in the catechin, morin, and quercetin treated conditions (FIG 2-4B). A 

significant increase in the amount of NeuN positive cells compared to the MG-treated 

control was found in the catechin and morin treated conditions (FIG 2-4C). These results 

suggest flavonoid treatments increase survivability of cerebellar neurons in the presence 

of cytotoxic MG.  
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Flavonoids Protect Excitatory and Inhibitory Neurotransmission 

Glutamate and g-amino butyric acid (GABA) are the principal excitatory and inhibitory 

neurotransmitters (respectively) utilized by neurons for cell-to-cell communication and 

signal propagation; the balance of both excitatory and inhibitory neurotransmission is 

 

 
 
FIGURE 2-5: FLAVONOID TREATMENT ON EXCITATORY AND INHIBITORY SYNAPTIC FUNCTIONS.  

 
Functions were assessed through immunocytochemistry. Representative images 
showing DAPI, VGLUT1, and GAD65 in flavonoid (10 μM) and MG (500 μM) treated 
cerebellar neurons (A). Excitatory and inhibitory synapse function was assessed 
through detection of VGLUT1 (B) and GAD65 (C). Control = no MG, Vehicle = only 
MG. Values are means +/− SEM of samples performed in triplicate from several 
independent experiments, n = 3–4. #P < 0.05 (vs Control), *P < 0.05 (vs Vehicle). 
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critical for neurological function and environmental homeostasis.170 Excitatory 

neurotransmission was determined through evaluation of vesicular glutamate 

transporter-1 (VGLUT), involved in transport of glutamate into the synaptic cleft; 

inhibitory neurotransmission was determined through evaluation of glutamic acid 

decarboxylase-65 (GAD65), involved in conversion of glutamate to GABA.170 The 

expression of both GAD65 (FIG 2-5B) and VGLUT1 (FIG 2-5C) in DAPI-positive cells 

were significantly reduced with the addition of MG compared to the control, indicative of 

drastic deficits in neurotransmission. However, MG insulted cells treated with catechin, 

morin, or quercetin exhibited significantly higher expression of GAD65 and VGLUT1 in 

DAPI-positive cells compared to the MG treated cells alone. Flavonoids prevented MG-

mediated decreases in neurotransmission, and neurons retained both excitatory and 

inhibitory neurotransmitter function. While all tested flavonoids significantly elevated 

neurotransmitter function in the presence of MG, morin treatment resulted in expression 

levels similar to the control group.   
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Flavonoids Increase Glo-1 and Glo-2 Expression and Prevent Akt Phosphorylation 

The efficiency of the GP to detoxify MG is predicated upon the presence and activity of 

Glo-1 and Glo-2 proteins, with positive correlations between protein expression and MG 

detoxification.1,20-22,86 Protein expression of Glo-1, Glo-2, and P-Akt in cerebellar neurons 

was determined through western blotting (FIG 2-6D). Flavonoid treatment in MG-insulted 

cells significantly increased the expression of both Glo-1 (FIG 2-6A) and Glo-2 (FIG 2-

6B) compared to cells treated only with MG. 

 
 
FIGURE 2-6: FLAVONOID TREATMENT ON GLYOXALASE PROTEIN EXPRESSION.  

 
Proteins Glo-1 (B), Glo-2 (C), and P-Akt (D). Representative Western Blot images (A). Values are 
means +/− SEM of samples performed in triplicate from several independent experiments, n = 3–
4. *P < 0.05 (vs Control). Expression of P-Akt in cerebellar neurons was assessed via Western 
Blotting. Cerebellar neurons were treated with MG (500 μM) and flavonoids (10 μM). Blots were 
conjugated with β-actin to ensure equal protein loading. Control = only MG. Values were 
determined using ImageJ. Resulting data were analyzed using an ANOVA. A significant decrease 
(*p < 0.05) in P-Akt was found in the catechin and quercetin treated groups (10 μM) compared to 
the MG treated control. 
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The PI3K-Akt pathway influences NF-κB signaling, with activation of Akt (protein kinase 

B) causing phosphorylation of IKKa, degradation of IκB, and subsequent NF-κB nuclear 

translocation.124,126 MG treatment resulted in elevated expression of P-Akt, which was 

abolished in neurons also treated with flavonoids treatment in MG-insulted cells reduced 

P-Akt (FIG 2-6C). Catechin and quercetin treatments in MG-insulted neurons 

significantly reduced phosphorylation of Akt compared to the MG treated cells alone.  
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DISCUSSION 

This study investigated the effects of flavonoids on GP function. Here we provide 

evidence that catechin, morin, and quercetin can enhance the GP and attenuate MG-

mediated toxicity in neurons.1,37 Our in vitro experiments utilized primary cerebellar 

neurons insulted with MG to recreate the cellular environment commonly found in 

pathological aging, AD, and neurodegenerative diseases.13,33,35,60,77,92,171 MG 

accumulation and GP dysfunction are implicated in accelerated aging of neural cells and 

progression of AD pathology, and attenuating the driving factors of ROS-mediated 

inflammation can reduce disease severity.26,33-35,64,87,97,162 At relatively low 

concentrations, flavonoid treatments had robust influences on GP function, nearly every 

aspect of the GP was improved with flavonoid treatments: elevated expression of Glo-1 

and Glo-2 proteins, increased concentrations of GSH, elevated Glo-1 activity, and 

increased detoxification of MG to D-lactate.37 Even under conditions of extreme 

cytotoxicity, flavonoids exhibited the ability to attenuate MG-mediated cellular damages. 

Cerebellar neurons increased the rate of their endogenous antioxidant system through 

flavonoid supplementation. In accordance with this, we observed a decreased 

concentration of MG in the media. Reducing the concentration of MG will reduce the 

production of ROS, proinflammatory cytokines, AGEs, and oxidized molecules, which 

provoke a chronic immune response and directly lead to conditions of OS.21,31-35 

Reducing the oxidative burden on the GP allows its antioxidant functions to be more 

efficient and prevent the exponential rise of toxic molecules in the cellular milieu. 

Reduced expression of the constituent pathway proteins has been linked to premature 

aging, and increased severity of neurodegenerative disease.3,20,21,64,86,87 Increased 

expression of glyoxalase proteins has been shown to lower formation of ROS and free 

radicals, and elevated levels corresponded to a decrease in concentration of a-
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oxoaldehydes.38,39,57,58,172 MG detoxification requires the presence of both Glo-1 and Glo-

2, and a decrease in either pathway protein would prevent efficient pathway function and 

have a dramatic negative impact on neuronal viability.3,20,21,38,48,58 MG-induced toxicity 

can alter synaptic morphology through disruption of uptake and release of 

neurotransmitters, negatively impacting the neural communication and signaling.10,170 

Flavonoid treated cerebellar neurons were able to effectively retain the structure and 

function of both excitatory and inhibitory synapses.37 Accumulation of glutamate in the 

synapses is a trigger for a cellular influx of Ca+2, which initiates an apoptotic signaling 

cascade.11,55,116,136 We found flavonoid treatment positively increased markers of 

glutamate and GABA receptor function in the presence of MG.37 These neurons were 

able to more efficiently convert glutamate to GABA, and clear glutamate from the 

synaptic cleft. Flavonoids also had a significant impact on cell viability by decreasing the 

activated form of caspase-3. Cleavage of this protein initiates mitochondrial mediated 

apoptosis, releasing other pro-apoptotic proteins and resulting in destruction of the 

mitochondria and death of the cell.11,17,135,173 NF-κB signaling is initiated in response to 

cellular damage, inflammation, and cytokine release, which can be directly and indirectly 

influenced by MG concentrations.123,152,161 The NF-κB heterodimer has two subunits 

(p65, p50) and is sequestered in the cytoplasm when bound to its inhibitory subunit, 

IκBα.123,129,152,174 Phosphorylation degrades the inhibitory subunit - IKKβ - and NF-κB is 

translocated to the nucleus for rapid initiation of apoptotic gene transcription. 123,129,152,174 

MG and ROS mediate inhibitory subunit phosphorylation, thus regulating the 

transcription of pro-apoptotic protein products. 123,129,152,174 Decreasing MG and ROS in 

the cell directly reduces the amounts of molecules able to modulate and activate this 

signaling pathway.123,174,175 Flavonoids were found to modulate NF-κB signaling through 

a reduction in phosphorylation of Akt.51,123,152,161 Reduced P-Akt prevents the activation 



 43 

and nuclear translocation of NF-κB, causing it to undergo cytoplasmic degradation. 

51,123,152,161  

We observed that flavonoids offered protection against MG-mediated OS in cerebellar 

neurons, preventing progression of neurodegenerative disorders. These compounds 

offer an attractive solution against ROS mediated damage to cells, as they have very low 

cytotoxicity, and function to increase the efficiency of the GP. Proper function of the GP 

decreases the amounts of ROS, free radicals, and damaging reactive compounds, and 

allows for retention of neuronal function. Based on the results of this study, flavonoids 

compounds may prove to be an effective treatment for GP-mediated prevention of aging 

and neurodegenerative disease.  
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CHAPTER 3: EFFECT OF MORIN DERIVATIVES ON 

NEURAL GLYOXALASE PATHWAY  
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INTRODUCTION 

The brain’s high metabolic requirements combined with limited antioxidant capacity 

render the organ highly vulnerable to ROS-mediated by damage. 3,6,12,13,19 Ubiquitously 

produced MG is highly reactive and alters the structure and function of proteins, lipids, 

and nucleic acids through formation of AGEs. 5-17 The GP performs indispensable 

functions in the brain by neutralizing and preventing accumulation of MG and producing 

an alternate energy source for neurons.22,34,64 Increasing the activity of the GP can 

prevent elevated levels of MG in neural cells.1,37,57,58 Thus, the GP is a valid target for 

pharmacological intervention in AD and other neurodegenerative disorders, and plant-

produced compounds have been widely investigated and utilized for their biological 

activity.19,116 Morin is a flavonoid present in a variety of fruits, vegetables, and nuts, with 

high concentrations found in plants in the moraceae family (e.g. mulberry and fig). 

123,127,133,147,152,161 Morin exhibits antioxidant, anti-inflammatory, and anti-cancer activity, 

mediated through modulation of cellular signaling pathways .7,20,24,26 Morin has previously 

been characterized as cytoprotective in liver, pancreas, lung, cardiac, and neural cells.20-

24 Evidence shows morin possesses protective effects in neurodegenerative conditions 

including ischemia, MS, PD, and AD. 1,37,55,123,133,135,136,151,152,158,161,173,176  Morin exerted its 

control over the NF-κB signaling pathway by attenuating TNF-a induced activation by 

inhibiting degradation of IκBα, and was also able to inhibit TNF-a mediated p65 nuclear 

translocation.123,127,152,161,177 Morin was shown to decrease survival of cancer cells, while 

increasing viability of normal endothelial cells, for example morin inhibited 

phosphorylation of Akt in a breast cancer cell line, preventing metastases and tumor 

proliferation.174,177  

While flavonoid treatments have shown efficacy against AD in vitro and animal models in 

vivo, no substantial benefit has been exhibited in clinical trials in AD patients.9,116,131 The 
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ineffective results stem from flavonoids not reaching critical areas of brain tissue, which 

could be due to premature metabolic degradation, and poor permeability through the 

blood brain barrier (BBB).131 Plant compounds are commonly utilized in drug design, as 

modification of chemical structural can influence and improve chemical activity.178 

Halogens are versatile atoms with a wide variety of chemical functions and commonly 

utilized in drug discovery.179 Also, the addition of halogens to compounds is frequently 

used in drug design to increase the compound’s lipophilicity, membrane permeability, 

oral absorption, and resistance to metabolic degradation, while generally not increasing 

toxicity.179  

We have previously demonstrated the ability of flavonoids catechin, morin, and quercetin 

to enhance the GP to prevent MG mediated OS in neural cells.1,37 As an extension to 

this, our current research is focused on creating novel morin structural variations to 

improve its inherent antioxidant ability. We synthesized a morin analogue with the 

addition of two bromine molecules – Di-bromomorin (DBM) - and a morin encapsulated 

nanoparticle (MNP). We hypothesize structural modifications to morin will increase its 

ability to enhance the GP in a MG-mediated model of AD. Cultured mouse cerebellar 

neurons and strains of C. elegans were induced to a state of OS with MG, and treated 

with morin and its derivatives to evaluate the effect on GP function. Through evaluation 

of constituent pathway proteins, MG, D-lactate, and imaging of neural structures, we 

provide evidence of the GP efficiency increase by structurally modified compounds. Our 

research shows the modified morin compounds – DBM and MNP – were more effective 

in GP enhancement than the unmodified flavonoid itself.  
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MATERIALS AND METHODS 

Care and Use of Animals  

Animal studies were approved and performed in accordance with the UNMC Institutional 

Animal Care and Utilization Committee (IACUC). C57BL/6 mice breeding pairs were 

obtained from The Jackson Laboratory (Bar Harbor, ME). C. elegans strains N2 (Bristol), 

VC343 (glod-4(gk189)), and CL2006 (dvls2), and Escherichia coli OP50 were purchased 

from the Caenorhabditis Genetics Center (CGC) at the University of Minnesota (MN, 

USA). 

Chemicals and Compounds 

Morin was purchased from MP Biomedicals (Solon, OH). Sodium D-lactate was 

purchased from Santa Cruz Biotechnology (Dallas, TX). Lactate dehydrogenase was 

purchased from US Biological (Salem, MA). Poly-D-lysine hydrobromide, β-nicotinamide 

adenine dinucleotide hydrate, methylglyoxal, 5-fluorodeoxyuridine, and 2,4-

Dinitrophenylhydrazine were purchased from Sigma Aldrich (St. Louis, MO). Antibodies 

used were B-Actin (sc-47778), MAP-2 (sc-32791), caspase-3 p17 (sc-373730), HO-1 

(sc-390991), GAD-65 (sc-377145), Nrf2 (sc-81342), Glyoxalase I (sc-133214), 

Glyoxalase II (sc-166781), m-IgGk BP-HRP (sc-516102), m-IgGk BP-CFL 488 (sc-

516176), m-IgGk BP-CFL 555 (sc-516177) from Santa Cruz Biotechnology (Dallas, TX); 

DJ-1 (5933), P-Akt (4060), IKKa (11930S), IkBa (4812S), P- IKKa (2697S) from Cell 

Signaling Technology (Danvers, MA); VGLUT1 (AB5905), NeuN (MAB377) EMD 

Millipore (Temecula, CA). Unless otherwise noted, chemicals for this study were 

purchased from Thermo Fisher Scientific (Fair Lawn, NJ). 

Primary Cell Culture 
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Cerebellar neurons were harvested from P3 C57/BL6 (Jackson Labs) as previously 

described.34,37 Corning plates were left under UV light for 30 mins, and poly-D-lysine HBr 

(MP Biomedicals) was added to wells (150 µg/mL) for 3 hours. Wells were washed three 

times with endonuclease-free water. The brains were removed via cervical dissection. 

The cerebellum was isolated, and the veins and meninges were removed. The tissue 

was treated with 2.5% trypsin for 15 minutes. The trypsin was removed, and 1% 

deoxyribonuclease was added and tissue was pipetted gently to form a homogenous 

mixture. Cells were centrifuged at 700 x g for 5 minutes. The supernatant was removed, 

and 1% DNase was added and resuspended. The solution was then filtered through a 

40 µm nylon screen and centrifuged at 700 x g for 5 minutes. The supernatant was 

removed, and the pellet resuspended in BME serum media (Fetal Bovine serum, horse 

serum, glucose, glutamine). Cells were counted using a hemocytometer and seeded 

onto 6-well plates (1.5x106 cells/well), 12-well plates (5×105 cells/well), or 96-well plates 

(5x104 cells/well).  Media were changed into serum-free DMEM (B27, N2, sucrose, 

glutamine, PS) after 4 hours. AraC was added (5 µM) after 24 hours to ensure a 

homogenous neural culture. Cells were incubated at 37˚C (5% CO2) with half media 

changes every 2 days. Confluent cultures on day 5 were treated with MG (500 µM) and 

flavonoid (10 µM), or vehicle (0.1% DMSO) for 24 hours. Media and lysates were 

collected and stored at -80˚C.128 

Synthesis of Di-bromomorin 

2-(2,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4H-chromen-4-one (1). To a mixture 

of morin (3.3 mmol) and K2CO3 (33 mmol) in acetone (20% DMF,100 mL) was slowly 

added dimethyl sulfate (33 mmol) at room temperature. The mixture was stirred at room 

temperature for 24 h.  K2CO3 was filtered off and acetone was evaporated. The residue 

was dissolved in EtOAc and washed with H2O and brine and dried over MgSO4. The 
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product was purified by column chromatography (20 % EtOAc in hexane) to give a pale 

yellow solid (90%). 1H NMR (500 MHz, CDCl3); δ 12.67 (s, 1H), 7.36 (d, 1H, J = 8.5), 

6.58 (m, 2H), 6.34 (m, 2H), 3.87 (s, 3H), 3. 84 (s, 3H), 3.83 (s, 3H), 3.77 (s, 3H). 13C 

NMR; δ 178.7, 165.2, 162.9, 162.0, 158.7, 157.4, 156.4, 140.0, 131.6, 112.4, 106.5, 

104.7, 98.8, 97.7, 92.1, 60.5, 55.7, 55.5. 

6,8-dibromo-2-(2,4-dimethoxyphenyl)-5-hydroxy-3,7-dimethoxy-4H-chromen-4-one (2). 

To a solution of a methylated morin (0.28 mmol) in CH2Cl2 was added NBS (0.28 mmol) 

at room temperature. The mixture was stirred at room temperature for 18 h. Additional 

NBS (0.28 mmol) was added and stirred for 5 h. The reaction was washed with water 

and brine. The organic phase was dried over MgSO4 and concentrated. Flash 

chromatography (25 % EtOAc in hexane) was performed on silica gel to give a yellow 

solid (41%). 1H NMR (500 MHz, CDCl3); δ 13.59 (s, 1H), 7.47 (d, 1H, J = 8.0), 6.58 (m, 

2H), 3.96 (s, 3H), 3. 87 (s, 3H), 3.86 (s, 3H), 3.80 (s, 3H). 13C NMR; δ 178.2, 163.4, 

159.5, 159.0, 157.77, 157.7, 151.9, 139.9, 131.9, 111.4, 109.3, 104.9, 100.1, 98.8, 95.1, 

61.0, 60.4, 55.6, 55.5. 

6,8-dibromo-2-(2,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one (Dibromo-

morin). The mixture of pyridine hydrochloride (30 eq.) and a compound 2 (0.096 mmol) 

was heated to 150-160 °C for 4 h with stirring. The reaction was cooled to room 

temperature, acidified by 1 M HCl and extracted with EtOAc. The organic phase was 

washed with water and brine and dried over MgSO4. The crude product was purified by 

column chromatography (silica gel, 10-20% MeOH in CH2Cl2) to give a yellow solid 

(32%).  LC-MS (C15H8Br2O7); [M+2] calc. 460, found 460. 1H NMR (500 MHz, DMSO-d6); 

δ 13.49 (s, 1H), 12.75 (s, 1H), 7.63 (d, 1H, J = 2.0), 6.68 (m, 2H). 13C NMR; δ 176.8, 

163.2, 159.9, 159.2, 157.7, 157.2, 150.8, 138.7, 132.4, 110.4, 108.3, 103.9, 99.1, 98.2, 

94.9.128 
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Morin Nanoparticle Synthesis and Concentration Quantitation  

MNP was synthesized through the use of a synthetic polymer to surround and 

encapsulate morin. Morin in water was intimately mixed with p407 polymer. The solution 

was sonicated and put through a high pressure homogenizer to produce a homogenous 

mixture of particle sizes. MNP size was analyzed via Dynamic Light Scattering. Morin 

(MP biomedicals) used as standard, dissolved in methanol. MNP was centrifuged for 20 

minutes at 20,000 RPM 4˚C, supernatant was removed, and methanol was used to 

resuspend. The concentration of morin in the MNP was determined by a morin standard 

dissolved in methanol. Serial dilutions were added to 96 well plate and absorbance (360 

nm) measured using a BioTek scanner.128 

MTT Cellular Toxicity 

Cerebellar neurons were cultured in 96-well plates as previously described.34,37 At day 5, 

neurons were treated for 24 hours with varying concentrations of morin derivatives (10 

µM – 250 µM) to determine cellular toxicity of the compounds. After 24 hours, media was 

removed and wells were washed with PBS. MTT was added to each well (0.5 mg/mL) 

and incubated at 37˚C for one hour. DMSO was added to the wells, and plate was 

placed on a shaking incubator for 30 minutes. Absorbance (570 nm) of MTT was 

measured using BioTek scanner (Winooski, VT).128 

SDS-PAGE Western Blot 

Media was removed from 6-well plates and wells were washed with ice cold PBS. RIPA 

buffer (25 mM tris, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Na deoxycholate, 1% 

triton x-100, 3% glycerol) with protease and phosphatase inhibitors (Thermo-Fisher) 

were added to each well and rocked on ice for 15 minutes. Cells were scraped from the 

well, briefly sonicated, and centrifuged at 15,000 RPM for 10 minutes. The supernatant 
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was removed. Protein concentration was quantified using a Pierce BCA assay (Thermo 

Fisher) to ensure equal loading. Cell lysate, b-Me, and lamelli dye were heated at 90 C 

for 5 minutes. Lysates were loaded into a 4-20% PAGE SDS gel (BioRad), and run at 

100 V for 40 minutes. The gels were removed and washed, and transferred onto a PVDF 

membrane at 75 V for 2 hours. Blots were washed with TBST, and blocked for one hour 

at RT in TBST containing 5% bovine serum albumin. Blots were washed and conjugated 

with primary antibody (directed towards: Glo-1, Glo-2, Nrf2, HO-1, IkB-a, P-IKK, IKKa/ß, 

ß-actin) in 5% BSA, rocking overnight at 4˚C. Blots were washed with TBST, and 

conjugated with appropriate secondary antibodies in TBST containing 5% BSA for one 

hour at room temperature. Blots were washed and imaged using Western Dura Super 

Signal (Thermo Fisher) on an Azure C600 imager (Azure Biosystems, Dublin, CA). 

Densiometric analysis was performed with ImageJ (Madison, WI).128 

ROS Detection 

Cerebellar primary neurons were cultured in 96-well plates as previously described.180 

Cells were treated with morin, DBM, or MNP [10 µM] for 24 hours, and then additionally 

treated with MG [500 µM] for 24 hours. Media was removed, cells were washed with 

PBS, and incubated with 1 µM CM-H2DCF-DA (Life Technology) in EBSS in dark at 37 

˚C for 30 minutes.  Fluorescence was recorded at 485 nm excitation and 520 nm 

emission on a BioTek scanner.128 

Immunocytochemistry 

Cerebellar primary neurons were cultured in 96-well plates as previously described,34,37 

Cells were treated with MG [500 µM] for 24 hours, and then additionally treated with 

morin, DBM, or MNP [10 µM] for 24 hours,. Media was removed, wells were washed with 

PBS, cells were fixed for 30 minutes with a 30% sucrose solution containing 4% PFA, 

and washed. Cells were solubilized for 10 minutes with PBS containing 0.1% Triton X-
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100, and washed with PBS. Cells were blocked for 1 hour at room temperature with PBS 

containing 2% BSA. Blocking solution was removed, and cells incubated overnight at 

4˚C with PBS containing 2% BSA and primary antibodies directed towards NeuN, 

cleaved caspase-3, VGLUT1, GAD65, and MAP2. Wells were washed with PBS and 

incubated with the appropriate fluorescent conjugated secondary antibodies at room 

temperature for 1 hour. Wells were washed, covered with DAPI stain [1 µg/mL] for 10 

seconds, washed and aspirated. Prolong Gold Antifade (Thermo Fisher Scientific, MO) 

was added directly to each well, and allowed to cure in the dark overnight. Plates were 

imaged on CLS Operetta confocal microscope (PerkinElmer, Waltham MA). Statistical 

analysis was performed through quantification of fluorescence normalized to the number 

of DAPI positive cells.128 

Glyoxalase Activity 

Cerebellar primary neurons were cultured in 12-well plates as previously described, 34,37 

After MG and morin derivative treatment, media was removed, and cells rinsed with 

PBS. Cells were lysed with buffer (10 mM HEPES, 0.02% Triton X-100, and 100 μg/mL 

BSA), briefly sonicated, and centrifuged. Reaction solution (60 mM sodium phosphate, 4 

mM GSH, and 4 mM MG) in a 96 well plate was briefly incubated, followed by addition of 

cell lysates. S-lactoylglutathione synthesis was determined by measuring absorbance 

(240 nm) on a BioTek scanner. Protein concentration was determined using a BCA 

protein assay reagent kit.128 

D-Lactate Concentration 

D-Lactate released into the extracellular space was measured spectrophotometrically 

using collected cell media.34,37 Culture media samples were loaded on a 96-well plate 

with 0.2 M glycine and semicarbazide buffer containing 2 mg/mL NAD and 40 U/mL D-

lactate dehydrogenase. Samples were incubated at room temperature for 2 hours. A 
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spectrophotometer (340 nm excitation, 450 nm emission) was used to measure 

conversion of NAD to NADH. Absolute values were determined from a standard curve of 

D-lactate concentrations.128 

Methylglyoxal Concentration 

MG concentration in cerebellar neuron cultures was determined using 

dinitrophenylhydrazine (2,4-DMNPH).34,169 The reaction consisted of 0.2 mM 2,4-

DMNPH with 1 mM MG and previously collected culture media. Samples were heated in 

a thermomixer at 42 °C for 45 mins and 600 rpm. Spectrophotometer measurements 

were performed at 432 nm, according to absorbance of MG-bis- 2,4-DMNPH-hydrazone 

for calculating concentration of MG.128 

Caenorhabditis Elegans Strains and Maintenance 

Caenorhabditis elegans (C. elegans) were cultured as previously described.181 C. 

elegans were maintained on nematode growth medium (NGM) plates [Bacto Agar 1.7%, 

Bacto Tryptone 0.25%, NaCl 50 mM, KPO4 25 mM, CaCl2 1 mM, MgSO4 1 mM, and 

cholesterol 5 µg/mL], or in liquid S media [5.85 g NaCl, 1 g K2HPO4, 6 g KH2PO4, 1 ml 

cholesterol (5 mg/ml), 10 ml 1 M potassium citrate pH 6, 10 ml trace metals solution, 3 

ml 1 M CaCl2, 3 ml 1 M MgSO4] at 20 Cº. A single colony of E. coli OP50 was cultured in 

LB media to OD 0.1, and 100 µL of was spread on NGM plates and incubated overnight 

at 37 ºC. Synchronous L1 nematodes were added to NGM plates for experiments. C. 

elegans cultures were washed and collected from starved NGM plates, and added 

biweekly to fresh NGM plates with OP50.128 

Culture Synchronicity  

Synchronous populations of L1 C. elegans were obtained by bleaching as previously 

described.181  NGM plates were washed with M9 media, and cultures collected for 



 54 

centrifugation (200 g, 2 min at 25ºC). The supernatant was removed, pellet washed with 

M9 media, and recentrifuged. After removing supernatant, 2 mL of a bleaching solution 

(2 mL of 8% bleach, 200 µL of 10M NaOH , and 8 mL H2O) was added for 7 minutes, 

with gentle agitation every minute. Cultures were checked under a microscope to ensure 

all adult worms died. M9 media was added to cultures to stop the reaction. The solution 

was centrifuged (400 gx3 mins at 25º), supernatant removed, pellet washed, and 

recentrifuged. The eggs were resuspended in S media, and allowed to gently rock for 24 

hours until eggs hatched. An equal amount of L1 nematodes were added to plates with 

M9 media for culturing. 5-Fluoro-2'-deoxyuridine (FUdR) was added to cultures on the 

first day of adulthood to sterilize and prevent egg laying of gravid adults.128 

Morin Derivative Treatment 

Morin derivatives were dissolved in DMSO at a final concentration of 0.1%, and added to 

freshly poured NGM plates at a concentration of 100 µM. MG was added directly to 

freshly poured NGM plates at a concentration of 1 mM. All NGM plates contained FUdR 

[250 µM] to prevent egg laying. Age synchronized L4 C. elegans were added to NGM 

drug treatment plates that were changed biweekly.128 

Statistics 

All experiments were performed in triplicate, with values are presented as the mean +/- 

SEM. Significance was determined by Student t-test, with p<0.05 being statistically 

significant. # denotes statistical significance between the non MG-treated control and 

MG-treated control; * denotes statistical significance between the MG-treated morin 

derivatives and MG-treated control; + denotes statistical significance between non MG-

treated control and non MG-treated morin derivatives; & denotes statistical significance 

between morin and morin derivatives. Data were evaluated using Excel and SPSS.128  
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RESULTS 

Synthesis of DBM and MNP 

DBM was synthesized through 

a series of reactions involving 

protection, bromination and 

deprotection of morin (FIG 3-

1A). Molecular structure was 

confirmed through 1H-NMR and 

MS/MS analysis (FIG 3-1B). 

Nanoparticles are small 

particles (less than 1000 nm) 

composed of an active 

chemical compound 

encapsulated in a polymer in a 

colloid solution.182,183 

Characterization of the MNP 

occurred through dynamic light 

scattering (DLS) to determine 

the size, polar surface area, 

and charge distribution. The size was determined to be ~415 nm with PDI 0.4, indicating 

a homogenous concentration of nanoparticles. The concentration of morin encapsulated 

in the nanoparticle was determined to be 3 mM, or 80%, by comparison with a standard 

curve of morin concentrations.  

 
 

 
 

FIGURE 3-1: SYNTHESIS OF DBM.  

 
DBM was synthesized from morin (A), and identified 
through 1H-NMR (B). 
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Toxicity of Morin Derivatives  

An MTT assay was performed in cerebellar neurons to determine the toxicity of morin, 

DBM, MNP (FIG 3-2). All morin compounds exhibited low toxicity at concentrations up to 

100 µM, and only the MNP exhibited significant toxicity only at extremely high doses 

[250 µM].128 We determined the appropriate treatment condition to be 10 µM.  

 
FIGURE 3-2: TOXICITY OF MORIN DERIVATIVES.  
 
The toxicity of morin derivatives were determined through an MTT assay.  Cultured 
neurons were treated with a range of doses [0-250 µM] of morin, DBM, and MNP. 
Survival was determined 24 hours after treatment. 
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Morin derivatives increase GP function and detoxification of MG 

Addition of MG to cerebellar neuron cultures resulted in significant elevation of MG 

(#p<0.05) compared to the control, however morin, DBM, and MNP significantly (*p<0.05) 

decreased the concentration of MG compared to the MG treated control (Figure 3-3A). 

Treatment with MG significantly (#<0.05) elevated D-lactate concentration compared to 

the control, similarly morin, DBM, and MNP significantly (*p<0.05) elevated the 

concentration of D-lactate compared to the MG treated control (Figure 3-3B). The 

production of ROS was significantly (##p<0.01) increased by treatment with MG compared 

to the control, but morin, DBM, and MNP significantly (**p<0.01) reduced the production 

of ROS compared to the MG treated control (Figure 3-3C). The activity of Glo-1 (mU/µg) 

 
 
FIGURE 3-3: GP AND ANTIOXIDANT FUNCTION IN CEREBELLAR NEURONS.  

 
Morin derivative treatments on MG (A), D-lactate (B), Glo-1 protein activity (measured in mU/µg 
protein) (C), ROS production (D), and GSH (E). Results are the mean +/- SEM of experiments 
performed in triplicate. #p<0.05, ##p<0.01, control compared to the MG-treated control; *p<0.05, 
**p<0.01 morin derivative and MG-treated compared to MG treated control; +p<0.05 morin derivative 
treated compared to non MG-treated control. 
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was significantly (*p<0.05) elevated in MG insulted cells treated with morin, DBM, and 

MNP compared to the MG treated control (Figure 3-3D). Cerebellar neurons insulted with 

MG exhibited significantly decreased GSH (#p<0.05) compared to the control, and 

treatment with morin, DBM, and MNP significantly (*p<0.05) elevated the concentration of 

GSH compared to the MG-treated control (Figure 3-3E). In the non-MG treated conditions, 

morin, DBM, and MNP significantly (*p<0.05) elevated GSH compared to the control.   
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Morin derivatives increase expression of glyoxalase pathway proteins 

Cerebellar neurons insulted with MG had significantly (#p<0.05) lowered expression of 

Glo-1 compared to the control, while treatment with morin, DBM, and MNP significantly 

(*p<0.05) elevated expression of Glo-1 in MG insulted cells (Figure 3-4A). MG treatment 

significantly (#p<0.05) reduced expression of Glo-2 compared to the control, while 

 

 
 

FIGURE 3-4: PROTEIN EXPRESSION IN CEREBELLAR NEURONS. 

 
Morin derivative treatments in expression of Glo-1 (A) and Glo-2 (B); Nrf2 (C) and HO-1 (D); IKKa 
(E), p-IKKa (F), and IκBa (G). Images are from representative Western blots. Results are the mean 
+/- SEM of experiments performed in triplicate. #p<0.05, ##p<0.01, control compared to MG treated 
control; *p<0.05, **p<0.01 morin derivative and MG treated compared to MG treated control; +p<0.05 
morin derivative treated compared to control. &p<0.05 DBM compared to morin. 
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treatment with morin, DBM, and MNP significantly (*p<0.05) elevated expression of Glo-2 

in MG insulted cells (Figure 3-4B). 

Morin derivatives increase expression of antioxidant proteins  

Cells produce cytoprotective proteins in response to elevated OS to counteract the 

presence of inflammatory compounds. Nrf2 is a primary protein involved in antioxidant 

response, and It functions as a transcription factor interacting with the antioxidant 

response element (ARE) to induce the expression of other cytoprotective proteins. Heme-

oxygenase-1 (HO-1) is another protein involved in antioxidant response that is expressed 

under states of OS to prevent the accumulation and damaging effects of inflammatory 

compounds. In MG insulted cells, treatment with morin, DBM, and MNP significantly 

(**p<0.01) elevated the expression of both Nrf2 (Figure 3-4C) and HO-1 (Figure 3-4D). 

Cells insulted with MG exhibit activation of antioxidant response, including expression of 

Nrf2 (Figure 3-4C). Morin, DBM, and MNP significantly (*p<0.05, **p<0.01) elevated the 

expression of Nrf2 and HO-1. 

Morin derivatives inhibited activation of NF-kB signaling pathway 

Activation of NF-kB causes its translocation to the nucleus, where it functions as a 

transcription factor for the expression of apoptotic proteins.123,152,161 In its inactive form, it 

is bound in the cytoplasm to the IkBa complex.123,152,161 Continued interaction with IkBa 

protein IKKa causes NF-kB to be retained in the cytoplasm and degraded. 123,152,161 MG 

treatment significantly elevated P-IKKa (*p<0.05) compared to the control (Figure 3-4F). 

We observed a significant decrease in P-IKKa in MG insulted cells upon treatment with 

morin(*p<0.05), DBM(*p<0.05), and MNP(*p<0.05). There was a significant increase in 

IkBa in MG insulted cells treated with morin(*p<0.05), DBM(*p<0.01), and MNP(*p<0.05) 
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compared to the MG treated control, and a significant increase upon treatment with DBM 

(&<0.05) compared to morin (Figure 3-4G).  
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Morin derivatives prevent MG-mediated caspase activation and apoptosis 

NF-kB pathway mediated apoptosis occurs with the activation of cell death caspases. 

Activation of caspase-3 causes it to be cleaved, inducing a signaling cascade that results 

in apoptosis. Addition of MG to cerebellar neuron cultures lead to a significant (##p<0.01) 

increase in the amount of cleaved caspase-3 positive cells (FIG 3-5). In MG insulted cells, 

 

 
FIGURE 3-5: APOPTOSIS IN CEREBELLAR NEURONS.  
 
Morin derivative treatments in MG insulted cells measured by the percentage of cleaved caspase-3 
positive cells (B). Representative images are shown (A). Results are the mean +/- SEM of 
experiments performed in triplicate. #p<0.05, ##p<0.01, control compared to MG-treated control; 
*p<0.05, **p<0.01 MG treated control compared to MG treated morin derivatives, &p<0.05 DBM 
compared to morin. 
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we witnessed significant decrease in caspase positive cells with treatment of morin 

(*p<0.05), DBM (**p<0.01), and MNP (*p<0.05). There was a significant decrease in 

cleaved caspase-3 positive cells in treatment with DBM (&<0.05) compared to morin.  
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Morin derivative treated neurons retained inhibitory neurotransmitter function  

GAD65 is the protein responsible for synthesis of GABA - the primary inhibitory 

neurotransmitter- through decarboxylation of glutamic acid or glutamate. Cerebellar 

 
 

 
FIGURE 3-6: INHIBITORY NEUROTRANSMITTER FUNCTION.  
 
Representative confocal images (A) and graphs of morin derivative treatments in MG 
insulted neurons of GAD65 (B). Results are the mean +/- SEM of experiments 
performed in triplicate. Fluorescence was normalized to amount of DAPI positive cells, 
with representative images shown. #p<0.05, ##p<0.01, control compared to MG treated 
control; *p<0.05 significant difference between MG treated control and MG treated 
morin derivatives. 
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neurons insulted with MG exhibited significant decrease in GAD65 compared to the 

control. MG insulted cells treated with morin exhibited significant elevation in GAD65 

(*p<0.05), DBM significantly elevated GAD65 (*p<0.05), MNP significantly elevated 

GAD65 (*p<0.05) (FIG 3-6B). Representative confocal images are shown (FIG 3-6A).  
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Morin derivative treated neurons retained excitatory neurotransmitter function. 

VGLUT is the protein involved in glutamate transport from neural vesicles, it is 

responsible for shuttling glutamate from neural synapses. Buildup of glutamate in 

 
 

 
FIGURE 3-7: EXCITATORY NEUROTRANSMITTER FUNCTION.  

 
Representative confocal images and graphs of morin derivative treatments in MG insulted 
neurons of VGLUT. Results are the mean +/- SEM of experiments performed in triplicate. 
Fluorescence was normalized to amount of DAPI positive cells, with representative images 
shown. #p<0.05, ##p<0.01, control compared to MG treated control; *p<0.05, **p<0.01 MG 
treated control compared to MG treated morin derivatives, &p<0.05 MNP compared to 
morin. 
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neurons is cytotoxic and induces apoptosis, and expression of VGLUT allows for 

glutamate to be transported from neurons. Cerebellar neurons insulted with MG 

exhibited significant decrease in VGLUT (FIG 3-7B) compared to the control. There was 

a significant increase in VGLUT expression in MNP (&p<0.05) treated cells compared to 

morin. Representative confocal images are shown (FIG 3-7A).  



 68 

Morin derivatives elevate expression of synaptic structural proteins. 

Microtubule-associated protein 2 (MAP2) is a structural protein involved in neurite and 

dendritic branching, and is involved in interneuron signaling. Cerebellar neurons insulted 

 

 
 
FIGURE 3-8: SYNAPTIC STRUCTURAL PROTEIN EXPRESSION. 

 
Representative confocal images (A) and graphs (B) of MAP2 in morin derivative 
treatments in MG insulted neurons. Results are the mean +/- SEM of experiments 
performed in triplicate. Fluorescence was normalized to amount of DAPI positive 
cells, with representative images shown. #p<0.05, control compared to MG treated 
control; *p<0.05, **p<0.01 MG treated control compared to MG treated morin 
derivatives, &p<0.05 DBM and MNP compared to morin. 
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with MG exhibited significant decrease in MAP2 (FIG 3-8B) compared to the control. MG 

insulted cells treated with morin exhibited significant elevation in MAP2 (*p<0.05); DBM 

significantly elevated MAP2 (*p<0.05); MNP significantly elevated MAP2 (*p<0.05). DBM 

(&p<0.05) and MNP (&p<0.05) significantly increased MAP2 expression compared to 

morin. Representative confocal images shown (FIG 3-8A) .
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Morin derivatives extend lifespan of C. elegans 

Morin, DBM, and MNP were utilized to treat C. elegans strains N2 (FIG 3-9B), CL2006 

(AD model overexpressing Aβ, (FIG 3-9C), and VC343 (Glo-1 knockdown) (FIG 3-9D). 

The average lifespan of morin treated C. elegans was significantly higher than the control 

at days 17 (**p<0.01), 21 (**p<0.01), 25 (**p<0.01), and 29 (*p<0.05); The lifespan of DBM 

treated C. elegans was significantly higher than the control at days 17(**p<0.01), 

21(**p<0.01), 25(**p<0.01), and 29(**p<0.01); The lifespan of MNP treated C. elegans 

was significantly higher than the control at days 17(**p<0.01), 21(**p<0.01), 25(**p<0.01), 

and 29(*p<0.05).  

 
 

FIGURE 3-9: C. ELEGANS LIFESPAN EXTENSION.  

Morin, DBM, and MNP were utilized to treat N2 (B), CL2006 (C), and VC343 (D) strains of 
C. elegans, to determine the effect on lifespan. Morin, DBM, and MNP resulted in 
significantly extended lifespans compared to the controls. Results are the mean +/- SEM of 
experiments performed in at least triplicate. *p<0.05, **p<0.01 compared to control. 
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DISCUSSION 

Proper functions of neural cells are heavily reliant upon GP detoxification of MG, to 

prevent production of AGEs, ROS, and pro-inflammatory signaling molecules.20,21,97 

Conversion of hemithioacetal to S,D-lactoylglutathione by Glo-1 is the rate limiting step 

in the GP, and Glo-1 function is influenced by the expression levels of the protein and its 

enzymatic activity.20,21,97 Therefore, modulating Glo-1 expression influences the activity 

of the GP and impacts the levels of cellular OS and inflammation.20,21,97 Reducing Glo-1 

expression results in elevated OS-mediated damage to cells and tissues. 44 Mice 

transduced with Glo-1 siRNA showed accumulation of MG and AGEs in neural tissue, 

and exhibited cognitive and behavioral dysfunction, and Glo-1 KO mice showed 

significantly elevated concentrations of MG and AGEs.153 Glo-1 KO in mammalian 

Schwann cells exhibited increased toxicity to MG and elevated levels of GSSG, with the 

decrease in GSH/GSSH ratio corresponding to a decrease in Glo-1 activity, and 

elevated MG and AGEs.45 Elevating Glo-1 through gene transduction reduced protein 

and lipid glycation, and attenuated cognitive dysfunction in rats, and reduced markers of 

apoptosis in H2O2 mediated OS in mouse hippocampal cells.48 42  

The activity of flavonoids is influenced by structural characteristics, and antioxidant 

activity was found to be highest in structures that contained: di-hydroxylated B ring, a C 

ring containing a C2=C3 double bond and C4=O, and hydroxyl groups at C3 and C5.118  

Morin and quercetin both contain all these structures, and performed better as 

antioxidants than flavonoids naringenin and pinocembrin, which lack a C2=C3 bond.118 

The only structural variation between quercetin and morin is the configuration of -OH 

groups on the C ring, with quercetin possessing a 3’, 4’ configuration instead of the 2’, 4’ 

in morin.118  Flavonols are distinguished from other flavonoids by containing a C2=C3 
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bond, 4C=O keto group, and a hydroxyl group at C3.184  A critical aspect of antioxidant 

activity is influenced by the number and position of -OH groups; flavonol -OH groups aid 

in binding interactions and stabilization with proteins and nucleic acids.185 Flavonoids 

function as direct anti-AD agents through their ability to bind and prevent the fibrillation 

of Ab proteins.119 Destabilizing the amyloid fibrils can disrupt their aggregation into Ab 

plaques, leading to decreased toxicity and elevated clearance.119 The effectiveness of 

Ab fibrilization inhibition was influenced by the ketone structure, and the presence of 

hydroxyl groups - with dihydroxy structures more effective than monohydroxy.184184,185 

Chemical substitutions at the site of -OH drastically reduced inhibition activity. 184184,185 

Flavonol morin exhibited anti-Ab activity by binding to amyloid fibrils and reducing the 

rate of polymerization.119 The bioavailability of flavonols – mediated by the presence and 

position of hydroxyl groups - allows for penetration through the BBB to reach critical 

areas of the brain where Ab formation occurs.119 The mechanism of flavonol interaction 

with Ab occurs through hydrogen bonding of flavonol hydroxyl and carbonyl groups with 

the amine groups present on Ab peptides.119 These interactions disrupt the peptide 

structure of Ab, preventing the formation of a-helices and b-sheets present in Ab 

plaques.119 Therefore, the presence of multiple hydroxyl groups on flavonols makes 

them more adept at interaction and disruption of the Ab structure.119,184 An increasing 

molar ratio of flavonol morin to Ab resulted in a change of the tertiary structure of Ab, 

caused by the intercalation of flavonols into the Ab structure.119  
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In this report we show that morin derivatives are capable of increasing the activity of the 

GP. During states of OS, the GP is activated and elevates the transcription and 

expression of its constituent proteins.22,64 Cerebellar neurons insulted with MG and 

treated with morin, DBM, and MNP exhibited significantly elevated levels of GSH, Glo-1, 

and Glo-2 compared to the MG treated controls. Treatment with morin derivatives also 

significantly elevated Glo-1 activity, indicative of efficient and continuous GP activation. 

In agreement with this, morin derivative treated cells had low levels of MG and ROS, and 

elevated D-lactate, evidence of robust GP activity. Accumulation of MG induces an 

inflammatory response and apoptosis, causing the death of neural cells and dysfunction 

of normal cellular processes.9,10,15 Cerebellar neurons treated with MG exhibited 

impaired neurotransmitter function, VGLUT1 and GAD65 – markers of excitatory and 

inhibitory neurotransmission, respectively – were reduced upon treatment with MG. In 

MG-insulted cells treated with morin, DBM, and MNP, this loss of neurotransmitter 

activity was attenuated. VGLUT functions to shuttle glutamate out of cell, and a 

reduction in VGLUT results in cellular glutamate accumulation, causing excessive Ca+2 

influx and apoptosis.5,23,55  GAD65 decarboxylates glutamic acid into GABA, and reduced 

GAD65 causes a shift in the balance of excitatory and inhibitory neurotransmission, 

which can lead to inflammation and apoptosis. 4,53,54 Morin derivatives were able to 

effectively preserve both excitatory and inhibitory neurotransmitter function. MAP2 is a 

structural membrane protein involved in outgrowth of neurites and dendritic branching, 

and it is essential for growth and connectivity of the neural network. 4,53,54  MG treatment 

significantly reduced expression of MAP2 in cerebellar neurons, but this reduction was 

attenuated by treatment with morin, DBM, and MNP. Morin derivatives exhibited the 

ability to retain neural growth and protect mechanisms of neural signaling even under 

states of extreme OS. Nrf2 is the primary transcription factor that binds and activates 

ARE, leading to the expression of antioxidant proteins including HO-1, GSH, Glo-1, and 
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Glo-2. 129,144,146 Under a state of MG-mediated OS, morin derivatives induced the 

expression of cytoprotective proteins, significantly elevating expression of Nrf2 and HO-1 

compared to cells only treated with MG. Treatment with morin, DBM, and MNP 

significantly elevated the expression of Nrf2 and HO-1 compared to cells treated with 

MG alone. The NF-κB  pathway is activated in response to cellular stress, and induces 

apoptosis (FIG 3-10). 123,152,161 Inactive NF-κB  proteins are located in the cytoplasm, 

where they are bound by IκB of the IKK complex. 123,152,161 High levels of inflammation 

and OS trigger ROS and cytokines to bind and activate the IKK complex. 123,152,161 After 

activation, IKK phosphorylates IKB and it is ubiquitinated and degraded, allowing NF-κB  

to undergo nuclear translocation. 123,152,161 NF-κB  interacts with transcription factors and 

induces the expression of apoptotic proteins. 123,152,161 Treatment with MG increased the 

production of ROS in cerebellar neurons, and significantly elevated the levels of p-IKKα. 

These neurons also had a significant reduction in IκBα, indicating it was degraded, and 

 
 

FIGURE 3-10: ACTIVATION OF NF-ΚB PATHWAY.  

 
The NF-κB protein complex is bound in the cytoplasm by IκB. MG/ROS bind and activate IKK, 
which phosphorylates IκB and targets it for degradation. NF-κB proteins are translocated to 
the nucleus and induce gene transcription and protein expression. 
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subsequently unbound from NF-κB. The MG treated neurons exhibited significantly 

elevated cleaved caspase-3 through immunocytometric analysis. Conversely, the 

neurons treated with MG and morin derivatives had significantly lower levels of ROS, 

and P-IKKα levels similar to the non-MG treated controls. Morin derivative treated 

neurons also expressed IκBα levels significantly higher than the MG treated control. This 

is evidence that the IκB complex is still bound to cytoplasmic NF-κB. The inactivation of 

NF-κB  is evidenced by the significantly lower cleaved caspase-3 found in the morin 

derivative treated cells. These results indicate that morin’s anti-inflammatory and anti-

apoptotic mechanisms are mediated by activation of the cellular protective Nrf2, and 

inhibiting the activation of the NF-κB  signaling pathways.  
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The use of model organisms for determining effect of anti-aging agents is an important 

tool for elucidating the function of antioxidant ability.186 The use of an in vivo model 

system of C. elegans is useful for aging studies because of their relative ease of ability 

to culture, rapid propagation, and genetic homology to humans, and their short lifespan 

makes them an ideal species to study diseases associated with aging (FIG 3-11). 186,187 

Isolating adult worms from their progeny is important to properly evaluate changes in 

lifespan and aging. We found that treatment of CL2006 with all three flavonoid 

compounds lead to a significant increase in their lifespan. While we did not investigate 

 
 
 

FIGURE 3-11: C. ELEGANS LIFECYCLE.  
 
C. elegans must be separated from progeny for accurate measurement of lifespan. 
Adult C. elegans plated on NGM lay eggs, and are collected. Washing in a bleach 
solution kills the gravid adults. Eggs are added to NGM plates with FUdR to prevent 
progeny, resulting in a population of age-synchronized worms, which are used for 
lifespan analysis. 

Gravid adults 
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the mechanism of lifespan extension, it is known that flavonoid treatments induce the 

expression of antioxidant and cytoprotective proteins.30,186-188  

To improve on the inherent antioxidant capacity of flavonoids, we utilized the versatility of 

halogen bonding to synthesize a brominated morin derivative, and formulated a morin 

encapsulated nanoparticle. Our hypothesis was confirmed, evidenced by the increased 

ability of DBM and MNP - compared to the parent compound - to prevent MG-mediated 

OS through enhancement of the neural GP. DBM and MNP treatment increased 

detoxification of MG, evidenced through elevated expression of Glo-1 and Glo-2, and 

increased Glo-1 protein activity. These results were in parallel to increased D-lactate and 

reduced production of ROS. Neurons exhibited a reduction in caspase-mediated 

apoptosis, retained both excitatory and inhibitory neurotransmitter function, and exhibited 

increased dendritic branching. This elevated antioxidant activity was mediated by 

activation of the Nrf2 pathway and suppression of apoptotic NFkB signaling. The lifespan 

of DBM or MNP treated C. elegans (CL2006) was significantly higher than the untreated 

control confirming their potential as CNS drug.  
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CHAPTER 4: CANNABIDIOL ENHANCES NEURAL 

GLYOXALASE PATHWAY AND IMPROVES LIFESPAN IN 

C. ELEGANS   
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INTRODUCTION 

The effect of secondary plant metabolites 

and naturally-produced compounds have 

been targeted for AD therapeutics, with 

recent focus on phytocannabinoids as 

anti-AD agents.51,92,116,138,189-191 

The Cannabis Sativa (C. sativa) plant 

has been used for its medicinal 

properties for thousands of years, and 

recent scientific advances have 

elucidated the mechanism of the plants’ chemical compounds.189-196 C. sativa produces 

over 100 phytocannabinoids in addition to terpenes, flavonoids, and other polyphenols, 

with these secondary plant metabolites possessing a range of biological activity, 

including antioxidant, anti-inflammatory, and anti-apoptosis.189-191,194,195,197 Cannabidiol 

(CBD) is one of the primary phytocannabinoids produced by the plant, and it possesses 

a myriad of medical and therapeutic uses (FIG 4-1).154,195,198-205 CBD possesses 

structural characteristics – similar to our previously investigated flavonoids - that impart it 

with antioxidant activity, most importantly the linked heterocyclic rings and number and 

position of hydroxyl groups.154,199,204 

 In this chapter, we are the first to investigate CBD’s influence on the GP. This chapter 

also investigates the influence of CBD of glyoxalase 3 (Glo-3) – also known as DJ-1 – as 

 
 

FIGURE 4-1: CBD STRUCTURE. 
 
The chemical structure of non-psychoactive 
phytocannabinoid CBD. 
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an alternate mechanism of MG detoxification (FIG 4-2).206,207 While the function of Glo-1 

and Glo-2 have been elucidated through our previous works, the effect of Glo-3 has not 

been thoroughly investigated, however Glo-3 is thought to function during chronic states 

of OS during which diminished levels of GSH prevent efficient activity of Glo-1 and Glo-

2.206 We hypothesize that CBD exerts GP enhancing activity mediated by modulation of 

cellular signaling pathways, including Nrf2 and NF-kB. CBD is well documented as a 

potent antioxidant compound, and we aimed to elucidate its anti-inflammatory 

mechanism and function.154,197,199,202-204 We utilized multiple models of AD including 

primary mouse cerebellar neurons and genetically modified C. elegans to investigate the 

effect of CBD on the GP. We determined CBD - like other plant produced compounds - 

is neuroprotective and induces an antioxidant response mediated by Nrf2, which causes 

the expression of cytoprotective proteins and inhibits the activation of apoptotic NF-kB 

 
 

FIGURE 4-2: GLYOXALASE PATHWAY PROTEINS.  
 
The GP consists of sequential reactions that results in the detoxification of carbonyl 
compounds primarily MG. Glo-1 and Glo-2 are involved in the GSH-mediated 
nonenzymatic neutralization of MG. Protein Glo-3 is involved in direct detoxification of 
MG in a GSH-independent manner.  
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signaling. Through multiple models of MG-mediated OS in AD, utilizing in vitro cerebellar 

mouse neurons and in vivo C. elegans, we investigate the effect of CBD on the GP.   
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MATERIALS AND METHODS 

Care and use of animals  

Animal studies were approved and performed in accordance with the UNMC Institutional 

Animal Care and Utilization Committee (IACUC). C57BL/6 mice breeding pairs were 

obtained from The Jackson Laboratory (Bar Harbor, ME). C. elegans strains N2 (Bristol), 

VC343 (glod-4(gk189)), and GRU102 (dvls2), VH725, and Escherichia coli OP50 were 

purchased from the Caenorhabditis Genetics Center (CGC) at the University of Minnesota 

(MN, USA). 

Chemicals and compounds 

CBD was purchased from Cayman Chemical Company (Ann Arbor, MI). Sodium D-lactate 

was purchased from Santa Cruz Biotechnology (Dallas, TX). Lactate dehydrogenase was 

purchased from US Biological (Salem, MA). Poly-D-lysine hydrobromide, β-nicotinamide 

adenine dinucleotide hydrate, methylglyoxal, 5-fluorodeoxyuridine, and 2,4-

Dinitrophenylhydrazine were purchased from Sigma Aldrich (St. Louis, MO). Antibodies 

used were B-Actin (sc-47778), MAP-2 (sc-32791), caspase-3 p17 (sc-373730), HO-1 (sc-

390991), GAD-65 (sc-377145), Nrf2 (sc-81342), Glyoxalase I (sc-133214), Glyoxalase II 

(sc-166781), m-IgGk BP-HRP (sc-516102), m-IgGk BP-CFL 488 (sc-516176), m-IgGk 

BP-CFL 555 (sc-516177) from Santa Cruz Biotechnology (Dallas, TX); DJ-1 (5933), P-Akt 

(4060), IKKa (11930S), IkBa (4812S), P- IKKa (2697S) from Cell Signaling Technology 

(Danvers, MA); VGLUT1 (AB5905), NeuN (MAB377) EMD Millipore (Temecula, CA). 

Unless otherwise noted, chemicals for this study were purchased from Thermo Fisher 

Scientific (Fair Lawn, NJ). 

 

 



 83 

Primary Cell Culture 

Cerebellar neurons were harvested from P3 C57/BL6 (Jackson Labs) as previously 

described. Corning plates were left under UV light for 30 mins, and poly-D-lysine HBr (MP 

Biomedicals) was added to wells (150 µg/mL) for 3 hours. Wells were washed three times 

with endonuclease-free water. The brains were removed via cervical dissection. The 

cerebellum was isolated, and the veins and meninges were removed. The tissue was 

treated with 2.5% trypsin for 15 minutes. The trypsin was removed, and 1% 

deoxyribonuclease was added and tissue was pipetted gently to form a homogenous 

mixture. Cells were centrifuged at 700 x g for 5 minutes. The supernatant was removed, 

and 1% DNase was added and resuspended. The solution was then filtered through a 40 

µm nylon screen and centrifuged at 700 x g for 5 minutes. The supernatant was removed, 

and the pellet resuspended in BME serum media (Fetal Bovine serum, horse serum, 

glucose, glutamine). Cells were counted using a hemocytometer and seeded onto 6-well 

plates (1.5x106 cells/well), 12-well plates (5×105 cells/well), or 96-well plates (5x104 

cells/well).  Media were changed into serum-free DMEM (B27, N2, sucrose, glutamine, 

PS) after 4 hours. AraC was added (5 µM) after 24 hours to ensure a homogenous neural 

culture. Cells were incubated at 37˚C (5% CO2) with half media changes every 2 days. 

Confluent cultures on day 5 were treated with MG (500 µM) and flavonoid (10 µM), or 

vehicle (0.1% DMSO) for 24 hours. Media and lysates were collected and stored at -80˚C. 

MTT cellular toxicity 

Cerebellar neurons were cultured in 96-well plates as previously described. At day 5, 

neurons were treated for 24 hours with varying concentrations of CBD (10 µM – 250 µM) 

to determine cellular toxicity of the compounds. After 24 hours, media was removed and 

wells were washed with PBS. MTT was added to each well (0.5 mg/mL) and incubated at 

37˚C for one hour. DMSO was added to the wells, and plate was placed on a shaking 
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incubator for 30 minutes. Absorbance (570 nm) of MTT was measured using BioTek 

scanner (Winooski, VT). 

SDS-PAGE Western Blot 

Media was removed from 6-well plates and wells were washed with ice cold PBS. RIPA 

buffer (25 mM tris, 150 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Na deoxycholate, 1% triton 

x-100, 3% glycerol) with protease and phosphatase inhibitors (Thermo-Fisher) were 

added to each well and rocked on ice for 15 minutes. Cells were scraped from the well, 

briefly sonicated, and centrifuged at 15,000 RPM for 10 minutes. The supernatant was 

removed. Protein concentration was quantified using a Pierce BCA assay (Thermo Fisher) 

to ensure equal loading. Cell lysate, b-Me, and lamelli dye were heated at 90 C for 5 

minutes. Lysates were loaded into a 4-20% PAGE SDS gel (BioRad), and run at 100 V for 

40 minutes. The gels were removed and washed, and transferred onto a PVDF membrane 

at 75 V for 2 hours. Blots were washed with TBST, and blocked for one hour at RT in 

TBST containing 5% bovine serum albumin. Blots were washed and conjugated with 

primary antibody (directed towards: Glo-1, Glo-2, Nrf2, HO-1, IkB-a, P-IKK, IKKa/ß, ß-

actin) in 5% BSA, rocking overnight at 4˚C. Blots were washed with TBST, and conjugated 

with appropriate secondary antibodies in TBST containing 5% BSA for one hour at room 

temperature. Blots were washed and imaged using Western Dura Super Signal (Thermo 

Fisher) on an Azure C600 imager (Azure Biosystems, Dublin, CA). Densiometric analysis 

was performed with ImageJ (Madison, WI). 

ROS detection 

Cerebellar primary neurons were cultured in 96-well plates as previously described. Cells 

were treated with CBD [10 µM] for 24 hours, and then additionally treated with MG [500 

µM] for 24 hours. Media was removed, cells were washed with PBS, and incubated with 

1 µM CM-H2DCF-DA (Life Technology) in EBSS in dark at 37 ˚C for 30 minutes.  
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Fluorescence was recorded at 485 nm excitation and 520 nm emission on a BioTek 

scanner.  

Immunocytochemistry 

Cerebellar primary neurons were cultured in 96-well plates as previously described. Cells 

were treated with MG [500 µM] for 24 hours, and then additionally treated with CBD [10 

µM] for 24 hours. Media was removed, wells were washed with PBS, cells were fixed for 

30 minutes with a 30% sucrose solution containing 4% PFA, and washed. Cells were 

solubilized for 10 minutes with PBS containing 0.1% Triton X-100, and washed with PBS. 

Cells were blocked for 1 hour at room temperature with PBS containing 2% BSA. Blocking 

solution was removed, and cells incubated overnight at 4˚C with PBS containing 2% BSA 

and primary antibodies directed towards NeuN, cleaved caspase-3, VGLUT1, GAD65, and 

MAP2. Wells were washed with PBS and incubated with the appropriate fluorescent 

conjugated secondary antibodies at room temperature for 1 hour. Wells were washed, 

covered with DAPI stain [1 µg/mL] for 10 seconds, washed and aspirated. Prolong Gold 

Antifade (Thermo Fisher Scientific, MO) was added directly to each well, and allowed to 

cure in the dark overnight. Plates were imaged on CLS Operetta confocal microscope 

(PerkinElmer, Waltham MA). Statistical analysis was performed through quantification of 

fluorescence normalized to the number of DAPI positive cells.  

Glyoxalase activity 

Cerebellar primary neurons were cultured in 12-well plates as previously described. After 

MG and CBD treatment, media was removed, and cells rinsed with PBS. Cells were lysed 

with buffer (10 mM HEPES, 0.02% Triton X-100, and 100 μg/mL BSA), briefly sonicated, 

and centrifuged. Reaction solution (60 mM sodium phosphate, 4 mM GSH, and 4 mM MG) 

in a 96 well plate was briefly incubated, followed by addition of cell lysates. S-

lactoylglutathione synthesis was determined by measuring absorbance (240 nm) on a 
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BioTek scanner. Protein concentration was determined using a BCA protein assay reagent 

kit.  

D-Lactate concentration 

D-Lactate released into the extracellular space was measured spectrophotometrically 

using collected cell media. Culture media samples were loaded on a 96-well plate with 0.2 

M glycine and semicarbazide buffer containing 2 mg/mL NAD and 40 U/mL D-lactate 

dehydrogenase. Samples were incubated at room temperature for 2 hours. A 

spectrophotometer (340 nm excitation, 450 nm emission) was used to measure 

conversion of NAD to NADH. Absolute values were determined from a standard curve of 

D-lactate concentrations. 

MG concentration 

MG concentration in cerebellar neuron cultures was determined using 

dinitrophenylhydrazine (2,4-DNPH). The reaction consisted of 0.2 mM 2,4-DNPH with 1 

mM MG and previously collected culture media. Samples were heated in a thermomixer 

at 42 °C for 45 mins and 600 rpm. Spectrophotometer measurements were performed at 

432 nm, according to absorbance of MG-bis- 2,4-DNPH-hydrazone for calculating 

concentration of MG. 

C. elegans strains and maintenance 

C. elegans were cultured as previously described. C. elegans were maintained on 

nematode growth medium (NGM) plates [Bacto Agar 1.7%, Bacto Tryptone 0.25%, NaCl 

50 mM, KPO4 25 mM, CaCl2 1 mM, MgSO4 1 mM, and cholesterol 5 µg/mL], or in liquid S 

media [5.85 g NaCl, 1 g K2HPO4, 6 g KH2PO4, 1 ml cholesterol (5 mg/ml), 10 ml 1 M 

potassium citrate pH 6, 10 ml trace metals solution, 3 ml 1 M CaCl2, 3 ml 1 M MgSO4] at 

20 Cº. A single colony of E. coli OP50 was cultured in LB media to OD 0.1, and 100 µL of 
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was spread on NGM plates and incubated overnight at 37 ºC. Synchronous L1 nematodes 

were added to NGM plates for experiments. C. elegans cultures were washed and 

collected from starved NGM plates, and added biweekly to fresh NGM plates with OP50. 

Culture synchronicity  

Synchronous populations of L1 C. elegans were obtained by bleaching as previously 

described.  NGM plates were washed with M9 media, and cultures collected for 

centrifugation (200 g, 2 min at 25ºC). The supernatant was removed, pellet washed with 

M9 media, and recentrifuged. After removing supernatant, 2 mL of a bleaching solution (2 

mL of 8% bleach, 200 µL of 10M NaOH , and 8 mL H2O) was added for 7 minutes, with 

gentle agitation every minute. Cultures were checked under a microscope to ensure all 

adult worms died. M9 media was added to cultures to stop the reaction. The solution was 

centrifuged (400 gx3 mins at 25º), supernatant removed, pellet washed, and recentrifuged. 

The pellet of eggs was resuspended in S media, and allowed to gently rock for 24 hours 

until eggs hatched. An equal amount of L1 nematodes were added to plates with M9 media 

for culturing. 5-Fluoro-2'-deoxyuridine (FUdR) was added to cultures on the first day of 

adulthood to sterilize and prevent egg laying of gravid adults. 

C. elegans CBD Treatment 

CBD was dissolved in DMSO at a final concentration of 0.1%, and added to freshly poured 

NGM plates at a concentration of 100 µM. MG was added directly to freshly poured NGM 

plates at a concentration of 500 µM. All NGM plates contained FUdR [250 µM] to prevent 

egg laying. Age synchronized L4 C. elegans were added to NGM drug treatment plates 

that were changed biweekly. 
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C. elegans thermotolerance 

Nematodes were cultured to adulthood as previously described. Age synchronized adult 

worms were transferred to fresh NGM plates and incubated at 35º C. Worms were 

monitored every 2 hours to determine survival. 

C. elegans OS resistance 

Nematodes were cultured to adulthood as previously described. Adult nematodes were 

transferred to 96 well plate with S-complete media, with varying concentrations of MG 

[100, 250, 500, 750, 1000 µM]. Survival was monitored every day until all worms were 

dead. 

Statistics 

All experiments were performed in triplicate, with values are presented as the mean +/- 

SEM. Significance was determined by Student t-test, with p<0.05 being statistically 

significant. # denotes statistical significance between the non MG-treated control and MG-

treated control; * denotes statistical significance between the MG-treated and CBD treated 

and MG-treated control; + denotes statistical significance between non MG-treated control 

and non MG-treated CBD treatment. Data were evaluated using Excel and SPSS.   
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RESULTS 

CBD on Glyoxalase Pathway Function. 

Cerebellar neurons treated insulted with MG and treated with CBD exhibited elevated 

function and activity of GP. Neurons insulted with MG [500 µM] exhibited elevated levels 

of MG compared to the non MG-treated control (# #p<0.01), which was significantly 

decreased (**p<0.01) upon treatment with CBD (FIG 4-3A). In accordance with this, MG 

treatment also resulted in elevated levels of D-lactate compared to the control 

(##p<0.01; however, in MG and CBD treated neurons we witnessed a concomitant 

elevation of D-lactate (**p<0.01), indicative of elevated MG detoxification (FIG 4-3B). We 

observed a drastic elevation in production of ROS upon MG treatment (###p< 0.005), 

 
 

FIGURE 4-3: GP FUNCTION IN CEREBELLAR NEURONS.  

 
CBD treatments on MG (A), D-lactate (B),  ROS (C), Glo-1 protein activity (measured in 
mU/µg protein) (D), and GSH (E). Results are the mean +/- SEM of experiments performed 
in triplicate. #p<0.05, ##p<0.01, control compared to the MG-treated control; *p<0.05, 
**p<0.01 CBD and MG-treated compared to MG treated control; &p<0.05 CBD treated 
compared to control. 
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which CBD treatment significantly (**p<0.01) attenuated (FIG 4-3C). MG treatment is 

known to elevate Glo-1 activity, as cells respond to the oxidative insult. CBD treatment in 

non MG-treated cells significantly elevated Glo-1 activity compared to the control 

(&p<0.05), and also lead to an increase in Glo-1 activity in MG and CBD treated cells 

(*p<0.05) compared to the MG-treated control (FIG 4-3D). MG treatment depletes 

intracellular GSH levels, which was attenuated by CBD treatment (*p<0.05), and CBD 

treatment alone significantly elevated GSH levels (&p<0.05) compared to the non MG-

treated controls (FIG 4-3E).  
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CBD Elevates Glyoxalase Protein Expression 

Levels of glyoxalase protein expression in cerebellar neurons treated with MG and CBD 

was determined through Western blotting (FIG 4-4D). Glo-1 protein expression (FIG 4-

4A) was significantly decreased with MG treatment (#p<0.05), and significantly 

increased with CBD treatment (&p<0.05) compared to the non-treated control. Treatment 

with both MG and CBD resulted in a significant increase (*p<0.05) compared to the MG 

treated cells. Glo-2 protein expression (FIG 4-4B) significantly decreased with MG 

treatment (#p<0.05) compared to the control, however treatment with both MG and CBD 

resulted in a significant increase (*p<0.05) in expression compared to the MG treated 

cells. CBD treatment alone increased protein expression, but not to a level of statistical 

 
 
FIGURE 4-4: GLYOXALASE PROTEIN EXPRESSION. 

 
Protein expression of Glo-1 (A), Glo-2 (B), and Glo-3 (C) in CBD and MG treated cerebellar 
neurons was determined through Western blotting (D). Results are the mean +/- SEM of 
experiments performed in triplicate. #p<0.05, ##p<0.01, control compared to the MG-treated 
control; *p<0.05, **p<0.01 CBD and MG-treated compared to MG treated control; &p<0.05 CBD 
treated compared to control. 
 



 92 

significance. DJ-1 – also known as glyoxalase 3 (Glo-3) – expression (FIG 4-4C) was 

significantly elevated with CBD treatment (&p<0.05) compared to the non-treated 

controls, and MG and CBD treatment resulted in a significant increase (*p<0.05) 

compared to the MG treated control. Here, CBD increased the expression of Glo-1,2 and 

3 compared to control. We did not observe significant changes in protein expression 

upon MG treatment alone compared to the control.  
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 CBD increases antioxidant protein expression 

Antioxidant protein expression levels in cerebellar neurons treated with MG and CBD 

was determined through Western blotting (FIG 4-5D). Nrf2 protein expression (FIG 4-5A) 

was significantly increased with CBD treatment (&p<0.05) compared to the non-treated 

control. Treatment with both MG and CBD resulted in a significant increase (*p<0.05) 

compared to the MG treated cells. HO-1 protein expression (FIG 4-5B) significantly 

increased with MG treatment (##p<0.01) and CBD treatment (&&p<0.01) compared to 

the non-treated control. NQO1 expression (FIG 4-5C) was significantly elevated with 

CBD treatment (&p<0.05) compared to the non-treated controls, and MG and CBD 

treatment resulted in a significant increase (*p<0.05) compared to the MG treated 

 
 
FIGURE 4-5: ANTIOXIDANT PROTEIN EXPRESSION.  

 
Protein expression of Nrf2 (A), HO-1 (B), and NQ01 (C) in CBD and MG treated 
cerebellar neurons was determined through Western blotting (D). Results are the mean 
+/- SEM of experiments performed in triplicate. ##p<0.01, control compared to the MG-
treated control; *p<0.05, CBD and MG-treated compared to MG treated control; &p<0.05, 
&&p<0.01 CBD treated compared to control. 
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control. Overall CBD increased the expression of HO-1, Nrf2, and NQO1. However, the 

effect is insensitive to MG treatment.  



 95 

CBD modulates p38 cellular signaling  

Cellular signaling pathways in cerebellar neurons treated with MG and CBD was 

determined through Western blotting (FIG 4-6C). p38 protein expression (FIG 4-6A) was 

significantly increased with CBD treatment (&&&p<0.005) compared to the non-treated 

control. Treatment with both MG and CBD resulted in a significant increase (***p<0.005) 

compared to the MG treated cells. P-p38 protein expression (FIG 4-6B) was significantly 

decreased with CBD treatment (&p<0.05) compared to the non-treated control, and 

treatment with both MG and CBD resulted in a significant decrease (*p<0.05) compared 

to the MG treated cells.   

 
FIGURE 4-6: CELLULAR SIGNALING PATHWAYS.  

 
Protein expression of p38 (A) and P-p38 (B) in CBD and MG treated cerebellar neurons was 
determined through Western blotting (C). Results are the mean +/- SEM of experiments 
performed in triplicate. ##p<0.01, control compared to the MG-treated control; *p<0.05, 
***p<0.005 CBD and MG-treated compared to MG treated control; &p<0.05, &&&p<0.005 CBD 
treated compared to control. 
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CBD reduces SAPK/JNK activation 

Activation of the SAPK/JNK cellular signaling pathway in cerebellar neurons treated with 

MG and CBD was determined through Western blotting (FIG 4-7B). Treatment with MG 

resulted in a significant decrease (##p<0.01) in P-SAPK/JNK (FIG 4-7A) compared to 

the nontreated control. Treatment with both MG and CBD resulted in a significant 

decrease (*p<0.05) of SAPK/JNK phosphorylation compared to the MG treated control. 

The CBD treatment also neutralized the effect of MG treatment on SAPK/JNK.   

 
 
FIGURE 4-7: SAPK/JNK ACTIVATION. 

 
Protein expression of P-SAPK/JNK (A) in CBD and MG treated cerebellar neurons was 
determined through Western blotting (B). Results are the mean +/- SEM of 
experiments performed in triplicate. ##p<0.01, control compared to the MG-treated 
control. *p<0.05 CBD and MG-treated compared to MG-treated control. 
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CBD increases excitatory and inhibitory neurotransmitter function 

In cerebellar neurons insulted with MG [500 µM], treatment with CBD [10 µM] exhibited 

neuroprotective activity and resulted in retention of neurotransmitter function in 

cerebellar neurons (FIG 4-8A). Inhibitory neurotransmitter activity was determined 

through measuring fluorescence expression of GAD65 (FIG 4-8B). Treatment with MG 

resulted in a significant decrease (#p<0.05) of GAD65 expression compared to the 

control. Treatment with CBD resulted in a significant increase (&p<0.05) of GAD65 

compared to the control. Neurons treated with MG and CBD resulted in a significant 

increase (**p<0.01) of GAD65 expression compared to the MG treated control. 

Excitatory neurotransmitter activity was determined through measuring fluorescence 

expression of VGLUT (FIG 4-8C). Treatment with MG resulted in a significant decrease 

 
 
FIGURE 4-8: CEREBELLAR NEURON NEUROTRANSMITTER FUNCTION.  

 
Representative confocal images (A) of GAD65 (B) and VGLUT (C) expression in CBD and MG 
treated cerebellar neurons. Results are the mean +/- SEM of experiments performed in triplicate. 
#p<0.05 control compared to the MG-treated control; **p<0.01 CBD and MG-treated compared to 
MG treated control; &p<0.05 CBD treated compared to control. 
 



 98 

(#p<0.05) of VGLUT expression compared to the control. Treatment with CBD resulted 

in a significant increase (&p<0.05) of VGLUT expression compared to the control. 

Treatment with both MG and CBD resulted in a significant increase (**p<0.01) of VGLUT 

expression compared to the MG treated control.   
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CBD increases C. elegans Lifespan 

C. elegans strains were treated with CBD [100 µM] and the effect on lifespan and 

longevity was determined. There was a significant increase in survival at various 

timepoints in different C. elegans strains: N2 (FIG 4-9A) exhibited elevated survival at 

days 17 (*p<0.05), 21(**p<0.01), 25(**p<0.01), 29 (*p<0.05), and 33 (*p<0.05); VC343 

(FIG 4-9B) 13 (*p<0.05), 17 (*p<0.05), 21(**p<0.01), 25(**p<0.01), and 29(**p<0.01); 

VH725 (FIG 4-9C) 25 (*p<0.05), 29 (*p<0.05), 33 (*p<0.05), and 37 (*p<0.05); GRU102 

(FIG 4-9D) 17 (*p<0.05), 21(**p<0.01), 25(**p<0.01), and 29 (**p<0.01).  

 
 
 

FIGURE 4-9: CBD INCREASES LIFESPAN IN C. ELEGANS. 

  

CBD treatment increased lifespan and longevity in C. elegans strains N2 (A), VC343 (B), 
VH725 (C), and GRU102 (D). Results are the mean +/- SEM of experiments performed 
in triplicate. *p<0.05, **p<0.01 CBD treated compared to control.  
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MG Treatment Reduces C. elegans Lifespan. 

The effect of MG treatment [1 mM] on C. elegans lifespan was determined. There was a 

significant decrease in survival at various timepoints in different C. elegans strains: N2 

(FIG 4-10A) 10 (*p<0.05), 15 (**p<0.01), 20 (**p<0.01), and 25 (***p<0.005), VC343 

(FIG 4-10B) 12 (*p<0.05), 16 (**p<0.01), 20(**p<0.01), and 24(**p<0.01); VH725 (FIG 4-

10C) 12 (**p<0.01), 16 (**p<0.01), 20 (**p<0.01), 24 (*p<0.05), and 28 (*p<0.05); 

GRU102 (FIG 4-10D) 8 (*p<0.05), 12(**p<0.01), 16(**p<0.01), and 20 (*p<0.05).   

 
 

FIGURE 4-10: MG REDUCES C. ELEGANS LIFESPAN.  

 
The effect of MG on lifespan of C. elegans strains N2 (A), VC343 (B), VH725 (C), GRU102 
(D) was determined. Results are the mean +/- SEM of experiments performed in triplicate. 
*p<0.05, **p<0.01 CBD treated compared to control.  
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MG and CBD treatment on C. elegans Lifespan 

The effect of combination treatment of CBD [100 µM] and MG [1 mM] on lifespan was 

determined in C. elegans strains (FIG 4-11). While MG treatment alone significantly 

reduced C. elegans lifespan, the combination treatment with CBD exhibited a protective 

effect against MG toxicity. Compared to MG treatment alone, the combination treatment 

resulted in significant (*p<0.05) lifespan increases in N2 (7 days), VC343 (6 days), 

VH725 (6 days), and GRU102 (6 days).  

 
 
FIGURE 4-11: CBD AND MG TREATMENT ON C. ELEGANS LIFESPAN.  

 
All C. elegans strains exhibited a significant (*p<0.05) increase in average lifespan 
compared to the MG treated C. elegans. Results are the mean +/- SEM of 
experiments performed in triplicate. 
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Oxidative Stress and Thermotolerance Resistance in C. elegans 

C. elegans strains were treated with H2O2 to induce OS and treated with CBD [100 or 

200 µM], MG [1 mM], or a combination. Results showed a significant decrease in 

survival in MG treated C. elegans strains N2 (#p<0.05) (FIG 4-12A), VC343 (#p<0.05)  

(FIG 4-12B), VH725 (##p<0.01)  (FIG 4-12C), and GRU102 (#p<0.05) (FIG 4-12D). In all 

strains of C. elegans, treatment with CBD lead to a significant increase in survival. There 

was not significant survival determined between treatments of 100 or 200 µM CBD. Their 

survival in the MG treated condition was miniscule, and significantly increased upon 

treatment with CBD at 100 and 200 µM. The Glo-1 overexpressing strain VH725 

exhibited significantly extended survival with CBD treatment, and significantly extended 

survival in the CBD and MG combination treatment. The survival of N2 and VH725 C. 

elegans was not significant.  

 
 

FIGURE 4-12: OXIDATIVE STRESS AND THERMOTOLERANCE RESISTANCE IN C. ELEGANS.  

 
Resistance to OS induced by H2O2 was measured in N2 (A), VC343 (B), VH725 (C), and 
GRU102 (D). Thermotolerance was measured in N2 (E), VC343 (F), VH725 (G), and GRU102 
(H). Results are the mean +/- SEM of experiments performed in triplicate. #p<0.05, ##p<0.01, 
control compared to the MG-treated control; *p<0.05, **p<0.01 CBD and MG-treated 
compared to MG treated control; &p<0.05 CBD treated compared to control. 



 103 

CBD Reduces Ab Expression in GRU102 C. elegans 

Aβ expressing GRU102 C. elegans were treated with CBD [100 µM], MG [1 mM], or a 

combination, and visualized through confocal microscopy (FIG 4-13A) to determine GFP 

expression of Ab. CBD treatment reduced the fluorescence expression of Ab in mutated 

C. elegans (FIG 4-13B). Insulting C. elegans with MG resulted in significantly elevated 

GFP expression of Ab (###p<0.005), which was drastically reduced upon treatment with 

CBD (**p<0.01). CBD treatment alone also lead to a significant reduction (&p<0.05) in 

fluorescence expression in the control. MG treatment significantly increased expression 

of Ab in GRU102 C. elegans. Treatment with CBD significantly lowered Ab expression, 

and the combination treatment lowered Ab expression to levels indistinguishable from 

the control group.  

 
 
FIGURE 4-13: Ab EXPRESSION IN GRU102 C. ELEGANS. 

 
Representative confocal images (A) of GRU102 C. elegans treated with MG and CBD (B). 
Results are the mean +/- SEM of experiments performed in triplicate. ###p<0.005, control 
compared to the MG-treated control; **p<0.01 CBD and MG-treated compared to MG 
treated control; &p<0.05 CBD treated compared to control. 
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DISCUSSION 

While phytocannabinoids have been long utilized for their medicinal properties, their 

exact mechanisms of pharmacological activity have only recently been 

elucidated.190,191,208 Cannabinoids are separated into three groups: phytocannabinoids 

produced by the C. sativa plant, endogenously produced endocannabinoids, and 

synthetic cannabinoids.190 In addition to the over 100 identified phytocannabinoids, C. 

sativa produces a host of other secondary metabolites including terpenes, sterols, 

polyphenols, and flavonoids.189,193,209 These chemical compounds are synthesized 

primarily in the flowers of the female plants, and secreted through the trichrome glands; 

the leaves, stalks, and root matter also contain secondary metabolites, although in 

significantly smaller concentrations.191,208,209 The most abundantly produced 

phytocannabinoids are D9-tetrahydrocannabinol (THC) and CBD, with cannabigerol 

(CBG), cannabinol (CBN), and cannabichromene (CBC) present in lower 

concentrations.210,211 The phytocannabinoids are synthesized in the carboxylic acid form 

in the plant, and must be decarboxylated and converted to the neutral form for 

bioactivity.189,191,210 A large part of CBD’s utility stems from its lack of psychoactivity - 

mediated through its low affinity for CB1 – unlike THC.190,212 CBD is a very durable and 

pharmacologically valuable compound with antibacterial, antiviral, and anti-cancer 

properties, in addition to its well documented antioxidant and anti-inflammatory 

activity.190,213,214 It is neuroprotective in a variety of illnesses including epilepsy, ischemia, 

MS, HD, PD, and AD.171,196,200,205,215-220 The mechanism of CBD’s neuroprotective activity 

involves modulation of signaling molecules, suppressing inflammatory cytokines while 

increasing production of anti-inflammatory cytokines and compounds.196,198,203,205,221 In an 

experimental autoimmune encephalitis model of multiple sclerosis, CBD attenuated the 

neuroinflammation mediated by autoreactive T cells.218 CBD is also able to modulate 
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neuroinflammatory immune response by preventing overactivation of glial cells, a 

common hallmark in neurodegenerative diseases.215,218,222-224 CBD treatment 

downregulated gene transcription of pro-inflammatory cytokines (IL-17, IL-6, IL-1b, TNF-

a), while simultaneously upregulating gene transcription of anti-inflammatory cytokine IL-

10.218 In AD, CBD has shown evidence of multiple mechanisms of 

neuroprotection.154,171,217 CBD was shown to attenuate Ab toxicity by reducing the 

production of TNF-a, IL-1b, and NO through activation of PPAR-g and inactivation of NF-

kB. CBD is able to directly modulate the expression of AD pathology, through 

ubiquitination of APP and reducing reactive Ab production.194 

The activity and molecular effects of CBD are determined and mediated through the 

structure activity relationship (SAR) of the chemical compound.189,190,212 Thus, the 

specific composition and arrangement of CBD is inexorably linked to its 

bioactivity.189,190,212 CBD is conferred its antioxidant activity through several structural 

characteristics: hydroxyl groups of the B phenolic ring, the methyl group of the A 

cyclohexene ring, and the pentyl side chain.190,194,212 The key structural features of 

CBD’s antioxidant effects are the aromatic B ring hydroxyl groups.199,203,204 CBD exists in 

several resonance structures, where unpaired electrons are located on the benzene ring 

and alkyl side chains.225 This mediates direct antioxidant activity through proton transfer 

and electron donation with ROS and other free radical molecules.192  The aromatic 

hydroxyl groups also afford amino acid and nucleic acid binding ability.204 Both the 

number and location of hydroxyl groups are essential for antioxidant activity.184,185,204 

Although CBD and THC are structurally very similar, the CBD contains two hydroxyl 

groups on the B ring compared to a single hydroxyl group of THC. 204,226 Consequently, 

CBD was found to be a better free radical scavenger and have higher antioxidant activity 

than THC. 226 The same structural characteristics that impart antioxidant activity in CBD 
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are shared in flavonoid compounds (FIG 

4-14). CBD and our previously utilized 

flavonoids – catechin, morin, and 

quercetin - possess similar carbon 

backbone.19,184,185 The di-hydroxylation of 

the B ring is an essential component of 

antioxidant activity, which is shared by 

CBD, morin, quercetin, and 

catechin.118,184,185 However, the 

arrangement of hydroxyl groups is an 

important factor in activity. The meta 

configuration of hydroxyls at 2’ and 6’ is 

shared by both morin and CBD, while 

quercetin and catechin possess an ortho 

configuration of hydroxyls at 4’ and 

5’.184,185,199 Flavonoids with a resorcinol 

structure we found to have higher 

antioxidant activity than either catechol or 

hydroquinone structures.51,119,120,163 

Linked heterocyclic rings - including a phenol ring and C=C bond – confers chemical 

activity and are present in CBD and flavonoids.118-120 Another consideration of activity is 

the spatial arrangement of ring structures. Both CBD and morin possess rings (A and B, 

respectively)  that are in almost perpendicular planes, which influences binding 

activity.19,116,120 For example, THC and flavonoid apigenin exist in a rigid, planar 

configuration, and were determined to have decreased antioxidant activity compared to 

CBD and non-planar flavonoids. 19,75,76,116,226 Direct redox regulation by CBD occurs 

 
FIGURE 4-14: STRUCTURAL SIMILARITIES OF CBD AND 

MORIN. 

 
The presence of multiple hydroxyl groups (blue), 
heterocyclic rings with C=C (green), and 3-carbon 
alcohol moieties (red) confer antioxidant activity in 
both morin and CBD. 
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through modulation of both pro and anti-oxidant molecules.199,203 CBD can bind ROS, 

metal ions, and other reactive metabolic byproducts, preventing their interaction with 

cellular macromolecules and avoiding excessive lipid and protein oxidation.197,199,202-

204,227 In vitro assays determined CBD exhibits higher activity than a-tocopherol, the 

standard chemical used to determine antioxidant activity.197,199 However, the indirect 

modulation of apoptotic and anti-inflammatory signaling pathways is the primary 

mechanism of CBD’s antioxidant activity; mediating a response through induction or 

suppression of antioxidant and apoptotic signaling pathways, respectively.199,203,204,218,221 

CBD can act on transient receptor potential vanilloid receptors (TRPV), peroxisome 

proliferator-activated receptors (PPAR-g), 5-hydroxy tryptophan receptors (serotonin), 

and adenosine receptors, to modulate inflammatory activity at both the protein 

expression and transcription levels.199 In our research, limited CBD treatment activated 

Nrf2 signaling as evidenced by the elevated transcription and expression of antioxidant 

proteins including Nrf2, HO-1, GSH, SOD.218 We also witnessed elevated protein 

expression of Glo-1, Glo-2, and Glo-3 in CBD treated neurons insulted with MG, in a 

Nrf2 dependent manner. Our measures of GP activity were enhanced and improved with 

CBD treatment. Cerebellar neurons insulted with MG and treated with CBD exhibited 

significantly lower levels of MG and ROS, with concomitant elevation in D-lactate, GSH, 

and Glo-1 activity.  

It was previously believed that flavonoids – and other antioxidant compounds – exhibited 

a protective effect through direct neutralization with ROS and inflammatory molecules; 

however, the physiological concentration of dietary flavonoids is a far smaller molar 

equivalency than ROS produced in the body.18,51,55,76,117,122,136 More recent research 

suggests the protective function of flavonoids is indirect, through modulation of 

endogenous cellular signaling pathways.1,19,51,75,116,132 Antioxidant compounds – like 
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flavonoids and phytocannabinoids – can activate or inhibit cytoprotective and apoptotic 

pathways, respectively.11,58,125,132,135,148,150,151,198,218 Upon stimulation via ROS, UV 

irradiation, and inflammatory compounds, SAPK/JNK proteins enter the nucleus and act 

as transcription factors to induce protein expression. MAPK activation is associated with 

caspase activation and cell death, mediated in part through the NF-kB pathway. 

60,124,225,228 In a mouse model of aging, hippocampal astrocytes exhibited elevated ROS 

production and a concomitant activation of SAPK/JNK.80  MAPK protein p38 is also 

involved in Ca2+ mediated apoptosis. Elevated production of ROS causes 

phosphorylation of p38, inducing C-AMP response element binding protein (CREB) 

inactivation.80 Hypertension and cardiovascular disease also exhibit elevated 

inflammatory cytokine signaling and ROS production.84 In a rat model of neural 

hypertension, chronic elevated angiotensin elevated NADPH oxidase-produced ROS, 

and phosphorylation and activation of SAPK/JNK and p38, resulting in glutaminergic 

neuron dysfunction.84 Activation of SAPK/JNK and other MAPKs is exhibited in AD, and 

is exacerbated by the presence of Ab.225 Insoluble Ab peptides induce the production of 

ROS, and can directly stimulate the activation of SAPK/JNK.225 In a high-glucose model 

of neural apoptosis, treatment of cells with p38 and SAPK inhibitors attenuated 

apoptosis, and reduced phosphorylation levels of the proteins.225 In our research, we 

observed a significant increase in SAPK/JNK phosphorylation upon treatment with MG, 

however CBD treatment attenuated SAPK/JNK activation. CBD treatment – with and 

without MG – resulted in elevated expression of p38 compared to the controls. In 

accordance with this, phosphorylated p38 was significantly decreased in CBD treated 

cells, while the MG-treated condition exhibited elevated P-p38. A model of diabetes-

associated cognitive decline utilized high glucose conditions to induce markers of OS in 

SH-SY5Y cells, which was attenuated with quercetin pretreatment, and Nrf2 
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activators.165 It was determined that inhibition of p38 had an influence on Nrf2 

phosphorylation and nuclear translocation; preventing activation of p38 through 

pretreatment with a p38 inhibitor resulted in decreased presence of AGEs, elevated Nrf2 

nuclear translocation and activation.165 In our research we found that MG treatment 

elevated expression of P-p38, while treatment with CBD prevented phosphorylation of 

p38, even in the presence of MG. In accordance with the previous report, antioxidant 

treatment of neurons with CBD elevated Nrf2 levels, while preventing activation of 

inflammatory cell signaling pathways.  

Imbalanced excitatory and inhibitory neurotransmission is common in neurological 

disorders, and contributes to the elevated excitotoxicity and apoptosis present in 

neurodegenerative conditions.214 Our research determined limited CBD as possessing 

neuroprotective activity in both inhibitory and excitatory neurotransmitter function, as 

measured through fluorescence expression of GAD65 and VGLUT. Cerebellar neurons 

incubated with CBD exhibited significantly elevated fluorescence expression of GAD65 

and VGLUT compared to MG treated controls. CBD also protected neural morphology, 

as evidenced by the elevated expression of structural protein MAP2 compared to MG 

treated cells.  

CBD exhibited remarkable protective effects in vitro, and we desired to replicate this 

success in vivo through utilizing model organism C. elegans. For our experiments, we 

used several strains of C. elegans possessing genetic mutations in Glo-1 (VC343 and 

VH725) and Ab (GRU102) in addition to the WT (N2). The lifespan of C. elegans is 

known to be decreased in the presence of oxidative and inflammatory 

environments.186,188,229,230 We determined MG treatment to significantly decrease the 

lifespan of all strains, compared to untreated controls. Strains VC343 and GRU102 

featured increased susceptibility to MG-mediated OS, due to their deficits in endogenous 
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antioxidant activity. The Glo-1 overexpressing strain VH725 had a less significant 

decrease in lifespan, a consequence of its elevated Glo-1 protein expression. In all 

strains, CBD treatment exhibited an extension of lifespan compared to non-treated 

controls. CBD and MG cotreatment resulted in a decrease of lifespan compared to the 

CBD only and control conditions, however there was a significance in lifespan length 

compared to the MG treatment condition. C. elegans are sensitive to oxidative changes 

in environments, including elevated H2O2, UV, and temperature.186,188,229,230 To determine 

the effect of CBD and MG on environmental stressors in C. elegans, we performed OS 

and thermotolerance experiments to investigate survival under extreme conditions. C. 

elegans were pretreated with CBD, MG, or a combination and exposed to either H2O2 or 

increased temperatures. In the OS tolerance assay, CBD exhibited a protective effect in 

all strains exposed to H2O2. As expected, MG pre-treated C. elegans had significantly 

decreased survival under oxidative conditions. All combination treatments exhibited in 

elevated survival compared to the MG treated condition. The antioxidant compromised 

VC343 and GRU102 C. elegans had lower survival percentages compared to the N2 

and VH725 strains. CBD treatment also conferred elevated thermotolerance to all 

strains, whereas MG treatment reduced survival. All CBD and MG combination 

treatments exhibited elevated thermotolerance compared to the MG only condition. CBD 

pretreatment conferred protection against elevated levels of OS and temperature. 

Although we did not investigate the exact mechanism, CBD is known to activate 

antioxidant signaling pathways and induce the expression of cytoprotective proteins 

against ROS, and heat-shock proteins to prevent instability and denaturing of 

proteins.199-202 To investigate the effect of CBD and MG on production of AD pathology, 

we utilized GRU102 C. elegans, which harbor a mutation causing them to overexpress 

Ab protein. Because the mutation is tagged with green fluorescent protein (GFP), we 

were able to observe expression changes through confocal microscopy. C. elegans 
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treated with MG exhibited elevated GFP expression, indicative of increased Ab burden. 

CBD treatment significantly decreased Ab expression compared to the non/MG-treated 

controls. C. elegans treated with both CBD and MG exhibited a blunting of GFP 

expression compared to the MG treated control. In this experiment, results indicated that 

CBD is protective against Ab in vivo, possibly through decreased expression or 

disrupted fibrillation of Ab. CBD was determined to have a protective effect against MG 

in C. elegans strains, regardless of the specific mutations they harbored. 

Through measurement of GP function, constituent proteins, and markers of antioxidant 

function, we determined CBD to be an effective enhancer of the GP. Under states of 

MG-mediated OS, CBD treatment induced an antioxidant response that effectively 

attenuated the insult from MG treatment. Our hypothesis that limited CBD enhanced GP 

function through modulation of cell signaling pathways was confirmed, and we are the 

first to report CBD’s effect on the GP. Our use of both primary neurons and model 

organisms provides evidence that CBD is effective in GP enhancement in both in vitro 

and in vivo models of MG-mediated OS. We determined CBD’s neuroprotective effect is 

mediated through modulation of cellular signaling pathways, and not necessarily directly 

involved in MG and ROS neutralization.  
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CHAPTER 5: CONCLUSION  
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Neurodegenerative conditions exhibit progressive severity in disease pathology, of which 

overproduction of ROS and reactive metabolic byproducts is prominently 

featured.5,10,12,19 AD and aging features deficits in endogenous responses contribute to 

the imbalance of antioxidant and pro-oxidant molecules, resulting in chronic activation of 

apoptotic and inflammatory cellular signaling pathways.3,7,8,93 The pathological hallmarks 

of AD - Ab, NFT, and loss of brain tissue – can be exacerbated by deficiencies in 

endogenous antioxidant systems, in which MG accumulation and elevated ROS 

production plays a prominent role.10,13,15,31,92,148 GP dysfunction has a direct role in the 

development and progression of AD pathology, and contributes to the cognitive decline 

present in the disease.1,3,21,22,26,37,49,64,65,87,128 However, pharmacological modulation of 

the GP can attenuate oxidative damage, reduce the pathological burden, and lessen 

cognitive deficits associated with aging and AD.1,20,34,37,38,48,49,54,57,58,87,128 Humans have 

long utilized naturally-produced plant compounds for therapeutic uses, and the specific 

mechanisms of their functions have only recently been elucidated.51,116 The Free Radical 

Theory of Aging posits that elevated production of ROS and free radicals is the 

contributing factor in human diseases, however the primary mechanism of damage from 

free radical production occurs through modulation of cellular signaling pathways.2,18,75,76 

It was previously believed that the benefits of flavonoids functioned through direct 

binding with ROS, however the concentration of dietary antioxidant molecules would not 

be sufficient enough to offset the elevated concentration of ROS found in aging and 

AD.9,18,37,51,55,75,76,92,116,121,122,136 Thus the protective effect of flavonoids was determined to 

be modulation of antioxidant and apoptotic signaling pathways. 123,127,147,151,152,156,158,161 

Our first research project focused on three flavonoid compounds – catechin, morin, and 

quercetin – and their effect on the GP.37 We investigated the mechanism of flavonoid 

enhancement of GP function through evaluating glyoxalase proteins, markers of 

neurotransmitter function, and antioxidant signaling activation.37 We determined the GP-
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enhancing ability of the aforementioned compounds was mediated through activation of 

the antioxidant Nrf2 signaling pathway.37 The flavonoid compounds possessed the ability 

to attenuate oxidative damage from MG, which is commonly elevated in diseases of 

aging and neurodegeneration.37 While all compounds exhibited GP enhancing ability, 

our subsequent research project focused on improving morin’s inherent antioxidant 

ability through chemical structural additions to the parent compound.128  

Metabolic degradation and poor BBB permeability are likely factors in the lack of 

success flavonoids have exhibited in in vivo replicates.131 We modified the morin parent 

structure - through addition of two bromine molecules, and encapsulation in a polymer 

nanoparticle –  to produce DBM and MNP and tested efficacy in GP enhancement.128 

We repeated previous experimental techniques utilizing DBM and MNP in primary 

cerebellar neurons and C. elegans.128 C. elegans are useful organisms in determining 

effectiveness of chemical compounds on aging and longevity, due to their genetic 

homology with humans and relatively short lifespan.186-188,229-231 We determined the 

structural additions to be beneficial in elevating the capacity of the GP compared to the 

unmodified morin compound itself.128 DBM and MNP exhibited potent antioxidant and 

neuroprotective properties, and attenuated OS-mediated damage through mechanisms 

involving induction of Nrf2 signaling and inhibiting NF-kB-mediated apoptosis.128 While 

results were successful, the synthesized compounds most promising activity needs to be 

tested in higher level organisms, to determine efficacy in preventing premature metabolic 

breakdown and BBB permeability. Our final chapter of original research utilized limited 

phytocannabinoid CBD to investigate its effect on the GP. While CBD has well-

established antioxidant and neuroprotective activity in neurodegenerative disorders, we 

aimed to elucidate its effect in an MG-mediated model of aging found in AD.154,197,199,201-

204 We are the first to report results on the effect of CBD in the GP in a neural model of 
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MG-mediated OS. Our results showed CBD had a protective effect against MG-

mediated toxicity in both primary cerebellar neurons and C. elegans strains featuring 

overexpression and knockdown of Glo-1 (VH725 and VC343, respectively), and a 

mutation in Ab (GRU102). As with our previous research, we intended to elucidate the 

cellular signaling pathways involved in CBD’s protective effect. While we found 

similarities in the effect of CBD and flavonoids – no doubt due to the structural 

similarities shared between the classes of chemical compounds – we also observed 

differing modulation of apoptotic and antioxidant signaling pathways. We found that the 

antiapoptotic effect of both flavonoids and CBD was mediated through inhibition of NF-

kB pathway signaling, albeit through different pathway mechanisms. Flavonoids were 

found to inhibit activation through modulation of direct NF-kB complex proteins, and 

CBD through modulation of stress-activated signaling pathways – SAPK/JNK and p38. 

Both classes of compounds induced expression of antioxidant proteins through Nrf2, the 

primary transcription factor and activator of the ARE, and thus exhibited similar protein 

expression patterns in glyoxalase proteins, HO-1, and GSH. CBD and flavonoids were 

found to attenuate the damaging effects of MG accumulation, which occurs in a host of 

inflammatory diseases within and outside the CNS, through enhancement of the GP.25,86 

Our results show that secondary plant metabolites of different structural classifications 

can increase the capacity of the GP and allow for the retention of neurotransmitter 

activity and neuron morphology even in the presence of a cytotoxic and highly 

inflammatory cellular environment. These findings necessitate further research in higher 

organisms to fully elucidate the mechanisms of protection the GP, and how it can be 

best manipulated for therapeutic effects in aging and AD. 
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