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Abstract 

Multi-Level Small Area Estimation Based on Calibrated Hierarchical 

Likelihood Approach Through Bias Correction with Applications to 

COVID-19 Data  

Nirosha Rathnayake, Ph.D. 

University of Nebraska Medical Center, 2020  

Supervisor: Hongying (Daisy) Dai, Ph.D. 

Small area estimation (SAE) has been widely used in a variety of applications to draw 

estimates in geographic domains represented as a metropolitan area, district, county, or state. The 

direct estimation methods provide accurate estimates when the sample size of study participants 

within each area unit is sufficiently large, but it might not always be realistic to have large sample 

sizes of study participants when considering small geographical regions. Meanwhile, high 

dimensional socio-ecological data exist at the community level, which provides an opportunity for 

model-based estimation to incorporate rich auxiliary information at the individual and area levels. 

Thus, it is critical to developing advanced statistical modeling to extract accurate information.  

Most existing methods of maximum likelihood estimation include complicated and 

computationally expensive integral approximations. Some require prior assumptions for the 

unobserved random effects. In this dissertation, we proposed a Calibrated Hierarchical (CH) 

likelihood approach, which does not involve such integral approximations. This work covered three 

aims:  

Aim 1. We developed a novel modeling approach for SAE via hierarchical generalized linear 

models based on the CH likelihood with improved parameter estimations through bias correction 

(CHBC). Unified analysis through the ℎ-likelihood provides flexibility in statistical inferences for 

unobserved random variables. And it leads to a single algorithm, expressed as a set of interlinked 
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and augmented generalized linear models, to be used for fitting a broad class of new models with 

random effects.  

Aim 2. We then extended this methodology to the joint modeling of multiple outcome variables 

through shared random effects and multivariate random effects. The joint modeling approach has 

the flexibility of extending to multidimensional models using different types of outcomes by 

considering the association among them. 

Aim 3. Extensive simulation studies were carried out to assess the empirical performance of 

estimation accuracy at varying scenarios. We also used COVID-19 data to study the association 

between confirmed cases and the number of deaths based on the multivariate joint modeling 

approach. Joint modeling through shared random effects is illustrated using the Youth Risk 

Behavior Surveillance System (YRBSS) data to assess the impact of tobacco consumption at the 

county-level. The asymptotic properties of MHLEs were studied. Last, we developed an R package 

for SAE modeling for the CHBC approach. The development version of the R package is available 

at https://niroshar.github.io/hglmbc2/. 
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Chapter 1. Introduction to Small Area Estimation 

1.1 Background 

Small area estimation (SAE) has been widely used in recent decades to draw conclusions 

(estimates) on small areas, mostly in survey sampling studies. The term “small areas” refers to the 

small subpopulations of a larger sample, also known as small domains, clusters, small geographical 

areas, etc. The SAE techniques have been applied in many cases such as public health related 

studies, financial assessment, education planning, forest inventory studies, agricultural studies, 

government (employment and payroll) studies, etc. (Zahava Berkowitz et al., 2016a; Z. Berkowitz 

et al., 2019; Hongying Dai, Delwyn Catley, Kimber P Richter, Kathy Goggin, & Edward F 

Ellerbeck, 2018; R. E. Fay III & R. A. J. J. o. t. A. S. A. Herriot, 1979; Martuzzi & Elliott, 1996; 

Mauro, Monleon, Temesgen, & Ford, 2017; Nancy A Rigotti & Sara Kalkhoran, 2017; Yasui, Liu, 

Benach, & Winget, 2000) 

In SAE, many researchers consider linear and generalized linear (nonlinear) mixed 

modeling approaches by introducing random effects to account for between-area variations. 

Various types of mixed models are developed to improve the accuracy of the global estimates in 

small areas (John NK Rao & Molina, 2015). The area (aggregated) level and unit (element) level 

models are the two main models under this scenario. The area-level models are used when the unit-

level data for auxiliary variables are not available, instead aggregated data is available. Some 

studies are done considering both unit and area-level auxiliary variables (Zahava Berkowitz et al., 

2016a; Jiang & Lahiri, 2006; Pfeffermann, 2013; Saei & Chambers, 2003).  

The most common area-level model in SAE is the basic Fay Harriot (FH) model, which is 

an indirect estimation technique (R. E. Fay III & R. A. Herriot, 1979). The FH model is based on 

the direct survey estimates obtained from unit-level data and area-level auxiliary data. The basic 

FH model assumes that the sampling variance (𝜎𝑒
2) is known. However, this assumption might not 
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appropriate in many applications in SAE. Thus, many researchers have proposed extensions of the 

basic FH model to improve the direct survey estimates focusing on unknown sampling variance 

𝜎𝑒
2, smoothing of 𝜎𝑒

2 through generalized variance function (GVF) technique, or temporal and 

spatial correlation effects introduced in the spatial FH model (Dick, 1995; Yong  You, 2008; Yong 

You & Chapman, 2006). 

An adequate amount of research based on univariate analysis has been done in many cases, 

such as public health-related studies, financial assessment, education planning, forest inventory 

studies, agricultural studies, government (employment and payroll) studies, etc. (Zahava Berkowitz 

et al., 2016a; Z. Berkowitz et al., 2019; Hongying Dai et al., 2018; R. E. Fay III & R. A. J. J. o. t. 

A. S. A. Herriot, 1979; Martuzzi & Elliott, 1996; Mauro et al., 2017; Nancy A Rigotti & Sara 

Kalkhoran, 2017; Torabi & Rao, 2014; Yasui et al., 2000). However, it is essential to consider the 

association of multiple outcomes that occurs within the same individuals. Without ignoring this 

correlation between multiple outcomes and conducting univariate analysis for each outcome might 

not provide accurate estimates. For example, individuals with high obesity might also suffer from 

some other health conditions like high cholesterol, diabetes, etc. These events could be correlated 

and share similar auxiliary information. Additionally, it can also depend on the geographical 

location. Hence, considering the association between such multiple outcomes jointly adds more 

details to the model, which leads to better estimates. Thus, the multiple outcomes are to be modeled 

based on the multivariate analysis (Benavent & Morales, 2016; Burgard, Esteban, Morales, & 

Pérez, 2020; González-Manteiga, Lombardía, Molina, Morales, & Santamaría, 2008; Gueorguieva, 

2001; Ubaidillah, Notodiputro, Kurnia, & Mangku, 2019).  

Most advanced modeling techniques are based on the traditional likelihood method and the 

Bayesian approximation methods. Obtaining the MLEs in the likelihood-based method is very 

challenging when the joint likelihood function does not have a closed-form. In most cases, the 

marginal log-likelihood function does not have a closed-form; hence it cannot be evaluated 

analytically. It often involves computationally expensive integral approximations, which becomes 
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challenging in multivariate analysis. In this article, an alternative approach is considered based on 

the hierarchical (ℎ)-likelihood to obtain the maximum hierarchical likelihood estimates (MHLEs) 

that are improved with the bias correction method. The proposed approach does not require any 

prior assumption for the latent random effects. The recent studies have shown that the ℎ-likelihood 

is a statistically and numerically efficient algorithm which provides reliably better estimates for all 

the parameters in the model (Ha, Lee, & Song, 2001; Ha, Noh, & Lee, 2017; Lee, Jang, & Lee, 

2011; Youngjo Lee & John A  Nelder, 1996; Lee, Nelder, & Pawitan, 2018; Lee, Ronnegard, & 

Noh, 2017). It also provides the flexibility of using the conditional distribution 𝑢|𝑦 as a predictive 

density for random effect 𝑢 to make predictions for unobserved random variables. The proposed 

method obtains the MHLEs through iterative approximation with bias correction of the estimates. 

This work is organized as follows. Chapter 1 covers the introduction to SAE, including the 

different types of SAE techniques and model selection criteria. Section 1.2 briefly states the direct 

estimation technique in SAE, which is also known as the Horvitz-Thompson estimator. Section 1.3 

covers the indirect estimation methods, namely, the most common area-level FH model and the 

basin unit-level model. Next, in section 1.4, BLUP and EBLUP of the basic area-level model are 

given. Model comparison using AIC and BIC are presented in section 1.5. In this paper, we will be 

using small areas and clusters interchangeably.  

Chapter 2 discusses the advanced modeling techniques in SAE. Sections 2.1 and 2.2 covers 

GLMM with BLUP, EBLUP, ML, and REML estimates. Empirical and Hierarchical Bayes 

methods for small area models are discussed in section 2.3. Section 2.4 explains the HGLMs, 

parameter estimation of fixed effects, random effects, and dispersion parameters using the 

hierarchical likelihood. Next, section 2.5 includes an application based on GLMM discussing the 

multilevel small area estimation in survey research. Section 2.6 consists of the literature review on 

advanced modeling techniques and the limitations of existing methods describing the proposed 

method.   
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Chapter 3 describes the proposed Calibrated ℎ-likelihood approach with bias correction 

(CHBC) that can be extended to the canonical GLM family distributions. The method illustrates 

using Binomial-Normal HGLM and Poisson-Normal HGLM. Section 3.2 discusses the maximum 

hierarchical likelihood estimates (MHLEs) of fixed effects and random effects using the CHBC 

method. The bias correction procedure is discussed in section 3.3, and the MHLEs of dispersion 

parameters are given in section 3.4. The subsections in 3.5 cover the asymptotic properties of 

MHLEs, and the Wald confidence interval of MHLES.  

In chapter 4, the proposed CHBC method is extended to joint modeling of multiple 

outcomes based on two ways; 1) through multivariate random effects, explained in detail in 

subsections in 4.1, and 2) through shared random effects discussed briefly in section 4.2. Next, 

Chapter 5 contains the simulations studies performed to assess the empirical performance of the 

proposed CHBC approach in univariate and multivariate modeling in SAE using Binary HGLM in 

section 5.1, Poisson HGLM in 5.2, and Poisson multivariate HGLM in 5.3. In Chapter 6, we applied 

the CHBC method for each Binomial HGLM and Poisson HGLM in the univariate model and 

multivariate model. Section 6.1 discusses the CHBC method using a tobacco smoking data set from 

the Youth Risk Behavior Surveillance System (YRBSS) for univariate cases, and the data set is 

applied to joint modeling in section 6.4, discussing the importance of joint modeling in multiple 

outcomes. Next, a publicly available COVID-19 data set is used in the univariate case in section 

6.2 and the multivariate model in section 6.3, discussing the importance of modeling jointly of the 

correlated outcomes. Finally, Chapter 7 covers the discussion and future areas of research. 

1.2 Direct Estimation Method 

Direct estimation technique or design based small area estimation provides precise estimates for 

small areas with sufficiently large sample sizes. Still, this method often cannot provide accurate 

estimates for areas with small sample sizes or no sampled units. The direct estimator of area means 
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𝑌𝑖̅
̂  when sampling without replacement is obtained using Horvitz-Thompson (H-T) estimator given 

as  

𝑌̂̅𝑖 =
1

𝑛𝑖
∑

𝑌𝑖𝑗

𝜋𝑖𝑗
𝑗∈𝑠𝑖

=
1

𝑛𝑖
∑ 𝑤𝑖𝑗𝑌𝑖𝑗,

𝑗∈𝑠𝑖

 

where 𝑖 = 1,… ,𝑚 small areas, 𝑌𝑖𝑗 is 𝑗𝑡ℎ measurement from the sample set 𝑠𝑖 in area 𝑖,  𝑛𝑖 is the 

sample size for area 𝑖, 𝜋𝑖𝑗 = 1/𝑤𝑖𝑗 is the probability of selecting 𝑗𝑡ℎ unit from area 𝑖, and 𝑤𝑖𝑗 is 

sampling weight. 

 The direct estimation method is not appropriate in many problems, it provides large 

standard errors due to small sample size areas, and also it cannot be used to make conditional 

inferences unlike in frequentist and Bayesian approaches. Hence, indirect estimation or model-

based methods are more prevalent in most research problems (R. E. Fay III & R. A. Herriot, 1979; 

John NK Rao & Molina, 2015).   

1.3 Indirect Estimation Method 

The direct estimate will provide inadmissibly significant standard errors with small areas 

as it does not increase the effective sample size in small areas. However, the indirect estimation 

method takes care of this issue by increasing the effective sample size, hence will reduce the 

standard error. The indirect estimation technique will bring information from related areas and/or 

time periods by linking them to the estimation process through a model; thus, it increases the sample 

size. Some of the indirect estimators are synthetic estimators, composite estimators, and the James-

Stein estimators, which do not consider between area variation. The synthetic estimator is a direct 

estimate that is obtained based on several small areas in a large area, however, assuming that similar 

characteristics for both small areas and the large area, and used as an indirect estimator for the large 

area (Gonzalez & Hoza, 1978). The most common indirect estimation technique in SAE, the Fay-

Herriot (FH) model developed by Robert E. Fay III and Roger A. Herriot in 1979, improves the 
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quality of direct estimates by borrowing strengths from the related areas, considering the between 

area variation. Hence it increases the accuracy of the estimates (John NK Rao & Molina, 2015). 

1.3.1 Area Level Model 

Area-level models are being used when the unit-level auxiliary data is not available.  The 

most common area-level model is the Fay-Herriot (FH) model, which is also known as the linking 

model. Fay and Herriot developed the FH model by combining two parts: direct area-level estimates 

and the synthetic estimates obtained from the linearly related auxiliary model. The basis FH model 

is a particular case of the linear mixed model. Suppose that the population is divided into 𝑚 areas 

(domains) with sample sizes 𝑛1, … , 𝑛𝑖 where 𝑖 = 1,… ,𝑚, then the direct estimate for the variable 

of interest 𝑦𝑖 for area 𝑖, 𝑦̂𝑖 is given as  

𝑦̂𝑖 = 𝜃𝑖 + 𝑒𝑖   ,    𝑒𝑖~𝑁(0, 𝜎𝑒
2)    𝑖 = 1,… ,𝑚, 

where 𝜃𝑖 = 𝑦̅𝑖 = ∑ 𝑦𝑖𝑗/𝑛𝑖 
𝑛𝑖
𝑗=1  , 𝑖 = 1,… ,𝑚 and the total sample size, 𝑁 = ∑ 𝑛𝑖

𝑚
𝑖=1 . 

 The synthetic estimates or 𝜃𝑖 is related to area specific auxiliary data 𝑿𝑖 = (𝑋1, … , 𝑋𝑝) 

through a linear model  

𝜃𝑖 = 𝑿𝑖
𝑇𝜷 + 𝑍𝑖𝑢𝑖, 𝑖 = 1,… ,𝑚                                                     (1.1) 

where 𝑝 is the number of covariates and 𝑍𝑖′s are known positive constants. 

Fay Herriot (FH) Model 

The FH model estimates balance the bias and precision of the results borrowing the strength 

of available information. The linking model assumes that the area-level true mean 𝜃𝑖 for the area, 

𝑖 is linearly related to area-level auxiliary variables (𝑿𝑖). The area-level means can be represented 

as a linear combination of fixed and random effects,   

𝜃𝑖 = 𝑿𝑖
𝑇𝜷 + 𝑢𝑖                                                                (1.2)  

These two parts build the basic area-level model (FH model) as follows 

𝑦̂𝑖 = 𝑿𝑖
𝑇𝜷 + 𝑢𝑖 + 𝑒𝑖,                                                     (1.3) 
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𝑖 = 1,… ,𝑚,    𝑢𝑖~𝑁(0, 𝜎𝑢
2),   𝑒𝑖~𝑁(0, 𝜎𝑒

2), 

where 𝑿𝑖 is a vector of covariates for area 𝑖, 𝜷 is a vector of unknown regression coefficients, 𝑢𝑖 is 

area specific random effect for area 𝑖, 𝑢𝑖~𝑁(0, 𝜎𝑢
2), assumed to be independent and identically 

distributed, with unknown 𝜎𝑢
2, and 𝑒𝑖 is the sampling error for area 𝑖, 𝑒𝑖~𝑁(0, 𝜎𝑒

2) with known 𝜎𝑒
2,   

𝑿𝑖
𝑇𝜷 are the fixed effects. The estimates of 𝜷 and 𝜎𝑢

2 , denoted by  𝜷̂ and 𝜎𝑢
2̂, can be obtained using 

the method of moments (MOM), maximum likelihood (ML), or restricted ML (REML) techniques. 

However, for known 𝜎𝑢
2 and unknown 𝜷, the best-unbiased predictor for small area mean 𝑖, (𝜂𝑖 =

𝑿𝑖
𝑇𝜷 + 𝑢𝑖) is given by the Best Linear Unbiased Prediction (BLUP) (Henderson, 1950). 

The BLUP estimators depend on the variance-covariance of random effects 𝜎𝑢
2 which can 

be estimated using ML or REML methods. If both 𝜷 and 𝜎𝑢
2 in the FH model are unknown, the 

estimate for the small area means is obtained replacing 𝜷 by their estimators 𝜷̂ and 𝜎𝑢
2 by 𝜎𝑢

2̂, that 

are called the Empirical Best Linear Unbiased Prediction (EBLUP) estimators. Similarly, empirical 

and hierarchical Bayes estimation methods can also provide accurate estimates for small area means 

(Ghosh & Rao, 1994; Molina & Marhuenda, 2015; John NK Rao & Molina, 2015; Saei & 

Chambers, 2003; Torabi & Rao, 2014).  

Many studies have obtained the unit-level and area-level EBLUPs in SAE applications and 

have shown that the unit-level estimates are more accurate than the area-level estimates (Jiang & 

Lahiri, 2006; Mauro et al., 2017; Yun & Lee, 2004; Zhang et al., 2014). Similarly, the root means 

squared errors (RMSEs) of the area-level estimates are higher than that of the unit-level estimates. 

Furthermore, some studies have shown that RMSEs of the direct estimates are comparably larger 

than RMSEs of EBLUPs estimates (Mauro et al., 2017). The extensions of the standard FH model, 

such as the spatial FH model, deals when the auxiliary information is correlated, which is quite 

often in real applications. Some applications are included in section 2.6 under the literature review. 
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1.3.2 Basic Unit Level Model 

Fuller and Battesse (1973) first introduced the nested error linear regression, which is also 

known as the basic unit-level model (Battese & Fuller, 1981; Fuller & Battese, 1973). It assumes 

that the auxiliary data are available for each element 𝑗 in each small area 𝑖, and also the variable of 

interest 𝑦𝑖𝑗 is related through the nested error linear regression model as follows 

𝑦𝑖𝑗 = 𝑿𝑖𝑗
𝑇 𝜷 + 𝑢𝑖 + 𝑒𝑖𝑗 ,   

𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛𝑖, 𝑢𝑖~𝑁(0, 𝜎𝑢
2), 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒

2), 

where 𝑿𝑖𝑗
𝑇 = (𝑋𝑖𝑗1, … , 𝑋𝑖𝑗𝑝)

𝑇
is auxiliary variables 𝑘 = 1,… , 𝑝 for each small area 𝑖, 𝑢𝑖~𝑁(0, 𝜎𝑢

2) 

is area-level random effects, and 𝑒𝑖𝑗~𝑁(0, 𝜎𝑒
2) is residual and independent of 𝑢𝑖.  

1.4 Best Linear Unbiased Prediction (BLUP) and Empirical BLUP (EBLUP) 

First, consider the basic area-level model described above, from the equation (1.3),  

𝑦̂𝑖 = 𝑿𝑖
𝑇𝜷 + 𝑢𝑖 + 𝑒𝑖,      𝑖 = 1,… , 𝑚,        𝑢𝑖~𝑁(0, 𝜎𝑢

2), 𝑒𝑖~𝑁(0, 𝜎𝑒
2). 

Given that 𝜎𝑢
2 and 𝜎𝑒

2 are known, the Best Linear Unbiased Prediction (BLUP) (Henderson, 

1950) of 𝜃𝑖 is  

𝜃̃𝑖 =  𝐸(𝜂|𝑦) = 𝑿𝑖
𝑇𝜷̃ + 𝐸(𝑢𝑖|𝑦) =  𝑿𝑖

𝑇𝜷̃ + 𝑢̃𝑖, 

where 𝑢̃𝑖 = γi(𝑦𝑖̂ − 𝑿𝑖
𝑇𝜷̃) is the predicted random effect for area 𝑖 and γ𝑖 = 𝜎𝑢

2/(𝜎𝑢
2 + 𝜎𝑒

2), 

γ𝑖 𝜖 (0,1). The weighted least squares estimator of 𝜷 is 

𝜷̃ = [∑
1

𝜎𝑢
2 + 𝜎𝑒

2

𝑚

𝑖=1

 𝑿𝑖𝑿𝑖
𝑇 ]

−1

∑
1

𝜎𝑢
2 + 𝜎𝑒

2

𝑚

𝑖=1

𝑿𝑖𝑦𝑖̂. 

When 𝜎𝑢
2 is unknown, the EBLUP can be calculated by replacing 𝜎𝑢

2  with a consistent 

estimator 𝜎̂𝑢
2. The EBLUP can be expressed as follows, 

𝜃̃𝑖
𝐸𝐵𝐿𝑈𝑃

= 𝑿𝑖
𝑇𝜷̃ + 𝑢̃𝑖. 

Substituting 𝑢̃𝑖 = 𝛾𝑖(𝑦𝑖̂ − 𝑿𝑖
𝑇𝜷̃), we have 
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𝜃̃𝑖
𝐸𝐵𝐿𝑈𝑃

= 𝑿𝑖
𝑇𝜷̃ + 𝛾𝑖(𝑦𝑖̂ − 𝑿𝑖

𝑇𝜷̃) = 𝛾𝑖𝑦𝑖̂ + (1 − 𝛾𝑖)𝑿𝑖
𝑇𝜷̂. 

Both BLUP and EBLUP can be considered as a combination of direct estimators, 𝑦𝑖̂, and 

regression-synthetic estimators, 𝑿𝑖
𝑇𝜷̂. When the measurement error, 𝜎𝑒

2, is small as compared with 

the small area random effects, 𝜎𝑢
2, the direct estimator becomes reliable. Thus, the BLUP and 

EBLUP estimates stay closer to the direct estimator. In contrast, when the direct estimator is 

unreliable, the BLUP and EBLUP estimates get closer to the regression-synthetic estimator. 

1.5 Model Comparison  

The model parameters can be obtained using maximum likelihood (ML) and restricted 

maximum likelihood (REML) techniques. Hence, the model comparison and the selection are 

typically made based on standard goodness-of-fit measures, including the Akaike Information 

Criterion (AIC) and the Bayesian Information Criterion (BIC). AIC selects the model that produces 

the closest distribution to the exact distribution through an asymptotic approximation of Kullback-

Leibler information distance (KL divergence). BIC is very similar to AIC, except BIC is obtained 

from the Bayesian model comparison through large sample asymptotic approximation of the 

marginal likelihood (Akaike, 1973; Schwarz, 1978).  

𝐴𝐼𝐶 =  −2ℓ(𝐴, 𝜷) + 2(𝑝 + 1), 

𝐵𝐼𝐶 =  −2 ℓ(𝐴, 𝜷) + (𝑝 + 1) log𝑁, 

where 𝑝 is the number of estimated parameters, 𝑙(𝑨, 𝜷)  is log-likelihood, 𝑁 is the number of 

observations. 

Both AIC and BIC proximity measures are a combination of goodness of fit and model 

complexity part in terms of the number of parameters and number of observations. It provides how 

much information is lost when we approximate one distribution with another distribution, hence 

lower AIC or BIC indicates a better model fit. 
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Chapter 2. Advanced Modeling in SAE 

2.1 Generalized Linear Mixed Model (GLMM) 

Linear Mixed Model (LMM) is a powerful and flexible methodology, which is an extension 

of linear models that allows fixed effects to explain the effect from auxiliary information and 

random effects to account for the between area variation simultaneously in SAE. The LMM models 

a variety of data types, including clustered data, repeated measures, multilevel/hierarchical data, 

and spatial data, which are linearly related to the mean of the normally distributed outcome variable 

of interest. However, in many situations, the observations (outcome variable of interest) are not 

normally distributed. Thus, the Generalized Linear Models (GLM) and GLMs with random effects 

(namely, GLMM) can be used to accommodate a broad class of distributions, including both 

continuous and categorical observations. In this scenario, the mean of the response variable is 

possibly not linearly related to the auxiliary information, i.e., 𝑔(𝜇𝑗) = 𝑔(𝐸[𝑦𝑗]) =

∑ 𝛽𝓅𝑋𝑗𝓅
𝑝
𝓅=1 , 𝑗 = 1,… , 𝑛 in the GLMs and 𝑔(𝐸[𝑦𝑖𝑗|𝑢𝑖]) = 𝑿𝑖𝑗𝜷 + 𝑍𝑖𝑗𝑢𝑖, 𝑖 = 1,… ,𝑚, 𝑗 =

1,… , 𝑛𝑖, 𝜷 = (𝛽1, … , 𝛽𝑝)
𝑇
, 𝑿𝑖𝑗 = (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝) in the GLMMs, where 𝑚 is the number of random 

effects (similarly, the number of domains or small areas), and 𝑛𝑖 is the sample size of 𝑖𝑡ℎ domain. 

The “mixed” in GLMM refers to the presence of fixed effects and random effects in the linear 

predictor 𝑿𝑖𝑗𝜷 + 𝑍𝑖𝑗𝑢𝑖. Here, we discuss the advanced modeling techniques in SAE, which 

includes both fixed and random effect components in the model, such as LMMs, GLMMs, and 

Bayesian modeling approaches.  

In GLMMs, the mean outcome is linearly related to auxiliary data through a link function 

𝑔(. ) depending on the observation type (binary, continuous, or count), and the variance is a 

function of the mean. The GLMM models a variety of exponential family distributions such as 

Gaussian, binomial, Poisson, exponential, multinomial, etc. (McCulloch & Searle, 2004; Schwarz, 
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1978). The basic univariate unit-level models in small area estimation are the special cases of 

general linear mixed models (Datta & Ghosh, 1991). First, consider an LMM,   

𝒚 = 𝑿𝜷 + 𝒁𝒖 + 𝝐,                                                                        (2.1)                     

where  𝝐 and 𝒖 are mutually independent with 𝝐~𝑁(𝟎, 𝑹), 𝒖~𝑁(𝟎, 𝑮), the variance-covariance 

matrices, 𝑹 (dimension: 𝑁 × 𝑁), and 𝑮 (𝑚 × 𝑚). The variance-covariance matrix 𝑹 is also 

known as the conditional covariance matrix of 𝒚|𝑿𝜷 + 𝒁𝒖. The dimensions of the other matrices 

and vectors are 𝑿 (𝑁 × 𝑝), 𝜷(𝑝 × 1), 𝒁 (𝑁 × 𝑚),𝒖(𝑚 × 1), and 𝝐(𝑁 × 1) respectively, where 𝑿 

and 𝒁 are known design matrices, 𝒚 (𝑁 × 1) is a vector of outcome measures. The response vector 

𝒚 is a linear combination of normally distributed random variables; thus, the marginal distribution 

has the form of 𝒚~𝑁(𝑿𝜷, 𝒁𝑮𝒁𝑇 + 𝑹), where 𝑽 = 𝑽(𝜹): = 𝒁𝑮𝒁𝑇 + 𝑹, and 𝜹 = (𝛿1, … , 𝛿𝑞)
𝑇

are 

variance parameters that covariance matrices  𝑮 and  𝑹 depend.  

Now, consider binary outcome data, where the fixed and random effects in GLMM are 

linearly related to the mean of the outcome through the logit link, while count data is related through 

the log link. In recent years, GLMM has been widely considered in different ways with small area 

estimations (Jiang & Lahiri, 2006; John NK Rao & Molina, 2015). Suppose that the variable of 

interest in small area estimation is a binary outcome, then the logit of the probability of success for 

small areas 𝑖 can be written as  

logit(𝑝𝑖𝑗) = logit(P(𝑦𝑖𝑗|𝑢𝑖 = 1)) = 𝑿𝑖𝑗
𝑇 𝜷 + 𝑢𝑖 + 𝑒𝑖𝑗,                                   (2.3) 

where 𝑖 = 1,… ,𝑚,     𝑗 = 1,… , 𝑛𝑖, 𝑢𝑖~𝑁(0, 𝜎𝑢
2),   𝑒𝑖𝑗~𝑁(0, 𝜎𝑒

2), 𝑝𝑖𝑗 is the probability of 𝑦𝑖𝑗 = 1 

for the element 𝑗 in area 𝑖, 𝑢𝑖 is the random effect for area 𝑖, 𝑒𝑖𝑗 is the residual of element 𝑗 in area 

𝑖. The direct calculation shows that  

𝑝𝑖𝑗

1 − 𝑝𝑖𝑗
= exp(𝑿𝑖𝑗

𝑇 𝜷 + 𝑢𝑖), 

𝑝𝑖𝑗 =
exp(𝑿𝑖𝑗

𝑇 𝜷 + 𝑢𝑖)

1 + exp(𝑿𝑖𝑗
𝑇 𝜷 + 𝑢𝑖)

 . 
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As stated above, the GLMM considers both fixed and random effects to model continuous 

and discrete observations 𝑦𝑗 , 𝑗 = 1,… ,𝑁, which are neither independent nor normally distributed. 

Unlike in linear mixed models where 𝒚|𝒖~𝑵(𝑿𝜷 + 𝒁𝒖,𝑹), the GLMM assumes that conditional-

response 𝒚|𝒖 is not normally distributed, only 𝒖~𝑁(𝟎, 𝑮). In such cases, the estimation of the 

marginal distribution of 𝒚 is challenging, and the likelihood function does not have a closed-form, 

leading to computationally heavy evaluations,  

𝑓(𝒚) = ∫𝑓(𝒚, 𝒖)𝑑𝒖 = ∫…∫𝑓(𝒚|𝒖)𝑓(𝒖)𝑑𝑢1 …𝑑𝑢𝑚                             (2.2) 

Existing methods to overcome this problem include the use of numerical methods to 

approximate the integrals of likelihood functions, which can be done using Gaussian-Hermite 

Quadrature (GHQ), and through Bayesian-based approaches. The GHQ approximates the integral 

of a polynomial (and non-polynomial) function by summing up the rectangular areas of the 

polynomial function (Crouch & Spiegelman, 1990). The approximated likelihood accuracy 

depends on the number of quadrature points (nodes); however, increasing quadrature points 

increases the complexity, and hence it will be computationally intensive.  

Additionally, likelihood approximation through the Bayesian method is based on 

optimizing the conditional expectation. Dempster et al. (1977) proposed maximizing ℓ(𝜷; 𝒚) is 

similar to maximizing the conditional expectation as described below. Consider the log-likelihood 

function 

     ℓ(𝜷, 𝒖; 𝒚, 𝒖|𝒚) = ∫ 𝐿(𝜷, 𝒖; 𝒚, 𝒖)𝑑𝒖 = ℓ(𝜷; 𝒚) + log 𝑓𝜷(𝒖|𝒚),        

taking expectation and the partial derivative with respect to 𝜷  

𝜕

𝜕𝜷
𝐸[ℓ(𝜷, 𝒖; 𝒚, 𝒖)|𝒚] =

𝜕

𝜕𝜷
ℓ(𝜷; 𝒚) + 𝐸 [

𝜕

𝜕𝜷
log 𝑓𝜷(𝒖|𝒚)]              

𝐸 [
𝜕

𝜕𝜷
log 𝑓𝜷(𝒖|𝒚)] = ∫

𝜕

𝜕𝜷
log 𝑓𝜷(𝒖|𝒚) 𝑓𝜷(𝒖|𝒚) 𝑑𝑢                  
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                                    = ∫
𝜕 log 𝑓𝜷(𝒖|𝒚)

𝜕𝑓𝜷(𝒖|𝒚)

𝜕𝑓𝜷(𝒖|𝒚)

𝜕𝜷
𝑓𝜷(𝒖|𝒚)𝑑𝑢    

             = ∫
𝜕𝑓𝜷(𝒖|𝒚)/𝜕𝜷

𝑓𝜷(𝒖|𝒚)
𝑓𝜷(𝒖|𝒚) 𝑑𝑢 

    =
1

𝜕𝜷
∫𝜕𝑓𝜷(𝒖|𝒚)𝑑𝑢 = 0. 

Now, the log-likelihood can be obtained through the EM algorithm, as described in 

Dempster et al. (1977). The E-step of the EM algorithm can be evaluated using the Monte Carlo 

EM algorithms, Gibbs sampling, and the GHQ (Crouch & Spiegelman, 1990; A. P. Dempster, 

Laird, & Rubin, 1977; Gelfand & Smith, 1990; Jiang & Lahiri, 2006; McCullagh, 2018; Vaida, 

Meng, & Xu, 2004). The M-step involves maximizing the 𝐸[ℓ(𝜷,𝒖; 𝒚, 𝒖)|𝒚] until it conveges to 

the log likelihood function ℓ(𝜷; 𝒚).  

 

2.1 BLUP and EBULP Estimators  

The best linear unbiased prediction (BLUP) minimizes the mean squared error among the 

linear unbiased estimators. It does not depend on the normality of the random effects but depends 

on the variance components. As stated in section 1.4, these BLUP parameters are estimated through 

the method of moments (MOM), ML, or REML (Hartley & Rao, 1967; Henderson, 1953; Patterson 

& Thompson, 1971). When the estimated variance components replace the BLUP estimator, it is 

referred to as the empirical BLUP (EBLUP) (Harville, 1991). Consider a linear combination in a 

form 𝜇 = 𝒍𝑇𝜷 + 𝒎𝑇𝒖, with regression parameters 𝜷, random effects 𝒖, and constant vectors 𝒍,𝒎. 

A linear estimator 𝜇̂ of 𝜇 = 𝒂𝑇𝒚 + 𝑏 is unbiased if 𝐸(𝜇̂) = 𝐸(𝜇) (John NK Rao & Molina, 2015). 

For a given 𝜹, the BLUP estimator of 𝜇 = 𝒍𝑇𝜷 + 𝒎𝑇𝒖 can be derived as (Henderson, 1950) 

𝜇̃ = 𝒍𝑇𝜷̃ + 𝒎𝑇𝒖̃ = 𝒍𝑇𝜷̃ + 𝒎𝑇𝑮𝒁𝑇𝑽−1(𝒚 − 𝑿𝜷̃),                                       (2.4) 

where 

𝜷̃ = 𝜷̃(𝜹) = (𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1𝒚                                                (2.5) 
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is the best linear unbiased estimator (BLUE) of 𝜷, and 

𝒖̃ = 𝒖̃(𝜹) = 𝑮𝒁𝑇𝑽−1(𝒚 − 𝑿𝜷̃) .                                               (2.6) 

Consider the GLMM to illustrate the BLUP and EBLUP of 𝜷 and 𝒖. First, assume that 𝒖 

and 𝝐 follow multivariate normal distributions, then the joint density of 𝒚 and 𝒖 is  

𝑓(𝒚, 𝒖) = 𝑓(𝒚| 𝒖) × 𝒇( 𝒖)                                                                                                 

= (2𝜋)−
𝑁
2(det(𝑹))−

1
2  exp [−

1

2
(𝒚 − 𝑿𝜷 − 𝒁𝒖)𝑇𝑹−1(𝒚 − 𝑿𝜷 − 𝒁𝒖)]  

× (2𝜋)−
ℎ
2(det(𝑮))−

1
2  exp [−

1

2
𝒖𝑇𝑮−1𝒖] 

∝ exp [−
1

2
(𝒚 − 𝑿𝜷 − 𝒁𝒖)𝑇𝑹−1(𝒚 − 𝑿𝜷 − 𝒁𝒖) −

1

2
𝒖𝑇𝑮−1𝒖]. 

Assume the variance parameters 𝜹 = (𝛿1, … , 𝛿𝑞)
𝑇
are known, maximizing the joint 

likelihood of 𝒚 and 𝒖 with respect to 𝜷 and 𝒖 is equivalent to maximizing the joint log-likelihood 

ℓ(𝜷,𝒖) =  −
1

2
(𝒚 − 𝑿𝜷 − 𝒁𝒖)𝑇𝑹−1(𝒚 − 𝑿𝜷 − 𝒁𝒖) −

1

2
𝒖𝑇𝑮−1𝒖.                   (2.7) 

Since 𝒖 is unobservable,  ℓ(𝜷, 𝒖) can be considered as a penalized likelihood with a penalty term 

1

2
𝒖𝑇𝑮−1𝒖 added to the traditional log-likelihood function. The penalized log-likelihood function is 

conditioning on 𝒖 as fixed (known).  

In (2.7), by setting the partial derivative of ℓ(𝜷, 𝒖) with respect to 𝜷 and 𝒖 to be zero, we 

have the following mixed model equations for both fixed effects and random effects 

[𝑿
𝑇𝑹−1𝑿 𝑿𝑇𝑹−1𝒁

𝒁𝑇𝑹−1𝑿 𝒁𝑇𝑹−1𝒁 + 𝑮−1] [
𝜷∗

𝒖∗] = [
𝑿𝑇𝑹−1𝒚

𝒁𝑇𝑹−1𝒚
].                                (2.8) 

The solution to (2.8) and BLUP estimators of 𝜷 and 𝒖 are identical, i.e. 𝜷∗ = 𝜷̃ and 𝒖∗ =

𝒖̃ . Thus the BLUP estimators can also be considered as joint maximum likelihood estimators.  
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When the variance parameters 𝜹 = (𝛿1, … , 𝛿𝑞)
𝑇

are unknown, the empirical BLUP 

(EBLUP) estimator of 𝒖, 𝒖̂ = 𝑡(𝜹̂, 𝒚) = 𝑡(𝜹̂) is obtained by replacing the unknown variance 

parameters 𝜹 = (𝛿1, … , 𝛿𝑞)
𝑇

by an estimator 𝜹̂ = 𝜹̂(𝒚).  

2.2 ML and REML Estimators 

Under the general linear mixed model, the maximum likelihood (ML) and restricted 

maximum likelihood (REML) estimators of 𝜷 and 𝜹 are obtained by maximizing the log-likelihood 

function. Under the normality assumption, the log-likelihood is 

ℓ(𝜷, 𝜹) =  −
1

2
(𝒚 − 𝑿𝜷)𝑇𝑽−1(𝒚 − 𝑿𝜷) −

1

2
log𝑑𝑒𝑡 (𝑽) + 𝑐,                      (2.9) 

where 𝑐 = −
𝑁

2
log (2π) is a constant, 𝑽 is the variance-covariance matrix of 𝒚~𝑁(𝑿𝜷, 𝑽).  

Taking the partial derivative of ℓ(𝜷, 𝜹) with respect to 𝜷, we have 

𝜕ℓ(𝜷, 𝜹)

𝜕𝜷
=  𝑿𝑇𝑽−1(𝒚 − 𝑿𝜷) = 𝑿𝑇𝑽−1𝒚−𝑿𝑇𝑽−1𝑿𝜷. 

Thus, the MLE of 𝜷 is  

𝜷̂ = (𝑿𝑇𝑽−𝟏𝑿)
−𝟏

𝑿𝑇𝑽−𝟏𝒚. 

Taking the partial derivative of ℓ(𝜷, 𝜹) with respect to 𝜹, we have 

𝜕ℓ(𝜷, 𝜹)

𝜕𝛿𝑗
= −

1

2
(𝒚 − 𝑿𝜷)𝑇

𝜕𝑽−1

𝜕𝛿𝑗

(𝒚 − 𝑿𝜷) −
1

2

𝜕 log𝑑𝑒𝑡(𝑽)

𝜕𝛿𝑗
 

                                        =  
1

2
(𝒚 − 𝑿𝜷)𝑇𝑽−1

𝜕𝑽

𝜕𝛿𝑗
𝑽−1(𝒚 − 𝑿𝜷) −

1

2
𝑡𝑟𝑎𝑐𝑒 (𝑽−1

𝜕𝑽

𝜕𝛿𝑗
), 

Note from Rao and Molina (2015, pp.102-103) (John NK Rao & Molina, 2015; Searle, 

Casella, & McCulloch, 2009) 

𝜕𝑽−1

𝜕𝛿𝑗
= −𝑽−1

𝜕𝑽

𝜕𝛿𝑗
𝑽−1, 

𝜕|𝑽|

𝜕𝛿𝑗
= 𝑡𝑟𝑎𝑐𝑒 (𝑎𝑑𝑗(𝑽)

𝜕𝑽

𝜕𝛿𝑗
), 
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𝜕 log𝑑𝑒𝑡 (𝑽)

𝜕𝛿𝑗
= trace(𝑽−1

𝜕𝑽

𝜕𝛿𝑗
 ). 

The expected second derivative of −ℓ(𝜷, 𝜹) with respect to 𝜹 is given by  

𝑰𝑗𝑘(𝜹) = 𝐸 [−
𝜕2ℓ(𝜷, 𝜹)

𝜕𝛿𝑗𝜕𝛿𝑘
] 

= 𝐸 [−

𝜕 (
1
2

(𝒚 − 𝑿𝜷)𝑇𝑽−1 𝜕𝑽
𝜕𝛿𝑗

𝑽−1(𝒚 − 𝑿𝜷) −
1
2 𝑡𝑟𝑎𝑐𝑒 (𝑽−1 𝜕𝑽

𝜕𝛿𝑗
)  )

𝜕𝛿𝑘
] 

= 𝐸

[
 
 
 
 

−

𝜕 (−
1
2

𝑡𝑟𝑎𝑐𝑒 (𝑽−1 𝜕𝑽
𝜕𝛿𝑗

))

𝜕𝛿𝑘

]
 
 
 
 

 

=
1

2
𝑡𝑟𝑎𝑐𝑒 (𝑽−1

𝜕𝑽

𝜕𝛿𝑗
𝑽−1

𝜕𝑽

𝜕𝛿𝑘
) ,  

where 𝑗 = 1,… , 𝑞 and 𝑘 = 1,… , 𝑞 are the elements of the Fisher Information matrix, −𝑰𝑗𝑘(𝜹).  

The MLEs  𝜹̂ of 𝜹  can be obtained iteratively by using the Newton Raphson algorithm 

based on the first and second order partial derivatives of the log-likelihood function with respect to 

𝜹 and 𝜷, 

𝜹(𝑘+1) = 𝜹(𝑘) + [𝑰(𝜹(𝑘))]
−1

 
𝜕

𝜕𝜹
ℓ(𝜷, 𝜹)|𝜷̂=𝜷̃(𝜹(𝑘)),𝜹̂=𝜹(𝑘) , 

where 𝑘 = 0,1,…, is the number of iterations.  

  The ML estimators of 𝜹 and 𝜷 at convergence are 𝜹̂ and 𝜷̂ = 𝜷̃(𝜹̂) respectively, where 

𝜹̂ = 𝜹(𝑘)and 𝜷̂ = 𝜷̃(𝜹(𝑘)) are values of 𝜹 and 𝜷̃ = 𝜷̃(𝜹) at the 𝑘𝑡ℎ iteration. The asymptotic 

covariance matrix of ML estimators 𝜷̂ and 𝜹̂ is diag[𝑣𝑎𝑟(𝜷̂), 𝑣𝑎𝑟(𝜹̂)], where  

𝑣𝑎𝑟(𝜷̂) = 𝑣𝑎𝑟[(𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1 𝒚] 

           =  (𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1𝑽 ((𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1)𝑇 

= (𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1𝑽 𝑽−1𝑿(𝑿𝑇𝑽−1𝑿)−1 

= (𝑿𝑇𝑽−1𝑿)−1,   
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and 𝑣𝑎𝑟(𝜹̂) = 𝑰−1(𝜹). 

The ML method's major drawback is the loss of degrees of freedom of one parameter when 

estimating the other parameter. The REML takes care of this issue by transforming data 𝒚∗ = 𝑨𝑇𝒚, 

where 𝑨 is any 𝑁 × (𝑁 − 𝑝) full-rank matrix orthogonal to 𝑿. The REML estimators are obtained 

through the restricted log-likelihood of the joint density of 𝒚∗ expressed as a function of 𝜹 

ℓ𝑅(𝜹) =  −
1

2
log𝑿𝑇𝑽−1𝑿 −

1

2
𝒚𝑇𝑷𝒚 −

1

2
log|𝑽| + 𝑐, 

where 𝑷 = 𝑽−1 − 𝑽−1𝑿(𝑿𝑇𝑽−1𝑿)−1𝑿𝑇𝑽−1.   

REML estimators 𝜹̂𝑅𝐸 of 𝜹 and 𝜷̂𝑅𝐸 = 𝜷̃(𝜹̂𝑅𝐸) of 𝜷 also are obtained iteratively using the 

Newton Raphson algorithm. The covariance matrices are asymptotically equal in both ML and 

REML estimators of 𝜹  and 𝜷 for fixed 𝑝, 𝑣𝑎𝑟(𝜹̂) ≈ 𝑣𝑎𝑟(𝜹̂𝑅𝐸) and 𝑣𝑎𝑟(𝜷̂) ≈ 𝑣𝑎𝑟(𝜷̂𝑅𝐸). 

2.3 Empirical and Hierarchical Bayes Method for Small Area Models 

Bayes techniques are based on the basic Bayes theorem using marginal (prior distribution 

𝑓(𝜽)) and conditional probability density functions (posterior distribution 𝑓(𝒚|𝜽)). The marginal 

likelihood of 𝒚, 𝑓(𝒚) = ∫ 𝑓(𝒚, 𝜽)𝑑𝜽 = ∫ 𝑓(𝒚|𝜽)𝑓(𝜽)𝑑𝜽, which involves multiple integrals, 

becomes challenging with complicated posterior distributions and also with multivariate prior 

distributions. In such situations, parameters are obtained via simulation approaches, such as 

Markov Chain Monte Carlo (MCMC) approaches Metropolis-Hastings and Gibbs sampling. The 

Hierarchical Bayes (HB) method first simulates 𝜽, then simulates 𝒚 given 𝜽. The Empirical Bayes 

(EB) method is based on the convenient prior distribution for 𝑓(𝜽|𝜷) known as the conjugate prior, 

where 𝜷 is a hyperparameter which is estimated by frequentist methods (Martuzzi & Elliott, 1996; 

John NK Rao & Molina, 2015; Yasui et al., 2000). 

The Empirical Bayes approach in SAE assumes that the parameter of interest 𝜽 = 𝝁, the 

population means for the small area 𝑖 in the linking model of FH model (equation (1.1)), has some 

prior distribution 𝑓(𝜽|𝜷) where 𝜷 is an unknown parameter. First, the posterior distribution of 𝜽, 
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given data, is obtained assuming that 𝜷 is known, then 𝜷 is estimated using the marginal 

distribution of the data (Farrell, MacGibbon, & Tomberlin, 1997; R. E. Fay III & R. A. J. J. o. t. A. 

S. A. Herriot, 1979; Ghosh & Rao, 1994; Morris, 1983).  

The Hierarchical Bayes model assumes that the parameter of interest 𝜽 is from a prior 

distribution with some unknown parameters (𝜷), and again this unknown parameter has another 

prior distribution with unknown parameters. Therefore, in SAE, the primary area model under the 

hierarchical Bayesian framework can be expressed as a two-stage hierarchical model, which is also 

known as a conditionally independent hierarchical model. Two models have been discussed based 

on unknown sampling variance 𝜎𝑒
2 and known sampling variance (unbiased estimate, 𝑠𝑒

2) in the 

basic FH model (Yong You & Chapman, 2006). The authors showed that the results obtained from 

the proposed HB method for the model with unknown variance perform well regardless of the 

sample size, by using two survey data sets, corn-soybean and milk data from the U.S. Department 

of Agriculture and U.S. Bureau of Labor Statistics, respectively.  

The basic FH model (equation (1.1)) assumes that the direct estimate 𝑦𝑖 and sampling 

variance 𝜎𝑒
2 of 𝑒𝑖~𝑁(0, 𝜎𝑒

2) are known and obtained from auxiliary data. This assumption could be 

too strong and lead to biased results, especially for the areas with small sample sizes. You and 

Chapman (2006) introduced a Hierarchical Bayes (HB) model using the Gibbs sampling technique 

to estimate unknown 𝜎𝑒
2 from an unbiased estimator 𝑠𝑒

2 assuming that the 𝑠𝑒
2 is independent of the 

direct estimator 𝑦𝑖, and (𝑛𝑖 − 1)𝑠𝑒
2~𝜎𝑒

2𝜒𝑛𝑖−1
2 , where 𝑛𝑖 is the sample size for area 𝑖 (Yong You & 

Chapman, 2006). Some applications of empirical and hierarchical Bayes methods in SAE are 

discussed in detail under the literature review in section 2.6 (Ghosh, Natarajan, Stroud, & Carlin, 

1998; Hobza & Morales, 2016). 
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2.4 Hierarchical Generalized Linear Models for SAE Models 

2.4.1 Hierarchical Generalized Linear Models 

A hierarchical generalized linear model (HGLMs) uses a generalization of Henderson’s 

joint likelihood to allow components of random effects in the linear predictors of generalized linear 

mixed models to have a conjugate distribution from the exponential family. For example, the 

distribution of random effect 𝑢𝑖 for area 𝑖 in Poisson-Gamma HGLM (or Poisson conjugate HGLM) 

is Poisson with mean 𝜆, and the distribution of 𝒚|𝑢𝑖 is gamma with a canonical log link function. 

Some other examples of HGLMs are Binomial-Beta, Gamma-Inverse Gamma, and Inverse 

Gaussian-Gamma HGLMs. Normal-Normal or Normal conjugate HGLM is a specific case of 

HGLM with identity link function, where 𝑢𝑖 is normally distributed, also known as the Linear 

Mixed Model (LMM) (Youngjo Lee & John A  Nelder, 1996; Lee, Nelder, & Pawitan, 2006). 

 Lee and Nelder (1996) originally defined the HGLM as a GLM family for the response 

variable 𝒚 given a random effect 𝒖, satisfying  

𝐸(𝒚|𝒖) = 𝜇 and 𝑣𝑎𝑟(𝒚|𝒖) = 𝜙𝑉(𝜇), 

with the conditional log-likelihood of 𝒚 given 𝒖  

ℓ(𝜽, 𝜙; 𝒚|𝒖) =
∑{𝒚𝜽 − 𝑏(𝜽)}

𝜙
+ 𝑐(𝒚,𝜙),                                      (2.10) 

where 𝜽 = 𝜃(𝝁) is the canonical (natural) parameter, 𝝁 is the conditional mean of 𝒚 given 𝒖, 𝜙 is 

the dispersion parameter. The linear predictor takes the form of  

𝜼 = 𝑔(𝝁) = 𝑿𝜷 + 𝒁𝒗, 

where 𝑔(. ) is the link function, 𝜷s are the regression coefficients of fixed effects, and random 

component 𝒗 = 𝑣(𝒖) is a monotonic function of random effects 𝒖. The random effects 𝒖 is 

extended to conjugate distributions from the GLM family with parameters 𝛼. This will be a key 

advantage of HGLMs compared to GLMs. 
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The HGLM approach has been widely used in modeling binary and count data, frailty 

modeling for survival data, repeated measures data, and survey data in both univariate and 

multivariate cases (Ha et al., 2001; Molenberghs, Verbeke, Demétrio, & Vieira, 2010). Some 

examples of HGLMs are listed below. 

Normal-Normal HGLM 

A Normal-Normal HGLM is a GLM with 𝒚|𝒖~𝑁(𝑿𝜷 + 𝒁𝒗, 𝜎2), 𝒖~𝑁(0, 𝜎𝑢
2) and the 

identity link function (𝑔(𝝁) = 𝝁), hence 𝒗 = 𝒖, and the log-likelihood of 𝒚|𝒖    

ℓ(𝜃, 𝜙; 𝒚|𝒖) = −
1

2𝜎2(𝒚 − (𝑿𝜷 + 𝒁𝒗))
2
− log2𝜋𝜎2 

                                                   = {
𝒚(𝑿𝜷 + 𝒁𝒗) − (𝑿𝜷 + 𝒁𝒗)2/2

𝜎2
− (

𝒚

2𝜎2
+ log2𝜋𝜎2)}, 

has the form of (2.10), where 𝑉𝑎𝑟(𝒚|𝒖) = 𝜙 = 𝜎2, 𝜽 = 𝑿𝜷 + 𝒁𝒗, 𝑏(𝜽) = (𝑿𝜷 + 𝒁𝒗)2, 𝑉(𝝁) =

1, 𝜼 = 𝑔(𝝁) = 𝑿𝜷 + 𝒁𝒗, 𝒗 = 𝒖, 𝒖~𝑁(0, 𝜎𝑢
2),  and  𝑐(𝒚,𝜙) = −(𝒚/2𝜎2 + log2𝜋𝜎2). Here, the 

random component 𝒗 has a normal distribution with the identity link function. 

Poisson-Gamma HGLM 

 Poisson-Gamma HGLM is an extension of GLM with the random effect (𝒖) has a Gamma 

distribution, and 𝒚|𝒖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑿𝜷 + 𝒗). The log-likelihood of 𝒚|𝒖 

ℓ(𝜽, 𝜙; 𝒚|𝒗) = 𝒚 log(𝑿𝜷 + 𝒗) − (𝑿𝜷 + 𝒗) − log𝒚! 

where 𝜽 = log(𝑿𝜷 + 𝒗) , 𝑏(𝜽) = 𝑿𝜷 + 𝒗, 𝜙 = 1, and 𝒗 = log𝒖. The random component 𝒗 has 

the log-gamma distribution with link function being the log link and 𝒖 being gamma distribution 

in Poisson-Gamma HGLM. The expected value of 𝒚|𝒖, 𝐸(𝒚|𝒖) = 𝑏′(𝜽) = 𝑿𝜷 + log𝒖. 

2.4.2 H-likelihood and MHLE of (𝜷, 𝒖) 

 The ℎ-likelihood is the logarithm of the joint density function of 𝒚 and 𝒗 (= 𝑣(𝒖)), 

equivalently, it is the joint density function of 𝒚 and 𝒖, which needs to be the form of  
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ℎ = log 𝑓𝜷,𝜙(𝒚|𝒖) + log 𝑓𝛼(𝒖) = ℓ(𝜽, 𝜙; 𝒚|𝒖) + ℓ(𝛼|𝒖), 

where ℓ(𝜽, 𝜙; 𝒚|𝒖) is the logarithm of the density function of 𝒚|𝒖, ℓ(𝛼|𝒖) is the logarithm of the 

density function of 𝒖, 𝜷 are fixed effects, and (𝜙, 𝛼) are the dispersion parameters (Lee et al., 

2018). The classical approach of estimating the BLUP of random effects 𝒖 and the MLE of fixed 

effects 𝜷 is obtained by maximizing the joint density function, is straightforward in a standard 

linear mixed model with 𝒚~𝑁(𝑿𝜷, 𝜎2𝑰) and 𝒖~𝑁(0, 𝜎𝑢
2) (Henderson, Kempthorne, Searle, & Von 

Krosigk, 1959). When the joint log-likelihood does not have a closed-form, it is very challenging 

to estimate BLUP or EBLUP. In such situations, ℎ-likelihood plays an important role in model 

inference. Lee and Nelder (1996) derived the hierarchical(ℎ) maximum likelihood estimates 

(HMLEs) using the score equations 𝜕ℎ/𝜕𝜷 = 0, and 𝜕ℎ/𝜕𝒖 = 0 for given 𝜙 and 𝛼. Unlike in 

GLM, the random component 𝒗, or equivalently, the random effect 𝒖 in HGLM is not assumed to 

be normally distributed; instead, it is estimated by the properties of data through a prior distribution. 

However, the HMLEs are often obtained via numerical approximation methods due to intractable 

integrals in the log-likelihood function. 

 The inferences about 𝜷, 𝒖, and the dispersion parameters 𝜗 = (𝜙, 𝛼) in HGLMs involve 

three likelihoods, the ℎ-likelihood, and two adjusted profile likelihoods (marginal likelihood and 

restricted likelihood). Inference about 𝜷 is based on the marginal likelihood 𝐿 = log∫ exp (ℎ)𝑑𝒖, 

inference about 𝒖 is based on the ℎ-likelihood, and the inference about the dispersion parameters 

is based on restricted likelihood, respectively.   

Let 𝝉 = (𝜷, 𝒖) be the model parameters. As stated above, given the dispersion parameters 

𝜗 = (𝜙, 𝛼), the maximum hierarchical (ℎ)-likelihood estimators (MHLE) 𝝉̂ = (𝜷̂, 𝒖̂) for 𝝉 =

(𝜷, 𝒖) are obtained by solving the score function 𝜕ℎ/𝜕𝝉 = 0. If the solution does not have a closed-

form, we can use Newton-Raphson methods to generate an iterative procedure that uses the gradient 

vector and the observed information matrix to approximate the points that maximize a likelihood 
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function. Start at initial values (𝜷 = 𝜷̂(0), 𝒖 = 𝒖̂(0)), the approximate maximums are updated 

iteratively using  

(
𝜷̂(𝑘+1)

𝒖̂(𝑘+1)
) = (

𝜷̂(𝑘)

𝒖̂(𝑘)
) + (𝓙−1𝓢(𝜏))|(𝜷,𝒖)=(𝜷̂(𝑘),𝒖̂(𝑘)),                               (2.11)  

where 𝝉 = (𝜷, 𝒖), 

𝓢(𝝉) =

(

 

𝜕ℎ

𝜕𝜷
𝜕ℎ

𝜕𝒖)

 , 

is the score function, 

𝓙 =

(

 
 

−[
𝜕2ℎ

𝜕𝜷𝑇𝜕𝜷
]
𝑝×𝑝

−[
𝜕2ℎ

𝜕𝜷𝜕𝒖
]
𝑝×𝑚

−[
𝜕2ℎ

𝜕𝒖𝜕𝜷
]
𝑝×𝑝

−[
𝜕2ℎ

𝜕𝒖𝑇𝜕𝒖
]
𝑚×𝑚)

 
 

, 

is the asymptotic covariance matrix of 𝜷̂ and 𝒖̂. The variance-covariance matrix will be estimated 

by MHLE of 𝜗 of adjusted ℎ-likelihood through an iterative procedure, which is described in detail 

in chapter 3. 

 

2.4.3 Penalized Partial Maximum Likelihood Estimation of Dispersion Parameters 

In general, the variance components and dispersion parameters are estimated from the 

REML approach by maximizing the REML likelihood of 𝑓𝜽(𝒚|𝜷̂), which is straightforward in a 

linear mixed model. In most cases, marginal and joint likelihoods do not have a closed-form; hence 

it requires some approximation technique to compute the likelihoods. In such situations, the 

likelihood function is approximated via integral approximation methods, such as EM  algorithm, 

Gibbs sampling, MCMC type algorithms, Laplace approximation, and ℎ-likelihood approximation 

through the Laplace approximation (Laplace, 1986; Lee et al., 2006). Many researchers have shown 

that the Laplace approximation is computationally efficient and with less biased compared to Gibbs 
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sampling and MCMC algorithms with high dimensional integration approximations (Breslow & 

Clayton, 1993; Youngjo Lee & John A  Nelder, 1996; Noh & Lee, 2007).  Lee and Nelder (2006) 

introduced an alternative approach to obtain dispersion parameters using ℎ-likelihood through the 

Laplace approximation, which is known as the adjusted ℎ-likelihood function (Lee et al., 2006).  

The Laplace approximation is used to approximate an integral of the form 

∫ 𝑒𝑐𝑓(𝑥)𝑑𝑥
𝑥1

𝑥0
, where 𝑓(𝑥) is a twice differentiable function, and 𝑐 is a constant. Suppose 

that 𝑓(𝑥) is a continuous, 𝑛 times differentiable function, lim
𝑥→𝑥0

𝑓(𝑥) = 𝑓(𝑥0), and 

𝑓′′(𝑥0) < 0. From, Taylor series expansion 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) +
1

2
𝑓′′(𝑥0)(𝑥 − 𝑥0)

2 + ⋯+
1

𝑛!
𝑓𝑛(𝑥0)((𝑥 − 𝑥0)

𝑛), 

which can be expressed as  

𝑓(𝑥) ≈ 𝑓(𝑥0) −
1

2
|𝑓′′(𝑥0)|(𝑥 − 𝑥0)

2,                                                     (2.12) 

where lim
𝑥→𝑥0

𝑓′(𝑥) = 0. The equation (2.12) can be simplified as 

∫ 𝑒𝑓(𝑥)
𝑥1

𝑥0

𝑑𝑥 ≈ 𝑒𝑓(𝑥0) ∫ 𝑒−
1
2
|𝑓′′(𝑥0)|(𝑥−𝑥0)2

𝑥1

𝑥0

𝑑𝑥.  

The above integral has the form of an arbitrary Gaussian integral function. Since 

|𝑓′′(𝑥0)| > 0, 

∫𝑒−
1
2
𝑛|𝑓′′(𝑥0)|(𝑥−𝑥0)2

𝑑𝑥
ℝ

= lim
𝑛→∞

(
2𝜋

𝑛|𝑓′′(𝑥0)|
)
1/2

. 

Now, the Laplace approximation to ∫ 𝑒𝑛𝑓(𝑥)𝑥1

𝑥0
𝑑𝑥 can be written as  

∫ 𝑒𝑛𝑓(𝑥)
𝑥1

𝑥0

𝑑𝑥 ≈ 𝑒𝑛𝑓(𝑥0) (
2𝜋

𝑛|𝑓′′(𝑥0)|
)

1
2
, 

which can be shown using the lower and upper bounds from Taylor’s theorem as  
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lim
𝑛→∞

∫ 𝑒𝑛𝑓(𝑥)𝑥1

𝑥0
𝑑𝑥

𝑒𝑛𝑓(𝑥0) (
2𝜋

𝑛(−𝑓′′(𝑥0))
)

1
2

= 1, 

where 𝑓(𝑥) has a global maximum at 𝑥 = 𝑥0, then 𝑓′′(𝑥0) < 0. This expression can be 

easily generalized to first-order Laplace approximation as 

       ∫ 𝑒𝑓(𝑥)𝑑𝑥 ≈ 𝑒𝑓(𝑥0) {|−
1

2𝜋
𝑓′′(𝑥)|

−
1
2
}|

𝑥=𝑥0

, 

where 𝑥0 is a global maximum of some function 𝑓(𝑥). This technique is used defining an adjusted 

ℎ-likelihood ℎ𝐴 where it is cumbersome to approximate the integrals when obtaining the REML 

and marginal likelihoods (Barndorff-Nielsen, 1983).  

Taking the log transformation of Laplace approximation  

log ∫ exp𝑓(𝑥) 𝑑𝑥 ≈ log {|−
1

2𝜋

𝜕2𝑓(𝑥)

𝜕𝑥2
|

−
1
2

exp 𝑓(𝑥)}|

𝑥=𝑥0

, 

                          = 𝑓(𝑥)|𝑥=𝑥0
−

1

2
{log det (

𝒥

2𝜋
)}|

𝑥=𝑥0

, 

            ∫ 𝑓(𝑥) 𝑑𝑥 = 𝑓(𝑥)|𝑥=𝑥0
+

1

2
{log det(2𝜋𝒥−1)}|𝑥=𝑥0

, 

where 𝒥 = 𝜕2𝑓(𝑥)/𝜕𝑥2. This concept was used proposing the adjusted ℎ-likelihood ℎ𝐴 to 

approximate the REML log-likelihood 𝑓𝜽(𝒚|𝜷̂, 𝒖̂) (Lee et al., 2006)        

ℎ𝐴 = ℎ|𝜷=𝜷̂,𝒖=𝒖̂ +
1

2
log{det(2𝜋𝓙−1)}|𝜷=𝜷̂,𝒖=𝒖̂ , 

                       = ℎ|𝜷=𝜷̂,𝒖=𝒖̂ +
1

2
log{(2𝜋)𝑝+𝑚 det(𝓙−1)}|

𝜷=𝜷̂,𝒖=𝒖̂
, 

                                                    = ℎ|𝜷=𝜷̂,𝒖=𝒖̂ +
1

2
(𝑝 + 𝑚) log 2𝜋 −

1

2
log det(𝓙)|

𝜷=𝜷̂,𝒖=𝒖̂
,       (2.13) 
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which is also known as the penalized partial likelihood function (PPL). Now, the MLE of 𝜗 is 

obtained by maximizing the adjusted profile ℎ-likelihood ℎ𝐴 with respect to 𝜗. Since 𝓙 is invertible, 

we have the score function  𝜕ℎ𝐴/𝜕𝜗 as 

𝜕ℎ𝐴

𝜕𝜗
=

𝜕ℎ

𝜕𝜗
|
𝜷=𝜷̂,𝒖=𝒖̂

−
𝜕

𝜕𝜗
( 

1

2
log{det(𝓙)}|𝜷=𝜷̂,𝒖=𝒖̂ ), 

=
𝜕ℎ

𝜕𝜗
|
𝜷=𝜷̂,𝒖=𝒖̂

−
1

2
𝑡𝑟𝑎𝑐𝑒 (𝓙−1

𝜕𝓙

𝜕𝜗
)|

𝜷=𝜷̂,𝒖=𝒖̂
.                                 (2.14) 

The MHLE of 𝜗 is obtained by solving 𝜕ℎ𝐴/𝜕𝜗 = 0 iteratively updating 𝜷̂ and 𝒖̂ which 

are obtained through the Newton Raphson method.  

2.5. Multilevel Small Area Estimation in Survey Research Using GLMM 

Small area estimation (SAE) is a statistical technique mostly used in survey research to 

obtain statistically reliable estimates for smaller areas such as zip code areas, counties, or sub-

county areas (Rahman & Harding, 2016; John NK Rao & Molina, 2015). Existing studies of SAEs 

that were developed using adult data from the Behavioral Risk Factor Surveillance System 

(BRFSS) have been focusing on the estimation of adult smoking prevalence (Dwyer-Lindgren et 

al., 2014). In this section, we applied the GLMM approach to estimate youth electronic cigarette 

use prevalence at the county level using the combined 2014 and 2015 National Youth Tobacco 

Survey (NYTS).  

 We performed a multilevel SAE model to incorporate individual-level tobacco use 

behaviors and area-level (county and state) ecological characteristics to electronic use prevalence 

among youth at the community level (i.e., county). Our SAE model is based on the analytical 

framework in conjunction with the mixed modeling of random effects and post-stratification 

simulation at the county level. This analytical design is considered superior to individual only or 

ecological only studies, which could yield mixed results as they miss the other important 

component in the analysis (Wills & Soneji, 2018). 
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2.5.1 Emerging Tobacco Use Among Adolescents 

Tobacco use is the leading cause of preventable death in the world (Centers for Disease 

Control and Prevention, 2013; U.S. Department of Health and Human Services, 2014), with the 

vast majority of tobacco use beginning during adolescence. In 2017, an estimated 3 million middle 

and high school students were current tobacco product users (T. W. Wang et al., 2018). In the 

United States, 9 out of 10 current smokers started smoking before age 18 (U.S. Department of 

Health and Human Services, 2012). Nicotine exposure and tobacco use at an early age can harm 

brain development, is associated with lower rates of smoking cessation and increased risk of 

addiction and other substance use, including marijuana (Taioli & Wynder, 1991; U.S. Department 

of Health and Human Services, 2012, 2014).  

The tobacco use landscape of youth has substantially changed in recent years, with more 

adolescents using e-cigarettes and other emerging tobacco products (Jamal et al., 2017). Among 

U.S. high school students, the current use of electronic cigarettes (e-cigarettes) has outpaced the 

use of traditional cigarettes (Jamal et al., 2017; U.S. Department of Health and Human Services, 

2016). E-cigarettes contain varying levels of nicotine, many potentially toxic substances, and 

different flavors, which might serve as a gateway for future cigarette use (Barrington-Trimis et al., 

2016; Cameron et al., 2014; Dinakar & O'Connor, 2016; Goniewicz, Hajek, & McRobbie, 2014; 

Jensen, Luo, Pankow, Strongin, & Peyton, 2015; Leventhal et al., 2015; Primack, Soneji, 

Stoolmiller, Fine, & Sargent, 2015; Soneji et al., 2017; Wills et al., 2016). Cigars currently ranked 

third among the most commonly used tobacco products (Jamal et al., 2017), and cigar smoke is 

possibly more toxic than cigarette smoke (Institute, 1998; U.S. Department of Health and Human 

Services, 2012). Flavorings are frequently added to cigars to enhance their appeal to youth 

(Kostygina, Glantz, & Ling, 2016).  

A growing body of literature has evaluated emerging youth tobacco use at the national level 

and identify patterns and socio-economic factors associated with youth substance use (H. Dai, 
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2018; H.  Dai, 2019; H. Dai, D. Catley, K. P. Richter, K. Goggin, & E. F. Ellerbeck, 2018). 

However, no study has evaluated the prevalence of emerging tobacco use among adolescents.  

Although enormous progress has been made in reducing tobacco use in the US, this progress has 

not been equally distributed across populations with large disparities in tobacco use persisting 

across groups defined by race/ethnicity, education level, income level, region, and other factors 

(National Cancer Institute, 2017; N. A. Rigotti & S. Kalkhoran, 2017). Thus, assessing tobacco-

related health disparities using small area modeling can provide information for policymakers and 

stakeholders to develop interventions in curbing emerging tobacco use among adolescents.  

2.5.2 Survey Materials and Methods  

We used data from the National Youth Tobacco Survey (NYTS). The NYTS is an FDA-

approved science-based survey approach to study public health issues with tobacco use, which 

includes data on the long term, intermediate and short term relevant to tobacco usage.  It was 

developed to provide data necessary to support the design, implementation, and evaluation of state 

and national tobacco prevention and control programs (Brian King, 2014; MacDonald, Starr, 

Schooley, Yee, & Klimowski, 2001). The NYTS includes tobacco-related data tobacco use (e.g., 

cigarettes, e-cigarettes, cigars, tobacco pipes, bidis, etc.), exposure to secondhand smoke, smoking 

cessation, etc. representing all middle school and high school students in the 50 US states and the 

District of Columbia. The NYTS employed a stratified, three-stage cluster sample design to 

produce a nationally representative sample to represent the middle school and high school students 

in the US.  

The sampling was done without replacement and oversampling the non-Hispanic African 

American students. The students within each school were selected from the primary sampling units 

(PSUs) considered as a county, or a group of small counties, or part of a very large county; the 

secondary sampling units (SSUs) are defined as schools or linked schools within each selected 

PSU. The participation in the NYTS was voluntary at both the school and student levels, and the 
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survey was completed via pencil and paper using a self-administered, scannable questionnaire 

booklet. Schools used wither passive or active permission forms to fulfill requirements of the No 

Child Left Behind Act, giving options to the parents to opt-out their child’s participation. 

We used 2014-2015 NYTS youth tobacco use data downloaded from the Centers for 

Disease Control and Prevention (CDC). There were 207 participants from 258 schools (school 

participation rate of 80.2%) in 2014, and 185 participants from 255 schools (school participation 

rate of 72.6%) in 2015. A total of 22,007 out of 24,084 (82 US counties) in 2014 and 17,711 out of 

20,259 (80 US counties) students in 2015 had completed the questionnaires. More details about the 

survey methodology are given in Hu 2016 (Hu, 2016).  

Table 2.1: Summary statistics of prevalence in 162 counties by the total, age group, sex, and race 

of NYTS 2014-2015 respondents. 

Characteristic No. of 

Respondents 

E-cigarette Ever 

Prevalence 

E-cig Ever 

(%) 

No. of 

Respondents 

E-cig current 

Prevalence 

E-cig current 

(%) 

Total 

Missing  

38683 

1125 

22.74 38835 

883 

10.08 

Age  

10-14 

15-19 

 

19846 

18837 

 

13.10 

32.90 

 

19897 

18938 

 

5.42 

14.98 

Sex 

Male 

Female 

 

19553 

18969 

 

25.01 

20.39 

 

19654 

19019 

 

11.73 

8.36 

Race 

White 

Black 

Hispanic 

Others  

 

18189 

5781 

10598 

2357 

 

23.61 

17.14 

26.36 

17.14 

 

16208 

5832 

10651 

2375 

 

11.06 

5.69 

11.60 

8.00 

 

Initially, the e-cigarettes were introduced to reduce tobacco use in so doing to decrease the 

health issues. However, e-cigarette usage among youth has been increased due to many reasons, 

such as flavors of cigarettes, being less harmful than other tobacco, etc. (Ambrose et al., 2015; 

Hongying Dai, 2019; H.  Dai, 2019; Hongying Dai & Hao, 2016, 2018; Villanti, Richardson, 
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Vallone, & Rath, 2013).  Our primary focus is the prevalence of current and ever use of E-cigarettes, 

1. ever use of E-cigarettes (yes or no), 2. current use of E-cigarettes (yes or no). The original NYTS 

data had 39,718 unit (individual or student)-level observations from 162 counties in 41 states in the 

US.  

We extracted poverty data for 3220 counties in 50 US states, the District of Columbia, and 

US territories from the American Community Survey (ACS) for the period 2011-2015 US Census. 

We considered four demographic groups for the race, white, African American, Hispanic, and 

others, including “Asian alone”, “American Indian and Alaska Native alone”, “Native Hawaiian 

and other Pacific Islander alone”, and “multiple races”. County wise subpopulation for age x sex x 

race cross-tabulated data for 16 demographic categories were extracted from 2015 5-year API 

Census data using tidycensus R package (K. Walker, 2018). The fully adjusted sampling weight is 

taken adjusting the sampling weight, which is the inverse of the probability of selection to alleviate 

the effect from non-respondents.   

2.5.3 GLMM Model Specification 

We consider the GLMM to obtain EBLUPs for county-wise prevalence as follows 

logit(𝑃𝑖𝑗𝑘𝑐) = logit(P(𝑦𝑖𝑗𝑘𝑐 = 1|𝑢)) = 𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝑥𝑐
′𝜂 + 𝜇𝑐 + 𝑒𝑖𝑗𝑘𝑐 ,                (2.15) 

where 𝛼𝑖, 𝛽𝑗, and 𝛾𝑘 are regression coefficients of age group 𝑖 = 1,2 (1 = 10 − 14, 2 = 15 −

19 years), sex 𝑗 = 1,2 (1 = male, 2 = female), and race 𝑘 = 1,… ,4 (1 = white, 2 = black, 3 =

hispanic, 4 = others) respectively. 𝑥𝑐 is a vector of county level covariates, 𝜂 is corresponding 

regression coefficients for county level covariates, 𝜇𝑐 is a vector of county-level random effects, 

and  𝑒𝑖𝑗𝑘𝑐 is the residual. We only considered the county level poverty rate for 𝑥𝑐 and obtained two 

models to obtain EBLUPs for current-use and ever-use of E-cigarettes using the FH method. The 

poverty rates were extracted from the 2011-2015 US Census. We got county-level fixed effects and 

random effects using PROC GLIMMIX in SAS (Schabenberger, 2005). Table 2.2 gives the fixed 
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effect estimates, age, gender, race, and the poverty rate for the ever-use and current use of the E-

Cigarettes using the FH model. 

Table 2.2: Model estimates using the FH model for ever-use and current-use of E-Cigarettes. 

Solutions for Fixed Effects   

 E-Cigarette Ever E-Cigarette Current 

Effect Estimate SE DF Pr > |t| Estimate SE DF Pr > |t| 

Intercept  -1.510 0.165 129.8 <.0001 -2.426 0.266 119.7 <.0001 

Age 

    10-14 

    15-19 

 

-1.251 

0 

 

0.001 

. 

 

36791 

. 

 

<.0001 

. 

 

-1.232 

0 

 

0.001 

. 

 

36947 

. 

 

<.0001 

. 

Gender 

     Male 

     Female 

 

0.212 

0 

 

0.001 

. 

 

36791 

. 

 

<.0001 

. 

 

0.340 

0 

 

0.001 

. 

 

36947 

. 

 

<.0001 

. 

Race 

     White 

     African American 

     Hispanic 

     Others 

 

0.313 

-0.062 

0.530 

0 

 

0.002 

0.002 

0.002 

. 

 

36791 

36791 

36791 

. 

 

<.0001 

<.0001 

<.0001 

. 

 

0.233 

-0.400 

0.383 

0 

 

0.003 

0.003 

0.003 

. 

 

36947 

36947 

36947 

. 

 

<.0001 

<.0001 

<.0001 

. 

Poverty (%)  1.884 1.017 129.5 0.0662 0.411 1.643 119.6 0.8030 

 

The estimates in Table 2.2 were used to make predictions for prevalence in all the counties 

in the US using RStudio (Team, 2015). The p-value of the poverty rate is not significant at the 0.05 

significance level, indicating that it is not associated with both ever-use and current-use of E-

Cigarettes. The odds ratios 𝑒0.53 = 1.70, and 𝑒0.38 = 1.45 are highest among the Hispanic youth 

compared to other races after adjusting for age, gender, and the poverty rate for both ever-use and 

current-use. White also has a higher odds ratio than African Americans compared to other races. It 

shows that the age group 10-14 has a lower odds ratio for both ever-use and current-use of E-

Cigarettes compared to the age group 15-19. 

Based on scatter plots 2.1(a) and 2.1(b) for estimated and observed prevalence, it shows 

that reliable estimates for both ever-use and current use of E-Cigarettes. Overall, most counties 

have a prevalence of less than 60% for ever-use and less than 30% for current-use except for one 
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county. Tables A.1 and A.2 show the estimated and actual prevalence for ever-use and current-use 

of E-cigarettes for 162 US counties using the FH model, respectively. 

 

2.5.4 County Level Prediction 

As stated above, we used the estimated random effects to predict random effects for 

unknown counties via the nearest neighboring approach (NNA). It is reasonable to obtain random 

effects using the NNA approach since the neighboring counties might share similar characteristics. 

The unknown random effect for county 𝑖, is replaced with the random effect of the closest county 

(Zahava Berkowitz et al., 2016b) based on the Euclidian distance of the centroid of each 

𝜇̃𝑐𝑖
= 𝜇̂𝑐𝑗

, 𝑠. 𝑡.min dist(𝑐𝑖, 𝑐𝑘) , 𝑘 = 1,… ,𝑚 − 1, 

where 𝜇̂𝑐𝑗
is the estimated random effect of county 𝑐𝑗, and 𝑐𝑗  is the closest to county 𝑐𝑖. The 

estimated county-level random effects and the model parameters were used to predict the individual 

level prevalence for E-cigarette current usage and E-cigarette ever usage using the equation (2.15).   

Figure 2.1: Observed vs. estimated county prevalence of ever-use and current-use of E-

Cigarettes in the US based on 2014-2015 NYTS data. 

(a) Ever-use (b) Current-use 
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P̃𝑖𝑗𝑘𝑐(𝑦𝑖𝑗𝑘𝑐 = 1|𝑢) =
exp(𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝑥𝑐

′𝜂 + 𝜇𝑐)

1 + exp(𝛼𝑖 + 𝛽𝑗 + 𝛾𝑘 + 𝑥𝑐
′𝜂 + 𝜇𝑐)

. 

The county-level prevalence was determined using 

P̃(𝑦𝑐 = 1|𝑢) =
∑ ∑ ∑ 𝑃̃𝑖𝑗𝑘𝑐𝑘 × Pop𝑐𝑗𝑖

Pop𝑖𝑗𝑘𝑐
, 

where Pop𝑐 = ∑ ∑ ∑ Pop𝑖𝑗𝑘𝑐𝑘𝑗𝑖  is the total population for county 𝑐. 

 

 

 

 

 

 

 

 

 

 

 

Based on Figure 2.2, most counties have a prevalence between 21-30% for ever-use of E-

Cigarettes. Next, the prevalence group of 11-20% is more prevalent compared to other prevalence 

groups. Overall, the states Hawaii, Oklahoma, New Mexico, Arkansas, Kentucky, Rhode Island, 

Indiana, Ohio, Tennessee, and Kansas fall in the top ten US states with large ever-use of E-

Cigarettes prevalence compared to other US states.  

Figure 2.3, compared with Figure 2.2, implies that similar areas that have a higher 

prevalence for ever-use also have a higher prevalence for current-use, which indicates that 

modeling these two outcomes through joint modeling might be crucial to study the association 

Figure 2.2: Estimated county prevalence of ever-use of E-

Cigarettes in the US based on 2014-2015 NYTS data.      
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among them. We proposed the joint modeling approach for such variables of interest, which is 

discussed in detail in chapter 4. 

 

 

 

 

 

 

 

 

 

  

2.6 Literature Review on Advanced Modelling Techniques in Small Area Estimation 

Many researchers have adopted a Hierarchical Generalized Linear modeling (HGLM) 

approach in the past to make more accurate inferences in SAE due to its’ flexibility of analyzing 

continuous and discrete data, as well as allowing random effect 𝒖 to have any conjugate distribution 

from the GLM family. In recent years, the Empirical Bayes (EB) and Hierarchical Bayes (HB) 

related GLM methods are also proposed. Furthermore, the robustness of these estimators against 

the estimators from different estimation methods is extensively discussed (Datta & Ghosh, 1991; 

Farrell et al., 1997; Gómez-Rubio, Best, Richardson, Li, & Clarke, 2010; MacGibbon & Tomberlin, 

1987; Martuzzi & Elliott, 1996; Stroud, 1994; Yasui et al., 2000). The EB approach assumes that 

the population data are a sample from a super population, which can be represented by an empirical 

Bayes model. This assumption clearly states the issues of repeated survey analysis where the 

Figure 2.3: Estimated county prevalence of current-use of E-

Cigarettes in the US based on 2014-2015 NYTS data. 
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population of inference might be different across the period of the survey conducted. Such 

situations have been handled via time series methodology in SAE, expanding the empirical Bayes 

method, and borrowing information from previous surveys as well as from other areas (Jon NK 

Rao & Yu, 1994).   

Most research studies are conducted based on cross-sectional data as well as the repeated 

measures data. Rao and Yu (1994) proposed an extension of the basic area-level FH model 

considering autocorrelated random effects and sampling error for SAE using time series and cross-

sectional data. The two-stage estimator of the small area mean for the current period is obtained 

under two scenarios; 1. for known autocorrelation, the BLUP is first obtained and then replaced 

with their consistent estimators, 2. for unknown autocorrelation, three methods have been proposed 

to estimate autocorrelation via the simulation approach (Jon NK Rao & Yu, 1994).  

Hierarchical Bayes (HB) methodology in SAE has been widely considered in different 

scenarios (Ghosh et al., 1998; Stroud, 1994). Ghosh et al. (1998) provided a theorem covering 

binary, count, multi-category, and spatial data based on the Hierarchical Bayes GLMM and 

implemented via the MCMC approximation method, in particular through the Gibbs sampling 

technique using two real datasets. One dataset with a multi-category outcome variable representing 

any negative impact of experiencing health hazards exposure in the workplace (yes, no, not 

exposed, and not applicable or not stated) is considered along with other demographic information 

including age, sex, and region in 15 regions in Canada on a 1991 sample. The authors compared 

the estimates from the simulation approach with the estimates from the multi-category logistic 

regression model, describing that the standard errors of the HB estimates are much lower than the 

sample proportions.   

The second data set relates to cancer mortality rates due to lung cancer in 115 counties in 

Missouri during 1972-1981. The outcome variable of interest, the log relative risk, was modeled 

linearly based on auxiliary information for gender (male, female), age (45-54, 55-64, 65-74, and 

75 and older), and gender-age interaction. The HB model is fitted via the Gibbs sampling approach 
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with and without spatial correlation. They tried a few models starting from the simplest model 

(dropping the interaction term) to the complex model (increasing the number of predictors) and 

showed that the model with five fixed effects offers the best fit. Furthermore, the authors claimed 

that the spatial model provides reasonably accurate results than the non-spatial model (Ghosh et 

al., 1998).  

Many researchers have proposed empirical Bayes SAE approaches with the assumption of 

population data is a sample from the larger super population (A. Dempster & Tomberlin, 1980; R. 

E. Fay III & R. A. Herriot, 1979; MacGibbon & Tomberlin, 1987; Morris, 1983; Yasui et al., 2000). 

The EB methodology for estimation of small area proportions or binary responses is first proposed 

by Dempster et al. (1980). The technique was illustrated incorporating random effects and nested 

random effects to estimate census undercount of small groups of the population. The US Census 

Bureau has conducted matching studies in each census since 1950, collecting data from external 

sources such as administrative records close to the census date. It is then compared with the 

appropriate census group, and the missing proportion in census records is considered as undercount 

for relevant subgroups. The probability of an individual being in a census is estimated as a function 

of demographic characteristics such as age, gender, and race categories using a logistic model 

introducing a local area effect. The disadvantage of this model is the ability to include data only 

within the local area and only obtaining estimates and interactions for regional areas. The authors 

extended the model considering the prior distributions for random effects of primary sampling units 

(PSU), secondary sampling units (SSU) within PSUs, and tertiary sampling units within SSUs are 

assumed to be normal with zero mean and different variances. The corresponding EB logistic model 

is adopted to estimate census undercount from an approximate posterior distribution of 

undercounting (A. Dempster & Tomberlin, 1980).  

Furthermore, MacGibbon et al. (1989) considered the empirical Bayes SAE technique 

proposed by Dempster et al. (1980) to estimate small area proportions, including random effects 

and nested random effects. The EB estimates are obtained through an MC simulation study and 
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compared with the estimated proportions based on classical unbiased estimates, model-based 

estimates (synthetic estimates), and empirical Bayes estimates using a labor force participation data 

from 15 PSUs. The auxiliary data were generated with identical distributions, uniformly distributed 

age, and Bernoulli distributed gender variable with proportion 0.5 for each group. The model-based 

or the synthetic estimate was obtained based on the fixed effects logistic model considering only 

local area-level data. However, the synthetic estimators are biased due to a lack of capturing the 

between area effects. This is solved from the empirical Bayes logistic model where random effects 

are assumed to have a multivariate normal distribution with mean zero and the variance 𝜎𝑢
2. The 

model first assumed the variance component of the random effects 𝜎𝑢
2, then estimate the proportions 

or the posterior distribution of random effects from the simulated data set. It is then used to obtain 

the maximum likelihood function of 𝜎𝑢
2, and estimate MLE 𝜎𝑢

2̂ via the EM algorithm. Next, 𝜎𝑢
2̂ is 

used to estimate the posterior variances (MacGibbon & Tomberlin, 1987).   

 The binomial logit modeling in SAE has been considered through various estimation 

approaches to estimate fixed, random effect estimates using maximum likelihood estimation 

methods, Bayesian inferential methods, and methods of moments (MOM), etc. Hobza and Morales 

(2016) adopted a unit-level binomial logit mixed model to estimate the empirical best prediction of 

weighted sums of probabilities via MCMC simulation (Hobza & Morales, 2016). The random 

effects are assumed to be independent and identically distributed 𝒖 = (𝑢1, … , 𝑢𝑚)𝑇~𝑁(𝟎, 𝑰𝑚), 

where 𝑰𝑚 unit matrix is the variance-covariance matrix of random effects, and 

𝑦𝑖𝑗|𝑢𝑖~𝐵𝑖𝑛(𝑛𝑖𝑗, 𝑝𝑖𝑗), 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛𝑖. The variance parameter and the regression 

parameters are estimated using the method of simulated moments (MSM) through the Newton-

Raphson iterative formula. Furthermore, the empirical best predictor for 𝑝𝑖𝑗 and the weighted sum 

of probabilities for small area 𝑖 were approximated via Monte Carlo (MC) simulation. Last, the 

mean squares error (MSE) and the error corrections of the parameters were obtained via MOM and 

MC simulation.  



37 
 

 
 

 The hierarchical likelihood approach is not only widely used in estimating the random 

effects and fixed effects, but also used in error correction, which occurs in the process of estimating 

random effects and fixed effects. Lee et al. (2011) proposed hierarchical likelihood prediction 

intervals for random effects and fixed effects using the ℎ-likelihood approach (Lee et al., 2011). 

The authors showed that the prediction interval from HL is very accurate compared to the results 

from penalized quasi-likelihood and fully Bayesian methods using a lip cancer dataset in areas of 

Scotland and an infant mortality dataset in British Columbia, Canada.  

Furthermore, HGLMs are also considered in Bayesian approaches through MCMC 

methods to estimate parameters, and the methodology is illustrated using state-level and hospital-

level auxiliary data to describe the cluster-specific rates of utilization for both hospitals and states. 

Huang and Wolfe considered ℎ-likelihood using the EM algorithm together with MCMC and stated 

that it could also be considered as a modification of the MCMC. These approaches discuss the 

variations due to clustering and cluster size. Additionally, the estimates can be used to conclude 

higher levels using the hierarchical structure of the data (Daniels & Gatsonis, 1999; X. Huang & 

Wolfe, 2002). Ghosh et al. (1998) considered Hierarchical Bayes GLM to model discrete and 

continuous data using MCMC integration to obtain the joint posterior distribution avoiding high-

dimensional numerical integration (Ghosh et al., 1998).  

Most of the researchers have considered uncorrelated random effects, but it is reasonable 

to consider the correlation between neighboring areas in many practical application problems. The 

correlation approaches zero when the distance between neighborhood areas increases. Spatial 

hierarchical models are considered when the random effects 𝑢𝑖, 𝑖 = 1,… ,𝑚 are not 𝑖𝑖𝑑, i.e., they 

are correlated. The most common spatial small area model is the conditional auto-regression (CAR) 

spatial model, which assumes that the conditional distribution of small area 𝑖 𝑍𝑖𝑢𝑖 in equation (1.1), 

given the area effects for the other areas (neighboring areas for area 𝑖) can be obtained using the 

information of area 𝑖, where 𝑍𝑖 = 1/√𝐶𝑖 in CAR spatial model, 𝐶𝑖 is census count for small area 𝑖, 
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and 𝑍𝑖 = 1 in the basic FH model. The CAR spatial model is used in estimating US Census 

undercount of certain areas based on spatial dependence (Cressie, 1991).  

In 2006, Alessandra et al. considered a spatially correlated random effects models and 

proposed a methodology based on the EBLUP estimator using a simultaneously autoregressive 

(SAR) model (Petrucci & Salvati, 2006). The authors proposed an estimator for MSE combining 

EBLUP with a SAR model, called spatial EBLUP (𝜃(𝜎̂𝑢
2, 𝜌̂)) estimators which were evaluated via 

MC simulation of spatially correlated random effects data using a soil erosion dataset in a southwest 

watershed. The estimated spatial autocorrelation coefficients from the ML and REML method show 

a strong spatial relationship between the random effects. Under the SAR model, the synthetic 

estimator in equation (1.1) has the form 𝜽̂ = 𝑿𝜷 + 𝒁(𝑰 − 𝜌𝑾)−1𝒖 + 𝝐,  where 𝑾 is the spatial 

weight matrix for 𝜽, 𝜌 ∈ (−1,1) is the spatial autoregressive coefficient. 

Most importantly, it is required to concentrate on point estimates as well as prediction 

errors for each small area, but not the average prediction error in SAE problems. The prediction 

error or the accuracy of the estimates plays a significant contribution to the accuracy of estimates 

since SAE considers essential practical applications, such as health disease estimation, fund 

allocation estimation, environmental health-related estimations, US census undercount estimation, 

etc. Many researchers have proposed prediction MSE (PMSE) estimators using various estimation 

techniques (Jiang, Lahiri, & Wan, 2002; N. Prasad & Rao, 1986; N. N. Prasad & Rao, 1990).  In 

1990, Prasad et al. developed PMSE estimators which occur when estimating EBLUP of 𝜷 and 

variance components 𝜽 under the linear mixed models where the random effects are independent 

normally distributed with variance 𝜎𝑢
2 which is estimated using MOM method (N. N. Prasad & 

Rao, 1990).  
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Chapter 3. Small Area Estimation Using Calibrated Hierarchical 

Likelihood Approach  

3.1 CH with Bias Correction for Generalized Family Distributions  

Our main goal is to adopt the hierarchical likelihood (ℎ-likelihood, also known as ℎ-loglihood) 

approach with the bias correction to obtain the improved maximum likelihood estimates for the 

model parameters in SAE. The proposed method is called the Calibrated Hierarchical Likelihood 

with Bias Correction (CHBC). As stated above, a unique aspect of the ℎ-likelihood approach is that 

it avoids multi-dimensional integration of the nuisance variables when obtaining the parameter 

estimates, the variables  𝒖 = (𝑢1, … , 𝑢𝑚)𝑡 are treated as parameters and jointly estimated along 

with 𝜷, and 𝜎2.  

First, consider the ℎ-likelihood for the HGLM model,  

ℎ = ℓ(𝜃, 𝜙; 𝒚|𝒖) + ℓ(𝜃; 𝒖),                                                    (3.1) 

where ℓ(𝜃, 𝜙; 𝒚|𝒖) is the natural logarithm of the conditional likelihood of 𝒚|𝒖, and ℓ(𝜃; 𝒖) is the 

logarithm of the probability density function of random effect 𝒖. Table 3.1 provides some examples 

of HGLMs. 

Table 3.1: HGLM models with components of some canonical GLM families. 

HGLM Model 𝒚|𝒖 𝜃(𝜇) 𝑏(𝜃) 𝜙 𝑔(. ) 𝒖 

Normal-Normal Normal 𝜇 𝜃2/2 𝜎2 identity Normal 

Binomial-Normal Binomial log 𝜇 exp𝜃 1 logit Normal 

Poisson-Normal Poisson log 𝜇/(1 − 𝜇) log (1 + exp𝜃) 1 log Normal 

Gamma-Normal Gamma −𝜇−1 −log (−𝜃) 1/𝛼 log Normal 

Poisson-Gamma Poisson log 𝜇/(1 − 𝜇) log(1 + exp 𝜃) 1 log Gamma 
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The CHBC method involves parameter estimation using an iterative approximation based 

on the ℎ-likelihood. Hence, it requires the partial derivatives of ℎ-likelihood with respect to model 

parameters. The proposed CHBC can be generalized into a broad class of canonical GLM family 

distributions of 𝒚|𝒖, and 𝒖, which mainly depends on four key elements in the score function 𝓢 and 

the Fisher information matrix 𝓙; the score statistic of GLM model 𝑠(𝜃; 𝒚), the weight matrix 𝑾, 

the first partial derivative of ℓ𝒖 𝜵ℓ𝒖

1 , and the second partial derivative of ℓ𝒖  𝜵ℓ𝒖

2 . This generalization 

simplifies the process of taking partial derivative with respect to all the parameters in the model. 

First, from (3.1), consider the log-likelihood of the GLM family distribution of 𝒚|𝒖, 

followed by the definition of HGLMs by Lee and Nelder (1996) (Youngjo Lee & John A  Nelder, 

1996),  

ℓ(𝜃, 𝜙; 𝒚|𝒖) =
∑{𝒚𝜃 − 𝑏(𝜃)}

𝜙
+ 𝑐(𝒚, 𝜙),                                                 (3.2) 

where 𝜃 is the canonical parameter, 𝑏(. ), and 𝑐(. ) are known functions, and 𝜙 is the dispersion 

parameter. The random effect 𝒖 follows a distribution from the GLM family.  

 Take the partial derivative of (3.2) with respect to 𝛽 for 𝑗𝑡ℎ observation 

𝜕ℓ𝑗

𝜕𝛽𝑗
=

𝜕ℓ𝑗

𝜕𝜃𝑗

𝜕𝜃𝑗

𝜕𝜇𝑗

𝜕𝜇𝑗

𝜕𝜂𝑗

𝜕𝜂𝑗

𝜕𝛽𝑗
 

𝜕ℓ𝑗

𝜕𝜃𝑗
=

𝑦𝑗 − 𝑏′(𝜃𝑗)

𝜙𝑗
. 

Since 𝜇𝑗 = 𝑏′(𝜃𝑗), 𝜕𝜇𝑗/𝜕𝜃𝑗 = 𝑏′′(𝜃𝑗). For canonical GLM, 𝑔(𝜇𝑗) = 𝜂𝑗 = 𝑋𝑖𝑗𝛽𝑗 +

𝑍𝑖𝑗𝑢𝑗 = 𝜃𝑗, thus 

𝜕𝜇𝑗

𝜕𝜂𝑗
=

𝜕𝑔−1(𝜂𝑗)

𝜕𝜂𝑗
=

𝜕𝜇𝑗

𝜕𝜃𝑗
= 𝑏′′(𝜃𝑗), and 

𝜕𝜂𝑗

𝜕𝛽𝑗
= 𝑋𝑖𝑗. 

Now 
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𝜕ℓ𝑗

𝜕𝛽𝑗
=

𝑦𝑗 − 𝑏′(𝜃𝑗)

𝜙𝑗
(𝑏′′(𝜃𝑗))

−1
𝑏′′(𝜃𝑗)𝑋𝑖𝑗 =

𝑦𝑗 − 𝑏′(𝜃𝑗)

𝜙𝑗
𝑋𝑖𝑗 . 

Similarly,  

𝜕ℓ𝑗

𝜕𝑢𝑗
=

𝑦𝑗 − 𝑏′(𝜃𝑗)

𝜙𝑗
𝑢𝑖𝑗. 

Thus, the score function of (3.2) can be expressed as (McCullagh, 2018), 

𝑠(𝜃; 𝒚) =
𝜕

𝜕𝜃
ℓ(𝜃, 𝜙; 𝒚|𝒖) =

𝒚 − 𝑏′(𝜃)

𝜙
.                                                   (3.3) 

The MHLEs are obtained through the iterative Newton Raphson method using the ℎ-

likelihood. Then, the MHLEs are improved based on the bias correction method via the Regression 

Calibration (RC), which is discussed later in this chapter. First, consider the Newton Raphson 

iterative approximation (Whiteside, 1967)   

(
𝜷̂(𝑘+1)

𝒖̂(𝑘+1)
) = (

𝜷̂(𝑘)

𝒖̂(𝑘)
) + (𝓙−1𝓢(𝜏))|(𝜷,𝒖)=(𝜷̂(𝑘),𝒖̂(𝑘))                                    (3.4) 

                                                           = (
𝜷̂(𝑘)

𝒖̂(𝑘)
) +

(

 
 

−
𝜕2ℎ

𝜕𝜷𝑇𝜕𝜷
−

𝜕2ℎ

𝜕𝜷𝜕𝒖

−
𝜕2ℎ

𝜕𝒖𝜕𝜷
−

𝜕2ℎ

𝜕𝒖𝑇𝜕𝒖)

 
 

−1

(

 

𝜕ℎ

𝜕𝜷
𝜕ℎ

𝜕𝒖)

 
|

|

(𝜷,𝒖)=(𝜷̂(𝑘),𝒖̂(𝑘))

,  

𝜷, 𝒖 in 𝓙 and 𝓢(𝝉) are replaced with 𝜷̂(𝑘) and 𝒖̂(𝑘), respectively in each iteration. The variance-

covariance matrix 𝝑 will be estimated by MHLE of 𝝑 iteratively as described in section 3.5 via 

adjusted ℎ-likelihood (ℎ𝐴) approach. 

Now, the 𝓢 using (3.3), and 𝓙 in the generalized CHBC method can be expressed as 

follows, 

𝓢 =

(

 

𝜕ℎ

𝜕𝜷
𝜕ℎ

𝜕𝒖)

 = (
𝑿𝑇𝑠(𝜃; 𝒚)

𝒁𝑇𝑠(𝜃; 𝒚) + 𝜵𝓵𝒖

1 ),                                                  (3.5) 
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𝓙 = (
𝑿𝑇 𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝜵𝓵𝒖

2 ),                                                        (3.6) 

where 𝝁 = 𝐸(𝒀) = 𝑏′(𝜽), 𝑾 = 𝐷𝑖𝑎𝑔 (1/𝑉𝑎𝑟(𝒚)(𝑔′(𝝁))
2
), 𝑔(. ) = link function, 𝜂 = 𝑔(𝝁) =

𝑿𝜷 + 𝒁𝒖,  𝜵𝓵𝒖

1 = 𝜕ℓ𝒖/𝜕𝒖,   𝜵𝓵𝒖

2 = −𝜕2ℓ𝒖/𝜕𝒖2. We illustrate the proposed approach using 

Binomial-Normal HGLM and Poisson-Normal HGLM, which are discussed in the following 

sections of this chapter. 

3.1.1 Binomial-Normal HGLM 

In this section, we explain the proposed method using binary outcomes with normally 

distributed random effects, known as the Binomial-Normal HGLM or the mixed logit model. For 

binary outcomes in small area estimation, consider the mixed logit model 

logit 𝑃(𝑦𝑖𝑗 = 1) = 𝒙𝑖𝑗
𝑇 𝜷 + 𝑢𝑖,                                               (3.7) 

where 𝒚 = (𝑦𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖) is the binary response vector which is independent given 

the random effects 𝑢1, … , 𝑢𝑚. Let 𝒖 = (𝑢𝑖)1≤𝑖≤𝑚, 𝒙𝑖𝑗 = (𝑥𝑖𝑗𝑘)
1≤𝑘≤𝑝

is a vector of covariates, and 

𝜷 = (𝛽𝑘)1≤𝑘≤𝑝 is a vector of unknown fixed effects. The density of 𝒚|𝒖 follows a Bernoulli 

distribution with the joint density of (𝒚, 𝒖) as  𝑓(𝒚, 𝒖) = 𝑓(𝒚|𝒖) × 𝑓(𝒖), 

 𝑓(𝒚, 𝒖) =  ∏ 𝑃(𝑦𝑖𝑗 = 1|𝑢𝑖)
𝑦𝑖𝑗

(1 − 𝑃(𝑦𝑖𝑗 = 1|𝑢𝑖))
1−𝑦𝑖𝑗

× 𝑓(𝑢𝑖),𝑖𝑗                 (3.8) 

where 𝑃(𝑦𝑖𝑗 = 1) = exp(𝒙𝑖𝑗
𝑇 𝜷 + 𝑢𝑖) /(1 + exp(𝒙𝑖𝑗

𝑇 𝜷 + 𝑢𝑖)), from (3.7). Furthermore, suppose 

𝑢1, … , 𝑢𝑚 are independent and identically distributed as 𝑁(0, 𝜎2) with 𝑓(𝑢𝑖) =

(2𝜋𝜎2)−1/2exp(−1/(2𝜎2)𝑢𝑖
2). This assumption is reasonable to consider as 𝑛 becomes large, the 

difference in MHLEs and actual values of fixed and random effects converge to a normal 

distribution, i.e. (𝜷̂ − 𝜷, 𝒖̂ − 𝒖) → 𝑁(0, 𝜏2) where 𝝉 is the limit of the inverse of the observed 

Fisher information matrix (𝓙−1).    

Now, consider the joint log-density of 𝒚 and 𝒖 for the mixed logit model,  
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ℓ = ∑∑[𝑦𝑖𝑗 log𝑃(𝑦𝑖𝑗 = 1|𝑢𝑖) + (1 − 𝑦𝑖𝑗) log (1 − 𝑃(𝑦𝑖𝑗 = 1|𝑢𝑖))]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

+ ∑log𝑓(𝑢𝑖)

𝑚

𝑖=1

  

= ∑∑[𝑦𝑖𝑗 log (
(1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−1

1 − (1 + exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖))

−1
  
) + log (1 − (1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−1

)]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

−
1

2
∑log(2𝜋)

𝑚

𝑖=1

−
1

2
∑log(𝜎2)

𝑚

𝑖=1

+ ∑log [exp (−
𝑢𝑖

2

2𝜎2)]

𝑚

𝑖=1

 

= ∑∑[𝑦𝑖𝑗(𝒙𝑖𝑗
𝑇 𝜷 + 𝑢𝑖) − log(1 + exp(𝒙𝑖𝑗

𝑇 𝜷 + 𝑢𝑖))]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

−
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

. 

Equivalently, from (3.3), we have 

ℎ = 𝒚𝑇(𝑿𝜷 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) −
1

2
log(𝑑𝑒𝑡(𝑮)) −

1

2
𝒖𝑇𝑮−1𝒖 + 𝑐,        (3.9) 

where 𝑐 = −
𝑚

2
log 2𝜋 is a constant, and 𝑮 = 𝜎2𝑰 is the variance-covariance matrix of 𝒖. 

3.1.2 Poisson-Normal HGLM 

Consider the Poisson-Normal HGLM (also known as Poisson mixed model), where 

𝑦𝑖𝑗|𝑢𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆), 𝑢𝑖~𝒩(0, 𝜎2),                                                (3.10) 

𝜆 is the mean or the event rate of discrete events, and 𝜎2 is the variance of the latent random variable 

𝑢𝑖.  

log 𝜆𝑖𝑗 = 𝒙𝑖𝑗
𝑇𝜷 + 𝑢𝑖 

where 𝜷 = ( 𝛽1, … , 𝛽𝑝)
𝑇
 is a (𝑝 × 1) vector of unknown regression coefficients for the 

fixed effects, 𝒙𝑖𝑗
𝑇 = (𝑥1𝑖𝑗 , … , 𝑥𝑝𝑖𝑗)

𝑇
 is auxiliary information for 𝑝 variables, and superscript 

T indicates transpose, 𝑦𝑖𝑗 is the response value for 𝑗𝑡ℎ object in 𝑖𝑡ℎ small area, 𝜎2 is the unknown 

variance parameter of random effect 𝑢𝑖 for 𝑖𝑡ℎ small area.  
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Now from (3.1), consider the ℎ-likelihood for Poisson-Normal HGLM 

ℎ = ∑ℓ1𝑖𝑗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,   

where ℓ1𝑖𝑗 is the log-likelihood of a Poisson random variable 𝑦𝑖𝑗|𝑢𝑖, and ℓ2𝑖 is the log-likelihood 

of 𝑢𝑖, respectively, 

ℓ1𝑖𝑗 = log(
𝜆

𝑖𝑗

𝑦𝑖𝑗

𝑦𝑖𝑗!
𝑒−𝜆𝑖𝑗),  

ℓ2𝑖 = −
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

. 

ℎ = ∑∑[log(
𝜆

𝑖𝑗

𝑦𝑖𝑗

𝑦𝑖𝑗!
𝑒−𝜆𝑖𝑗)]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

+ ∑[−
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

]

𝑖

 

= ∑∑[𝑦𝑖𝑗(𝒙𝑖𝑗
𝑇𝜷 + 𝑢𝑖) − log 𝑦𝑖𝑗! − 𝑒

(𝒙𝑖𝑗
𝑇𝜷+𝑢𝑖)]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

+ ∑[−
𝑚

2
log 𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

]

𝑖

+ 𝑐,   (3.11) 

where 𝑐 = −
𝑚

2
log 2𝜋.  

3.2 Maximum Hierarchical Likelihood Estimates of (𝜷, 𝒖) 

Let 𝝉 = (𝜷, 𝒖) be the fixed effect and random effect parameters. Given the variance 

parameter 𝝑 = (𝜗1, … , 𝜗𝑞)
𝑇

= 𝜎2,  the maximum hierarchical (ℎ)-likelihood estimators (MHLEs) 

of 𝝉̂ = (𝜷̂, 𝒖̂) are obtained by solving the score function 𝜕ℎ/𝜕𝝉 = 0. Since the solution does not 

have a closed-form, the MHLEs for (𝜷, 𝒖) are obtained using the Newton-Raphson approximation 

through an iterative procedure using equation (3.4) as described above.  

Here, we provide both methods of obtaining the elements of 𝓢 and 𝓙 to illustrate how the 

CHBC can be applied to any GLM family distributions using Poisson-Normal HGLM. First, 

consider taking partial derivatives of ℎ-likelihood with respect to 𝝉. Holding the variance parameter 

𝝑 = (𝜗1, … , 𝜗𝑞)
𝑇

= 𝜎2𝐼𝑚×𝑚 constant, the partial derivative of ℎ-likelihood in equation (3.11) 

with respect to 𝝉 = (𝜷, 𝒖) is 
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ℎ =  ∑∑[𝑦𝑖𝑗(𝒙𝑖𝑗
𝑇 𝜷 + 𝑢𝑖) − log(1 + exp(𝒙𝑖𝑗

𝑇 𝜷 + 𝑢𝑖))]

𝑛𝑖

𝑗=1

𝑚

𝑖=1

−
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

 

 
𝜕ℎ

𝜕𝛽𝑟
= ∑[𝑦𝑖𝑗𝑥𝑖𝑗𝑟 − (1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−1

𝑥𝑖𝑗𝑟]

𝑖𝑗

 

                                                 = ∑[𝑦𝑖𝑗𝑥𝑖𝑗𝑟 − 𝑝𝑖𝑗𝑥𝑖𝑗𝑟]

𝑖𝑗

, 

where 𝑝𝑖𝑗 = (1 + exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖))

−1
 ,  𝑟 = 1,… , 𝑝 the number of fixed covariates. For 𝑖 =

1,… ,𝑚 random effects, we have  

         
𝜕ℎ

𝜕𝑢𝑖
 = ∑[𝑦𝑖𝑗 − (1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−1

] − (𝜎2)−1𝑢𝑖

𝑛𝑖

𝑗=1

 

                                                 = ∑[𝑦𝑖𝑗 − 𝑝𝑖𝑗] − (𝜎2)−1𝑢𝑖

𝑛𝑖

𝑗=1

. 

The entries of the observed information matrix 𝓙 of 𝜷 and 𝑢𝑖 are obtained as follows.   

For 𝑟 = 1,… , 𝑝, 𝑠 = 𝑟, 

          −
𝜕2ℎ

𝜕𝛽𝑟𝜕𝛽𝑠
= ∑[exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖) (1 + exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖))

−2
𝑥𝑖𝑗𝑟𝑥𝑖𝑗𝑠]

𝑖𝑗

 

                                                = ∑[𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)𝑥𝑖𝑗𝑟𝑥𝑖𝑗𝑠]

𝑖𝑗

 

                                                = ∑[𝑊𝑖𝑗𝑥𝑖𝑗𝑟𝑥𝑖𝑗𝑠]

𝑖𝑗

; 

for 𝑟 = 1,… , 𝑝, 𝑖 = 1,… ,𝑚, 

−
𝜕2ℎ

𝜕𝛽𝑟𝜕𝑢𝑖
= ∑[𝑥𝑖𝑗𝑟 exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖) (1 + exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖))

−2
]

𝑛𝑖

𝑗=1

 

                                         = ∑ [𝑥𝑖𝑗𝑟𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)]
𝑛𝑖
𝑗=1  

                                               = ∑[𝑥𝑖𝑗𝑟𝑊𝑖𝑗]

𝑛𝑖

𝑗=1

; 
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for 𝑖 = 1,… ,𝑚, 𝑠 = 1,… , 𝑝, 

−
𝜕2ℎ

𝜕𝑢𝑖𝜕𝛽𝑠
= ∑[(1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−2

exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖) 𝑥𝑖𝑗𝑠]

𝑛𝑖

𝑗=1

 

                                              = ∑[𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)𝑥𝑖𝑗𝑠]

𝑛𝑖

𝑗=1

 

                                              = ∑[𝑊𝑖𝑗𝑥𝑖𝑗𝑠]

𝑛𝑖

𝑗=1

; 

for 𝑖 = 1,… ,𝑚, 𝑙 = 𝑖, 

−
𝜕2ℎ

𝜕𝑢𝑖𝜕𝑢𝑙
= ∑[(1 + exp(−𝒙𝑖𝑗

𝑇 𝜷 − 𝑢𝑖))
−2

exp(−𝒙𝑖𝑗
𝑇 𝜷 − 𝑢𝑖)] + (𝜎2)−1

𝑛𝑖

𝑗=1

 

                                          = ∑𝑝𝑖𝑗(1 − 𝑝𝑖𝑗) − (𝜎2)−1

𝑛𝑖

𝑗=1

 

                                          = ∑𝑊𝑖𝑗 − (𝜎2)−1

𝑛𝑖

𝑗=1

; 

where 𝑊𝑖𝑗 = 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗), for 𝑖 = 1,… ,𝑚, 𝑙 ≠ 𝑖, we have 
𝜕2ℎ

𝜕𝑢𝑖𝜕𝑢𝑙
= 0.  

The above expressions can be expressed in matrix form as follows, 

𝜕ℎ

𝜕𝜷
= 𝑿𝑇(𝒚 − 𝝅),                                                            (3.11) 

𝜕ℎ

𝜕𝒖
= 𝒁𝑇(𝒚 − 𝝅) − 𝑮−1𝒖,                                             (3.12) 

where 𝝅 = (1 + exp(−𝑿𝜷 − 𝒁𝒖))−1. Let 𝒚 be a (𝑁 × 1) vector of outcome measures, 𝑿 be a 

(𝑁 × 𝑝) matrix of fixed effects information with 𝑝 explanatory variables, 𝜷 be  a (𝑝 × 1) vector of 

fixed effects’ regression coefficients, 𝒁 be the (𝑁 × 𝑚) design matrix of explanatory variables with 

random effects, 𝒖 be a (𝑚 × 1) vector of random effects, and 𝑮 = 𝜎2𝐼 be the (𝑚 × 𝑚) be the 

variance-covariance matrix of random effects.   

 Now, consider the CHBC for canonical GLM families. ℎ-likelihood in matrix form,  
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ℎ = 𝒚𝑇(𝑿𝜷 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) −
1

2
𝒖𝑇𝑮−1𝒖 −

1

2
log(det(𝑮)) + 𝑐, 

 compared with (3.1), 

𝑏(𝜽) = 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) , 𝜽 = (𝑿𝜷 + 𝒁𝒖) and 𝜙 = 1, 

hence 

𝑏(𝜽) = log(1 + exp𝜽), 

taking the partial derivative with respect to 𝜽 

𝑏′(𝜽) = (1 + exp𝜽)−1 exp 𝜽 = (1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 = 𝝅. 

Thus,  

𝑿𝑇(𝒚 − 𝝅) = 𝑿𝑇(𝒚 − 𝑏′(𝜽)) = 𝑿𝑇𝓢(𝜽; 𝒚). 

Similarly, we can show that  

𝒁𝑇(𝒚 − 𝝅) − 𝑮−1𝒖 = 𝒁𝑇𝓢(𝜽; 𝒚) − 𝑮−1𝒖 = 𝒁𝑇𝓢(𝜽; 𝒚) + 𝜵𝓵𝒖

1 . 

Therefore, the score function 𝓢 (𝑒𝑞. 3.5) can be used as the generalized version of the 𝓢, 

which can be easily expressed using 𝑏′(𝜽) and 𝜙.  

3.3 Bias Correction 

  As stated above, random effects and fixed effects are jointly estimated using the HMLEs 

procedure through the Newton Raphson approximation. However, it is shown that directly plugging 

in the estimated 𝒖, 𝒖̂, which was estimated using ℎ-likelihood will result in biasedness when 

estimating the parameters of interest, especially based on nonlinear likelihood functions.  

Moreover, the HMLEs of 𝒖̂ will lead to bias and inconsistent estimations of regression coefficients 

and parameters in the random effects, such as variance parameters. Researchers have considered 

and proposed many methods to avoid this biasedness in parameter estimation (Carroll, Ruppert, 

Stefanski, & Crainiceanu, 2006; Hausman, Newey, & Powell, 1995; C. Wang, Hsu, Feng, & 

Prentice, 1997). We use the regression calibration approach proposed by Wang et al. (1997) to 

correct for biasedness in the estimators. The use of a correction factor is an important step to 



48 
 

 
 

alleviate the biasedness of MLEs, which MLEs are adjusted based on the sample size and its’ 

variance. Furthermore, the regression calibration method (RCM) is computationally efficient and 

has been applied widely in correcting measurement errors in many applications since it provides 

reliable estimates than direct estimates with no bias correction.  

Wang et al. (1997) used the idea from the large sample theory and proposed the regression 

calibration method for measurement error correction. The primary purpose of the RCM is to adjust 

𝒖̂ using the variance of 𝒖|𝒖̂. From large sample theory, when 𝑁 becomes large, maximum 

likelihood estimators of the likelihood function have the asymptotic normality property 

√𝑁(𝝉̂ − 𝝉) ≈ 𝑁 (0, (𝓙(𝝉))
−1

), where 𝝉 = (𝜷, 𝒖), 𝝉̂ is a consistent and asymptotically efficient 

estimator of 𝝉, which is also known as the Cramer-Rao Lower Bound (Casella & Berger, 2002). 

The variance of 𝒖|𝒖̂, 𝜸 is the (𝑚 × 𝑚) right lower corner matrix of (𝓙(𝝉))
−1

 the asymptotic 

variance-covariance matrix of MHLEs.  

Since 𝒖~𝑁(0, 𝜎2), (𝒖, 𝒖̂) has a joint-normal distribution,  

(
𝒖
𝒖̂
)~𝑁 ((

0
0
) , (

𝜎2 𝜎2

𝜎2 𝜎2 + 𝜸2)). 

Then, the conditional distribution of 𝒖 given 𝒖̂ can be derived as 

𝒖|𝒖̂~𝑁(𝜻𝒖̂, 𝜎2(1 − 𝜻)),  where 𝜻 =
𝜎2

𝜎2 + 𝜸2
, 𝜸 is the limit of  𝓙−1, 

which is a vector, obtained from the diagonal elements of 𝓙−1.  

Now, under the regression calibration method, we replace 𝒖 by  

𝐸[𝒖|𝒖̂] = 𝜻𝒖̂ =
𝜎2

𝜎2 + 𝜸2
𝒖̂.                                                  (3.13) 

Note that, if the variance of 𝒖̂, 𝜸 ≈ 0, then 𝐸[𝒖|𝒖̂] ≈ 1, which means the MHLEs with 

RCM and the original MHLEs are similar. However, when Var(𝒖̂) is large, the MHLE results in 

the biased estimates, thus the RCM adjusts the biasedness of the estimates. 
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3.4 The MHLEs of Dispersion Parameters (𝝑) 

From equation (2.13), the adjusted ℎ-likelihood  

ℎ𝐴 = ℎ|𝜷=𝜷̂,𝒖=𝒖̂ −
1

2
log{det(𝓙)}|𝜷=𝜷̂,𝒖=𝒖̂ +

𝑝 + 𝑚

2
log 2𝜋, 

where 𝑚 is the number of dispersion parameters, and 𝑝 is the number of fixed effects.  

The generic way of obtaining the maximum adjusted profile ℎ-likelihood estimator for 𝜗 is 

by solving the score function 𝜕ℎ𝐴/𝜕𝜗 = 0, but this becomes complicated when there is no closed 

form for 𝜗. Thus, it requires some numerical approximation. First, consider the score function of 

the adjusted profile ℎ-likelihood from the equation (2.14) 

 
𝜕ℎ𝐴

𝜕𝜗
=

𝜕ℎ|𝜷=𝜷̂,𝒖=𝒖̂

𝜕𝜗
−

1

2
trace (𝓙−1

𝜕𝓙

𝜕𝜗
)|

𝜷=𝜷̂,𝒖=𝒖̂
,                           (3.14)  

which is used to estimate the variance-covariance matrix 𝝑 of random effect 𝒖. Since 𝜕ℓ1𝑖𝑗/𝜕𝜗 =

0, the score function can be written as 

𝜕ℎ

𝜕𝜗
= 0 +

𝜕

𝜕𝜗
(∑ℓ2𝑖

𝑚

𝑖=1

) 

The adjusted profile log-likelihood of 𝒖~𝑁(0, 𝜗) for small area 𝑖 

ℓ2𝑖 = −
𝑚

2
log 2𝜋 −

𝑚

2
log𝜗 −

1

2𝜗
∑𝑢𝑖

2

𝑚

𝑖=1

= −
𝑚

2
log 2𝜋 −

𝑚

2
log𝜗 −

1

2𝜗
𝒖𝑇𝒖, 

where 𝜗𝐼𝑚×𝑚 = 𝑮 = 𝜎2𝐼𝑚×𝑚. Now, from ℎ = ∑ ℓ1𝑖𝑗𝑖𝑗 + ∑ ℓ2𝑖𝑖 , 𝜕ℎ/𝜕𝜗 given 𝜷 = 𝜷̂, 𝒖 = 𝒖̂ can 

be represented as 

𝜕ℎ|𝜷=𝜷̂,𝒖=𝒖̂

𝜕𝜗
= 0 +

𝜕

𝜕𝜗
(−

𝑚

2
log𝜗 −

1

2𝜗
∑𝑢̂𝑖

2

𝑚

𝑖=1

) 

= (−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

. 

The partial derivative of the observed information matrix with respect to 𝜗 given 𝜷 =

𝜷̂, 𝒖 = 𝒖̂  
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𝜕𝓙

𝜕𝜗
|
𝜷=𝜷̂,𝒖=𝒖̂

=
𝜕

𝜕𝜗

(

 
 

(−
𝜕2ℎ

𝜕𝜷2)
𝑝×𝑝

(−
𝜕2ℎ

𝜕𝜷𝜕𝒖
)

𝑝×𝑚

(−
𝜕2ℎ

𝜕𝒖𝜕𝜷
)

𝑚×𝑝

(−
𝜕2ℎ

𝜕𝒖2)
𝑚×𝑚 )

 
 

, 

From (3.5) 

𝜕ℎ𝐴

𝜕𝜗
= (−

𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

−
1

2
trace((

𝓙11 𝓙12

𝓙21 𝓙22
)
−1 𝜕

𝜕𝜗
(
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + (𝜗𝐼𝑚×𝑚)−1))|

𝜷=𝜷̂,𝒖=𝒖̂

 

= (−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

−
1

2
trace((

𝓙11 𝓙12

𝓙21 𝓙22
)
−1

(
𝟎 𝟎
𝟎 −𝜗−2𝐼𝑚×𝑚

))|

𝜷=𝜷̂,𝒖=𝒖̂

 

= (−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

−
1

2
trace((

𝓙11
∗ 𝓙12

∗

𝓙21
∗ 𝓙22

∗ ) (
𝟎 𝟎
𝟎 −𝜗−2𝐼𝑚×𝑚

))|
𝜷=𝜷̂,𝒖=𝒖̂

 

= (−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

−
1

2
trace(

𝟎 −𝓙12
∗ 𝜗−2𝐼𝑚×𝑚

𝟎 −𝓙22
∗ 𝜗−2𝐼𝑚×𝑚

)|
𝜷=𝜷̂,𝒖=𝒖̂

 

= (−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

+
1

2𝜗2
trace(𝓙22

∗ )|
𝜷=𝜷̂,𝒖=𝒖̂

 

Set 𝜕ℎ𝐴/𝜕𝜗 = 0 

(−
𝑚

2𝜗
+

1

2𝜗2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

+
1

2𝜗2
trace(𝓙22

∗ )|
𝜷=𝜷̂,𝒖=𝒖̂

= 0. 

Thus, 

𝜗̂ =
1

𝑚
(∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝜷=𝜷̂,𝒖=𝒖̂

+
1

𝑚
trace(𝓙22

∗ )|𝜷=𝜷̂,𝒖=𝒖̂,                         (3.15) 

where 𝜗̂ is the MLE of the variance parameter 𝜗. 𝑝 is the number of fixed effects, 𝓙22
∗  is the lower 

right block matrix of 𝓙−1 with dimensions being 𝑚 × 𝑚, which is calculated using current 
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estimates of 𝜷 and 𝒖. As described in appendix C, by the asymptotic properties of MHLE of 𝒖, 

𝓙22
∗ = (−∂2ℎ|𝜕𝒖2|𝒖=𝒖̂)−1. 

Algorithm 

1. Set 𝜷0, 𝒖0, and 𝜗0(𝜎0
2). 

2. Evaluate quantities 𝓢(𝝉) and 𝓙 using (3.5) and (3.6), respectively. 

3. Estimate 𝜷 = 𝜷̂(𝑘), and 𝒖 = 𝒖̂(𝑘)using Newton Raphson (eqn. (3.4)), where 𝑘 =

1, 2, … indicates the iteration. 

4. Update 𝓙(𝑘) using 𝜷̂(𝑘)and 𝒖̂(𝑘) and estimate 𝓙22
∗(𝑘)

 using 𝓙−1(𝑘) matrix. 

5. Estimate 𝜗̂(𝑘) using equation (3.15), by replacing 𝒖 with 𝐸[𝒖|𝒖̂(𝑘)] = 𝜻̂(𝑘)𝒖̂(𝑘) = 𝒖̂𝑐(𝑘) , 

where 𝜻 = (𝜁1, … , 𝜁𝑚), 𝜁𝑖
(𝑘)

=
𝜃̂

(𝑘−1)

𝜃̂
(𝑘−1)

+𝝉𝑖
(𝑡) , 𝜗̂

(𝑘−1)
= Var(𝒖̂

(𝑘−1)
), 𝝉𝑖

(𝑘)
= 𝓙𝑖𝑖

∗(𝑘)
, 𝓙𝑖𝑖

∗  is the 

(𝑖, 𝑖) diagonal element of the lower right corner matrix of  2 × 2 𝓙−1 block matrix 

((𝓙−1)22) evaluated at 𝑡th iteration. By asymptotic properties of 𝒖̂, (𝓙−1)22 = (𝓙22)
−1 

(Youngjo Lee & John A  Nelder, 1996). 

6. Update ℎ by replacing 𝒖 with 𝒖̂𝑐(𝑘), and exp(𝒖) with 𝐸[exp(𝒖)|𝒖̂(𝑘)] =

exp (𝜻̂(𝑘)𝒖̂(𝑘) + ( 𝜗̂
(𝑘)

(1 − 𝜻̂(𝑘))) /2 ). 

7. Repeat steps 2 to 6 until it meets the convergence criteria, which is defined as  

max {|𝜷̂(𝑘+1) − 𝜷̂(𝑘)|, |𝜗̂
(𝑘+1)

− 𝜗̂
(𝑘)

|} < 𝛿 

where 𝛿 is a predetermined tolerance limit. The MHLEs of 𝜷, 𝒖, and 𝜎 are 𝜷̂, 𝒖̂, and 𝜎̂2(= 𝜗̂(𝑡)), 

respectively. 



52 
 

 
 

3.5 Asymptotic Properties of MHLEs 

3.5.1 Asymptotic Efficiency of 𝜷̂ 

The advantage of MHLE is to offer a hierarchical estimation procedure to accommodate a wide 

range of distributions in mixed effect models. The total sample size (𝑁 = ∑𝑛𝑖) becomes large 

when either the number of small areas (𝑚) increases or the sample size of each small area increases 

(𝑛𝑖), 𝑖 = 1, . . . , 𝑚. However, the asymptotic properties in mixed models do not hold for any 

scenario. However, the asymptotic properties of MHLE 𝜷̂ has been claimed based on the ML 

estimation process of 𝜷 using 𝐸[𝜕ℎ/𝜕𝜷|𝑦, 𝜷̂(𝑝)] = 0. It is proven that the difference of MHLE of 

𝜷 and marginal MLE of 𝜷 is 𝒪(𝑁−1), and hence both have asymptotically common variance. 

Additionally, the MHLE 𝜷̂ had been claimed to be asymptotically efficient, since marginal MLE 𝜷̂ 

is asymptotically efficient (Youngjo Lee & John A Nelder, 1996), i.e., as 𝑁 → ∞,  𝜷̂
𝑝
→ 𝜷, and 

asymptotically normal, √𝑁(𝜷̂ − 𝜷) → 𝒩(𝟎, 𝐼(𝜷)−1|𝜷̂), and the variance of MHLE is given by the 

Cramer Rao lower bound; 𝑁−1𝐼(𝜷̂)
−1

. The Laplace Approximation often provides extremely 

accurate results, as well as a negligible contribution of relative error from the additional terms 

(𝒪(𝑁−1)) as 𝑛𝑖 becomes large. In contrast, when 𝑛𝑖 and 𝑚 are relatively small, the additional error 

term 𝒪(𝑁−1) might not be negligible (Booth & Hobert, 1998; Youngjo Lee & John A  Nelder, 

1996; Liu & Pierce, 1993). 

Lee and Nelder (1996) discussed the marginal MLE of 𝜷 in GLMMs could be obtained 

using the Laplace approximation to the marginal likelihood ℓ̂ ∝ ℎ − 1/2 log(det(𝓙∗)), where 

𝓙∗ = −∂2ℎ|𝜕𝒖𝑇𝜕𝒖|𝒖=𝒖̂, as described in Breslow and Clayton (1993) and Liu and Pierce (1993) 

(Breslow & Clayton, 1993; Liu & Pierce, 1993). Under certain conditions, they showed that the 

MLE of 𝜷 could be obtained using 𝜕ℓ/𝜕𝜷|𝒖=𝒖̂ = 𝟎 which leads to 𝜕ℎ(𝒚;𝜷, 𝒖̂)/𝜕𝜷|𝒖=𝒖̂ = 𝟎 
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assuming 𝜕𝓙∗/𝜕𝜷|𝒖=𝒖̂ is negligible. Then the Taylor series expansion to 𝜕ℎ(𝒚;𝜷, 𝒖̂)/𝜕𝜷|𝒖=𝒖̂ can 

be expressed as 

𝜕ℎ(𝒚;𝜷, 𝒖̂)

𝜕𝜷
=

𝜕ℎ(𝒚;𝜷, 𝒖)

𝜕𝜷
|
𝒖=𝒖̂

+ (𝒖 − 𝒖̂)𝐶1|𝒖=𝒖̂ +
1

2!
(𝒖 − 𝒖̂)𝑇𝐶2(𝒖 − 𝒖̂)|

𝒖=𝒖̂
+ ⋯ , (𝐵. 1) 

where 𝐶1 = (𝜕/𝜕𝜷)(𝜕ℎ(𝒚;𝜷, 𝒖)/𝜕𝒖)|𝒖=𝒖̂, and 𝐶2 = (𝜕/𝜕𝜷)(𝜕2ℎ(𝒚; 𝜷, 𝒖)/𝜕𝒖𝑇𝜕𝒖)|𝒖=𝒖̂. 

Furthermore, Lee and Nelder (1996) claimed that the asymptotic properties of 𝜷̂ based on 

the ML estimation process of 𝜷 using 𝐸[𝜕ℎ/𝜕𝜷|𝒚] = 0. From (𝐴. 3) and, (𝐴. 4), 𝐸[𝒖|𝒚] +

𝒪(𝑁−1) = 𝒖̂ and Var(𝒖|𝒚) = (−∂2ℎ|𝜕𝒖𝑇𝜕𝒖|𝒖=𝒖̂)−1 + 𝒪(𝑁−1), then, 𝑁(𝐸(𝒖|𝒚) − 𝒖̂) =

𝑁(𝒪(𝑁−1)) = 𝒪(1), and, 

𝐸[𝐶1(𝒖 − 𝒖̂)|𝒖=𝒖̂] = 𝐸 [
𝐶1

𝑁
𝒪(1)] =

𝐶1

𝑁
= 𝒪(1). 

Similarly, from (𝐴. 4), 

𝐸[(𝒖 − 𝒖̂)𝑇𝐶2(𝒖 − 𝒖̂)|𝒖=𝒖̂] =
𝐶2

𝑛
= 𝒪(1). 

Now, 

𝐸 [
𝜕ℎ

𝜕𝜷
] =

𝜕ℎ

𝜕𝜷
|
𝒖=𝒖̂

+ 𝐸[𝐶1(𝒖 − 𝒖̂)|𝒖=𝒖̂] +
1

2!
𝐸[(𝒖 − 𝒖̂)𝑇𝐶2(𝒖 − 𝒖̂)|𝒖=𝒖̂] + ⋯ 

=
𝜕ℎ

𝜕𝜷
|
𝒖=𝒖̂

+ 𝒪(1),  

where 𝐶𝑗/𝑛 = 𝒪(1), 𝑗 = 1,2. 

Now, the MLEs are obtained using 𝐸[𝜕ℎ/𝜕𝜷|𝒚] = 0 and the difference of MHLE of 𝜷 and the 

marginal MLE of 𝜷 can be shown as 𝒪(𝑁−1). 

3.5.2 Asymptotic Properties of MHLE of 𝒖̂  

The MHLE of the random effect  𝒖̂ can be shown as an asymptotically best-unbiased predictor 

(ABUP) for 𝒖 with an additional term 𝒪(𝑁−1) compared to marginal MLE. Lee and Nelder (1996) 
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explains that the necessary condition for MHLE of 𝒖 to have the asymptotic properties is 

(−𝜕2ℎ/𝜕𝑢𝑖
2)−1|𝒖=𝒖̂ =  𝒪(𝑁−1) for all 𝑖. This condition holds as 𝑛𝑖 → ∞ for fixed 𝑚. Still, 𝒖̂ will 

not improve much as 𝑚 → ∞ for fixed 𝑛𝑖. Using the second-order Taylor series expansion, it can 

be shown that 𝐸(𝑢𝑖|𝒚) = 𝑢̂𝑖 + 𝒪(𝑁−1) and Var(𝑢𝑖|𝒚) = 𝐸[(𝑢𝑖
2|𝒚)] − (𝐸[𝑢𝑖|𝒚])2 = (−∂2ℎ/

𝜕𝑢𝑖
2|

𝑢𝑖=𝑢̂𝑖
)
−1

+ 𝒪(𝑁−1). 

Let 𝒖 = 𝒖̂ is a solution to 𝜕ℎ(𝒚; 𝒖, 𝜷̂)/𝜕𝒖 = 𝟎 for given 𝜷. If 𝒖̂ = 𝐸[𝒖|𝒚], then 𝒖̂ is called 

the best unbiased predictor for 𝒖, where 𝐸[𝒖|𝒚] is the conditional expectation of 𝒖 given 𝒚.  

𝐸[𝒖|𝒚] =
∫ 𝒖𝑓(𝒖, 𝒚)𝑑𝒖

∫ 𝑓(𝒖, 𝒚)𝑑𝒖
=

∫ 𝒖expℎ(𝒖) 𝑑𝒖

∫ expℎ(𝒖) 𝑑𝒖
. 

Now, consider the Taylor Series expansion of the joint log-likelihood, similarly ℎ around 

𝒖 = 𝒖̂, then the numerator of 𝐸[𝒖|𝒚] 

∫𝒖expℎ(𝒖) 𝑑𝒖 = ∫𝒖exp {ℎ(𝒖̂) +
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂) + ⋯+ 𝒪(𝑁−1)} 𝑑𝒖 

≈ exp(ℎ(𝒖̂)) {∫(𝒖 − 𝒖̂)exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖

+ ∫ 𝒖̂exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖}. 

Note that, 

∫(𝒖 − 𝒖̂)exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖 = 0 at 𝒖 = 𝒖̂. 

Thus,  

∫𝒖expℎ(𝒖) 𝑑𝒖 = ∫ 𝒖̂ exp(ℎ(𝒖̂)) exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖    

= 𝒖̂|−2𝜋(ℎ′′(𝒖)|𝒖=𝒖̂)−1|1/2 exp{ℎ(𝒖̂)}. 

Similarly, the denominator of 𝐸[𝒖|𝒚] 

∫expℎ(𝒖) 𝑑𝒖 = ∫exp {ℎ(𝒖̂) +
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂) + ⋯+ 𝒪(𝑁−1)}𝑑𝒖, 
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                          ≈ exp(ℎ(𝒖̂))∫exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖 ,

= |−2𝜋ℎ′′(𝒖)|𝒖=𝒖̂
−1

|
1/2

exp(ℎ(𝒖̂)) 

Now, by taking the ratio of ∫ 𝒖expℎ(𝒖) 𝑑𝒖 and ∫ expℎ(𝒖) 𝑑𝒖 

𝐸[𝒖|𝒚] ≈ 𝒖̂,                                                                  (𝐴. 2) 

which is the first order Laplace Approximation to the 𝒖|𝒚. However, in general, the Laplace 

approximation incurs an error term of 𝑂(𝑁−1), then the expression (𝐴. 2) can be expressed as  

𝐸[𝒖|𝒚] + 𝑂(𝑁−1) = 𝒖̂                                                                  (𝐴. 3) 

Note that the relative error of 𝒪(𝑁−1) in the asymptotic order of 𝑁 terms of the Taylor 

Series expansion lim
𝑁→∞

𝒪(𝑁−1) = 0.  

Next, consider the  𝐸[(𝒖𝒖𝑇|𝒚)], 

𝐸[(𝒖𝒖𝑇|𝒚)]

=
∫𝒖𝒖𝑇exp {ℎ(𝒖̂) +

1
2

(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂) + ⋯+ 𝒪(𝑁−1)} 𝑑𝒖

(−2𝜋(ℎ′′(𝒖)|𝒖=𝒖̂)−1)
1
2exp(ℎ(𝒖̂))

                                    

≈ |−
1

2𝜋
ℎ′′(𝒖)|𝒖=𝒖̂|

1
2
∫𝒖𝒖𝑇exp {

1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖                        

= |−
1

2𝜋
ℎ′′(𝒖)|𝒖=𝒖̂|

1
2
(∫(𝒖 − 𝒖̂)𝑇(𝒖 − 𝒖̂)exp {

1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖

− ∫ 𝒖̂𝒖̂𝑇exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖

+ 2∫𝒖𝑇𝒖̂exp {
1

2
(𝒖 − 𝒖̂)𝑇ℎ′′(𝒖)|𝒖=𝒖̂(𝒖 − 𝒖̂)} 𝑑𝒖) 

= |−
1

2𝜋
ℎ′′(𝒖)|𝒖=𝒖̂|

1
2
((ℎ′′(𝒖)|𝒖=𝒖̂)−1 |−

1

2𝜋
ℎ′′(𝒖)|𝒖=𝒖̂|

−
1
2
+ 𝒖𝒖𝑇 |−

1

2𝜋
ℎ′′(𝒖)|𝒖=𝒖̂|

−
1
2
) 

              𝐸[(𝒖𝒖𝑇|𝒚)] = (ℎ′′(𝒖)|𝒖=𝒖̂)−1 + 𝒖̂𝒖̂𝑇 ,                                                                           (𝐴. 4) 

where ℎ′′(𝒖)|𝒖=𝒖̂ = ∂2ℎ|𝜕𝒖𝜕𝒖𝑇|𝒖=𝒖̂. Now the conditional variance of 𝒖|𝒚 from (𝐴. 3) and (𝐴. 4), 
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Var(𝒖|𝒚) = (−∂2ℎ|𝜕𝒖𝜕𝒖𝑇|𝒖=𝒖̂)−1 + 𝒪(𝑁−1).                                    (𝐴. 5) 

The conditional variance 𝒖|𝒚 can be simplified as Var(𝒖|𝒚) = (−∂2ℎ|𝜕𝒖𝜕𝒖𝑇|𝒖=𝒖̂)−1 since 

lim
𝑁→∞

𝒪(𝑁−1) = 0. 

3.5.3 Wald Confidence Interval 

By the properties of MLEs, 𝝉̂
𝑝
→ 𝝉0 as 𝑛 → ∞, which means MLE 𝝉̂ converges to the true 

parameter value 𝝉0 in probability,  

lim
𝑛→∞

𝑃(𝝉0 − 𝜖 < 𝝉̂ < 𝝉0 + 𝜖) = 1, ∀𝜖 > 0, 

and the limiting (asymptotic) distribution  

√𝑛(𝝉̂ − 𝝉0) ≈ 𝑁(0, 𝑰(𝝉)−1|𝝉0
), 

where 𝑰(𝝉)|𝝉0
 is the expected Fisher information evaluated at 𝝉 = 𝝉0 (Lehmann & Romano, 2006). 

𝑉𝑎𝑟(𝝉̂) = (𝑰(𝝉)|𝝉̂)
−1, 𝑆𝐸(𝝉̂) = (𝑰(𝝉)|𝝉0

)
−1/2

. 

The standard error is obtained from the diagonal elements of the variance-covariance 

matrix. Now, the properties of the asymptotic distribution of MHLEs can be used to obtain the 

(1 − 𝛼)% confidence interval for the MHLEs 

𝝉̂ ± 𝑍𝜶/𝟐(𝑆𝐸(𝝉̂)). 
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Chapter 4. Joint Modeling of Multiple Outcomes in Small Area 

Estimation 

The joint modeling approach is generally used with longitudinal or repeated measures data analysis 

where the measurements are taken over time, and time is considered as the random effects 

component. Here, a similar idea is applied in small area estimation where small areas (clusters) are 

regarded as the random effects component. It is often possible to observe multiple outcomes from 

the same individual, which might be associated, and such associations might provide additional 

information to obtain more precise estimations (Benavent & Morales, 2016; Burgard et al., 2020; 

Datta & Ghosh, 1991; González-Manteiga et al., 2008; Ha et al., 2017; Lee et al., 2017; Tsiatis & 

Davidian, 2004). Building separate models through univariate analysis without considering this 

association might not provide accurate results or might lose some vital information.  

To the best of our knowledge, the joint modeling approach had not been studied, 

accounting for the association among multiple outcomes in SAE. Therefore, in this chapter, we 

considered joint analysis using a joint modeling approach to account for the association among the 

outcomes. Those outcomes are joint through unobserved area-specific random effects, which 

explain the association between multiple outcomes, so it will ignore the biased results, which could 

occur by conducting a separate analysis of multiple outcomes. Thus, we consider a joint modeling 

approach through two different ways; 1) multivariate analysis with different variances of random 

effects, 2) joint modeling of multiple outcomes through a shared parameter, based on the 

Hierarchical (ℎ)-likelihood approach with bias correction of random effects.  

The multivariate models are considered in small area estimation in different scenarios, such 

as the sampling variability in auxiliary information; hence the correlation between sampling sub-

domains is considered through various variance components of the latent random effects (Benavent 

& Morales, 2016; Ubaidillah et al., 2019). The multivariate Fay-Herriot model has been widely 

applied in different situations in SAE. Most researchers have shown that multivariate analysis often 
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provides more efficient estimations since it accounts for the correlations, unlike the univariate 

analysis (Datta & Ghosh, 1991; González-Manteiga et al., 2008; Gueorguieva, 2001; John NK Rao 

& Molina, 2015). Datta et al. (1991) applied the multivariate model to obtain estimates for the 

population median income for four-person families. The authors considered the correlation with 

the population median income of three-person families and five-person families in the same state, 

which results in improved estimation for four-person families compared to the univariate analysis, 

ignoring the variability among these two groups of the population.  

The multivariate modeling approach is also used in estimating the under-count US Census 

through poststratification using adjustment factors obtained by considering the correlation of 

available Census counts (Isaki, Tsay, & Fuller, 2000). Moreover, the spatial models are considered 

to account for the correlation between neighboring areas (Cressie, 1991; Lee, Alam, Noh, 

Rönnegård, & Skarin, 2016). Cressie (1991) obtained estimations for the US Census undercount, 

considering the spatial correlation of neighboring areas. As stated above, we study two situations 

of analyzing multiple outcomes through a joint modeling approach to account for the association 

between the outcomes that could occur from the same individual, and also through a multivariate 

modeling approach considering different variances among the random effects to account for the 

association of multiple outcomes. While the joint model includes a shared parameter that explains 

the association, the multivariate model includes the variance-covariance matrix to explain the 

association among the multiple outcomes. Section 4.1 illustrates the multivariate joint model and 

ℎ-likelihood through multivariate random effects, and section 4.2 covers the joint model through 

shared random effects and its ℎ-likelihood. 

4.1 Multivariate Joint Model and Hierarchical (𝒉)-Likelihood 

The multiple outcomes from the same individual, for the 𝑗𝑡ℎ individual, 𝒚 = (𝑦1𝑗, … , 𝑦𝑘𝑗)
𝑇
, 𝑗 =

1,… , 𝑛𝑖, 𝑖 = 1,… ,𝑚. The inherent association between such multiple outcomes can be studied 
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through an unobservable random effect 𝒖𝑖 = (𝒖1𝑖, … , 𝒖𝑘𝑖)
𝑇 = (𝑢11, … , 𝑢1𝑚, … , 𝑢𝑘1, … , 𝑢𝑘𝑚)𝑇, is 

a 𝑘𝑚-dimensional vector of random effects, where 𝒖1𝑖, and 𝒖𝑘𝑖 account for the association between 

𝑦1𝑗, and 𝑦𝑘𝑗 . The multi-dimensional random effects requires a multivariate distribution for 𝑘 

outcomes with each small area having 𝑘 random effects, and each random effect is a vector of 

𝑛𝑖, 𝑖 = 1,… ,𝑚 observations. In the case of multivariate normal random effects 𝒖𝑟𝑖~𝓝(0, 𝜎𝑟
2), 

𝒖𝑖 = (𝒖1𝑖, … , 𝒖𝑟𝑖)
𝑇~𝑀𝑁(0, 𝚺), 𝚺 is the 𝑘 × 𝑘 the variance-covariance matrix of 𝒖𝑖 for 𝑖𝑡ℎ small 

area. The variance-covariance matrix 𝚺 explains the association between 𝑟 random effects, a strong 

association between 𝒖1𝑖, … , 𝒖𝑟𝑖 implies that the existence of a strong association between 𝑦1, … , 𝑦𝑟. 

Thus, the association between multiple outcomes will require modeling them jointly to inherit the 

correlation and obtain accurate model estimates for each outcome.  

First, consider the multivariate ℎ-likelihood 

ℎ = ℒ(𝜃,𝜙;𝑦1|𝒖1)(𝑦1|𝒖1) + ⋯+ ℒ(𝜃,𝜙;𝑦𝑘|𝒖𝑘 )(𝑦𝑘|𝒖𝑘) + ℒ(𝑼;𝜙)(𝑼),                (4.1) 

where 𝑼 = (𝒖1, … , 𝒖𝑘)𝑇 , 

ℒ(𝜽𝑟,𝝓𝑟;𝒚𝑟)
(𝜽𝑟 , 𝝓𝑟; 𝒚𝑟|𝒖) =

{𝒚𝜽𝑟 − 𝑏(𝜽𝑟)}

𝑎(𝝓𝑟)
+ 𝑐(𝒚𝑟, 𝝓𝑟), 𝑟 = 1, . . , 𝑘,                           (4.2) 

𝜽𝑟 = 𝜃(𝝁𝑟) is the canonical parameter, 𝐸(𝒚𝑟|𝑼) = 𝝁𝑟, Var(𝒚𝑟|𝑼) = 𝑎(𝝓𝑟)𝑏
′′(𝜽𝑟), 𝜼𝑟 =

𝑔(𝝁𝑟) = 𝑿𝑟𝜷𝑟 + 𝒁𝑼, 𝑔(. ) is the link function for the GLM, 𝑎(. ) is a function of dispersion 

parameters. The systematic (or nonrandom) component relates a parameter 𝜼 to the covariate 

information in the model which connects with the conditional mean 𝐸[𝒚|𝑿] = 𝝁 with a link 

function 𝑔(. ).   

As described above, we obtain the MHLEs through iterative approximation based on the 

score equations and Newton Raphson method. We illustrate the proposed technique for canonical 

GLM family distributions of 𝒚|𝒖. First, consider the score equation of (4.2), 
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𝑠(𝜽𝑟; 𝒚) =
𝜕

𝜕𝜃
ℒ(𝜽𝑟 , 𝝓𝑟; 𝒚𝑟|𝒖) =

𝒚 − 𝑏′(𝜽𝑟)

𝑎(𝝓𝑟)
,                                           (4.3) 

where 𝑏′(𝜽𝑟) = 𝜕𝑏(𝜽𝑟)/𝜕𝜽𝑟. Now, the proposed generalized score function 𝓢, for 𝑟 = 1,… , 𝑘 

outcomes, can be expressed as  

𝓢 = (
𝑿𝑇𝑠(𝜽; 𝒚)

𝒁𝑇𝑠(𝜽; 𝒚) +  𝜵ℒ𝑼

1 ) =

(

 
 

𝑿𝑇
(𝒚 − 𝑏′(𝜽))

𝑎(𝝓)

𝒁𝑇
(𝒚 − 𝑏′(𝜽))

𝑎(𝝓)
+  𝜵ℒ𝑼

1

)

 
 

,                           (4.4) 

where 𝑿 is a block matrix with off-diagonal matrices being null matrices and each diagonal matrix 

𝑿𝑟(𝑁𝑟 × 𝑝𝑟) represents the design matrix for each outcome variable. The matrix 𝒁 is a block-

diagonal matrix with off-diagonal matrices being null matrices and each diagonal matrix 

𝒁𝑟(𝑁𝑟 × 𝑚) represents the design matrix for each random effect. 

𝑿 = (

𝑿1 𝟎
𝟎 𝑿2

… 𝟎
… ⋮

⋮ ⋮
𝟎 …

⋱ ⋮
… 𝑿𝑘

) , 𝒁 = (

𝒁1 𝟎
𝟎 𝒁2

… 𝟎
… ⋮

⋮ ⋮
𝟎 …

⋱ ⋮
… 𝒁𝑘

) , 𝒚 = (

𝒚1

⋮
𝒚𝑘

) , 𝑏′(𝜽) = (
𝑏′(𝜽1)

⋮
𝑏′(𝜽𝑘)

) , 𝑼 =

(
𝑼1

⋮
 𝑼𝑘

) ,  𝜵ℒ𝑼

1 =
𝜕ℒ𝑼

𝜕𝑼
 and the variance-covariance matrix 𝚺 of 𝑼 can have different covariance 

patterns, such as, 

1. Independent (variance components), no correlation between multiple outcomes, 

𝚺 = (

𝜎11 0
0 𝜎22

… 0
… ⋮

⋮ ⋮
0 …

⋱ ⋮
… 𝜎𝑘𝑘

), 

2. Compound symmetry, the same correlation between each outcome, 

𝚺 = (

𝜎𝑒𝑒 + 𝜎11 ⋯ 𝜎11

⋮ ⋱ ⋮
𝜎11 ⋯ 𝜎𝑒𝑒 + 𝜎11

), 

3. Autoregressive, spatially decreasing correlation,  
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𝚺 = (

1       𝜌
𝜌        1

…     𝜌𝑘−1

… ⋮
⋮ ⋮

𝜌𝑘−1 𝜌𝑘−2
⋱ ⋮
… 1

), 

4. Unstructured, different correlation between each outcome,  

𝚺 = (

𝜎11 𝜎12

𝜎21 𝜎22

… 𝜎1𝑘

… ⋮
⋮ ⋮

𝜎𝑘1 …
⋱ ⋮
… 𝜎𝑘𝑘

). 

The generalized Fisher information matrix 𝓙 for 𝑟 = 1,… , 𝑘, can be derived as 

𝓙 = (
[𝓙11](𝒩×𝒩) [𝓙12](𝒩×ℳ)

[𝓙21](ℳ×𝒫) [𝓙22](ℳ×ℳ)
) = (

𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁

𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝜵ℒ𝑼

2 ),                        (4.5) 

where 𝜵ℒ𝑼

2 = −𝜕2ℒ𝑼/𝜕𝑼𝑇𝜕𝑼, the dimension of 𝓙 is ((𝒩 + ℳ) × (𝒩 + ℳ)), 𝒩 = ∑ 𝑁𝑟
𝑘
𝑟 , 𝒫 

in the total number of covariates, and ℳ = 𝑘𝑚. Here, we make the working assumption that each 

outcome has an equal amount of covariates, i.e., 𝒫 = 𝑛1 = 𝑛2 = ⋯ = 𝑛𝑘. Note that, if 𝑛1 ≠ 𝑛2 ≠

⋯ ,≠ 𝑛𝑘, then 𝒫 = max(𝑛1, … , 𝑛𝑘). Let 𝜵ℒ𝑼

2 = 𝓠. The weight matrix 𝑾  

𝑾 =

(

 
 
 
 

𝐷𝑖𝑎𝑔 (
1

𝑉𝑎𝑟(𝒚1)(𝑔
′(𝝁1))

2) ⋯ 𝟎

⋮ ⋱ ⋮

𝟎 ⋯ 𝐷𝑖𝑎𝑔 (
1

𝑉𝑎𝑟(𝒚𝑘)(𝑔′(𝝁𝑘))
2)

)

 
 
 
 

,                  (4.6) 

where 𝑔′(. ) is the first derivative of link function. Var(𝒚𝑟) = 𝑎(𝝓𝑟)𝑏
′′(𝜽𝑟). 

4.1.1 Estimation of Dispersion Parameters in Multivariate Joint Model 

The MHLEs of dispersion parameters are obtained using the adjusted ℎ-likelihood(ℎ𝐴), by using 

the Newton Raphson approximation. First, consider ℎ𝐴  

ℎ𝐴 = ℎ|𝝉=𝝉̂ +
1

2
log{det(2𝜋𝓙−1)}|𝝉=𝝉̂,                                          (4.7) 
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where 𝝉̂ = (𝜷̂, 𝒖̂). Suppose 𝝍 is a vector of dispersion parameters, which includes 𝑘(𝑘 + 1)/2 

variance parameters for multivariate (for 𝑘 responses) random effects, and variance parameters 

from response variables. For example, for Binomial-Normal model with bivariate normal random 

effects has a total of four dispersion parameters, three variance parameters (𝜎11, 𝜎12, 𝜎22) from the 

bivariate normal random effect and the variance of the normal response variable (𝜎2). Now, for 

the general case, taking the first partial derivative of ℎ𝐴 with respect to 𝝍, 

𝜕

𝜕𝝍
ℎ𝐴 =

𝜕

𝜕𝝍
ℎ|𝝉=𝝉̂ +

1

2

𝜕

𝜕𝝍
log{det(2𝜋𝓙−1)}|𝝉=𝝉̂ 

𝜕ℎ𝐴

𝜕𝝍
=

𝜕

𝜕𝝍
(ℒ(𝑼;𝜙)(𝑼))|

𝝉=𝝉̂

−
1

2
trace (𝓙−1

𝜕𝓙

𝜕𝝍
)|

𝝉=𝝉̂

,                         (4.8) 

and the second partial derivative of ℎ𝐴 with respect to 𝝍, 

𝜕2ℎ𝐴

𝜕𝝍𝑇𝜕𝝍
=

𝜕2

𝜕𝝍𝑇𝜕𝝍
(ℒ(𝑼;𝜙)(𝑼))|

𝝉=𝝉̂

−
1

2
trace(−𝓙−1

𝜕𝓙

𝜕𝝍
𝓙−1

𝜕𝓙

𝜕𝝍
+ 𝓙−1

𝜕2𝓙

𝜕𝝍𝑇𝜕𝝍
)|

𝝉=𝝉̂

     (4.9) 

where 

𝓙 = (
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁

𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝓠
) , 𝓠 = 𝜵ℒ𝑼

2  

𝜕𝓙

𝜕𝝍
= (

𝑿𝑇𝑾′𝑿 𝑿𝑇𝑾′𝒁

𝒁𝑇𝑾′𝑿 𝒁𝑇𝑾′𝒁 + 𝓠′
) ,

𝜕2𝓙

𝜕𝝍𝑇𝜕𝝍
= (

𝑿𝑇𝑾′′𝑿 𝑿𝑇𝑾′′𝒁

𝒁𝑇𝑾′′𝑿 𝒁𝑇𝑾′′𝒁 + 𝓠′′
), 

The MHLE of 𝝍 is obtained using Newton Raphson approximation, 

𝝍(𝒾+1) = 𝝍(𝒾) + (−
𝜕2ℎ𝐴

𝜕𝝍𝑇𝜕𝝍
)

−1
𝜕ℎ𝐴

𝜕𝝍
|

𝚺=𝚺̂(𝒾) 

.                                 (4.10) 

The expressions for multivariate normal random effects can be expressed as, 

 𝓠 = 𝜵ℒ𝑼

2 = 𝚺−1⨂𝐼𝑚×𝑚, 𝓠′ =
𝜕

𝜕𝚺
𝚺−1⨂𝐼𝑚×𝑚 = −(𝚺−1𝚺−1)⨂𝐼𝑚×𝑚, 
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𝓠′′ =
𝜕

𝜕𝚺
𝓠′ = 2(𝚺−1𝚺−1𝚺−1)⨂𝐼𝑚×𝑚, 

𝓠′ =
𝜕

𝜕𝚺
(−

𝜕2
ℒ𝑼

𝜕𝑼𝑇𝜕𝑼
) =

𝜕𝓠

𝜕𝚺
,   𝓠′′ =

𝜕2

𝜕𝚺𝑇𝜕𝚺
(−

𝜕2
ℒ𝑼

𝜕𝑼𝑇𝜕𝑼
) =

𝜕2
𝓠

𝜕𝚺𝑇𝜕𝚺
, 

where 𝚺 is the variance-covariance matrix of 𝑼, 𝑾′, and 𝑾′′ are the first and second partial 

derivative of 𝑾 with respect to 𝚺. Note that, 𝑾 ≠ 𝑓(𝚺), hence, 𝑾′ = 𝟎, and 𝑾′′ = 𝟎. Thus,  

𝜕𝓙

𝜕𝚺
= (

𝟎 𝟎

𝟎 𝓠′
) , and 

𝜕2𝓙

𝜕𝚺𝑇𝜕𝚺
= (

𝟎 𝟎

𝟎 𝓠′′
). 

Note that the proposed approach can be generalized to any GLM family distributed random effects. 

Now, for multivariate normal random effects, (4.6) can be expressed as, 

  
𝜕ℎ𝐴

𝜕𝚺
=

𝜕

𝜕𝚺
(ℒ(𝑼;𝜙)(𝑼))|

𝝉=𝝉̂

−
1

2
trace(𝓙22

−1𝓠′)|
𝝉=𝝉̂

                                                             

=
𝜕

𝜕𝚺
(−

𝑚

2
log(det(𝚺)) −

1

2
𝑼𝑇𝚺−1𝑼)|

𝝉=𝝉̂

−
1

2
trace(𝓙22

−1𝓠′)|
𝝉=𝝉̂

                       

=
𝜕

𝜕𝚺
(−

𝑚

2
log(det(𝚺)) −

1

2
𝑼𝑇𝓠𝑼)|

𝝉=𝝉̂

−
1

2
trace(𝓙22

−1𝓠′)|
𝝉=𝝉̂

                            

= −
𝑚

2
trace(𝚺−1) −

1

2
𝑼𝑇𝓠′𝑼|

𝝉=𝝉̂

−
1

2
trace(𝓙22

−1𝓠′)|
𝝉=𝝉̂

                       (4.11) 

and (4.9) can be expressed as,  

𝜕2ℎ𝐴

𝜕Σ𝑇𝜕Σ
=

𝜕

𝜕𝚺
(−

𝑚

2
trace(𝚺−1) −

1

2
𝑼𝑇𝓠′𝑼)|

𝝉=𝝉̂
−

1

2
trace(−𝓙22

−1𝓠′𝓙22
−1𝓠′ + 𝓙22

−1𝓠′′)|
𝝉=𝝉̂

             

=
𝑚

2
trace(𝚺−1𝚺−1) −

1

2
(𝑼𝑇𝓠′′𝑼) −

1

2
trace(𝓙−1𝓠′′ − 𝓠′𝓙−1𝓠′𝓙−1)|

𝝉=𝝉̂
,           (4.12) 

where  𝓠 = 𝚺−1⨂𝐼𝑚×𝑚, 𝓠′ = −𝚺−1𝚺−1⨂𝐼𝑚×𝑚, 𝓠′′ = 2𝚺−1𝚺−1𝚺−1⨂𝐼𝑚×𝑚, 𝓙−1 = (𝒁𝑇𝑾𝒁 +

𝓠)−1. 
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4.1.2 Bias Correction in Multivariate Joint Model 

We consider the bias correction of random effects to mitigate the biasedness that could occur due 

to the use of current estimates of unobserved random effects (𝒖̂) to obtain estimations for other 

parameters in the model. The most common bias correction approach is the Regression Calibration 

(RC) method, which is simple and provides improved estimations compared to other bias 

corrections approaches. The RCM replaces the current estimate of the unobserved random effect 

by its adjusted values, i.e., the conditional expectation of 𝒖|𝒖̂ (𝐸[𝒖|𝒖̂]). The main advantages of 

RCM are its simplicity and ability to apply for any regression models with non-Gaussian data even 

though it is widely used with Gaussian data (Carroll et al., 2006; Fraser & Stram, 2012; Freedman, 

Midthune, Carroll, & Kipnis, 2008; S. Y. Huang, 2005; Spiegelman, Logan, & Grove, 2011; 

Spiegelman, McDermott, & Rosner, 1997).  

Given 𝒖1, … , 𝒖𝑚~𝑀𝑁(𝟎, 𝚺), the joint distribution of (𝒖𝑖, 𝒖̂𝑖) for 𝑖𝑡ℎ small area is 

multivariate normal, 

(
𝒖𝑖

𝒖̂𝑖
)~𝑀𝑁 ((

𝟎
𝟎
) , (

𝚺 𝚺
𝚺 𝚺 + 𝓥𝑖

)), 

and the conditional distribution of 𝒖𝑖|𝒖̂𝑖 is also multivariate normal, 𝒖𝑖|𝒖̂𝑖~𝑀𝑁(𝚺(𝚺 +

𝓥𝑖)
−1𝒖̂𝑖, (𝚺 − 𝚺(𝚺 + 𝒱𝑖)

−1𝚺)), where 𝚺 is the variance-covariance matrix of 𝒖𝑖, and 

𝓥𝑖((𝑘𝑖 + 𝑝) × (𝑘𝑖 + 𝑝)) is the variance-covariance matrix of 𝒖̂𝑖|𝒖𝑖~𝑀𝑁(𝒖𝑖 , 𝓥𝑖) which is 

obtained by 𝓙−1 evaluated at current estimates of 𝜷𝑟, 𝑼𝑟 , 𝑟 = 1, . . , 𝑘, 

𝓥𝑖 = (
𝓙𝑎×𝑎

−1 ⋯ 𝓙𝑎×𝑏
−1

⋮ ⋱ ⋮
𝓙𝑏×𝑎

−1 ⋯ 𝓙𝑏×𝑏
−1

),                                                           (4.13) 

where 𝑎 = (𝑘𝑖 + 𝑝 − (𝑘 − 1)), and 𝑏 = (𝑘𝑖 + 𝑝). Now, the corrected random effect for 𝒖̂𝑖 based 

on RCM is the conditional expectation of 𝒖𝑖|𝒖̂𝑖 , 𝐸[𝒖𝑖|𝒖̂𝑖] = 𝝁̃𝑖, and, 𝐸[(exp𝒖𝑖)|𝒖̂𝑖] =

exp {𝝁̃𝑖 +
1

2
𝑑𝑖𝑎𝑔(𝚺̃𝑖)}, where 𝝁̃𝑖 = 𝚺(𝚺 + 𝓥𝑖)

−1𝒖̂𝑖, and 𝚺̃𝑖 = (𝚺 − 𝚺(𝚺 + 𝒱𝑖)
−1𝚺). 
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4.1.3 Bivariate Joint Model and 𝑯-Likelihood Function 

For simplicity, we illustrate the multivariate joint model considering a bivariate (𝑘 = 2) Poisson-

Normal model with 𝒚1|𝒖~𝑃𝑜𝑖𝑠(𝜆), 𝒚2|𝒖~𝑁(𝜇, 𝑮), 𝒚1 = (𝑦11, … , 𝑦1𝑁1
)
𝑇
, 𝒚2 = (𝑦21, … , 𝑦2𝑁2

)
𝑇
, 

and 𝒖 = (𝒖1, 𝒖2)
𝑇~𝐵𝑁(0, 𝚺), 𝚺 is the 2 × 2 variance-covariance matrix of the bivariate latent 

random variable 𝒖. The joint ℎ-likelihood for the bivariate model can be expressed as, 

ℎ = ℒ(𝜃,𝜙;𝒚𝟏|𝒖𝟏)(𝑦1|𝒖1) + ℒ(𝜃,𝜙;𝒚𝟐|𝒖𝟐)(𝑦2|𝒖2) + ℒ(𝜃,𝜙;𝒖)(𝒖) ,                    (4.14) 

where, 

ℒ(𝜃,𝜙;𝒚𝟏|𝒖𝟏)(𝒚1|𝒖1) = 𝒚1
𝑇(𝑿1𝜷1 + 𝒁1𝑼1) − 𝟏𝑇 exp(𝑿1𝜷1 + 𝒁1𝑼1) − (log𝓨1)

𝑇𝟏𝑁1×1, 𝓨1 =

(𝑦11!, … , 𝑦1𝑁1
!)

𝑇
, from (2.11), 𝜽1 = (𝑿1𝜷1 + 𝒁1𝑼1), 𝑏(𝜽1) = 𝟏𝑇 exp(𝑿1𝜷1 + 𝒁1𝑼1) , 𝑎(𝝓1) =

1, 𝑐(𝒚1, 𝝓1) = (log𝓨1)
𝑇𝟏𝑁1×1, and  

ℒ(𝜃,𝜙;𝒚𝟐|𝒖𝟐)(𝑦2|𝒖2)

= −
𝑁2

2
log(det(𝑮)) −

1

2
(𝒚2 − (𝑿2𝜷2 + 𝒁2𝑼2))

𝑇
𝑮−1(𝒚2 − (𝑿2𝜷2 + 𝒁2𝑼2))

+ 𝑐2, 

can be expressed in the form of (4.12) as 

= 𝑮−1 {𝒚2
𝑇(𝑿2𝜷2 + 𝒁2𝑼2) −

1

2
(𝑿2𝜷2 + 𝒁2𝑼2)

𝑇(𝑿2𝜷2 + 𝒁2𝑼2)}

−
1

2
{𝑮−1𝒚2

𝑇𝒚2 + log(2𝜋𝑮−1)}, 

where 𝜽2 = (𝑿2𝜷2 + 𝒁2𝑼2), 𝑏(𝜽2) =
1

2
(𝑿2𝜷2 + 𝒁2𝑼2)

𝑇(𝑿2𝜷2 + 𝒁2𝑼2), 𝑎(𝝓2) = 𝑮−1, and 

𝑐(𝒚2, 𝝓2) = −
1

2
{𝑮−1𝒚2

𝑇𝒚2 + log(2𝜋𝑮−1)}. The dimensions of the matrices are 𝒚1(𝑁1 ×

1), 𝒚2(𝑁2 × 1), 𝑿1(𝑁1 × 𝑝1), 𝑿2(𝑁2 × 𝑝2), 𝜷1(𝑝1 × 1), 𝜷2(𝑝2 × 1), 𝒁1(𝑁1 × 𝑚),𝒁2(𝑁2 ×

𝑚),𝑼1(𝑚 × 1), 𝑼2(𝑚 × 1), and 𝑼(2𝑚 × 1). 

The log-likelihood of random effect 𝑼 = (𝑼1, 𝑼2)
𝑇 , 
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ℒ(𝜽,𝝓;𝑼)(𝑼) = −
1

2
𝑼𝑇 𝚺−𝟏𝑼 −

𝑚

2
log(det(𝚺)) + 𝑐𝑢,                         (4.15) 

𝚺 = (
𝜎11 𝜎12

𝜎21 𝜎22
) , 𝚺−1 = (

𝜎11
∗ 𝜎12

∗

𝜎21
∗ 𝜎22

∗ ) , 𝑐2 = −
𝑁2

2
log(2𝜋) , 𝑐𝑢 = −

𝑚

2
log(2𝜋) . 

Now, the quantities of the score function 𝓢, 𝑏′(𝜽), 𝑎(𝝓), and  𝜵ℒ𝑼

1  in (2.13) can be 

expressed as,  

𝑏′(𝜽1) = exp(𝑿1𝜷1 + 𝒁1𝑼1) , 𝑎(𝝓1) = 1, 

𝑏′(𝜽2) = (𝑿2𝜷2 + 𝒁2𝑼2), 𝑎(𝝓2) = 𝑮−1, 

 𝜵ℒ𝒖1

1 = −(𝜎11
∗ 𝑼1 + 𝜎12

∗ 𝑼2), and  𝜵ℒ𝒖2

1 = −(𝜎21
∗ 𝑼1 + 𝜎22

∗ 𝑼2), then, 

𝑠(𝜽; 𝒚) = (

𝑿1
𝑇

𝟎
𝒁1

𝑇

𝟎

 

𝟎
𝑿2

𝑇

𝟎
𝒁2

𝑇

)(
𝑠(𝜽1; 𝒚1)

𝑠(𝜽2; 𝒚2)
) +

(

 
 

 

𝟎
𝟎

 𝜵ℒ𝒖1

1

 𝜵ℒ𝒖2

1

)

 
 

 

= (

𝑿1
𝑇

𝟎
𝒁1

𝑇

𝟎

 

𝟎
𝑿2

𝑇

𝟎
𝒁2

𝑇

)

(

 

1

𝑎(𝝓1)
(𝒚1 − 𝑏′(𝜽1))

1

𝑎(𝝓2)
(𝒚2 − 𝑏′(𝜽2)))

 +

(

 
 

 

𝟎
𝟎

 𝜵ℒ𝒖1

1

 𝜵ℒ𝒖2

1

)

 
 

,        (4.16) 

where (
𝜎11

∗ 𝜎12
∗

𝜎21
∗ 𝜎22

∗ ) =  (
𝜎11 𝜎12

𝜎21 𝜎22
)
−𝟏

,  𝜵ℒ𝑼

′ = ( 𝜵ℒ𝒖1

′   𝜵ℒ𝒖2

′ )
𝑇

= −𝑼(𝚺−1⨂𝐼𝑚×𝑚). 

The components of (4.6) are as follows, 

𝑾 = (
𝑾1 𝟎
𝟎 𝑾2

) ,𝜵ℒ𝑼

′′ = −𝚺−1⨂𝐼𝑚×𝑚,  

𝑾𝑟 = 𝐷𝑖𝑎𝑔 (((𝑔′(𝝁𝑟))
𝑇
)
−1

(𝑉𝑎𝑟(𝒚𝑟))
−1

(𝑔′(𝝁𝑟))
−1

) , 𝑟 = 1, 2, 

where 𝑔′(𝝁𝑟) is the first partial derivative of link function 𝑔(𝝁𝑟) = log 𝝀𝑟 (for Poisson, 𝝁𝑟 = 𝝀𝑟) 

with respect to 𝝁𝑟. For  𝑟 = 1, 
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𝑔′(𝝁𝑟) =
𝜕

𝜕𝝀𝑟

(log 𝝀𝑟) (
𝜕𝝀𝒓

𝜕𝝁𝑟
) =

1

𝝀𝑟
, 

𝑾𝑟 = 𝐷𝑖𝑎𝑔 (
1

𝝀𝑟 (
1
𝝀𝑟

)
2) = 𝐷𝑖𝑎𝑔(𝝀𝑟). 

Next, (4.18), and (4.19) are used to obtain MHLEs for 𝝍 = (Σ11, Σ12, Σ22). As described 

in section 4.2.2, the estimates are fine-tuned through the bias correction approach using RCM by 

replacing 𝒖𝑖|𝒖̂𝑖 with 𝐸[𝒖𝑖|𝒖̂𝑖] = 𝝁̃𝑖, and 𝐸[(exp𝒖𝑖)|𝒖̂𝑖] = exp {𝝁̃𝑖 +
1

2
𝑑𝑖𝑎𝑔(𝚺̃𝑖)}, where 

𝝁̃𝑖 = 𝚺(𝚺 + 𝓥𝑖)
−1𝒖̂𝑖, 𝚺̃𝑖 = (𝚺 − 𝚺(𝚺 + 𝒱𝑖)

−1𝚺), 𝒖𝑖 = (𝒖1𝑖, 𝒖2𝑖)
𝑇 , 

𝚺 = (
𝜎11 𝜎12

𝜎21 𝜎22
) , and 𝓥𝑖 = (

𝓙(2𝑖+𝑝−1)×(2𝑖+𝑝−1)
−1 𝓙(2𝑖+𝑝−1)×(2𝑖+𝑝)

−1

𝓙(2𝑖+𝑝)×(2𝑖+𝑝−1)
−1 𝓙(2𝑖+𝑝)×(2𝑖+𝑝)

−1 ). 

4.1.4 MHLE Algorithm – Multivariate Joint Model 

The MHLEs of fixed effects are estimated through iterative approximation as described below, 

1. Initialize 𝜷1
(0)

, 𝜷2
(0)

, 𝒖1
(0)

, 𝒖2
(0)

, and 𝚺(0). 

1. Obtain 𝜷1
(0)

, and 𝜷2
(0)

 using Poisson regression without random effects. 

2. Obtain  𝒖1
(0)

, 𝒖2
(0)

 sampled from multivariate normal for a given 𝚺(0). 

2. Evaluate 𝓢, and 𝓙 using (4.4), and (4.5). 

3. Estimate 𝜷̂(𝑘) = (𝜷1̂
(𝑘)

, 𝜷2̂
(𝑘)

)
𝑇

 and 𝒖̂(𝑘) = (𝒖1̂
(𝑘), 𝒖2̂

(𝑘))
𝑇
 using 

(
𝜷̂(𝑘)

𝒖̂(𝑘)
) = (

𝜷̂(𝑘−1)

𝒖̂(𝑘−1)
) + (𝓙−1𝓢)|(𝜷̂(𝑘−1),𝒖̂(𝑘−1)), 𝑘 = 1, 2, … 

4. Update 𝓙(𝑘) using current estimates of 𝜷, and 𝒖,  𝜷̂(𝑘) = (𝜷1̂
(𝑘)

, 𝜷2̂
(𝑘)

)
𝑇

 and 𝒖̂(𝑘) =

(𝒖1̂
(𝑘), 𝒖2̂

(𝑘))
𝑇

. 
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5. Estimate dispersion parameters 𝝍(= 𝚺(𝑘)) by replacing 𝒖̂(𝑘) with 𝒖̂𝑐(𝑘) = 𝜁𝑖
(𝑘)

𝒖̂𝑖
(𝑘)

 and by 

replacing exp(𝒖̂(𝑘)) with 𝒖̂𝐶𝐸𝑥𝑝(𝑘), where 𝚺(𝑘−1) is variance-covariance matrix of 𝚺 at the 

(𝑘 − 1)𝑡ℎ iteration, 𝓥𝑖
(𝑘)

= (𝓙22
−1)(𝑘) = (𝒁𝑇𝑾𝒁 + 𝓠)−1|

𝜷̂(𝑘),𝒖̂(𝑘),𝚺(𝑘−1) obtained from 𝓙(𝑘),  

𝚺(𝑘) = 𝚺(𝑘−1) + (−
𝜕2ℎ𝐴

𝜕𝚺𝑇𝜕𝚺
)

−1
𝜕ℎ𝐴

𝜕𝝍
|

𝚺=𝚺̂(𝑘−1) 

, 

where , 𝜁𝑖
(𝑘)

= 𝚺(𝑘−1) (𝚺(𝑘−1) + 𝓥𝑖
(𝑘)

)
−1

, so, 𝜁𝑖
(𝑘)

𝒖̂𝑖
(𝑘)

= 𝚺(𝑘−1) (𝚺(𝑘−1) + 𝓥𝑖
(𝑘)

)
−1

𝒖̂𝑖
(𝑘)

, 

𝒖̂𝐶𝐸𝑥𝑝(𝑘) = exp {𝜁𝑖
(𝑘)

𝒖̂𝑖
(𝑘)

+
1

2
𝑑𝑖𝑎𝑔 (𝚺̃𝑖

(𝑘)
)}, 

 𝚺̃𝑖
(𝑘)

= (𝚺(𝑘) − 𝚺(𝑘−1) (𝚺(𝑘−1) + 𝓥𝑖
(𝑘)

)
−1

𝚺(𝑘)) = 𝚺(𝑘) (1 − 𝜁𝑖
(𝑘)

), 

𝜕ℎ𝐴

𝜕𝝍
= −

𝑚

2
trace((𝚺−1)(𝑘−1)) −

1

2
𝑼𝑇𝓠′𝑼|

𝜷̂(𝑘),𝒖̂(𝑘)
−

1

2
trace(𝓙22

−1𝓠′)|
𝝉=𝝉̂

, 

𝜕2ℎ𝐴

𝜕𝝍𝑇𝜕𝝍
=

𝑚

2
trace(𝚺−1𝚺−1) −

1

2
(𝑼𝑇𝓠′′𝑼) −

1

2
trace(𝓙22

−1𝓠′′ − 𝓙22
−1𝓠′𝓙22

−1𝓠′), 

𝓠′ = −𝚺−1𝚺−1⨂𝐼𝑚×𝑚|𝚺(𝑘−1) ,  and 𝓠′′ = 2𝚺−1𝚺−1𝚺−1⨂𝐼𝑚×𝑚|𝚺(𝑘−1) . 

Note: for two response variables with count data having bivariate normal 𝒖, 𝝍 = 𝚺. 

6. Update ℎ-likelihood by replacing 𝒖̂(𝑘) with 𝒖̂𝑐(𝑘), and exp(𝒖̂(𝑘)) with 𝒖̂𝐶𝐸𝑥𝑝(𝑘). 

7. Repeat steps 2 − 6 until it meets the convergence criteria 

max{(𝜷̂(𝑘) − 𝜷̂(𝑘−1)), (𝜮(𝑘) − 𝜮(𝑘−1))} < 10−5. 

 

4.2 Joint Modeling Through Shared Random Effects 

Suppose 𝒀1, … , 𝒀𝑘 is a vector of 𝑘 outcomes of interest, which are measured on the number 

of individuals in small areas. Conducting joint analysis on multiple outcomes explains the 
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association among them and provide better results than separate analysis on each outcome. 

Consider the joint model in SAE for 𝒀1, … , 𝒀𝑘 outcomes  

(

 
 

𝒀1

𝒀2

...
𝒀𝑘)

 
 

=

(

 
 

𝑿𝜷1 + 𝜌1𝒁𝒖
𝑿𝜷2 + 𝜌2𝒁𝒖

...
𝑿𝜷𝑘 + 𝜌𝑘𝒁𝒖)

 
 

+

(

 
 

𝝐1

𝝐2

...
𝝐𝑘)

 
 

,                               (4.17) 

where 𝜌1, 𝜌2, … , 𝜌𝑘 are the shared parameters between outcomes, 𝑿 is covariate information, 

𝜷1, … , 𝜷𝑘 are fixed effects coefficient vectors, 𝜷(.) = (𝛽1, … , 𝛽𝑝), 𝑝 is the number of fixed effects 

for each outcome, 𝒁 is the design matrix for random effects whole diagonal elements being one 

and off-diagonal elements being zero, 𝒖 = (𝑢1, … , 𝑢𝑚) is a vector of random effects, and 𝑚 is the 

number of small areas.  

Now, we define the joint density for multiple outcomes, (𝒀1, … , 𝒀𝑘) 

𝑓(𝒀1, … , 𝒀𝑘) = 𝑓(𝒀1, … , 𝒀𝑘|𝒖) × 𝑓(𝒖) 

= 𝑓(𝒀1|𝒖) × 𝑓(𝒀2|𝒖) × …× 𝑓(𝒀𝑘|𝒖) × 𝑓(𝒖)                

Here, we assume that the outcomes are conditionally independent, that is 𝒀1|𝒖,… , 𝒀𝑘|𝒖 

are independent. Now, ℎ-likelihood can be written as  

ℎ = ℓ(𝒀1|𝒖) + ⋯+ ℓ(𝒀𝑘|𝒖) + 𝑙(𝒖).                                           (4.18) 

However, for the canonical GLM family, the matrices 𝓢 and 𝓙 can be expressed as  

𝓢 = (
𝑿
𝒁
)
𝑻

∘ (
𝒚 − 𝟏𝑘𝑁×1∘𝒃′(𝜽)

𝒚 − 𝜸𝑘𝑁×1∘𝒃′(𝜽)
) + (

𝟎
 𝜵ℓ𝒖

1 ),                                       (4.19) 

and 

𝓙 = (
𝑿𝑇 ∘ 𝓦 ∘ 𝑿 𝜸 ∘ 𝑿𝑇 ∘ 𝑾 ∘ 𝒁

𝜸 ∘ 𝒁𝑇 ∘ 𝑾 ∘ 𝑿 𝜸 ∘ 𝜸 ∘ (𝒁𝑇𝓦𝒁) +  𝜵ℓ𝒖

2 ),                           (4.20) 
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where ∘ indicates the componentwise multiplication, also known as the Hadamard product. Here, 

the matrices and vectors are 𝑿 = (𝑿1 … 𝑿𝑘)
𝑇 , 𝒁 = (𝒁1 … 𝒁𝑘)𝑇 , 𝑾 = (𝑾1 … 𝑾𝑘)𝑇 , 

𝜸 = (

𝜌1

⋮
𝜌𝑘

) ,𝓦 = (
𝑾1 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝑾𝑘

), and 𝑾𝑟 = 𝐷𝑖𝑎𝑔 ( 
1

(𝑔′(𝝁𝑟))
𝑇
𝑉𝑎𝑟(𝒚𝑟)(𝑔

′(𝝁𝑟))
) , 𝑟 = 1,… , 𝑘, 𝜸 is a 

vector of 𝑘 shared parameters, 𝑿 and 𝒁 are vectors of 𝑘 matrices. 

We illustrate the joint modeling based on shared random effects using two outcomes, 𝒀1, 

and 𝒀2, which is displayed in Figure 4.1 with the shared parameter 𝛾, that explains the association 

between 𝒀1, and 𝒀2. 𝒀1, 𝒀2, 𝑿1, 𝑿2, and 𝑿𝑝 are vectors of 𝑁 × 1 if both outcome variables have 

the same number of observations. The regression coefficients 𝛽𝓅
(1)

, and 𝛽𝓅
(2)

 are fixed effects for 

𝓅th covariate 𝑿𝓅, 𝓅 = 1,… , 𝑝 of 𝒀1, and 𝒀2. While 𝛾 > 0 (𝛾 < 0) indicates the existence of a 

positive (negative) association between 𝒀1, and 𝒀2, and 𝛾 = 0 indicates no association between 𝒀1, 

and 𝒀2. 

 

 

 

 

 

 

 

 

 

In this section, we consider a joint model with two binary response variables, 𝑦 =

(𝑦1𝑖𝑗 , 𝑦2𝑖𝑗)
′
, 𝑖 = 1,… , 𝑛𝑗, 𝑗 = 1,… ,𝑚 where, 𝑦1𝑖𝑗|𝑢1𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝1), 𝑦2𝑖𝑗|𝑢2𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝2), 

and 𝑢1𝑖, 𝑢2𝑖~𝑁(0, 𝜃). The auxiliary information  

Figure 4.1: Joint modeling of multiple outcomes through shared random effects. 
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𝑋 = (
𝒙1𝑖𝑗′ 𝟎

𝟎 𝒙2𝑖𝑗′
), 

where 𝒙1𝑖𝑗
′ = (𝑥1𝑖𝑗1, … , 𝑥1𝑖𝑗𝑝1

)
′
, and 𝒙2𝑖𝑗

′ = (𝑥2𝑖𝑗1, … , 𝑥2𝑖𝑗𝑝2
)
′
 are vectors of 𝑝1 and 𝑝2 covariates 

of  𝑦1𝑖𝑗 and 𝑦2𝑖𝑗 , respectively. The logit model for 𝑦1𝑖𝑗 and 𝑦2𝑖𝑗 

𝑃(𝑦1𝑖𝑗 = 1|𝑢1𝑖) = logit−1( 𝒙1𝑖𝑗
𝑡 𝜷 + 𝑢1𝑖) = logit−1( 𝒙1𝑖𝑗

𝑡 𝜷 + 𝑢𝑖), 

𝑃(𝑦2𝑖𝑗 = 1|𝑢2𝑖)  = logit−1( 𝒙2𝑖𝑗
𝑡 𝜹 + 𝑢2𝑖) = logit−1( 𝒙2𝑖𝑗

𝑡 𝜹 + 𝛾𝑢𝑖), 

where 𝑦𝑟 = (𝑦𝑟𝑖𝑗 , 1 ≤ 𝑖 ≤ 𝑚𝑟, 1 ≤ 𝑗 ≤ 𝑛𝑖), 𝑟 = 1, 2 is the binary response vectors for 1st and 2nd 

outcomes of interest, which are independent given the random effects 𝑢1, … , 𝑢𝑚𝑟
, and 𝛾 is the 

shared parameter. Let 𝒖 = (𝑢𝑖)1≤𝑖≤𝑚1
, and 𝜷1 = (𝛽1𝑘)1≤𝑘≤𝑝1

 and 𝜷2 = (𝛽2𝑘)1≤𝑘≤𝑝2
 are vectors 

of unknown fixed effects of 𝑦1 and 𝑦2. From (4.18), for two outcome variables 

ℎ = ℓ𝑦1
+ ℓ𝑦2

+ ℓ𝑢 

= 𝒚1
𝑇(𝑿𝟏𝜷1 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝟏𝜷1 + 𝒁𝒖)) + 𝒚2

𝑇(𝑿2𝜷2 + 𝛾𝒁𝒖)

− 𝟏𝑇 log(1 + exp(𝑿2𝜷2 + 𝛾𝒁𝒖)) −
1

2
𝒖𝑇𝜽−𝟏𝒖 −

𝑚

2
log(det(𝜽)) + 𝑐,        (4.21) 

where 𝜷1, 𝜷2 are vectors of fixed effects, 𝒖, 𝛾𝒖 are random effects of response variables 𝒀1 and 𝒀2 

respectively, with shared parameter 𝛾. 𝑿𝟏, 𝑿2 are corresponding design matrices, and 𝜽 is the 

variance-covariance matrix of random effect 𝒖. When 𝛾 = 0, 𝒀1 and 𝒀2 are not associated, and 

when 𝛾 > 0, they are positively associated. The parameters of fixed effects and random effects are 

estimated using the Newton Raphson approximation taking the partial derivative of joint ℎ-

likelihood with respect to 𝜷1, 𝜷2, and 𝒖. The dispersion parameters, 𝜽, and 𝛾 are estimated using 

the adjusted profile ℎ-likelihood (Ha et al., 2017; Lee et al., 2017). 

4.2.1 Parameter Estimation of Fixed Effects and Random Effects  

 The partial derivative of ℎ-likelihood equation (4.21) with respect to 𝜷1, 𝜷2, and 𝒖, 

respectively, 
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𝜕ℎ

𝜕𝜷1
= [𝑿1

𝑇𝒚1 − 𝑿1
𝑇(1 + exp(𝑿1𝜷1 + 𝒁𝒖))−1 exp(𝑿1𝜷1 + 𝒁𝒖)]𝑝×1 

                                                           = 𝑿1
𝑇𝒚1 − 𝑿1

𝑇𝝅1 = 𝑿1
𝑇(𝒚1 − 𝝅1), 

  
𝜕ℎ

𝜕𝜷2
= [𝑿2

𝑇𝒚2 − 𝑿2
𝑇(1 + exp(𝑿2𝜷2 + 𝛾𝒁𝒖))−1 exp(𝑿2𝜷2 + 𝛾𝒁𝒖)]𝑝×1 

                                                            = 𝑿2
𝑇𝒚2 − 𝑿2

𝑇𝝅2 = 𝑿2
𝑇(𝒚2 − 𝝅2), 

                              
𝜕ℎ

𝜕𝒖
= 𝒁𝑇𝒚1 − 𝒁𝑇𝝅1 + 𝛾𝒁𝑇𝒚2 − 𝛾𝒁𝑇𝝅2 − 𝜽−1𝒖 

                                                          = 𝒁𝑇(𝒚1 + 𝛾𝒚2 − (𝝅1 + 𝛾𝝅2)) − 𝜽−1𝒖, 

where 𝝅1 = 1/(1 + exp(−𝑿1𝜷1 − 𝒁𝒖)), and 𝝅2 = 1/(1 + exp(−𝑿2𝜷2 − 𝛾𝒁𝒖)). Now, the 

score function of joint ℎ-likelihood can be written as  

𝓢(𝝉) =

(

 
 
 
 

𝜕ℎ

𝜕𝜷
𝜕ℎ

𝜕𝜹
𝜕ℎ

𝜕𝒖)

 
 
 
 

= (

𝑿𝜷
𝑇(𝒚1 − 𝝅1)

𝑿𝜹
𝑇(𝒚2 − 𝝅2)

𝒁𝑇(𝒚1 + 𝛾𝒚2 − (𝝅1 + 𝛾𝝅2)) − 𝜽−1𝒖

),                        (4.22) 

where 𝝉 = (𝜷1, 𝜷2, 𝒖) are vectors for fixed effects coefficients of output variables 𝑦1, 𝑦2, and 

random effects, respectively.  

Now, consider the Fisher information matrix of joint ℎ-likelihood 

𝓙 =

[
 
 
 
 
 
 −

𝜕2ℎ

𝜕𝜷1
𝑇𝜕𝜷1

−
𝜕2ℎ

𝜕𝜷1
𝑇𝜕𝜷2

−
𝜕2ℎ

𝜕𝜷1
𝑇𝜕𝒖

−
𝜕2ℎ

𝜕𝜷2
𝑇𝜕𝜷1

−
𝜕2ℎ

𝜕𝜷2
𝑇𝜕𝜷2

−
𝜕2ℎ

𝜕𝜷2
𝑇𝜕𝒖

−
𝜕2ℎ

𝜕𝒖𝑇𝜕𝜷1
−

𝜕2ℎ

𝜕𝒖𝑇𝜕𝜷2
−

𝜕2ℎ

𝜕𝒖𝑇𝜕𝒖

 

]
 
 
 
 
 
 

.                                       (4.23) 

The elements of 𝓙 are obtained as in chapter 3.3 taking the partial derivative of score 

function 𝓢(𝝉) with respect to 𝝉. Taking partial derivatives of 𝝅1, and 𝝅2 with respect to 𝜷1, 𝜷2 and 

𝒖,  

𝜕𝝅1

𝜕𝒖
= −(1 + exp(−𝑿1𝜷1 − 𝒁𝒖))−1 exp(−𝑿1𝜷1 − 𝒁𝒖)𝒁 = −𝝅1(𝟏 − 𝝅1)𝒁,              
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𝜕𝝅1

𝜕𝜷1
= −(1 + exp(−𝑿1𝜷1 − 𝒁𝒖))−1 exp(−𝑿1𝜷1 − 𝒁𝒖)𝑿1 = −𝝅1(𝟏 − 𝝅1)𝑿1,         

𝜕𝝅2

𝜕𝒖
= −𝛾(1 + exp(−𝑿2𝜷2 − 𝛾𝒁𝒖))−1 exp(−𝑿2𝜷2 − 𝛾𝒁𝒖) = −𝛾𝝅2(𝟏 − 𝝅2)𝒁,       

𝜕𝝅2

𝜕𝜷2
= −(1 + exp(−𝑿2𝜷2 − 𝛾𝒁𝒖))−1 exp(−𝑿2𝜷2 − 𝛾𝒁𝒖)𝑿2 = −𝝅2(𝟏 − 𝝅2)𝑿2.    

The diagonal elements of the matrix 𝓙, 

      −
𝜕2ℎ

𝜕𝜷1
𝑇𝜕𝜷1

= 𝑿1
𝑇(1 + exp(−𝑿1𝜷1 − 𝒁𝒖))−1 exp(−𝑿1𝜷1 − 𝒁𝒖)𝑿1 

                                                  = 𝑿1
𝑇𝝅1(𝟏 − 𝝅1)𝑿1 

                                                  = 𝑿1
𝑇𝑾1𝑿1 , 

                            −
𝜕2ℎ

𝜕𝜷2
𝑇𝜕𝜷2

= 𝑿2
𝑇(1 + exp(−𝑿2𝜷2 − 𝛾𝒁𝒖))−1 exp(−𝑿2𝜷2 − 𝛾𝒁𝒖)𝑿𝟐 

                                                 = 𝑿2
𝑇𝝅2(𝟏 − 𝝅2)𝑿2 

                                              = 𝑿2
𝑇𝑾2𝑿2,   

                           −
𝜕2ℎ

𝜕𝒖𝑇𝜕𝒖
= 𝒁𝑇𝝅1(𝟏 − 𝝅1)𝒁 + 𝛾2𝒁𝑇𝝅2(𝟏 − 𝝅2)𝒁 + 𝜽−1 

                                              = 𝒁𝑇 𝑾1𝒁 + 𝒁𝑇(𝛾2𝑾2)𝒁 + 𝜽−1. 

The off-diagonal elements of the matrix 𝓙, 

                         −
𝜕2ℎ

𝜕𝜷1𝜕𝜷2
= −

𝜕2ℎ

𝜕𝜷2𝜕𝜷1
= 0, 

                            −
𝜕2ℎ

𝜕𝒖𝜕𝜷1
= −

𝜕ℎ

𝜕𝒖
(𝑿1

𝑇(𝒚1 − 𝝅1)) = 𝑿1
𝑇𝝅1(𝟏 − 𝝅1)𝒁 = 𝑿1

𝑇𝑾1𝒁, 

                            −
𝜕2ℎ

𝜕𝒖𝜕𝜷2
= −

𝜕

𝜕𝒖
(𝑿2

𝑇(𝒚2 − 𝝅2)) = 𝑿2
𝑇𝛾𝝅2(𝟏 − 𝝅2)𝒁 = 𝑿2

𝑇(𝛾𝑾2)𝒁, 

                            −
𝜕2ℎ

𝜕𝜷1𝜕𝒖
= −

𝜕

𝜕𝜷1
(𝒁𝑇(𝒚1 + 𝛾𝒚2 − (𝝅1 + 𝛾𝝅2)) − 𝜽−1𝒖) 

                                              = 𝒁𝑇𝝅1(𝟏 − 𝝅1)𝑿1 = 𝒁𝑇𝑾1𝑿1, 
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                             −
𝜕2ℎ

𝜕𝜷2𝜕𝒖
= −

𝜕

𝜕𝜷2
(𝒁𝑇(𝒚1 + 𝛾𝒚2 − (𝝅1 + 𝛾𝝅2)) − 𝜽−1𝒖) 

                                               = 𝒁𝑇𝛾𝝅2(𝟏 − 𝝅2)𝑿2 = 𝒁𝑇(𝛾𝑾2)𝑿2.  

Using the above quantities 𝓢 (eqn. 4.20) and 𝓙 (eqn. 4.21) can be updated, where  

𝑿 = (
𝑿1 𝟎
𝟎 𝑿2

) , 𝒁 = (
𝒁1 𝟎
𝟎 𝒁2

) , 𝒀 = (
𝒀1

𝒀2
) , 𝝁 = (

𝝁1

𝝁2
) , 𝜸 = (

1
𝛾
)
𝑇

, 𝓦 = (
𝑾1 𝟎

𝟎 𝛾2𝑾2
) ,

𝜷 = (
𝜷1

𝜷2
) , 𝓦𝑟 = 𝝅𝑟(𝟏 − 𝝅𝑟), 𝜵𝓵𝒖

1 = −𝜽−1𝒖, 𝜵𝓵𝒖

2 = −𝜽−1.  

Now, the MHLEs are obtained using Newton Raphson approximation, 

𝝉̂(𝑘+1) = 𝝉̂(𝑘) + (𝓙−1𝓢(𝜏))|𝝉=𝝉̂(𝑘) ,                                         (4.24) 

where 𝝉 = (𝜷1, 𝜷2, 𝒖), and  𝝉̂ = (𝜷1̂, 𝜷2̂, 𝒖̂). 

 However, since this is a canonical GLM family, we can easily obtain 𝓢 and 𝓙 using the 

equations (4.19) and (4.20). Consider the ℎ-likelihood  

ℎ = 𝒚1
𝑇(𝑿1𝜷1 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿1𝜷1 + 𝒁𝒖)) + 𝒚2

𝑇(𝑿2𝜷2 + 𝛾𝒁𝒖) − 𝟏𝑇 log(1 +

exp(𝑿2𝜷2 + 𝛾𝒁𝒖)) −
1

2
𝒖𝑇𝜗−𝟏𝒖 −

𝑚

2
log(det(𝜗)) + 𝑐,   

where 𝜽1 = 𝑿1𝜷1 + 𝒁𝒖, 𝑏(𝜽1) = log(1 + exp(𝑿1𝜷1 + 𝒁𝒖)) , 𝜽2 = 𝑿2𝜷2 + 𝒁𝒖, 𝑏(𝜽2) =

log(1 + exp(𝑿2𝜷2 + 𝒁𝒖)), and 𝑔(𝝁𝑟) = log
𝝅𝑟

𝟏−𝝅𝑟
= log

𝝁𝑟

𝟏−𝝁𝑟
, 𝑟 = 1,2. Now, 𝑿,   𝒁,   𝒚, 𝜸, 𝜵ℓ𝒖

1 , 

and 𝜵ℓ𝒖

2  in (4.19) and (4.20) are  

𝜸 = (
1
𝛾
) , 𝑿 = (

𝑿1

𝑿2
) , 𝒁 = (

𝒁1

𝒁2
) ,  𝒚 = (

𝒚1

𝒚2
) ,  𝜵ℓ𝒖

1 = −𝜗−1𝒖,  𝜵ℓ𝒖

2 = −𝜗−1, 

and taking partial derivatives of 𝑏(𝜽1) and 𝑏(𝜽2) with respect to 𝜽1 and 𝜽2 

𝑏′(𝜽1) =
𝜕

𝜕𝜽1
𝟏𝑇 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝜽1)) = (1 + 𝑒𝑥𝑝(−𝜽1))

−1 

= (1 + 𝑒𝑥𝑝(−𝑿1𝜷1 − 𝒁1𝒖)), 
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𝑏′(𝜽2) =
𝜕

𝜕𝜽2
𝟏𝑇 𝑙𝑜𝑔(1 + 𝑒𝑥𝑝(𝜽2)) = 𝛾(1 + 𝑒𝑥𝑝(−𝜽2))

−1 

      = 𝛾(1 + 𝑒𝑥𝑝(−𝑿2𝜷2 − 𝛾𝒁2𝒖)). 

Next, the link function 

𝑔(𝝁𝑟) = log
𝝅𝑟

𝟏 − 𝝅𝑟
= log

𝝁𝑟

𝟏 − 𝝁𝑟
⇒ 𝑔′(𝝁𝑟) = (𝝁𝑟(𝟏 − 𝝁𝑟))

−1
, 

and 𝑉𝑎𝑟(𝒚𝑟) = 𝝁𝑟(𝟏 − 𝝁𝑟), 𝑟 = 1,2. Then the weight matrices 𝓦 and 𝑾 

𝑾𝑟 = 𝐷𝑖𝑎𝑔 (
1

(𝑔′(𝝁𝑟))
𝑇
𝑉𝑎𝑟(𝒚𝑟)(𝑔

′(𝝁𝑟))
) = 𝐷𝑖𝑎𝑔(𝝁𝑟(𝟏 − 𝝁𝑟)), 

𝓦 = (
𝑾1 𝟎
𝟎 𝑾2

) ,  𝑾 = (
𝑾1

𝑾2
). 

Now, the above expressions can be used to obtain (4.19) and (4.20) to obtain MHLEs of fixed 

effects and random effects.   

4.2.2 Parameter Estimation of Dispersion Parameters 

 In this model, the dispersion parameters would be 𝝑 = (𝜎2, 𝛾). The MHLEs of 𝜎2 and 𝛾 

are obtained using the adjusted ℎ-likelihood by solving the score equations 𝜕ℎ𝐴/𝜕𝜎2 = 𝜕ℎ𝐴/𝜕𝛾 =

0. First, consider the equation (3.5) to estimate 𝜎2 at current estimates 𝝉 = 𝝉̂  

𝜕ℎ𝐴

𝜕𝜎2
=

𝜕ℎ

𝜕𝜎2|
𝝉̂
−

1

2
trace (𝓙−1

𝜕𝓙

𝜕𝜎2
)|

𝝉̂
.                        (4.25) 

Note that 𝜕ℓ1𝑖𝑗/𝜕𝜎2 = 𝜕ℓ2𝑖𝑗/𝜕𝜎2 = 0, the score function can be written as 

              
𝜕ℎ

𝜕𝜎2
= 0 +

𝜕

𝜕𝜎2
(∑ℓ3𝑖

𝑚

𝑖=1

). 

The log-likelihood of 𝑢𝑖~𝑁(0, 𝜎2) for small area 𝑖 
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ℓ3𝑖 = −
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢𝑖

2

𝑚

𝑖=1

= −
𝑚

2
log 2𝜋 −

𝑚

2
log𝜎2 −

1

2𝜎2
𝒖𝑇𝒖, 

where 𝜎2𝐼𝑚×𝑚. Now, from ℎ = ∑ ℓ1𝑖𝑗𝑖𝑗 + ∑ ℓ2𝑖𝑗𝑖𝑗 + ∑ ℓ2𝑖𝑖 , 𝜕ℎ/𝜕𝜎2 given 𝜷 = 𝜷̂, 𝒖 = 𝒖̂ can be 

represented as 

 
𝜕ℎ

𝜕𝜎2|
𝝉=𝝉̂

= 0 +
𝜕

𝜕𝜎2
(−

𝑚

2
log𝜎2 −

1

2𝜎2
∑𝑢̂𝑖

2

𝑚

𝑖=1

)                                                          

 = (−
𝑚

2𝜎2
+

1

2𝜎4
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

.                                                                               

The partial derivative of the observed information matrix with respect to 𝜎2 given 𝝉 = 𝝉̂  

 
𝜕𝓙

𝜕𝜎2|
𝝉̂
=

𝜕

𝜕𝜎2

[
 
 
 
 
 
 −

𝜕2ℎ

𝜕𝜷2
−

𝜕2ℎ

𝜕𝜷𝜕𝜹
−

𝜕2ℎ

𝜕𝜷𝜕𝒖

−
𝜕2ℎ

𝜕𝜹𝜕𝜷
−

𝜕2ℎ

𝜕𝜹2
−

𝜕2ℎ

𝜕𝜹𝜕𝒖

−
𝜕2ℎ

𝜕𝒖𝜕𝜷
−

𝜕2ℎ

𝜕𝒖𝜕𝜹
−

𝜕2ℎ

𝜕𝒖2

 

]
 
 
 
 
 
 

,                                                              

       =
𝜕

𝜕𝜎2 [

𝑿𝛽
𝑇𝑾1𝑿𝛽 𝟎 𝑿𝛽

𝑇𝑾1𝒁

𝟎 𝑿𝜹
𝑇𝑾2𝑿𝛿 𝑿𝛿

𝑇(𝛾𝑾2)𝒁

𝒁𝑇𝑾1𝑿𝛽 𝒁𝑇(𝛾𝑾2)𝑿𝛿 𝒁𝑇 𝑾1𝒁 + 𝒁𝑇(𝛾2𝑾2)𝒁 + (𝜎2)−1

 ], 

 = [
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 −(𝜎2)−2𝐼𝑚×𝑚

 ].                                                                                    

From (4.25) 

𝜕ℎ𝐴

𝜕𝜎2
= (−

𝑚

2𝜎2
+

1

2𝜎4
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

−
1

2
trace([

𝓙11
∗  𝓙12

∗ 𝓙13
∗

𝓙21
∗ 𝓙22

∗ 𝓙23
∗

𝓙31
∗ 𝓙32

∗ 𝓙33
∗

 ] [
𝟎 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 −(𝜎2)−2𝐼𝑚×𝑚

 ])|

𝝉̂

 

= (−
𝑚

2𝜎2
+

1

2𝜎4
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

−
1

2
trace([

𝟎 𝟎 −𝓙13
∗ (𝜎2)−2𝐼𝑚×𝑚

𝟎 𝟎 −𝓙23
∗ (𝜎2)−2𝐼𝑚×𝑚

𝟎 𝟎 −𝓙33
∗ (𝜎2)−2𝐼𝑚×𝑚

 ])|

𝝉̂

                               

 = (−
𝑚

2𝜎2
+

1

2𝜎4
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

+
1

2𝜎4
trace(𝓙33

∗ )|
𝝉̂
                                                                             

Set 𝜕ℎ𝐴/𝜕𝜎2 = 0, 
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(−
𝑚

2𝜎2
+

1

2𝜎4
∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

+
1

2𝜎4
trace(𝓙33

∗ )|
𝝉̂
= 0. 

Thus, 

𝜎2̂ =
1

𝑚
(∑𝑢̂𝑖

2

𝑚

𝑖=1

)|

𝝉̂

+
1

𝑚
trace(𝓙33

∗ )|
𝝉̂
.                                    (4.26) 

MHLE of 𝜎2 is obtained using (4.26). Now, the MHLE of 𝛾 is obtained using the partial 

derivative of (3.5) with respect to 𝛾 

𝜕ℎ𝐴

𝜕𝛾
=

𝜕ℎ

𝜕𝛾
|
𝝉̂

−
1

2
trace (𝓙−1

𝜕𝓙

𝜕𝛾
)|

𝝉̂

.                                                        (4.27) 

Consider the first term of (4.27) 

𝜕ℎ

𝜕𝛾
|
𝝉̂

= (𝒁𝒖)𝑇𝒚2 − (𝒁𝒖)𝑇(𝟏 + exp(𝑿𝛿𝜹 + 𝛾𝒁𝒖))−1 exp(𝑿𝛿𝜹 + 𝛾𝒁𝒖)      

= ((𝒁𝒖)𝑇𝒚2 − (𝒁𝒖)𝑇𝝅2)|𝝉̂ = (𝒁𝒖)𝑇(𝒚2 − 𝝅2)|𝝉̂                      (4.28) 

The second term of (4.27) 

𝜕𝓙

𝜕𝛾
=

𝜕

𝜕𝛾
[

𝑿𝛽
𝑇𝑾1𝑿𝛽 𝟎 𝑿𝛽

𝑇𝑾1𝒁

𝟎 𝑿𝜹
𝑇𝑾2𝑿𝛿 𝛾𝑿𝛿

𝑇𝑾2𝒁

𝒁𝑇𝑾1𝑿𝛽 𝛾𝒁𝑇𝑾2𝑿𝛿 𝒁𝑇(𝑾1 + 𝛾2𝑾2)𝒁 + 𝜽−1

 ]|

𝝉̂

                

=

[
 
 
 
 
𝟎 𝟎 𝟎

𝟎 𝑿𝜹
𝑇 𝜕𝑾2

𝜕𝛾
𝑿𝛿 𝛾𝑿𝛿

𝑇 𝜕𝑾2

𝜕𝛾
𝒁 + 𝑿𝛿

𝑇𝑾2𝒁

𝟎 𝛾𝒁𝑇
𝜕𝑾2

𝜕𝛾
𝑿𝛿 + 𝒁𝑇𝑾2𝑿𝛿 𝒁𝑇 (𝛾2

𝜕𝑾2

𝜕𝛾
+ 2𝛾𝑾2)𝒁

 

]
 
 
 
 

|

|

𝝉̂

, (4.29) 

where, 

𝜕𝝅2

𝜕𝛾
= −(1 + exp(−𝑿𝜹𝜹 − 𝛾𝒁𝒖))−1 exp(−𝑿𝜹𝜹 − 𝛾𝒁𝒖)𝒁𝒖 = −𝝅2(𝟏 − 𝝅2)𝒁𝒖 

then,  

𝜕𝑾2

𝜕𝛾
=

𝜕

𝜕𝛾
(𝝅2(𝟏 − 𝝅2)) = −𝝅2

𝜕𝝅2

𝜕𝛾
+ (𝟏 − 𝝅2)

𝜕𝝅2

𝜕𝛾
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= 𝝅2(𝟏 − 𝝅2)(𝟐𝝅2 − 𝟏)𝒁𝒖.                                      

Now, we take the partial derivative of the (4.27) with respect to 𝛾 to obtain the Hessian 

matrix 𝓙𝐴 

𝓙𝐴 =
𝜕2ℎ𝐴

𝜕𝛾2
=

𝜕2ℎ

𝜕𝛾2
|
𝝉̂

−
1

2

∂

∂𝛾
(trace (𝓙−1

𝜕𝓙

𝜕𝛾
))|

𝝉̂

.                              (4.30) 

The expressions (4.29) and (4.30) will be used in the Newton-Raphson procedure to 

obtain MLE of 𝛾 

𝜕2ℎ

𝜕𝛾2
|
𝝉̂

=
∂

∂𝛾
(𝒁𝒖)𝑇(𝒚2 − 𝝅2)|

𝝉̂

= −(𝒁𝒖)𝑇
∂

∂𝛾
𝝅2|

𝝉̂

 

𝜕2ℎ

𝜕𝛾2
|
𝝉̂

= (𝒁𝒖)𝑇𝝅2(𝟏 − 𝝅2)𝒁𝒖|𝝉̂.                                                             (4.31) 

The second term of (4.30) 

∂

∂𝛾
(trace (𝓙−1

𝜕𝓙

𝜕𝛾
))|

𝝉̂

= 

∂

∂𝛾

(

 
 

trace

(

 
 

[

𝓙11
∗  𝓙12

∗ 𝓙13
∗

𝓙21
∗ 𝓙22

∗ 𝓙23
∗

𝓙31
∗ 𝓙32

∗ 𝓙33
∗

 ]

[
 
 
 
 
𝟎 𝟎 𝟎

𝟎 𝑿𝜹
𝑇 𝜕𝑾2

𝜕𝛾
𝑿𝛿 𝛾𝑿𝛿

𝑇 𝜕𝑾2

𝜕𝛾
𝒁 + 𝑿𝛿

𝑇𝑾2𝒁

𝟎 𝛾𝒁𝑇
𝜕𝑾2

𝜕𝛾
𝑿𝛿 + 𝒁𝑇𝑾2𝑿𝛿 𝒁𝑇 (𝛾2

𝜕𝑾2

𝜕𝛾
+ 2𝛾𝑾2)𝒁

 

]
 
 
 
 

)

 
 

 

)

 
 

|

|

𝝉̂

.   (4.32) 

The MHLE of 𝜎2 is obtained through the iterative procedure using (4.26) and the shared 

parameter (𝛾) are obtained using (4.27) and (4.30) via Newton Raphson approximation. 
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Chapter 5. Simulation 

5.1 Simulation – Binary HGLM 

5.1.1 Data Generation 

We choose the mixed logit model as an illustration because binary data are particularly 

problematic to estimate through GLMM when the information at the domain level from SAE is 

insufficient with small sample size. The proposed ℎ-likelihood approach is evaluated through 

Monte Carlo simulation performing 1000 simulations to estimate fixed effects and random effects. 

The first simulation study was conducted to evaluate the proposed method based on a single 

outcome variable. We considered GLMM as our benchmark method to compare the results of the 

proposed method varying small areas (𝑞 = 5, 10, 20, 30), each small area with the sample sizes of 

𝑛𝑞 = 10, 30, 50, 100, 500, respectively. A total of 20 data sets, the smallest data set with 50 

observations, and the largest data set with 15000 observations, were analyzed based on two discrete 

variables with one binary outcome variable. First, consider the binary HGLM model with 

𝒚|𝒖~𝐵𝑖𝑛𝑜(𝒑),  𝒖~𝑁(0, 𝜎2) with log-likelihood of 𝒚|𝒖 

                                     𝓵𝒚|𝒖 = 𝒚(𝑿𝜷 + 𝒁𝒖) − log(1 + exp(𝑿𝜷 + 𝒁𝒖)), 

𝜽 = 𝑿𝜷 + 𝒁𝒖, 

                   𝑏(𝜽) = log(1 + exp𝑿𝜷 + 𝒁𝒖), 

                  𝜙 = 1, 𝒖~𝑁(0, 𝜎2) with 𝑉𝑎𝑟(𝒖) = 𝜎2. 

The initial random effects for each small area are simulated from a normal distribution with 

mean 0, and initial variance is 0.1 (𝜎0
2 = 0.1).  The initial values of fixed effects are assumed to be 

𝛽11 = 1.3, 𝛽21 = 1.5, for two discrete variables 𝑋1, and 𝑋2, and the intercept term, 𝛽0 = −1.5. 

First, the mixed logit model is considered based on fixed effects and random effects data to 

calculate 𝑃0 for the 𝑗𝑡ℎ individual in 𝑖𝑡ℎ small area using  
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𝑃0(𝑦𝑖𝑗|𝑢𝑖 = 1) =
exp(𝛽0 + ∑ 𝑋𝑖𝑗𝓅𝛽𝓅

2
𝓅=1 + 𝑍𝑖𝑗𝑢𝑖)

1 + exp(𝛽0 + ∑ 𝑋𝑖𝑗𝓅𝛽𝓅
2
𝓅=1 + 𝑍𝑖𝑗𝑢𝑖)

, 

which can be expressed in matrix form  

𝑃0(𝒚 = 𝟏) = (𝟏 + exp(−𝑿𝜷 − 𝒁𝒖))−1, 

where 𝑿 = (

1 1 0
1 1 0
1 0 1
1 0 1

    

1 0
0 1
1 0
0 1

) , 𝜷 =

(

 
 

𝛽0

𝛽11

𝛽12

𝛽21

𝛽22)

 
 

=

(

 

−1.5
1.3
0.0
1.5
0.0 )

 , 𝒁 = (
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

)

𝑁×𝑚

, 𝒖 = (

𝑢1

⋮
𝑢𝑚

), 𝒖 is 

drawn from 𝑁(0, 0.1), and the exponentiation is applied elementwise to the vectors. Under this 

scenario, the binary response variable is simulated using the calculated probability. Now we apply 

the proposed ℎ-likelihood iterative method to compute maximum likelihood estimates of 𝜷, 𝒖,  and 

𝜎2 for the first combination of 20 combinations of (𝑞, 𝑛𝑞) mentioned above. 1000 simulated data 

sets for each combination of 𝑞 and 𝑛𝑞 were generated, which means 16000 data sets were used to 

evaluate the proposed method. 

5.1.2 MC Simulation Results 

As described in section 5.1.1, the proposed ℎ-likelihood approach and GLMM method 

were applied to 20 combinations of data sets for each combination were used to 1000 different data 

sets for the same 𝑞 and 𝑛𝑞. The final estimates for each scenario of (𝑞, 𝑛𝑞) were obtained, averaging 

over 1000 simulations for MHLEs and MLEs from the GLMM.   

The final MHLEs of 𝜷, and 𝜃 are obtained by taking the average over the number of 

simulations (1000 simulations). The MHLE of 𝒖 is obtained averaging over 1000 simulations and 

averaging over sample sizes of each scenario of (𝑞, 𝑛𝑞). 

𝜷̂𝑚𝑒𝑎𝑛 =
1

𝑠
∑𝜷̂,

𝑠

𝑖=1

                                                                   (5.1) 
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𝒖̂𝑚𝑒𝑎𝑛 =
1

𝑛𝑞
∑(

1

𝑠
∑𝒖̂𝑖𝑗

𝑠

𝑖=1

) ,

𝑛𝑞

𝑗=1

                                             (5.2) 

where 𝑠 is the total number of simulations (𝑠 = 1000) performed at each combination of 𝑞 and 𝑛𝑞. 

The performance of MHLEs 𝝍̂ = (𝜷̂, 𝒖̂, 𝜃) are evaluated using the mean squared error (MSE) and 

the relative bias. For (𝑞, 𝑛𝑞),   

𝐵𝑖𝑎𝑠 (𝜓̂(𝑞,𝑛𝑞)) =
𝐸 (𝜓̂(𝑞,𝑛𝑞)) − 𝜓(𝑞,𝑛𝑞) 

𝜓(𝑞,𝑛𝑞)

.                                            (5.3) 

The MSE of 𝜷̂, and 𝜃 are obtained averaging over 1000 simulations for each scenario and 

the MSE for each small area (𝑀𝑆𝐸(𝒖̂)) is obtained averaging over 1000 simulations and the 

number of small areas (𝑞). The MHLEs and RMSEs (√𝑀𝑆𝐸) for each estimate are given in Tables 

B.1 and B.2.      

𝑀𝑆𝐸 (𝜷̂𝑞,𝑛𝑞,𝑘) =
1

1000
∑ (𝛽̂𝑠𝑘 − 𝛽𝑘)

2
1000

𝑠=1

, 𝑘 = 1,… , (𝑝 + 1),               (5.4) 

 

𝑀𝑆𝐸 (𝒖̂𝑞,𝑛𝑞
) =

1

1000
∑

1

𝑞
(∑(𝑢̂𝑠𝑖 − 𝑢𝑖)

2

𝑞

𝑖=1

)

1000

𝑠=1

.                                   (5.5) 

Figure 5.1 shows the fixed effects estimates, root mean squared error (RMSE), and the 

relative bias for both CHBC and GLMM methods for each combination of (𝑞 = 𝑚, 𝑛𝑞 = 𝑛). For 

easiness, we considered an equal number of sample sizes for each small area. The simulation results 

show that the fixed effect estimates from the proposed CHBC method provide equal or slightly 

better results compared to GLMM, except in very few cases GLMM outperforms. While the 

RMSEs of 𝜷0, 𝜷11, and 𝜷21 from GLMM for the (5, 5) case is smaller than CHBC; the relative 

bias is a little lower in CHBC than GLMM. The RMSEs, and the relative bias are approximately 

similar or better in the proposed CHBC approach in most cases.  
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Figure 5.1: MHLEs of fixed effects from CHBC and GLMM for mixed logit model (m = 5, 10, 20, 

30, n =10, 30, 50, 100, and 500). 
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The blue diamonds, red circles, and green dotted lines display the MHLEs of fixed effects, MLEs of fixed 

effects, and the actual values of fixed effects. The blue highlighted values from the CHBC method, and the 

red highlighted values are from the GLMM for the RMSE and the relative bias for sample size n = 5, 10, 30, 

100, and 500 for the number of small areas m = 5, 10, 20, and 30, respectively. The true values of 𝛽0, 𝛽11, 

and 𝛽21 are −1.5, 1.3, and 1.5 for each combination of 𝑚 and 𝑛. 

1.45

1.50

1.55

1.60

1.65

1.70

1.75
5 10 30 100 500

-1.70

-1.65

-1.60

-1.55

-1.50

-1.45

-1.40

5 10 30 100 500

1.25

1.30

1.35

1.40

1.45

1.50

1.55
5 10 30 100 500

-1.70

-1.65

-1.60

-1.55

-1.50

-1.45

-1.40

5 10 30 100 500

1.25

1.30

1.35

1.40

1.45

1.50

1.55
5 10 30 100 500

1.45

1.50

1.55

1.60

1.65

1.70

1.75
5 10 30 100 500

-1.70

-1.65

-1.60

-1.55

-1.50

-1.45

-1.40

5 10 30 100 500

1.25

1.30

1.35

1.40

1.45

1.50

1.55
5 10 30 100 500

1.45

1.50

1.55

1.60

1.65

1.70

1.75
5 10 30 100 500

-1.70

-1.65

-1.60

-1.55

-1.50

-1.45

-1.40

5 10 30 100 500

1.45

1.50

1.55

1.60

1.65

1.70

1.75
5 10 30 100 500

1.25

1.30

1.35

1.40

1.45

1.50

1.55
5 10 30 100 500



83 
 

 
 

The HMLEs of 𝜃s (𝜃) are displayed in Table B.1, which are equally accurate in the CHBC 

compared to GLMM estimates in every scenario. Both approaches slightly underestimated the 

variance parameter, but it is reliably accurate. However, the MLE of the 𝜃 from GLMM is 

somewhat precise than that of the CHBC, especially for small sample sizes. Overall, both 

the proposed CHBC and GLMM models perform better when the sample size increases. 

Furthermore, it is promising that the RMSE decreases when the sample size increases.  

5.2 Simulation – Poisson HGLM 

5.2.1 Data Generation 

As described in section 5.1.1, the proposed CHBC method is evaluated using a second simulation 

study based on Poisson HGLM conducting 1000 simulations. The number of small areas 𝑞 =

5, 10, 20, 30 and the sample size for each small area 𝑛𝑞 = 10, 30, 50, 100, 500 were used to 

compare the results with the Poisson GLMM. Each data set with two discrete variables with a 

Poisson outcome variable 𝒚|𝒖~𝑃𝑜𝑖𝑠(𝝀), 𝒖~𝑁(0, 𝜎2) is considered. The initial fixed effect 

coefficients and 𝜎2 are similar to section 5.1.1, 𝜷 = (𝛽0, 𝛽11, 𝛽12, 𝛽21, 𝛽22)
𝑇 =

(−1.5, 1.3, 0.0, 1.5, 0.0)𝑇 , and 𝜎2 = 0.1. The count data is generated by using 𝝀 =

exp(𝑿𝜷 + 𝒁𝒖). Also, we considered an equal number of sample sizes for each small area. 

5.2.2 Simulation Results 

The MHLEs of fixed effects and random effects are obtained using (5.1) and (5.2). The 

relative bias and RMSEs are calculated as described in section 5.1.2 using (5.3), (5.4), and (5.5). 

Figure 5.2 displays the MHLEs for fixed effects 𝜷0, 𝜷11, and 𝜷21 from CHBC and MLEs from 

GLMM for each combination of 𝑚, 𝑛. It shows that the MHLEs from both CHBC (blue diamond 

shapes) and GLMM (red circles) are very accurate in each scenario regardless of the sample size.  
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 Figure 5.2: MHLEs of fixed effects from CHBC and GLMM for Poisson mixed model (m = 5, 

10, 20, 30, n =10, 30, 50, 100, and 500). 
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The blue diamonds, red circles, and green dotted lines display the MHLEs of fixed effects, MLEs of fixed 

effects, and the actual values of fixed effects. The blue highlighted values from the CHBC method, and 

the red highlighted values are from the GLMM for the RMSE and the relative bias for sample size n = 5, 

10, 30, 100, and 500 for the number of small areas m = 5, 10, 20, and 30, respectively. The true values 

of 𝛽0, 𝛽11, and 𝛽21 are −1.5, 1.3, and 1.5 for each combination of 𝑚 and 𝑛. 
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The blue highlighted values within parenthesis are for RMSEs for both methods, the first 

value is for CHBC, and the second is for GLMM. Similarly, red highlighted values represent the 

relative bias, with the first one for CHBC, and the second is for GLMM. Both the RMSEs and the 

relative bias values are lower and very similar in both methods, indicating that the proposed CHBC 

method's performance is consistently better, like in GLMM. The results are significantly improved 

when the sample size and number of small areas increase. The simulation results are comparable 

with key findings in the literature, which is proved that estimations based on ℎ-likelihood 

provide equal or better results compared to other modeling approaches (Lee & Nelder, 

2005; Noh & Lee, 2007; Yun & Lee, 2004). 

Figure 5.3 gives the MSE of the estimated average random effects for the mixed logit model 

and Poisson mixed model by varying the number of small areas (𝑚) and each area’s sample size 

(𝑛) based on the proposed CHBC method. The dotted lines for the Poisson model and solid lines 

for the mixed logit model show considerably low MSE values for each scenario, while the improved 

MSE values when the number of small areas and the sample size increases.  

 

 

 

 

 

 

 

 

Figure 5.3: Mean Squared Error (MSE) of the estimated random effect using 

CHBC for mixed logit and Poisson model. 
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The simulation results are consistent with key findings in the literature, which is proven 

that estimations based on ℎ-likelihood provide equal or better results compared to other modeling 

approaches (Lee & Nelder, 2005; Noh & Lee, 2007; Yun & Lee, 2004). Table B.2 shows the 

MHLE and MLE of the variance parameter obtained from both CHBC and GLMM for the Poisson 

mixed model. The RMSEs for each combination of 𝑚, 𝑛 of the CHBC is lower compared to that of 

the GLMM, similarly the relative bias. Furthermore, the distribution of estimated random effects 

displayed in Figure B.1 shows that the distribution of 𝒖̂ from CHBC is very close to the actual 

distribution of 𝒖. Based on the simulation results for both the mixed logit model and the Poisson 

mixed model, it indicates that the proposed CHBC method provides reliably better results.  

5.3 Simulation – Joint Model Through Multivariate Random Effects 

5.3.1 Data Generation 

The empirical performance of the joint model through multivariate random effects was illustrated 

by conducting 1000 simulations using count data for two outcome variables. The number of small 

areas 𝑞 = 10, 20, 30, 50 and the sample size for each small area 𝑛𝑞 = 10, 30, 100, 300 were used 

with two binary outcome variables for each variable of interest. The initial fixed effect parameters 

𝛽0
1, 𝛽11

1 , 𝛽21
1 , for 𝑦1, and 𝛽0

2, 𝛽11
2 , 𝛽21

2  for 𝑦2 were taken as (−2.5, 1.3, 1.5), and (−1.5, 1.3, 1.5). The 

initial values of the mean and the variance-covariance matrix for bivariate random effect 𝒖 was 

considered as 

𝝁0 = (
0
2
) , Σ0 = (

1.3 0.5
0.5 1.5

). 

 The random effect is generated from the bivariate normal distribution given 

𝒖~𝐵𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒(𝝁0, Σ0). For simplicity, we considered equal sample sizes (𝑁1 = 𝑁2) for each 

outcome variable for each scenario. The total sample size was 𝑁 = 2𝑁1 = 2𝑁2. The estimated 
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fixed effects, random effects, variance-covariance matrix, the mean squared error, and the bias are 

obtained as described in section 5.1.2 based on equations from (5.1) to (5.5).  

5.3.2 Simulation Results 

The maximum hierarchical likelihood estimates, RMSE, bias, and the 95% confidence interval for 

fixed effects of both variables of interest 𝒚1, and 𝒚2 are given in Figures 5.4 and 5.5.  

Figure 5.4: MHLEs of fixed effects for 𝒚1 from multivariate joint model based on the CHBC 

for Poisson data (m = 10, 20, 30, 50, n =10, 30, 100, and 500). 
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Figure 5.5: MHLEs of fixed effects for 𝒚2 from multivariate joint model based on the CHBC 

for Poisson data (m = 10, 20, 30, 50, n =10, 30, 100, and 500). 

 

 𝜷0
2 𝜷11

2  𝜷21
2  

𝑚
 =

 1
0

 

   

𝑚
 
=

 2
0

 

   

𝑚
 
=

 3
0

 

   

𝑚
 =

 5
0

 

   

The true values of 𝛽0
2, 𝛽11

2 , and 𝛽21
2  are −1.5, 1.3, and 1.5 for each combination of 𝑚 and 𝑛, 

which are displayed by green circles. 

 

The HMLEs are improved when the sample size increases, while it is a little off from the 

actual values for the intercept terms 𝛽0
1, and 𝛽0

2 for small sample sizes. However, the HMLEs are 

consistently accurate throughout the univariate and multivariate analysis, indicating that the 

proposed CHBC performs well in both scenarios. The RMSE for 𝜷0 for the first case, at (10,10) 

is 1.887, which is slightly higher compared to other scenarios. Apart from that, the RMSEs have 

-1.80

-1.50

-1.20

-0.90

-0.60

-0.30

10 30 100 500

1.29

1.30

1.31

1.32

1.33

10 30 100 500

1.47

1.48

1.49

1.50

1.51

10 30 100 500

-1.80

-1.50

-1.20

-0.90

-0.60

-0.30

10 30 100 500

1.29

1.30

1.31

1.32

1.33

10 30 100 500

1.47

1.48

1.49

1.50

1.51

10 30 100 500

-1.80

-1.50

-1.20

-0.90

-0.60

-0.30

10 30 100 500

1.29

1.30

1.31

1.32

1.33

10 30 100 500

1.47

1.48

1.49

1.50

1.51

10 30 100 500

-1.80

-1.50

-1.20

-0.90

-0.60

-0.30

10 30 100 500

1.29

1.30

1.31

1.32

1.33

10 30 100 500

1.47

1.48

1.49

1.50

1.51

10 30 100 500



89 
 

 
 

significantly lower values for most situations with decreasing values when the sample size 

increases. Additionally, the relative bias based on the estimated MHLEs and actual values of fixed 

effects are significantly lower in every combination of 𝑚, and 𝑛 for 𝒚1, and 𝒚2. Based on Figure 

5.6, the MHLEs for 𝜷0
2, 𝜷11

2 , and 𝜷21
2  are reliably better estimates except for the MHLEs of 𝜷0

2, and 

𝜷11
2  at (10,10) situation. Overall it shows that the MHLEs for each fixed effect are accurate from 

the joint model through multivariate random effects using the CHBC method.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Distribution of the estimated random effects in multivariate joint model1.  

m = 10 m = 20 

  

  

m = 30 m = 50 

  

  
 

y1TRUE: the distribution of true random effects of y1, y2TRUE: the distribution of true random 

effects of y2, y1m10n10, y2m10n10, …, y1m50300, and y2m50n300 are the estimated random 

effects for each combination of m and n, where m = (10, 20, 30, 50), and n = (10, 30, 100, 300).  
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The estimated variance parameters, absolute error, and the relative bias are displayed in 

Table C.1. It shows that HMLEs for variance parameters are better, and it is improved with the 

sample size, similarly the relative bias. Figure 5.6 displays the distribution of the estimated random 

effects varying with the sample size and number of small areas for both 𝒚1, and 𝒚2. It shows that 

the distribution of estimated random effects stays closer to the actual distribution of random effects 

for every combination of m and n. Overall, the simulation studies imply that the proposed CHBC 

method performs well in both the univariate and joint modeling scenarios in SAE. 
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 Chapter 6. Real Data Analysis 

6.1 CHBC Approach to Tobacco Smoking Data 

In this section, we illustrate the proposed CHBC approach using a real data set of tobacco smoking 

combining 2015 and 2017 data from the Behavioral Risk Factor Surveillance System (BRFSS) 

(Behavioral Risk Factor Surveillance System Survey Data (BRFSS), 2015). The BRFSS is a cross-

sectional telephone survey that the state health department conducts monthly over landline and 

cellular telephones to collect prevalence data among US adults. We considered four outcome 

variables of interest: ever-use of E-cigarettes (EE), current-use of E-cigarettes (CE), ever-smoke 

(ES), and current-smoke (CS) with sample sizes of 29404, 28162, 25711, and 29396, respectively 

from 94 US counties. We applied the proposed CHBC method on the BRFSS data set to incorporate 

individual-level and area-level tobacco use behaviors and electronic cigarettes (E-Cigarettes) usage 

prevalence among youth at the county-level.  

The auxiliary information is considered for age (<= 12, 13, 14, 15, 16, 17, and >=18 years), 

race (4 groups: white, African American, Hispanic, and Others), sex (2 groups: male and female), 

year (2 groups: 2015, 2017), and the poverty values, which were extracted from the US census 

between 2015 and 2017. The race “others” group includes American Indian/Alaska Native, Asian, 

Native Hawaiian/other Pacific Islander, and multiple races (non-Hispanic). Table D.1 presents the 

summary statistics for each response variable. Youth age is stratified into different groups in some 

studies such as <=12, 12-17, >= 18, <= 14, 15-17, <= 18, and >18 years, etc. (Duke et al., 2014; E-

Cigarette Use Among Youth and Young Adults: A Report of the Surgeon General, 2016; Glasser, 

Abudayyeh, Cantrell, & Niaura, 2019; Reducing Vaping Among Youth and Young Adults, 2020). 

For this analysis, we grouped age into three groups (<= 14, 15 − 17,>= 18). We applied the 

CHBC model and GLMM to all four variables of interest (𝒚𝐸𝐸 , 𝒚𝐶𝐸 , 𝒚𝐸𝑆, 𝒚𝐶𝑆), separately. The 

MHLEs of fixed effects, 𝜷̂𝐸𝐸 , 𝜷̂𝐶𝐸 , 𝜷̂𝐸𝑆, and 𝜷̂𝐶𝑆 are displayed in Table 6.1.   
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Table 6.1: Model estimates for current-use and ever-use of E-Cigarettes based on the CHBC and 

GLMM. 

Current-use 

  

CHBC GLMM 

𝜷̂ SE 
Z 

Value 
P(>|Z|) 𝜷̂ SE 

Z 

Value 
P(>|Z|) 

Intercept -1.625 0.132 -12.290 <0.001 -1.880 0.182 -10.332 <0.001 

Age 

<= 14 yrs  0.000     0.000     

15-17 yrs  0.305 0.053 5.751 <0.001 0.418 0.083 5.012 <0.001 

>= 18 yrs 0.688 0.065 10.633 <0.001 0.844 0.096 8.787 <0.001 

Race 

White 0.212 0.056 3.788 <0.001 0.244 0.084 2.916 0.004 

African 

American 
-0.243 0.073 -3.345 0.001 -0.182 0.105 -1.726 0.084 

Hispanic 0.142 0.059 2.409 0.016 0.188 0.092 2.049 0.040 

Others 0.000       0.000       

Gender 
Male 0.000     0.000       

Female 0.291 0.031 9.270 <0.001 0.245 0.045 5.387 <0.001 

Year 
2015 0.000     0.000     

2017 -0.946 0.058 -16.255 <0.001 -0.785 0.077 -10.220 <0.001 

Poverty Rate (%) -0.564 0.683 -0.825 0.409 -0.079 0.902 -0.087 0.931 

Ever-use 

  
CHBC GLMM 

𝜷̂ SE Z Value P(>|Z|) 𝜷̂ SE Z Value P(>|Z|) 

Intercept -0.905 0.101 -8.988 <0.001 -0.990 0.144 -6.880 <0.001 

Age 

<= 14 yrs  0.000    0.000     

15-17 yrs  0.447 0.039 11.413 <0.001 0.407 0.060 6.736 <0.001 

>= 18 yrs 0.767 0.050 15.307 <0.001 0.771 0.062 12.421 <0.001 

Race 

White 0.095 0.042 2.245 0.025 0.065 0.062 1.038 0.299 

African 

American 
-0.073 0.051 -1.418 0.156 -0.018 0.077 -0.232 0.817 

Hispanic 0.311 0.044 7.040 <0.001 0.349 0.068 5.098 <0.001 

Others 0.000    0.000       

Gender 
Male 0.000    0.000       

Female 0.137 0.024 5.644 <0.001 0.127 0.035 3.612 <0.001 

Year 
2015 0.000    0.000       

2017 -0.172 0.043 -4.010 <0.001 -0.106 0.061 -1.751 0.080 

Poverty Rate (%) 0.575 0.522 1.101 0.271 0.653 0.739 0.883 0.377 

 

Table 6.2: Model estimates for current-smoke and ever-smoke based on the CHBC and GLMM. 



93 
 

 
 

Current-smoke 

  

CHBC GLMM 

𝜷̂ SE Z Value P(>|Z|) 𝜷̂ SE Z Value P(>|Z|) 

Intercept -3.337 0.171 -19.500 <0.001 -3.412 0.240 -14.206 <0.001 

Age 

<= 14 yrs  0.000    0.000     

15-17 yrs  0.429 0.075 5.732 <0.001 0.383 0.120 3.189 0.001 

>= 18 yrs 1.099 0.086 12.776 <0.001 0.908 0.119 7.605 <0.001 

Race 

White 0.290 0.074 3.907 <0.001 0.187 0.107 1.752 0.080 

African 

American 
-0.615 0.102 -6.028 <0.001 -0.591 0.146 -4.062 <0.001 

Hispanic 0.087 0.080 1.087 0.277 -0.015 0.121 -0.123 0.902 

Others 0.000    0.000       

Gender 
Male 0.000    0.000       

Female 0.235 0.041 5.721 <0.001 0.174 0.058 2.995 0.003 

Year 
2015 0.000    0.000       

2017 -0.261 0.073 -3.561 <0.001 -0.198 0.099 -1.997 0.046 

Poverty Rate (%) 2.655 0.843 3.151 0.002 3.297 1.151 2.864 0.004 

Ever-smoke  

  
CHBC GLMM 

𝜷̂ SE Z Value P(>|Z|) 𝜷̂ SE Z Value P(>|Z|) 

Intercept -1.939 0.138 -14.005 <0.001 -1.868 0.188 -9.945 <0.001 

Age 

<= 14 yrs  0.000    0.000    

15-17 yrs  0.477 0.052 9.190 <0.001 0.337 0.071 4.732 <0.001 

>= 18 yrs 1.002 0.060 16.576 <0.001 0.857 0.072 11.920 <0.001 

Race 

White 0.177 0.050 3.573 <0.001 0.008 0.069 0.120 0.905 

African 

American 
-0.302 0.062 -4.835 <0.001 -0.278 0.086 -3.242 0.001 

Hispanic 0.217 0.051 4.246 <0.001 0.165 0.075 2.197 0.028 

Others 0.000    0.000    

Gender 
Male 0.000    0.000    

Female 0.136 0.028 4.813 <0.001 0.100 0.038 2.606 0.009 

Year 
2015 0.000    0.000    

2017 -0.317 0.053 -6.022 <0.001 -0.235 0.075 -3.129 0.002 

Poverty Rate (%) 3.688 0.737 5.003 <0.001 3.811 1.004 3.794 <0.001 

 

Table 6.1 displays the fixed effects estimates for age, race, gender, year, and the poverty 

rate for current-use and ever-use of E-Cigarettes. The coefficient effects are slightly higher for all 

the variables obtained from GLMM compared to CHBC except for the coefficient estimates of 

females for both current-use and ever-use. The most significant impact on the odds ratio of current-

use and ever-use of E-Cigarettes resulted from the age group 18 or above after adjusting for other 

(c) Ever-use (d) Current-use 
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variables in the model. The lowest effect on the odds ratio is in the year 2017, indicating that the 

odds ratio of current-use of E-Cigarettes has decreased by a factor of 𝑒−0.946(𝑒−0.785) in 2017 

compared to 2015, and that value of ever-use has decreased by a factor of 𝑒−0.172(𝑒−0.106) after 

adjusting for age, gender, race, and poverty rate based on the CHBC (GLMM), respectively.  

Table 6.2 shows that the poverty rate has a significant impact on the prevalence of both 

current-smoke and ever-smoke based on the estimates from CHBC and GLMM. Among the age 

groups <=14, 15-17, and >=18, the prevalence is higher among the individuals 18 or above 

compared to <= 14 years old. Overall, the smoking prevalence estimated from both CHBC and 

GLMM is very similar and consistent with the recent research studies (Hongying Dai et al., 2018; 

Hongying Dai & Hao, 2016). 

 Figure 6.1 displays the observed and the estimated prevalence obtained from CHBC and 

GLMM for current-use, ever-use of E-Cigarettes, current-smoke, and ever-smoke, respectively. 

While the observed vs. estimated prevalence is very accurate in both methods for the current-use 

of E-Cigarettes, it is significantly better in other outcomes from the CHBC than GLMM. The 

estimates for ever-use of E-Cigarettes from GLMM is not precise compared to prevalence estimates 

for current-smoke and ever-smoke. The results indicate that the proposed CHBC performs well in 

any scenario.  
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Next, we estimated the random effects for missing counties using the nearest neighboring 

approach, assuming that the random effects of adjacent areas are correlated, with correlation 

decaying to zero as distance increases. Using this fact, the estimated random effect for missing 

county 𝑐𝑖(𝜇̃𝑐𝑖
) can be obtained as  

𝜇̃𝑐𝑖
= 𝜇̂𝑐𝑗

, 

𝑠. 𝑡. 𝑚𝑖𝑛 dist(𝑐𝑖, 𝑐𝑘) ,  𝑘 = 1,… , 𝑚 − 1,                                     (6.1) 

Figure 6.1: Observed and estimated prevalence ever-use and current-use of E-Cigarettes, 

current-smoke and ever-smoke in the United States based on 2015-2017 YRBSS data. 
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where 𝑐𝑗 is the closest to county 𝑐𝑖. Then, using the MHLEs and the estimated random effects for 

missing counties, we calculated the unit-level prevalence for each combination (3 × 2 × 2 × 4) of 

groups using  

P̃𝑖𝑗𝑘𝑐(𝑦𝑖𝑗𝑘𝑐 = 1|𝑢𝑐) =
exp(𝛼̂𝑖 + 𝛽̂𝑗 + 𝛾𝑘 + 𝑥𝑐

′ 𝜂̂ + 𝑢̂𝑐)

1 + exp(𝛼̂𝑖 + 𝛽̂𝑗 + 𝛾𝑘 + 𝑥𝑐
′ 𝜂̂ + 𝑢̂𝑐)

,                           (6.2) 

where 𝛼̂𝑖(𝑖 = 1,2,3), 𝛽̂𝑗(1,2),  𝛾𝑘(𝑘 = 1,2,3,4), and 𝜂̂ are the coefficient estimates for age, gender, 

race, and poverty rate, respectively. The unit-level estimations were used to obtain the county-level 

estimates using the U.S. Census population as in equation (6.3). 

P̃(𝑦𝑐 = 1|𝑢) =
∑ ∑ ∑ 𝑃̃𝑖𝑗𝑘𝑐𝑘 × Pop𝑖𝑗𝑘𝑐𝑗𝑖

Pop𝑐
,                                                  (6.3) 

where Pop𝑐 = ∑ ∑ ∑ Pop𝑖𝑗𝑘𝑐𝑘𝑗𝑖  is the total population for county 𝑐. We compared the model 

predicted prevalence and observed prevalence using Pearson’s and Spearmen’s correlation 

coefficients. The predicted proportions for “ever use of E-cigarettes”, “current use of E-cigarettes”, 

“ever-smoke”, and “current-smoke” are obtained using the proposed method through MHLEs. 

Figure 6.3 shows the estimated county prevalence for each variable of interest.  

 Table D.2 gives the estimated state-level prevalence for current-use and ever-use of E-

Cigarettes based on CHBC and GLMM. Based on both CHBC and GLMM estimates, North 

Carolina (29.22%, 34.55%), Kentucky (27.38%, 31.83%), New Mexico (27.00%, 24.10%), West 

Virginia (26.09%, 30.64%), Arkansas (25.89%, 29.39%), Delaware (24.04%, 23.60%), Vermont 

(24.04%, 22.94%), South Carolina (23.82%, 26.46%), and Kansas (23.35%, 24.71%) states have 

the highest prevalence of the current-use of E-Cigarettes in the US. While Wisconsin, with a 

prevalence of 24.99%, falls in the top ten US states based on the CHBC model, and Nevada, with 

26.16%, was in the top ten based on the GLMM model. Both models identified the same eight US 

states out of the lowest ten rankings of the current-use of E-Cigarettes prevalence. At the same 
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time, Virginia and the District of Columbia were the rest two smallest prevalence from the CHBC 

and South Dakota and Maryland from the GLMM. 

 Overall, the prevalence of ever-use of E-Cigarettes is higher compared to three other 

prevalences. The CHBC and GLMM identify the top ten US states based on the prevalence ranking 

for ever-use as New Mexico (56.16%, 75.28%), Oklahoma (44.88%, 55.94%), West Virginia 

(44.37%, 57.36%), North Carolina (44.30%, 51.07%), Kentucky (42.58%, 49.11%), Nevada 

(42.06%, 49.20%), Colorado (40.89%, 44.26%), Arkansas (40.74%, 44.59%), and Delaware 

(40.44%, 44.03%). Based on the CHBC method, Arizona state has a higher prevalence of 41.27% 

of the ever-use of E-Cigarettes, while Kansas is within the top ten US states based on GLMM with 

a 44.47% value. The eight states identified as the lowest rankings from both methods are the same, 

except Georgia and Iowa were the lowest based on the CHBC, and the District of Columbia and 

Oregon were the lowest from the GLMM. Overall, the states with the highest prevalence for 

current-use also have the highest prevalence for ever-use of E-Cigarettes. 

 Table D.3 shows the top ten US states with the highest and the lowest prevalence for 

current-smoke and ever-smoke based on the estimates from CHBC and GLMM. Based on the 

CHBC method, West Virginia (New Mexico) has the highest prevalence for current-smoke, with 

11.89% (ever-smoke, with 30.71%). The GLMM results in Iowa (New Mexico) with the highest 

prevalence for current-smoke, with 15.50% (ever-smoke, with 44.37%). The lowest rankings were 

among the same US states based on the estimates from both methods. Overall, it shows that the 

GLMM slightly overestimate at the higher end and underestimate at the lower end of current-smoke 

and ever-smoke, similar results for current-use and ever-use of E-Cigarettes based on Table D.2. 

 The estimated county-level prevalence for all four outcomes from CHBC and GLMM 

methods are displayed in the columns (a) and (b) in Figure D.1. The results imply that the current 

use of E-Cigarettes among youth is higher than current smoking in most US counties. Both 

Spearman’s and Pearson’s correlations of observed and estimated prevalence for each outcome 

ranged from 0.93 to 0.96, indicating the accuracy of the model estimations from the CHBC method. 
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The lower correlation coefficients for GLMM shows that the estimated prevalence from CHBC is 

slightly better compared to GLMM. Furthermore, the county-level distribution of the estimated 

prevalence is somewhat different in both methods for the current-use of E-Cigarettes. However, 

the estimations from both models are reliably accurate.   

6.2 CHBC Approach to COVID-19 Data 

We illustrate the proposed CHBC approach using the publicly available novel coronavirus data at 

the county-level in the US, which was downloaded from the data repository created by the John 

Hopkins University Center for Systems Science and Engineering (JHU CSSE) (Dong, Du, & 

Gardner, 2020). The novel coronavirus is also known as severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), or COVID-19. The novel coronavirus outbreak was originated in 

Wuhan, the capital city of Hubei province, and spread rapidly through China and globally, covering 

more than 150 countries worldwide. Since then, in public health-related research, a fair amount of 

research studies were conducted to study and to mitigate the spread of the virus by considering 

various types of risk factors (Dahab et al., 2020; Dong et al., 2020; P. Walker et al., 2020).  

This analysis is based on US COVID-19 data as of July 31, 2020, and the confirmed 

COVID-19 cases were modeled using the Poisson HGLM model using the proposed CHBC. The 

COVID-19 data set includes data for confirmed cases and deaths of 3141 US counties. New York 

County in New York has the highest number of cases (225,148) and mortalities (23,531), 

respectively. There were 12 (0.4%) out of 3141 counties with zero cases and 25 counties with one 

reported case as of July 31, 2020.   

The county-level COVID-19 data were available for most counties except for Utah, which 

was available by region, Southwest, Southeast, TriCounty, and Central, as displayed in Table 6.3. 

We calculated county-level COVID-19 cases and deaths by adjusting the region total by county 

population, as shown below.  
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Count𝑖 =
Nregion

Popregion
∗ Popcounty, 

where Count𝑖 is the number of COVID-19 cases (deaths), Nregion is the regional case (death) count, 

Popregion is the regional population, and Popcounty is the county population. 

Table 6.3: COVID-19 data by regions in Utah State. 

Region Cases Deaths Population FIPS 

South west 2901 24 252042 49001, 49017, 49021, 49025, 49053 

South east 83 0 40229 49007, 49015, 49019 

Tri County 153 0 56622 49009, 49013, 49047 

Central 369 2 252042 49023, 49027, 49039, 49041, 49057 

 

It is challenging to analyze the county-level due to the lack of individual and county-level 

information yet. We considered some COVID-19 related variables together with the US census 

data at the county-level. The health professionals and medical researchers advise that the virus 

spreads rapidly by direct contacts or through respiratory droplets from coughing and sneezing of 

an infected person ("How COVID-19 Spreads,"). Hence, the Centers for Disease Control and 

Prevention (CDC) and the World Health Organization (WHO) strongly recommended that social 

distancing is the most effective approach to alleviate the spread of the virus ("Global research on 

coronavirus disease (COVID-19)," ; "How COVID-19 Spreads,"). The recent investigations show 

that the areas with an increasing trend of COVID-19 were some geographical regions where the 

people had close gatherings, more number of travels, and various types of social events, etc. 

(Banerjee & Nayak, 2020; P. Walker et al., 2020).  

 Hence, we extracted daily travel data from the Bureau of Transportation Statistics 

(BTS) in the United States Department of Transportation for March 01, 2020, to July 31, 2020, 

which explains the traveling behavior of people based on mobility data of the nation ("Daily Travel 

during the COVID-19 Public Health Emergency," 2020). We considered auxiliary information of 
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“population staying at home”, “not stay at home”, and “number of trips” (less than 1 mile, 1-4 

miles, 5-9 miles, 10-24 miles, 25-49 miles, 50-99 miles, 100 miles or above). No data is available 

in BTS for the counties with fewer than 50 devices on any given day. The analysis includes the 

average number of trips for each category and the percent of the average population staying at home 

(Avg PSH), where   

Avg PSH =

∑ PSH𝑑
𝑁𝑚
𝑑=1

(∑ PSH𝑑
𝑁𝑚
𝑑=1 + ∑ PNSH𝑑

𝑁𝑚
𝑑=1 )

County Pop
, 

𝑁𝑚 is the total number of days of the month (30 or 31 from March to July), PSH𝑑 is the population 

staying at home on the day 𝑑, and PNSH𝑑 is the population not staying at home on the day 𝑑. 

 

Figure 6.2 (a) shows the average number of trips made each month for each trip mileage 

category. The total number of 1-4 mile trips and less than 1-mile trips are higher than the number 

Figure 6.2: (a) Total number of trips by month for trips less than 1 mile, 1-4 miles, 5-9 miles, 10-

24 miles, 25-49 miles, 50-99 miles, and 100 miles or above and, (b) Population not stay home 

(%) vs. COVID-19 cases.  

(a) (b) 

  

In column (b), the left side of y axis shows the percentage of population not stay at home in each 

month, and the right side of y axis represents the cumulative COVID-19 cases as on July 31, 

2020. 
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of trips of 5 miles or higher each month. Overall, there is no significant drop in the number of trips, 

indicating that this could potentially increase the chances of getting exposed to the virus. 

Furthermore, based on the tracked mobility data, Figure 6.2 (b) shows that the percentage of people 

not staying home was high in March, then it had decreased in April, again a significant increase in 

May and June. The number of total cases each month compared to the 2-3 weeks lagged number 

of trips provides a clear indication for the rise in cases due to less social distancing. The majority 

not staying home in May and June had affected to see a substantial increase in cases in July. 

We also examined the distribution of the top ten US states that have the highest number of 

trips for each mileage group, which is displayed in Figure 6.3. As of July 31, 2020, California being 

the number one state with the highest number of trips for each mileage group except for the group 

of 100 miles or above, could be a potential risk factor for having the maximum number of COVID-

19 cases (501,034) in the US. Similarly, Florida (483,280), New York (420,954), Texas (366,792), 

Georgia (188,828), North Carolina (185,373), New Jersey (181,012), Illinois (180,454), 

Pennsylvania (117,414), and Michigan (87,491) States are also among the top states with higher 

COVID-19 counts, which are also in the group of top states with a higher number of trips. These 

states have a large population as well as more diverse people. Hence, it is obvious to see many 

different mileage trips, and eventually, more COVID-19 cases.  

Also, we considered the number of days for cases as of July 31, 2020, since the first 

COVID-19 cases were reported. Furthermore, the number of active cases was used as a piece of 

covariate information in the model. The individual level or county-level COVID-19 characteristic 

data are still not available for the most critical risk factors. Hence, we considered county-level 

demographic information from the US census, which includes age (<= 17 years, 18-29 years, 30-

44 years, 45-64 years), the proportion of individuals 65 years or above living alone. The age group 

65 years or above was removed from the analysis due to a high correlation with 65 years or above 
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living alone. Additionally, gender (male, female), race (white, African American, Hispanic, and 

others), the poverty level, and the unemployment rate were considered auxiliary information. 

   

Figure 6.3: Top ten states with highest number of trips made in each category during March 

01, 2020 – July 31, 2020. 

  

  

  

  

Each trip is measured in miles. 
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Table 6.4 displays the fixed effect estimates and the variance parameter of normally 

distributed random effect 𝒖, from the CHBC method, and Table E.1 shows the MLEs based on the 

GLMM. Both tables indicate that the MHLEs and the MLEs are very similar for each covariate. 

The results indicate that there is a significant impact on COVID-19 cases by the percentage of 

people not staying at home and the number of different mileage trips. The association with COVID-

19 cases is significantly higher for the people not staying at home (𝛽 = 3.318, 𝑝 < 0.001) 

compared to staying at home after adjusting for other covariate information in the model 

("Provisional COVID-19 Death Counts by Sex, Age, and State," 2020).  

Besides the impact of not staying at home proportion, it also shows that the number of 

various mileage of trips is also a significant risk factor for seeing a higher number of cases. It is 

expected to see more cases from the population that made 100 miles or above mileage trips 

compared to less than 1-mile trips. From Figure 6.3, the top ten states with a higher number of 100 

miles or above trips, Pennsylvania, North Dakota, Michigan, Virginia, Minnesota, Connecticut, 

Iowa, Nebraska, and Kentucky are still an increasing trend of cases. The majority of states have a 

large number of 100 miles or above trips in March, a slight decrease in April, and again a significant 

increase in June and July, which explains for most of the states to see the peak of cases in June and 

July. Similarly, the trips between 25-49 and 50-99 miles also have a significant positive association 

with an increase in cases compared to less than 1-mile trips with multiplicative factors of 9.03 and 

35.05, respectively. 

Additionally, a higher number of trips within 1 mile has a positive impact on COVID-19 

increase than trips between 1-25 mileage, which might be mostly in very urban places with short 

distance to work, groceries, etc. However, they are exposed to more people, hence more likely to 

get infected with the virus due to population density. Besides, it also shows that a strong positive 

association with the poverty rate (𝛽 = 1.580, 𝑝 < 0.001), while a negative association with the 

unemployment rate (𝛽 = −3.614, 𝑝 < 0.001) with COVID-19 cases, which sounds 

counterintuitive. However, it is probable to have a negative association since the unemployed 
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people may be less likely to get exposed to the virus, also unlikely to start new employment during 

the pandemic as per the increase of unemployment rate from 3.8% in February to more than 15% 

in May. The majority of unemployed people are less educated people (in May, ≈ 18% of less than 

high school graduates, and ≈ 7% of Bachelor’s degrees or higher graduates). However, it was 

challenging for them to be employed again due to temporary or permanent closures of small 

businesses, such as restaurants, shopping, retail, fitness centers, beauty, and spas, etc. Furthermore, 

young people have a higher unemployment rate, but fewer COVID-19 cases than middle or older 

ages (≈25% of 16-24 years, ≈ 11% of 25-54 years) ("Effects of COVID-19 Pandemic on 

Employment and Unemployment Statistics," 2020; Kochhar, 2020). Still, COVID-19 was a high-

risk factor for a substantial increase in the unemployment rate; however, the unemployment rate 

may not have a significant impact on the increase in COVID-19.  

Also, we observed a negative correlation between the different age groups (𝛽25−44 =

−1.017, 𝑝 < 0.037, 𝛽45−64 = −3.418, 𝑝 < 0.001) and COVID-19 cases. Still, the coefficient 

effects are directionally correct, having a larger value for the population 65 years or older living 

alone. However, we could not explain the negative association of age groups with COVID-19 cases. 

The age group 65 years or above was removed from the analysis since it has a strong positive 

correlation with 65 years or above living alone (0.73) and a high negative correlation with 25-44 

years (0.72). Comparatively, other variables are not highly correlated. The results also show that 

African Americans (𝛽 = 1.633, 𝑝 < 0.001) and Hispanics (𝛽 = 0.833, 𝑝 < 0.001) have a robust 

positive association with COVID-19 cases than Whites. However, other races (American Indian, 

Asian) (𝛽 = −0.153, 𝑝 = 0.036) are negatively associated with cases. Furthermore, males (𝛽 =

2.286, 𝑝 < 0.001) are more strongly related to COVID-19 cases than females.  

Furthermore, the number of active cases (𝛽 = 0.314, 𝑝 < 0.001) and the number of days 

since the first reported case (𝛽 = 0.123, 𝑝 = 0.005) are positively associated with case counts. 

There will be   
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Table 6.4: MHLEs for fixed effects using the CHBC method for COVID-19 cases. 

Characteristics 

CHBC 95% CI 

Estimate SE 
Z 

Value 
P(>|Z|) Lower Upper 

Intercept -10.051 0.392 -25.617 <0.001 -10.820 -9.282 

Number of days (log) 0.123 0.044 2.823 0.005 0.038 0.208 

Number of active cases (log) 0.314 0.008 40.131 <0.001 0.299 0.329 

Population not stay home (%) 3.818 0.271 14.095 <0.001 3.287 4.349 

Number of trips (%)       

           < 1 mile 0.000        

           1 - 4 miles -1.466 0.320 -4.577 <0.001 -2.094 -0.838 

           5 - 9 miles -1.590 0.360 -4.420 <0.001 -2.295 -0.885 

           10 - 24 miles -0.833 0.374 -2.231 0.026 -1.566 -0.101 

           25 - 49 miles 2.474 0.503 4.921 <0.001 1.489 3.459 

           50 - 99 miles 3.878 0.942 4.114 <0.001 2.030 5.725 

           >= 100 miles 4.996 1.735 2.880 0.004 1.596 8.397 

65 Years or above living alone 

(%) 
-0.013 0.434 -0.031 0.975 -0.864 0.837 

Age (%)         

           <= 24 years 0.000        

           25_44 years -1.017 0.488 -2.084 0.037 -1.973 -0.061 

          45_64 years -3.418 0.481 -7.102 <0.001 -4.361 -2.475 

Race (%)         

         African American 1.633 0.090 18.113 <0.001 1.456 1.809 

         Hispanic 0.833 0.095 8.742 <0.001 0.646 1.019 

         Other races -0.153 0.073 -2.100 0.036 -0.295 -0.010 

         White 0.000        

Gender (%)         

         Male 2.286 0.521 4.384 <0.001 1.264 3.308 

         Female 0.000        

Poverty rate (%) 1.580 0.230 6.876 <0.001 1.130 2.031 

Unemployment rate (%) -3.614 0.773 -4.674 <0.001 -5.129 -2.098 

Variance Component Estimate 

Std 

Dev 
    

         County-level 0.242 0.491     
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The estimated counts are represented using the U.S county-level map, which is given in 

Figure E.1. We compared the estimations by grouping the estimated cases into nine and fifteen 

categories based on the cutoffs of the actual distribution. The nine groups of the confirmed COVID-

19 counts are 0-18, 19-46, 47-95, 96-181, 182-318, 319-574, 575-1204, 1205-3925, and 3926-

225148), which were applied to the estimated counts based on the proposed CHBC method and 

GLMM. The first column of the Figure E.1 displays the confirmed and estimated density of 

COVID-19 counts by county obtained for nine categories based on the CHBC, GLMM methods, 

and comparing with the density of confirmed COVID-19 cases. The range of the estimated counts 

and the actual counts stays within a similar range. Furthermore, It shows that the estimated count 

distribution across the U.S counties is almost identical to the actuals.  

The Pearson’s and Spearman’s correlation coefficients ((𝜌𝑃 , 𝜌𝑠) = (1,0.999)) from both 

methods for the confirmed vs. expected indicate that the estimated values are significantly accurate, 

could slightly be overestimated. Overall, it shows that the performance of the CHBC method is as 

better as the GLMM. Similarly, the second column of the Figure E.1 with 15 categories, 0-11, 12-

23, 14-41, 42-63, 64-95, 96-139, 140-200, 201-290, 291-389, 390-574, 575-871, 872-1439, 1440-

Figure 6.4: Actual vs. estimated COVID-19 cases based on CHBC and GLMM at county-level 

and state-level. 

(a) County-level (b) State-level 
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3014, 3015-8442, 8443-225148, shows that the estimations based on both CHBC and GLMM are 

accurate. In summary, it shows that both methods had performed significantly better determining 

the expected number of counts. 

Additionally, we compared the confirmed and estimated counts for each county for both 

CHBC and GLMM. Figure 6.4(a) shows the actual versus estimated counts for both methods at the 

county-level, and Figure 6.4(b) represents the actual vs. estimated at the state-level. Both plots 

imply that the estimations from the CHBC and GLMM are very much alike, implying that both 

methods provide significantly precise results in estimating COVID-19 cases. The estimations are 

very accurate at both the lower end as well as at the higher end. The large 𝑅2 values indicate the 

accuracy of the estimations, except its being almost one show some sort of overestimation from 

both approaches. It might be possible for various reasons,  such as many variables in the model, 

colinearity, trend over time, etc.    

Figure 6.5 displays the 

distribution of estimated random 

effects based on the proposed CHBC 

method and GLMM. The estimated 

distributions are slightly different, 

with a widespread interquartile range 

for the estimated random effects 

from GLMM, indicating a wider 

variation in the random effects from 

GLMM than the CHBC method.  

Based on the simulation 

studies and the real data analysis result imply that the proposed CHBC method performs well and 

Figure 6.5: Box plots for the estimated random 

effects based on the CHBC and GLMM. 
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the results improve as sample 𝑚 and 𝑛𝑚 increase, except the underestimated variance parameters 

in SAE. 

Finally, we obtained the predicted density (𝜆̂𝑖
𝑝𝑟𝑒𝑑

) at the county-level for a new variable. 

The predicted counts at the county-level can be estimated using 

𝜆̂𝑖 = exp(𝑿𝜷̂ + 𝒁𝒖̂ + log(Population𝑖)) , 𝑖 = 1,… ,2992.                  

𝜆̂𝑖
𝑝𝑟𝑒𝑑

=
𝜆̂𝑖

𝑃𝑜𝑝𝑖
× 10,000                                                                            (6.4) 

Figure 6.6. displays the predicted density for COVID-19 cases per 10,000. Compared to 

Figure E.1, the predicted density indicates that some of the high-density count regions have 

decreased the impact. However, some counties are still in high-density areas. 

 

Figure 6.6: Predicted density at the county-level based on CHBC and GLMM. 

CHBC GLMM 
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6.2.1 Model Selection 

The model selection is based on the AIC value of the Poisson model evaluated using the estimated 

model parameters. The lower the AIC value, the better the model performance. First, consider 

Stirling’s approximation (Namias, 1986), for large 𝑦,  

𝑦!~√2𝜋𝑦 (
𝑦

𝑒
)

𝑦

. 

Now, log-likelihood of 𝑦|𝑢 is obtained 

ℓ𝒚|𝒖 = ∑𝑦𝑖log (𝑿𝑖𝜷 + 𝒁𝑖𝒖 + offseti) − (𝑿𝑖𝜷 + 𝒁𝑖𝒖 + offseti) − log (√2𝜋𝑦𝑖 (
𝑦𝑖

𝑒
)
𝒚𝑖

)

𝑁

𝑖=1

 

ℓ𝒚|𝒖 = ∑𝑦𝑖log (𝑿𝑖𝜷 + 𝒁𝑖𝒖 + offseti) − (𝑿𝑖𝜷 + 𝒁𝑖𝒖 + offseti) −
1

2
log(2𝜋𝑦𝑖) − 𝑦𝑖 log 𝑦𝑖 + 𝑦𝑖

𝑁

𝑖=1

 

Now the AIC is obtained using 

AIC =  −2((ℎ +
1

2
log det𝓙−1) + 𝑠𝑑),  

where, 

ℎ = ℓ𝒚|𝒖 + ℓ𝒖,   

𝑝 is the number of fixed effects, 𝑚 is the number of random effects, 𝑠𝑑 is the number of model 

parameters estimated using 𝑝 and 𝑚, and ℓ𝒖 is the log-likelihood of 𝒖. 

Table 6.5: Model selection criteria based on CHBC and GLMM  

Model AIC logLik 

CHBC 25201 -12599 

GLMM 27948 -13932 

Table 6.5 displays the AIC and log-likelihood (logLik) values from both CHBC and 

GLMM methods. However, AIC has been calculated slightly differently in the GLMM and CHBC 

method. Thus, it is not comparable to model selection in this scenario. Still, the proposed method 
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has a low AIC value of a 25201, and GLMM with a value of 27948. The total likelihood from the 

CHBC is -12599 and 13932 from the GLMM.  

6.3 Multivariate Joint Modeling Using COVID-19 Data 

In this section, we illustrated the proposed joint modeling approach through multivariate random 

effects using the COVID-19 data for cases and deaths at the county-level in the US, which was 

downloaded from the data repository created by the John Hopkins University Center for Systems 

Science and Engineering (JHU CSSE) (Dong et al., 2020). In section 6.2, we applied the univariate 

CHBC method to estimate COVID-19 cases. However, it is vital to consider the association 

between COVID-19 cases and deaths. Therefore, we adopted the bivariate joint model with two 

variables of interest; confirmed COVID-19 cases and COVID-19 deaths based on data as of July 

31, 2020, in the US. The same auxiliary data used in section 6.2 is considered for the multivariate 

joint model as well. We considered two additional variables, “Number of days since the first 

recorded death (log)”, and “population density per square mile” in the bivariate joint model.   

Table 6.6 shows the MHLEs for fixed effects from the multivariate joint model for COVID-

19 cases, and Table 6.7 similarly gives the MHLEs related to COVID-19 deaths. The results 

indicate that there is a significant impact on the percentage of people not staying at home and the 

number of different mileage trips. It shows that a strong positive association with people not staying 

at home (𝛽 = 2.994, 𝑝 < 0.001), indicating higher COVID-19 cases than people staying at home 

after adjusting for other covariate information in the model. From Figure 6.2 (b), it is clear that the 

between 2-3 weeks lagged values of percentage of not staying home are significantly associated 

with the increase in cases in the following weeks.  
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Table 6.6: Maximum hierarchical likelihood estimates (MHLEs) of fixed effects based on the 

multivariate joint model for COVID-19 cases. 

    
Estimate SE Z Value P(>|Z|) 

95% CI 

    Lower Upper 

Intercept -9.653 0.135 -71.679 < 0.001 -10.372 -8.934 

Age (%) <= 17 years 0.000 
   

    

18-29 years -2.272 0.031 -72.428 < 0.001 -2.619 -1.925 

30-44 years -3.393 0.049 -69.322 < 0.001 -3.827 -2.960 

45-64 years -2.924 0.048 -61.073 < 0.001 -3.352 -2.495 

65 years or above living alone (%) 0.805 0.044 18.358 < 0.001 0.394 1.215 

Gender (%) Female 0.000 
   

    

  Male 8.557 0.054 158.920 < 0.001 8.102 9.012 

Number active cases (log) 0.279 0.001 394.651 < 0.001 0.227 0.331 

Number days cases (log) -0.516 0.007 -74.463 < 0.001 -0.679 -0.353 

Number of trips 

(%) less than 1 mile 
0.000 

   
    

  1-4 miles  1.082 0.041 26.543 < 0.001 0.686 1.478 

  5-9 miles -1.945 0.043 -45.225 < 0.001 -2.351 -1.538 

  10-24 miles -1.168 0.041 -28.652 < 0.001 -1.564 -0.772 

  25-49 miles 2.276 0.056 40.910 < 0.001 1.814 2.739 

  50-99 miles 2.140 0.101 21.110 < 0.001 1.516 2.764 

  100 miles above 6.221 0.176 35.262 < 0.001 5.398 7.045 

Population per square mile (%) 0.002 0.000 87.547 < 0.001 -0.008 0.013 

Population not stay home (%) 2.994 0.029 103.588 < 0.001 2.661 3.327 

Poverty level (%) 0.621 0.021 29.511 < 0.001 0.337 0.905 

Race (%) white 0.000        

  African American 0.628 0.007 86.314 < 0.001 0.461 0.795 

  Hispanic 0.924 0.007 125.975 < 0.001 0.756 1.091 

  Other 0.351 0.006 58.316 < 0.001 0.199 0.503 

Unemployment rate (%) 2.389 0.054 44.630 < 0.001 1.936 2.842 

 

The coefficient estimates for “the population per square mile” indicate a positive 

association with COVID-19 cases (𝛽 = 0.002, 𝑝 < 0.001) and also with deaths (𝛽 = 0.003, 𝑝 <

0.001). Furthermore, there is a significant positive association of people not staying at home (𝛽 =
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1.824, 𝑝 < 0.001) with COVID-19 deaths compared to staying home, which might be explained 

based on the total number of deaths by age group ("Provisional COVID-19 Death Counts by Sex, 

Age, and State," 2020). The majority of older or retired people are more likely to not stay at home; 

having group gatherings, eat-outs, etc. is also more likely to get infected with the virus. The number 

of deaths among them is high compared to younger people.  

Nevertheless, older people with comorbidity problems or severe health conditions are more 

likely to stay home; however, they may infect the virus by their family visitors, which eventually 

increases the mortality. The results indicate that the 65 years or above living alone has a strong 

positive association with COVID-19 cases (𝛽 = 2.994, 𝑝 < 0.001) as well as with COVID-19 

deaths (𝛽 = 4.042, 𝑝 < 0.001). Based on ACS, 2016, 65 years or above, people are more likely to 

live alone, more than 20% older population, in the US than elsewhere in the world (Roberts, 

Ogunwole, Blakeslee, & Rabe, 2018). The majority among them are living independently, doing 

errands alone, such as medical appointments, groceries, etc. might lead to exposing and getting 

infected with the virus, which could also be a risk factor for the increase in COVID-19 cases among 

older people. Worldwide, the health officials strongly recommended for the population at high-risk 

to practice extra preventive measures as they potentially experience severe illness than other 

humans if they get exposed to the virus ((CDC), 2020; Razzaghi et al., 2020). However, the risk 

for the age groups 18-29 and 30-44 is not significant compared to the individuals 17 years or below.   

Besides the impact of not staying at home proportion and 65 years and above living alone, 

it also shows that the number of various mileage of trips is also a significant risk factor for seeing 

a higher number of cases. It is expected to see more cases from the population that made 100 miles 

or above mileage trips compared to less than 1-mile trips. From Figure 6.3, the top ten states with 

a higher number of 100 miles or above trips, North Dakota, Pennsylvania, Michigan, Virginia, 

Minnesota, Connecticut, Iowa, Nebraska, and Kentucky are still an increasing trend of cases. The 

majority of states have a large number of 100 miles or above trips in March, a slight decrease in 

April, and again a significant increase in June and July, which explains for most of the states to see 
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the peak of cases in June and July as presented in BTS ("Daily Travel during the COVID-19 Public 

Health Emergency," 2020).  

 

Table 6.7: Maximum hierarchical likelihood estimates (MHLEs) of fixed effects based on the 

multivariate joint model for COVID-19 deaths. 

    
Estimate SE Z Value P(>|Z|) 

95% CI 

    Lower Upper 

Intercept -14.802 0.326 -45.390 < 0.001 -15.921 -13.682 

Age (%) <= 17 years 0.000 
  

      

18-29 years -4.219 0.206 -20.511 < 0.001 -5.108 -3.330 

30-44 years -7.726 0.310 -24.941 < 0.001 -8.817 -6.635 

45-64 years 1.555 0.291 5.338 < 0.001 0.497 2.612 

65 years or above living alone (%) 4.042 0.273 14.820 < 0.001 3.018 5.065 

Gender (%) Female 0.000 
  

      

  Male 4.728 0.414 11.430 < 0.001 3.467 5.989 

No active cases (log) 0.314 0.004 79.459 < 0.001 0.191 0.437 

Number of days deaths (log) 0.137 0.013 10.765 < 0.001 -0.084 0.358 

Number of 

trips (%) less than 1 mile 
0.000 

  
      

  1-4 miles  0.634 0.258 2.452 < 0.001 -0.363 1.630 

  5-9 miles -2.193 0.269 -8.147 < 0.001 -3.210 -1.176 

  10-24 miles -1.186 0.254 -4.666 < 0.001 -2.175 -0.198 

  25-49 miles 2.737 0.347 7.899 < 0.001 1.584 3.891 

  50-99 miles 4.306 0.620 6.947 < 0.001 2.763 5.849 

  100 miles above 3.360 1.205 2.790 < 0.001 1.209 5.512 

Population per square mile (%) 0.003 0.000 15.629 < 0.001 -0.023 0.028 

Population not stay home (%) 1.824 0.176 10.361 < 0.001 1.001 2.646 

Poverty level (%) 1.520 0.128 11.919 < 0.001 0.820 2.220 

Race (%) white 0.000         

  African American 1.120 0.044 25.418 < 0.001 0.709 1.532 

  Hispanic 1.457 0.048 30.500 < 0.001 1.029 1.886 

  Other 1.245 0.031 39.945 < 0.001 0.899 1.591 

Unemployment rate (%) 3.431 0.373 9.199 < 0.001 2.234 4.629 

 



114 
 

 
 

Similarly, the trips of 25-50, 50-100, 1-5 mileage also have a significant positive 

association with an increase in cases compared to less than 1-mile trips with multiplicative factors 

of 47.58, 19.19, and 4.60, sequentially, after controlling for other risk factors. Likewise, a strong 

positive association with the number of deaths as well. Based on 2020 travel trends, it shows that 

both Gen X (born between 1965 and 1980) and Boomers (born between 1946 and 1964) have more 

travel compared to Millennials, similar to annual studies over the last six years (Fry, 2016; Levy, 

January 2020). There are many types of trips, such as international and domestic, among Gen X 

and Boomers than the Millennials. Thus, it was evident to see more cases and deaths among them. 

California, Texas, Florida, New York, Illinois, Georgia, Ohio, North Dakota, Pennsylvania, and 

Michigan are among the top ten states for these three mileage trip groups, which are also the states 

with high COVID-19 cases. However, the impact from the trips within 5 miles to 25 miles is lower 

compared to less than 1-mile trips, which mainly depends on the state, such as in some states, 5-25 

mileage trips might be more frequent while in other states it might not.  

Furthermore, the estimated coefficients for the unemployment rate (𝛽 = 2.389, 𝑝 <

0.001) and poverty rate (𝛽 = 0.621, 𝑝 < 0.001) show strong positive associations with COVID-

19 cases. Similarly, the coefficient effects 𝛽 = 3.431, 𝑝 < 0.001, and 𝛽 = 1.520, 𝑝 < 0.001 for 

both the unemployment rate and poverty level also indicate that they are high-risk factors for deaths 

due to COVID-19. In section 6.2, univariate modeling with the county-level random effect model 

shows a negative correlation of unemployment rate with COVID-19 cases, which explains with a 

low unemployment rate in high COVID-19 counties. However, the majority of the states with high 

COVID-19 also have a high unemployment rate, which expects to observe a positive correlation. 

Also, Hispanics, African Americans, and other races are positively correlated with 

COVID-19 cases than Whites with estimated coefficients 𝛽 = 0.924, 𝑝 < 0.001, 𝛽 = 0.628, 𝑝 <

0.001, and 𝛽 = 0.351, 𝑝 < 0.001, respectively. Similarly, we observed a strong positive 

correlation of Hispanics (𝛽 = 1.457, 𝑝 < 0.001), African Americans (𝛽 = 1.120, 𝑝 < 0.001), 
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and other races (𝛽 = 1.245, 𝑝 < 0.001) with COVID-19 deaths than Whites. However, as 

described in section 6.2, there might be some confounding effects in the variables, which shows in 

Figure E.2 (a) and (b) based on the univariate mixed model fit. From Figure E.2(b), VIF values for 

Whites (11.95), African Americans (5.79), age 30-44 (5.55), age 45-74 (5.36), and Hispanics (5.24) 

are somewhat large, indicating the existence of a moderate correlation with one or more variables 

in the model. It could result in some biasedness in the regression coefficients. But, we did not 

account for the multicollinearity in this analysis.  

Furthermore, there is a higher risk of dying from COVID-19 for the age group 45-64 years 

(𝛽 = 1.555, 𝑝 < 0.001) compared to less than 18 years old. It also shows that a strong association 

with both cases and deaths among males compared to females with multiplicative factors of 𝛽 =

8.557, 𝑝 < 0.001, and 𝛽 = 4.728, 𝑝 < 0.001 by controlling for other risk factors. The number of 

active cases is also positively associated with COVID-19 cases and with deaths with coefficient 

estimates 𝛽 = 0.279, 𝑝 < 0.001, and 𝛽 = 0.314, 𝑝 < 0.001, respectively. Additionally, the 

number of days since the first reported case (log scale) is positively associated with COVID-19 

cases (𝛽 = −0.516, 𝑝 < 0.001), and also the number of days since the first reported death is 

positively associated with deaths (𝛽 = 0.137, 𝑝 < 0.001). To conclude the model estimates, the 

coefficient effects from each variable related to both outcomes are valid with the current COVID-

19 prevalence in the US. 
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We obtained the observed vs. estimated county-level prevalence, which is displayed in 

Figure 6.7. It shows that the model estimates are accurate on both COVID-19 cases and deaths with 

large 𝑅2(0.98, 0.99) values for both. Additionally, the estimated cases and deaths are consistently 

accurate in the lower and higher end of counts. The distributions of the estimated state level random 

effects for both COVID-19 cases and deaths displayed in Figure 6.8 indicate slightly left 

(negatively) skewed distributions. 

 

 

 

 

 

 

 

 

 

Figure 6.8: Distribution of estimated random effects based on joint CHBC model through 

multivariate random effects. 

Cases Deaths 

  

 

Figure 6.7: Estimated vs. actual COVID-19 cases at county-level based on joint CHBC model 

through multivariate random effects. 

Cases Deaths 
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Based on the estimated variance-covariance matrix of bivariate normally distributed 

random effects, it shows that there exists a negative correlation between and within county variation 

with the number of cases and deaths. The estimated variances for both random effects (𝒖̂1 and 𝒖̂2) 

are 1.262, and the correlation among them is 0.262. It indicates the existence of a positive 

association between COVID-19 cases and deaths. Thus, the joint modeling approach is more 

appropriate for modeling the correlated outcomes. Conducting separate analyses might lose vital 

information in the estimations. 

𝚺̂ = (
1.262 0.262
0.262 1.262

) 

Next, we calculated the county-level estimates for COVID-19 cases and deaths using the 

county-level covariate information. The estimated counts are mapped for each county, as displayed 

in Figure 6.9. We grouped the cases and deaths into 11 categories to have a better understanding of 

distribution within the US counties. It shows that the majority of counties have cases within the 0-

500 range, specifically in northern areas and also some in the Midwest areas. It also shows that the 

number of deaths in most counties stays within the 0-5 range. Overall, the range of the actual 

number of confirmed cases is 0 – 225,148, and from the CHBC model estimates 0 – 225,146. 

Furthermore, the actual deaths range from 0 – 23,531, and the model estimates 1 – 23,532. 

Pearson’s (Spearman’s) correlation coefficient(s) for observed vs. estimated cases are 0.994 (0.955) 

and for deaths 0.997 (0.832). The most counties in Southwest, Northeast, and Southeast are the hot 

spots with more COVID-19 cases and deaths. 
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 However, the model estimates are accurate for most counties, staying within the same 

range except for very few counties. Thus, we calculated the total number of cases, and deaths for 

each state are displayed in Figure 6.10 and 6.11. Based on Figure 6.10, California, Florida, New 

York, and Texas states have a significantly higher number of cases compared to other US states. 

The next top states are Arizona, Georgia, Illinois, New Jersey, and North Carolina. The lowest 

COVID-19 cases are in Alaska, Hawaii, Idaho, Maine, Montana, Vermont, Wyoming, New 

Hampshire, North Dakota, West Virginia, and South Dakota.  

Figure 6.9: Estimated vs. actual COVID-19 at county-level based on joint CHBC model through 

multivariate random effects. 
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Figure 6.11 shows the observed vs. the estimated deaths, including the relative bias at the 

state-level. The relative bias is very low for each state estimate. The highest relative bias is 7.41%, 

and most of the values are significantly lower than the most elevated amount, indicating that the 

model performance is better assessing the state-level mortalities. New York state has the highest 

number of deaths, followed by New Jersey. Alaska, Arizona, Louisiana, Massachusetts, New York, 

North Dakota, Ohio, and Vermont states have a 100% match of the estimated number of deaths. In 

conclusion, the model performance is very accurate, estimating the number of cases and deaths at 

the state-level compared to the county-level.  

Figure 6.10: Estimated vs. actual COVID-19 cases at state-level based on multivariate joint 

CHBC model. 

 

The values in each bar represent the relative bias for each state. Ex. Relative bias of Alaska is 

0.0001, Arizona is 0.0003.   
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Finally, we obtained the predicted density for the number of cases and deaths per 10,000 

population using equation (6.4). Figure 6.12 shows that the county-level predicted density for the 

cases indicates that the risk in most US counties is still in a considerable range. Mostly, southeast, 

southwest regions, and also some counties in the midwest are more likely to have a higher number 

Figure 6.11: Estimated vs. actual COVID-19 deaths at state-level based on multivariate joint 

CHBC model. 
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Figure 6.12: Predicted density of COVID-19 at county-level based on multivariate joint model 

using the CHBC method (per 10,000). 
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of cases. Based on the predicted density for deaths, it shows that most counties are in 0-3 deaths 

per 10,000, while some counties in Arizona, Louisiana, Mississipi, and in northeast areas have a 

higher range of deaths. We obtained the case rate and the death rate each state using the formula 

given below 

Case (Death) rate𝑖 =
Total cases𝑖(Deaths𝑖)

Pop𝑖
× 10,000, 𝑖 = 1,… ,50. 

As shown in Figure 6.13, some states have a lower death rate compared to case rate, such 

as case rate is highest in Louisiana (248.45), and the death rate is highest in New Jersey (17.81) as   

Figure 6.13: Case rate and death rate for top 15 states based on multivariate joint CHBC model 

(per 10,000). 

(a) Case rate (b) Death rate 

  

COVID-19 Case rate and death rate are obtained using the county-level predicted density obtained 

using equation (6.4). 
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of July 31, 2020. The next four states with higher case rates are Arizona (239.07), Florida (219.22), 

New York (212.57), and New Jersey (203.79), and the states with higher death rates are New York 

(16.72), Massachusetts (12.53), Connecticut (12.43), and Louisiana (8.12).   

Figure 6.14 represents the case rate and death rate per 10,000 population for all US states, 

which shows that some states with higher COVID-19 cases have lower death rates, while some 

have considerably high death rates. Though New Jersey has the highest death rate, followed by 

New York, Louisiana and Arizona have the highest case rates with lower death rates. The five states 

that have the lowest death rates are Rhode Island (0.00), Wyoming (0.02), Maine (0.12), Hawaii 

(0.18), and Alaska (0.31). The five states with the lowest care rates are Maine, Hawaii, Vermont, 

West Virginia, and Montana, with values 4.58, 14.75, 22.55, 36.54, and 36.82, respectively. 

 

 

 

 

Figure 6.14: Case rate and death rate for US states based on multivariate joint CHBC model 

(per 10,000). 
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6.4 Joint Modeling Through Shared Random Effects Using Tobacco 

Smoking Data 

We evaluated the proposed joint modeling approach through shared random effects using the same 

tobacco smoking data set described in section 6.1, considering the current-use of E-Cigarettes and 

the ever-use of E-Cigarettes. In section 6.1, we observed that the counties with a higher (lower) 

estimated prevalence of current-use, also seem to have a higher (lower) prevalence of the ever-use 

of E-Cigarettes. Accordingly, it suggests that the existence of the correlation between these two 

outcomes, hence it would be beneficial to model them jointly to study the association, as well as to 

obtain accurate estimations for both. We considered the joint model through shared random effects 

to examine the association between the current-use and ever-use of E-Cigarettes, which explained 

by the shared parameter 𝛾.  

The MHLEs from the joint model for fixed effects of both outcomes using the same tobacco 

smoking data set are displayed in Table 6.8. Compared to the coefficient effects in Table 6.1, the 

values for each variable are different in the joint model output in Table 6.8, even though they are 

directionally the same. However, the estimated shared parameter 𝛾 = 2.966 ( > 1) indicates the 

existence of a positive association between the current-use and the ever-use of E-Cigarettes. Hence, 

it is critical to consider joint modeling to make inferences on these two variables of interest.  

Based on the joint model, African Americans have 1.38 times higher current-use of E-

Cigarettes prevalence compared to other races after adjusting for other variables. Still, it is 0.78 

times higher based on the univariate analysis. The estimated prevalence of the ever-use of E-

Cigarettes is 1.08 times higher among African Americans than other races based on the joint model, 

indicating that slightly higher than the effect from the univariate analysis with a value of 0.93. 

Furthermore, the poverty rate is a significant variable, with a p-value being <0.001 from the joint 

model (National Cancer Institute, 2017; Prevention). However, the p-value is not significant (> 
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0.05) based on the univariate analysis for both current-use and ever-use models. The joint model 

results indicate that adolescents in lower poverty levels tend to smoke more than a higher poverty 

level.  

Table 6.8: Fixed effect estimates for current-use and ever-use of E-Cigarettes based on the 

joint model through shared random effects. 

  

Current-use of E-cigarettes Ever-use of E-cigarettes 

Estimate SE 
Z 

Value 
P(>|Z|) Estimate SE 

Z 

Value 
P(>|Z|) 

Intercept -1.709 0.087 -13.344 <0.001 -0.908 0.068 -13.344 <0.001 

Age 

<= 14 yrs  0.000     0.000    

15-17 yrs  0.227 0.054 8.823 <0.001 0.374 0.042 8.823 <0.001 

>= 18 yrs 0.475 0.055 16.271 <0.001 0.706 0.043 16.271 <0.001 

Race 

White 0.042 0.323 1.906 0.0567 0.477 0.250 1.906 0.0567 

African 

American 
0.325 0.054 1.778 0.0754 0.076 0.043 1.778 0.0754 

Hispanic -0.304 0.071 -1.460 0.1444 -0.076 0.052 -1.460 0.1444 

Others 0.000       0.000       

Sex 
Male 0.000       0.000       

Female 0.113 0.057 6.892 <0.001 0.309 0.045 6.892 <0.001 

Year 
2015 0.000     0.000     

2017 0.283 0.031 6.095 <0.001 0.155 0.025 6.095 <0.001 

Poverty Rate 

(%) 
-0.827 0.034 -19.425 <0.001 -0.509 0.026 -19.425 <0.001 

 

Furthermore, compared to 2015, it shows that the prevalence of both current-use and ever-

use of E-Cigarettes is 1.33 and 1.17 times higher in 2017, which is contrary to univariate model 

outcomes. From the joint model it shows that the current-use and ever-use of E-Cigarettes are more 

popular among youth females (1.12 and 1.36 times higher) compared to youth males. Besides, the 
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18 years or above are more likely to use E-Cigarettes currently compared to 14 years or less with a 

multiplicative factor of 1.61. Similarly, the prevalence of ever-use also two times higher in 18 years 

or above more than 14 years or younger. In conclusion, it shows that those who have a higher 

prevalence for current-use also have a higher prevalence for every-use of E-Cigarettes. 

The observed vs. estimated prevalence for current-use and ever-use of E-Cigarettes from 

Figure 6.14 implies that the model performs well, determining the prevalence at both higher and 

also at the lower end. We used the estimated county-level random effects and obtained the random 

effects for missing counties as described in section 6.1 using equations (6.1), then calculated the 

county-level prevalence using (6.2), and (6.3). 

 

 

 

 

 

 

 

 

The observed vs. estimated prevalence for current-use and ever-use of E-Cigarettes from 

Figure 6.15 implies that the model performs well, determining the prevalence at both higher and 

also at the lower end. We used the estimated county-level random effects and obtained the random 

effects for missing counties as described in section 6.1 using equations (6.1), then calculated the 

county-level prevalence using (6.2), and (6.3). 

Figure 6.15:  Estimated vs. observed prevalence for current-use and ever-use of E-Cigarettes 

based on joint model through shared random effects. 
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Figure 6.16 shows the estimated county-level prevalence of current-use and the ever-use 

of E-Cigarettes. The areas with a higher prevalence of current-use also seem to have a higher value 

for ever-use, which is evident from the model estimates. The current-use of E-Cigarettes in the US 

ranges from 10.47% - 27.64%, indicating that it is more prevalent in the Midwest and Northwest 

regions compared to the Southeast and North regions. It is also higher in the Southwest than the 

Southeast and North regions. Similarly, the prevalence of ever-use E-Cigarettes too more prevalent 

in the Southwest, Midwest, Northwest, and Northeast compared to Southeast and North regions in 

the US based on 2015 and 2017 data.  

 

Both current-use and ever-use prevalence are lowest in the northern areas. Both plots (a) 

and (b) shows that the estimated prevalence for both outcomes in most counties in Utah stays in 

the lowest quantile. The data was only available in Salt Lake County, Utah, in 2017, which had a 

prevalence of 2% for current-use and 13% for ever-use. We estimated the random effects for all 

missing counties through the Nearest Neighboring method and obtained the prevalence for all other 

counties in Utah. The estimated values reveal the state’s lower range prevalence of E-Cigarette 

Figure 6.16:  Estimated county-level prevalence of current-use and ever-use of E-Cigarettes 

in the United States based on 2015-2017 YRBSS data based on the joint CHBC method.      

(𝑎) Current Use of E-Cigarettes (𝑏) Ever Use of E-Cigarettes 
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usage based on the Public Health Indicator Based Information System, Utah (IBIS).  Also, the other 

counties with lower and higher values consistent with the county-level prevalence, indicating that 

the proposed CHBC joint model performs well.  
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Chapter 7. Discussion, Limitations, and Future Work 

7.1 Discussion 

In this work, we proposed a statistical methodology in SAE based on the Hierarchical (ℎ) 

likelihood with a calibrated parameter estimation procedure, named the CHBC approach. The 

proposed CHBC method does not require a closed form of the log-likelihood function, does not 

involve any computationally intensive integral approximations, hence it is computationally 

efficient. The proposed CHBC approach provides accurate parameter estimates for fixed effects, 

random effects, and dispersion parameters using ℎ-likelihood through iterative approximation 

techniques with bias correction. Unlike in the standard linear mixed model, the model (2.2) does 

not have a closed-form for the joint log-likelihood. Hence it is very challenging to estimate the 

BLUP or EBLUP of model parameters. In such situations, ℎ-likelihood plays a significant role in 

simplifying the parameter estimation procedure. The MHLEs are often obtained via numerical 

approximation methods due to intractable integrals in the joint log-likelihood function. 

 First, in chapter 1, a brief introduction to SAE and SAE methods were discussed. Then, 

specifically in chapter 2, we illustrated the widely-used GLMM and parameter estimation of the 

fixed effects, random effects, and dispersion parameters. The last section in chapter 2 covers the 

literature review of the research work based on current models, their limitations, and motivation to 

the proposed technique. Then, in chapter 3, we described the proposed CHBC method for univariate 

models, which can be applied to a general class of exponential family distributions. The maximum 

hierarchical likelihood estimation process through iterative approximation for model parameters is 

discussed in detail. The asymptotic properties of MHLEs and Wald confidence intervals are 

discussed in section 3.5.  

 We extended the proposed CHBC method to joint modeling of multiple outcomes based 

on two ways; 1. through multivariate random effects and 2. through shared random effects to 
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account for the association between several outcomes. The empirical performance of the proposed 

univariate and multivariate CHBC methods is assessed through three extensive simulation studies 

varying the number of small areas and the sample size. Furthermore, we applied the proposed 

methods on two public health-related datasets; a novel coronavirus (COVID-19) data extracted 

from the John Hopkins University (JHU) COVID-19 repository and tobacco smoking dataset 

downloaded from the Youth Risk Behavior Surveillance System (BRFSS). The univariate CHBC 

method results were compared with the GLMM, which showed similar performance in both.  

For illustration, we considered 𝑢𝑖~𝒩(0, 𝜎2), 𝑖 = 1,… , 𝑚, but random effects may come 

from any conjugate of exponential family distributions in HGLMs and can directly estimate model 

parameters using the proposed CHBC method. The ℎ-likelihood approach avoids computationally 

expensive integration by taking partial derivatives of the logarithm of the joint density function, 

namely ℎ-likelihood, which simplifies the differentiation. Moreover, the proposed ℎ-likelihood 

approach is a computationally efficient method that provides reliably accurate results through a 

single algorithm. 

The proposed ℎ-likelihood method with bias correction of estimates provides consistently 

better estimates compared to the ℎ-likelihood method without bias correction. The simulation 

results demonstrate that the univariate CHBC method performs well, providing reliable estimates 

even for the areas with small sample sizes, as shown in Figures 5.1 and 5.2. Even though the 

MHLEs of the variance parameter 𝜎2 provide better estimates with a large number of small areas; 

it also offers reliable estimates with small sample sizes and with a small number of areas with 

slightly underestimated values. Similarly, the MHLEs of fixed effects are reasonably accurate in 

any combination of 𝑚 and 𝑛. Moreover, they are more precise with large sample sizes than small 

sample sizes and a few small areas. Overall, the proposed CHBC method results are consistent, the 

process of parameter estimation is less complicated, and sometimes slightly better in some cases 

compared with the related historical work done by the other researchers (Breslow & Clayton, 1993; 
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Shun & McCullagh, 1995). As we expected, the mean squared error of fixed effects estimates gets 

smaller when increasing the sample size as well as the number of small areas. Overall, the ℎ-

likelihood produces reasonable MHLEs. In some situations, there might be convergence issues with 

very small sample sizes with a small number of areas, especially with binary response data.      

The mean squared errors for mixed logit and Poisson models obtained from MC simulation 

for the average random effects are displayed in Figure 5.3 for each combination of the number of 

small areas and sample sizes. In both scenarios, the MSEs are reliably low, and it shows that MSE 

decreases when the sample size increases. In this dissertation, in the univariate model, 𝜎̂2 was 

obtained using partial derivatives assuming that it does not depend on 𝜷̂ and 𝒖̂. Practically, it might 

be the case where 𝜎2 is a function of 𝜷 and 𝒖, so estimation of 𝜎2 expected to be more accurate 

based on the total derivative of ℎ𝐴 with respect to some 𝜎2 to avoid the indirect interdependencies 

between the estimators.  

Furthermore, as stated above, the CHBC method can be applied to a generalized class of 

exponential family distributions, since it does not require the closed form of the log-likelihood 

function. However, the process is more straightforward to adopt for canonical GLM family 

distributions, since the score function and the Hessian matrix can easily be obtained using the score 

function of ℓ𝒚|𝒖(𝑺(𝜃; 𝒚)), the weight matrix (𝑾), the first derivative (𝜵ℓ𝒖

1 ), and the second 

derivative of the ℓ𝒖(𝜵ℓ𝒖

2 ), as described in section 3.1. Additionally, the real data analyses based on 

the COVID-19 data to illustrate the univariate Poisson model and the YRBSS data to demonstrate 

the mixed logit model indicate that the proposed CHBC method performs equally or reliably better 

compared to the widely used GLMM.  

Moreover, the simulation results in section 5.3 show that the proposed multivariate joint 

model based on the CHBC method performs well. The MHLEs for fixed effects for 𝒚1 and 𝒚2 

displayed in Figures 5.5 and 5.6, respectively, indicate the accurate results in most scenarios. The 

RMSE and the relative bias is small, and it improves as 𝑚 and 𝑛 increase. Additionally, the 



131 
 

 
 

distributions of estimated random effects for both outcomes lie close to the actual distribution. We 

also illustrated both joint modeling approaches using the COVID-19 data for cases and deaths for 

the multivariate case, and the YRBSS data for current-use and ever-use of E-Cigarettes for the 

shared random effects case. Based on the multivariate joint model on the COVID-19 information, 

it shows that the cases and deaths are positively associated with a correlation factor of 0.262. Hence, 

it is vital to model such outcomes jointly, accounting for the association among them, which leads 

to more precise model estimations. Furthermore, the joint model based on the shared random effects 

on the tobacco data set to evaluate the current-use and ever-use of prevalence shows that they are 

positively correlated. The estimated shared parameter 𝛾 = 2.97 implies that the existence of a 

strong association between current-use and ever-use of E-Cigarettes. Finally, we conclude the 

proposed CHBC approach performs better in both univariate and multivariate models.  

7.2 Limitations 

One of the well-known limitations using iterative approximation is the convergence issue in 

specific scenarios, which might not be very often. However, this is hard to avoid in such an iterative 

approximation process (Nocedal & Wright, 2006). In some situations where the Hessian matrix is 

singular, it is probable to consider the modified Hessian based on the eigenvalue decomposition of 

the Hessian, which is numerically positive definite. Thus, the modified Hessian is invertible. 

However, this process is computationally expensive with large dimensions. 

 Additionally, we observed that the MHLEs of the variance parameters are underestimated 

by the CHBC method, while overestimated the GLMM. It has been challenging to obtain very 

accurate estimations for the unobserved random effects; however, the proposed approach provides 

small RMSE for the MHLE of 𝜎2. Furthermore, we could not find a benchmark analysis to compare 

the results from the proposed multivariate joint model based on the CHBC method. However, the 

accuracy of the simulation results and the real data analysis eliminate this issue. Additionally, as in 
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most data analysis problems, it was challenging to find a perfect data set to illustrate the proposed 

CHBC method.  

7.3 Future Work 

 In terms of future work, the proposed method has opportunities to extend in other 

applications in SAE. With this, we will also consider extending this methodology to a high 

dimensional case in SAE, where the number of small areas is sufficiently large. However, in this 

scenario, not all clusters contribute to the model; some areas might not be informative and 

predictive enough in obtaining a model. Hence, it is vital to consider dimensionality reduction to 

eliminate the model complexity by removing the unimportant clusters or small areas. So, the 

proposed CHBC method can be extended, introducing a penalty term to reduce the dimensionality 

of random effects. 

 Additionally, the joint modeling approach could grow in different ways, which are not 

considered yet. The joint modeling through shared random effects is considered only using one 

shared parameter in this work. However, it is open to considering multiple outcomes with different 

options for the shared random effect component, such as a function of a single parameter, additional 

parameters, or in terms of a piecewise function. Additionally, 𝜎2̂ can be obtained based on the total 

derivative ℎ𝐴.  
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Appendix 

Appendix A. Data Analysis Based on GLMM Using NYTS Tobacco Smoking Data 

Table A.1: Ten US states with the highest and lowest estimated prevalence of current-use and ever-

use of E-Cigarettes based on GLMM. 

Current-use of E-Cigarettes 

Highest rankings Lowest rankings 

State County True Estimated State County True Estimated 

Oklahoma Oklahoma 44.31 57.89 Louisiana Orleans 0.03 0.89 

Pennsylvania Lawrence 24.56 36.11 New York Kings 0.65 1.47 

Texas Lubbock 16.97 27.08 Minnesota Dakota 2.19 1.52 

Hawaii Hawaii 32.09 26.76 Virginia Dickenson 1.6 1.59 

Massachusetts Bristol 18.92 23.2 New Jersey Hudson 1.97 1.67 

Texas El Paso 22.03 23.17 Ohio Williams 3.33 1.75 

Wisconsin Washington 18.83 21.36 Utah Davis 4.95 2.15 

Ohio Jefferson 19.96 19.48 New York Queens 5.24 2.42 

Mississippi Lincoln 18.66 18.88 Florida Osceola 2.27 2.46 

Illinois Lake 18.16 18.67 Ohio Cuyahoga 3.36 2.54 

Ever-use of E-Cigarettes 

Highest rankings Lowest rankings 

State County True Estimated State County True Estimated 

Oklahoma Oklahoma 72.97 63.46 Pennsylvania Cumberland 2.6 6.51 

Hawaii Hawaii 43.66 53.40 Utah Davis 4.26 8.59 

Texas El Paso 42.20 42.87 Wisconsin Walworth 4.29 7.98 

Ohio Jefferson 40.00 40.29 Maryland Baltimore 4.52 8.92 

New Jersey Passaic 29.90 38.93 Wisconsin Trempealeau 4.62 8.76 

New York Suffolk 33.33 38.00 Michigan Eaton 5.75 6.52 

Florida Brevard 26.50 36.96 Louisiana Orleans 6.31 12.48 

Oklahoma Custer 42.19 36.66 Florida Osceola 7.72 7.33 

Arkansas Washington 41.42 36.08 New Jersey Hudson 7.98 7.7 

Ohio Butler 20.41 35.55 Florida St. Lucie 8.4 12.73 
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Appendix B. Benchmark Analysis Using Binomial HGLM and Poisson HGLM 

Table B.1: MHLEs of variance parameter from CHBC and GLMM for mixed logit model (m = 5, 

10, 20, 30, n =10, 30, 50, 100, and 500).  

m n HMLE RMSE Bias MLE RMSE Bias 

5 

5 0.003 0.097 -0.974 0.323 0.050 2.235 

10 0.002 0.099 -0.979 0.319 0.050 2.190 

30 0.002 0.099 -0.983 0.304 0.047 2.043 

100 0.002 0.098 -0.975 0.249 0.045 1.488 

500 0.016 0.086 -0.842 0.203 0.050 1.031 

10 

5 0.003 0.097 -0.974 0.277 0.032 1.773 

10 0.002 0.098 -0.984 0.276 0.032 1.761 

30 0.001 0.099 -0.986 0.276 0.034 1.757 

100 0.003 0.098 -0.969 0.243 0.035 1.429 

500 0.054 0.049 -0.458 0.208 0.041 1.084 

20 

5 0.003 0.097 -0.974 0.272 0.030 1.716 

10 0.002 0.098 -0.984 0.266 0.028 1.664 

30 0.001 0.099 -0.987 0.251 0.025 1.515 

100 0.001 0.099 -0.986 0.226 0.023 1.257 

500 0.052 0.050 -0.481 0.199 0.027 0.993 

30 

5 0.003 0.097 -0.974 0.238 0.019 1.383 

10 0.002 0.098 -0.984 0.237 0.019 1.374 

30 0.001 0.099 -0.986 0.233 0.019 1.329 

100 0.002 0.098 -0.981 0.221 0.020 1.212 

500 0.067 0.035 -0.330 0.195 0.023 0.952 

Note: True value of variance is 0.1 for each combination of 𝑚 and 𝑛. 
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Table B.2: MHLEs of variance parameter from CHBC and GLMM for Poisson mixed model (m 

= 5, 10, 20, 30, n =10, 30, 50, 100, and 500). 

 m 
n HMLE RMSE Bias MLE RMSE Bias 

5 

5 0.0039 0.0097 -0.9606 0.323 0.050 2.235 

10 0.0096 0.0093 -0.9035 0.319 0.050 2.190 

30 0.0500 0.0042 -0.4997 0.304 0.047 2.043 

100 0.0892 0.0007 -0.1079 0.249 0.045 1.488 

500 0.1021 0.0001 0.0211 0.203 0.050 1.031 

10 

5 0.0017 0.0097 -0.9827 0.277 0.032 1.773 

10 0.0038 0.0095 -0.9619 0.276 0.032 1.761 

30 0.0285 0.0059 -0.7152 0.276 0.034 1.757 

100 0.0630 0.0016 -0.3700 0.243 0.035 1.429 

500 0.0743 0.0007 -0.2572 0.208 0.041 1.084 

20 

5 0.0014 0.0097 -0.9859 0.272 0.030 1.716 

10 0.0011 0.0098 -0.9892 0.266 0.028 1.664 

30 0.0074 0.0087 -0.9263 0.251 0.025 1.515 

100 0.0526 0.0024 -0.4741 0.226 0.023 1.257 

500 0.0701 0.0009 -0.2991 0.199 0.027 0.993 

30 

5 0.0015 0.0097 -0.9853 0.238 0.019 1.383 

10 0.0011 0.0098 -0.9888 0.237 0.019 1.374 

30 0.0043 0.0092 -0.9566 0.233 0.019 1.329 

100 0.0406 0.0036 -0.5942 0.221 0.020 1.212 

500 0.0537 0.0022 -0.4629 0.195 0.023 0.952 

Note: True value of variance is 0.1 for each combination of 𝑚 and 𝑛. 
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Figure B.1: Distribution of estimated random effects in Poisson model1. 

  

  

1 HMLE (m, n), GLMM (m, n): the boxplot for hierarchical MLE and MLE of estimated random 

effects for m small areas and n observations for each small area based on CHBC with bias 

correction method and GLMM respectively.  
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Appendix C. Simulation Results for the Multivariate Joint Model Using Count Data 

Table C.1: Estimates of variance parameters of random effects. 

Parameter 

Sample 

size 

(𝑚, 𝑛) 

HMLE 
Abs 

Error 
Bias 

Sample 

size 

(𝑚, 𝑛) 

HMLE 
Abs 

Error 
Bias 

σ11 (10, 10) 1.009 0.291 -0.224 (30, 10) 1.121 0.179 -0.137 

σ12  0.209 0.291 -0.582  0.321 0.179 -0.357 

σ22  1.209 0.291 -0.194  1.321 0.179 -0.119 

σ11 (10, 30) 1.386 0.086 0.066 (30, 30) 1.058 0.242 -0.186 

σ12  0.586 0.086 0.172  0.258 0.242 -0.484 

σ22  1.586 0.086 0.057  1.258 0.242 -0.161 

σ11 (10, 100) 1.080 0.220 -0.169 (30, 100) 1.059 0.241 -0.185 

σ12  0.280 0.220 -0.439  0.259 0.241 -0.482 

σ22  1.280 0.220 -0.146  1.259 0.241 -0.161 

σ11 (10, 500) 1.136 0.164 -0.126 (50, 10) 1.017 0.283 -0.218 

σ12  0.336 0.164 -0.327  0.217 0.283 -0.566 

σ22  1.336 0.164 -0.109  1.217 0.283 -0.189 

σ11 (20, 10) 1.974 0.674 0.519 (50, 30) 1.062 0.238 -0.183 

σ12  1.174 0.674 1.349  0.262 0.238 -0.477 

σ22  2.174 0.674 0.450  1.262 0.238 -0.159 

σ11 (20, 100) 1.726 0.426 0.328 (50, 100) 1.000 0.300 -0.230 

σ12  0.926 0.426 0.853  0.200 0.300 -0.599 

σ22  1.926 0.426 0.284  1.200 0.300 -0.200 

σ11 (20, 500) 0.882 0.418 -0.322 (50, 500) 1.000 0.300 -0.230 

σ12  0.082 0.418 -0.836  0.200 0.300 -0.599 

σ22  1.082 0.418 -0.279  1.200 0.300 -0.200 

 

Note: True values of σ11, σ12, and σ22 are 1.3, 0.5, and 1.5. 
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Appendix D. Benchmark Analysis for Mixed Logistic Model Using YRBSS Data  

Table D.1: Summary statistics of current-use and ever-use of E-Cigarettes, current-smoke, and 

ever-smoke by gender, race, and age. 

Variable 

# of 

Respondents 

Prevalence 

(%) 

95% CI # of 

Respondents 

Prevalence 

(%) 

95% CI 

Lower Upper Lower Upper 

Ecig_Current Ecig_Ever 

Total 27955 19.16 17.80 20.53 29194 43.62 41.55 45.69 

Gender            

  Male 13737 21.28 19.61 22.95 14332 45.52 43.45 47.58 

  Female 14218 17.02 15.57 18.47 14862 41.70 38.97 44.43 

Race 27542 19.17 17.79 20.54 28783 43.69 41.60 45.77 

  White 12235 20.82 18.82 22.83 12831 42.52 39.48 45.57 

  
African 

American 
4080 13.72 11.47 15.97 4190 39.29 36.26 42.32 

  Hispanic 8112 19.72 17.80 21.64 8521 50.33 48.02 52.65 

  Others 3115 16.29 13.45 19.14 3241 40.66 37.22 44.09 

Age 28033 19.17 17.82 20.53 29264 43.61 41.54 45.67 

  
12yrs or 

younger 
77 57.69 39.67 75.72 63 81.91 66.99 96.83 

  13 yrs old 34 19.00 0.92 37.07 35 34.20 11.60 56.81 

  14 yrs old 3367 12.05 10.22 13.87 3491 31.23 28.21 34.25 

  15  yrs old 6877 16.23 14.65 17.81 7188 37.81 35.19 40.42 

  16 yrs old 7144 18.72 17.06 20.38 7483 44.78 42.02 47.55 

  17 yrs old 6902 21.67 19.73 23.61 7224 48.75 46.81 50.70 

  
18 yrs or 

older 
3932 25.92 23.28 28.56 3780 52.22 48.97 55.47 

    Current-smoke Ever-smoke 

Total 29176 9.83 8.70 10.91 25523 30.67 28.43 32.90 

Gender            

  Male 14275 10.85 9.78 11.92 12501 32.35 30.26 34.43 

  Female 14901 8.76 7.46 10.06 13022 28.99 26.16 31.81 

Race 28754 9.79 8.68 10.90 25187 30.69 28.44 32.94 

  White 12815 11.75 10.08 13.43 3525 31.37 28.10 34.63 

  
African 

American 
4281 5.45 4.31 6.60 3540 25.97 22.59 29.36 

  Hispanic 8411 8.15 7.16 9.14 8130 32.54 30.12 34.96 

  Others 3247 8.48 6.76 10.20 2918 28.86 25.13 32.59 

Age 29260 9.81 8.71 10.92 25585 30.66 28.43 32.89 

  
12yrs or 

younger 
78 55.86 38.36 73.36 42 76.21 57.29 95.14 

  13 yrs old 32 20.41 1.85 38.98 17 19.03 0.00 40.28 

  14 yrs old 3529 4.55 3.55 5.56 2640 19.59 17.27 21.91 

  15  yrs old 7190 6.93 5.73 8.12 6210 23.95 21.71 26.19 

  16 yrs old 7473 9.31 7.93 10.70 6563 30.30 27.34 33.27 

  17 yrs old 7200 11.99 10.53 13.45 6446 36.47 33.97 38.97 

  
18 yrs or 

older 
3758 15.54 13.52 17.57 3667 41.26 37.32 45.20 
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Table D.2: Ten US states with the highest and lowest estimated prevalence of current-use and ever-

use of E-Cigarettes based on CHBC and GLMM. 

Current-use of E-Cigarettes 

Highest rankings Lowest rankings 

CHBC GLMM CHBC GLMM 

North Carolina 
29.22 North Carolina 34.55 

Utah 
10.59 Utah 5.99 

Kentucky 
27.38 Kentucky 31.83 

Minnesota 
12.52 North Dakota 6.11 

New Mexico 
27.00 West Virginia 30.64 

North Dakota 
13.91 Minnesota 6.90 

West Virginia 
26.09 Arkansas 29.39 

Oregon 
14.43 Rhode Island 7.08 

Arkansas 
25.89 South Carolina 26.46 

Rhode Island 
14.52 Oregon 8.59 

Wisconsin 
24.99 Nevada 26.16 

Connecticut 
14.81 Iowa 9.08 

Delaware 
24.04 Kansas 24.71 

Illinois 
14.91 Connecticut 10.44 

Vermont 
24.04 New Mexico 24.10 

Virginia 
15.08 South Dakota 10.70 

South Carolina 
23.82 Delaware 23.60 

Iowa 
15.48 Maryland 11.26 

Kansas 
23.35 Vermont 22.94 

District of Columbia 
15.59 Illinois 11.41 

Ever-use of E-Cigarettes 

Highest rankings Lowest rankings 

CHBC GLMM CHBC GLMM 

New Mexico 
56.16 New Mexico 75.28 

Utah 
26.19 Utah 12.66 

Oklahoma 
44.88 West Virginia 57.36 

Connecticut 
27.02 North Dakota 13.88 

West Virginia 
44.37 Oklahoma 55.94 

North Dakota 
27.77 Connecticut 15.12 

North Carolina 
44.30 North Carolina 51.07 

Minnesota 
28.83 Maryland 17.22 

Kentucky 
42.58 Nevada 49.20 

Virginia 
29.24 Minnesota 20.66 

Nevada 
42.06 Kentucky 49.11 

Rhode Island 
30.55 District of Columbia 23.90 

Arizona 
41.27 Arkansas 44.59 

Maryland 
31.80 Mississippi 24.59 

Colorado 
40.89 Kansas 44.47 

Georgia 
31.93 Rhode Island 25.08 

Arkansas 
40.74 Colorado 44.26 

Mississippi 
32.04 Oregon 25.57 

Delaware 
40.44 Delaware 44.03 

Iowa 
32.28 Virginia 25.83 
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Table D.3: Ten US states with the highest and lowest estimated prevalence of current-smoke and 

ever-smoke based on CHBC and GLMM. 

Current-smoke 

Highest rankings Lowest rankings 

CHBC GLMM CHBC GLMM 

West Virginia 
11.89 Iowa 15.50 

Rhode Island 
2.12 Rhode Island 0.92 

Kentucky 
10.28 West Virginia 15.44 

Massachusetts 
2.95 Utah 1.84 

Iowa 
9.94 Kentucky 11.47 

Utah 
3.42 Massachusetts 2.06 

North Carolina 
9.68 North Carolina 11.45 

New Hampshire 
3.59 Connecticut 2.14 

South Carolina 
8.81 South Carolina 11.23 

Connecticut 
3.69 Washington 2.33 

Tennessee 
8.25 Nebraska 10.24 

Maine 
3.70 California 2.65 

Nebraska 
8.11 Tennessee 10.00 

Washington 
4.20 New York 3.00 

Montana 
7.95 Ohio 8.74 

New York 
4.22 New Hampshire 3.00 

New Mexico 
7.91 Montana 8.59 

California 
4.24 Maine 3.13 

Kansas 
7.71 Alabama 8.04 

Minnesota 
4.46 Oregon 3.26 

Ever-smoke 

Highest rankings Lowest rankings 

CHBC GLMM CHBC GLMM 

New Mexico 
30.71 New Mexico 44.37 

Maryland 
3.48 District of Columbia 1.21 

Kentucky 
27.29 Kentucky 41.23 

Rhode Island 
9.09 Maryland 3.37 

North Carolina 
25.99 West Virginia 40.65 

Connecticut 
9.50 Rhode Island 3.97 

West Virginia 
24.34 North Carolina 37.89 

Massachusetts 
10.58 Connecticut 5.06 

South Carolina 
24.06 South Carolina 36.89 

Virginia 
10.98 Utah 6.48 

Kansas 
23.51 Tennessee 33.90 

New York 
11.83 Massachusetts 6.63 

Oklahoma 
23.06 Kansas 27.04 

New Hampshire 
12.42 New York 7.91 

Tennessee 
21.84 Oklahoma 26.45 

Maine 
12.77 New Hampshire 9.32 

Texas 
20.56 Ohio 25.77 

Utah 
13.24 Maine 9.66 

Nebraska 
20.56 Nebraska 24.84 

Delaware 
13.35 New Jersey 10.30 
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Figure D.1: County prevalence of ever-use and current-use of E-Cigarettes in the United States 

based on 2015-2017 YRBSS data.      

(𝑎) CHBC (𝑏) GLMM 
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Appendix E. Benchmark Analysis for Poisson Mixed Model Using COVID-19 

Data  

Table E.1: MLEs for fixed effects and variance parameter using the GLMM for COVID-19 data.    

Characteristics 
CHBC 95% CI 

Estimate SE Z Value P(>|Z|) Lower Upper 

Intercept -8.838 0.427 -20.711 <0.001 -9.674 -8.001 

Number of days (log) 0.141 0.045 3.166 0.002 0.054 0.228 

Number of active cases (log) 0.325 0.008 40.467 <0.001 0.309 0.341 

Population not stay home (%) 3.366 0.280 12.005 <0.001 2.816 3.915 

Number of trips (%) 3.358 0.265 12.666 <0.001 2.838 3.877 

           < 1 mile 0.000      

           1 - 4 miles -1.437 0.328 -4.377 <0.001 -2.081 -0.794 

           5 - 9 miles -1.602 0.369 -4.340 <0.001 -2.325 -0.878 

           10 - 24 miles -1.059 0.383 -2.762 0.006 -1.811 -0.308 

           25 - 49 miles 2.233 0.518 4.314 <0.001 1.218 3.247 

           50 - 99 miles 3.470 0.968 3.585 <0.001 1.573 5.367 

           >= 100 miles 2.048 1.801 1.137 0.256 -1.483 5.578 

65 Years or above living alone 

(%) 
-1.322 0.465 -2.844 0.004 -2.234 -0.411 

Age (%)       

           <= 17 years 0.000      

           18_29 years -4.903 0.403 -12.180 <0.001 -5.692 -4.114 

           30_44 years -2.400 0.678 -3.539 <0.001 -3.729 -1.071 

          45_64 years -8.375 0.643 -13.016 <0.001 -9.636 -7.114 

Race (%)       

          White 0.630 0.141 4.460 <0.001 0.353 0.908 

         African American 2.316 0.153 15.168 <0.001 2.017 2.615 

         Hispanic 1.177 0.155 7.586 <0.001 0.873 1.482 

         Other races 0.000      

Gender (%)       

         Male 4.058 0.553 7.335 <0.001 2.974 5.143 

         Female 0.000      

Poverty rate (%) 1.921 0.238 8.086 <0.001 1.455 2.386 

Unemployment rate (%) -4.049 0.796 -5.089 <0.001 -5.608 -2.490 

Variance Component 
      

         County-level 0.506 1.382 0.366 <0.001 0.000 3.215 
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Figure E.1: The estimated COVID-19 based on the CHBC and GLMM. 
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Figure E.2: Variance inflation factor and standard error based on univariate mixed models 

for COVID-19 cases and deaths. 

(a) Cases (b) Deaths 
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Appendix F. The Elements of 𝓢 and 𝓙 of the Binomial-Normal HGLM 

Appendix F.1 Partial Derivatives of Model Parameters for General Class of HGLM Family 

The elements of the score function 𝓢 and Fisher information matrix 𝓙 will be obtained by 

taking the first and second partial derivatives with respect to model parameters. We first illustrate 

the general case where the CHBC method applies to a broad class of HGLM family distributions 

taking the partial derivative with respect to model parameters in Appendix H.1. Appendix H.2 

covers the CHBC method for Canonical family GLMs where it simplifies obtaining  𝓢 and 𝓙 

elements. 

First, consider the mixed logit model: 𝑃(𝒚|𝒖) = (1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 and 𝑓(𝒖) =

(2𝜋)−𝑚/2(𝑑𝑒𝑡(𝑮))−1/2 exp (−
1

2
𝒖𝑇𝑮−𝟏𝒖). 

From (4.3), the ℎ-likelihood function can be expressed as 

ℎ = 𝒚𝑇(𝑿𝜷 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) −
𝑚

2
log 𝜎2 −

1

2𝜎2
𝒖𝑇𝒖 + 𝑐, 

ℎ =  𝒚𝑇(𝑿𝜷 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) −
1

2
𝒖𝑇𝑮−𝟏𝒖 −

1

2
log(det(𝑮)) + 𝑐, 

where 𝟏𝑇 is a unit vector with dimension (1 × 𝑁). Take the partial derivative with 

respect to 𝜷 and 𝒖 

           
𝜕ℎ

𝜕𝜷
=  [𝑿𝑇𝒚 − 𝑿𝑇(1 + exp(𝑿𝜷 + 𝒁𝒖))−1 exp(𝑿𝜷 + 𝒁𝒖)]𝑝×1 

                                                            = 𝑿𝑇𝒚 − 𝑿𝑇𝝅 = 𝑿𝑇(𝒚 − 𝝅), 

                      
𝜕ℎ

𝜕𝒖
= [𝒁𝑇𝒚 − 𝒁𝑇(1 + exp(𝑿𝜷 + 𝒁𝒖)−1 exp(𝑿𝜷 + 𝒁𝒖) − 𝑮−1𝒖]𝑚×1 

                                                            = 𝒁𝑇𝒚 − 𝒁𝑇𝝅 − 𝑮−1𝒖 = 𝒁𝑇(𝒚 − 𝝅) − 𝑮−1𝒖, 

where 𝝅 = 1/(1 + exp(−𝑿𝜷 − 𝒁𝒖)).  

The components of the asymptotic variance-covariance matrix of 𝜷̂ and 𝒖̂, 𝓙 also known 

as the observed information matrix that is calculated by 



158 
 

 
 

𝓙 =

[
 
 
 
 −

𝜕2ℎ

𝜕𝜷2
−

𝜕2ℎ

𝜕𝜷𝜕𝒖

−
𝜕2ℎ

𝜕𝒖𝜕𝜷
−

𝜕2ℎ

𝜕𝒖2 ]
 
 
 
 

, 

where  

−
𝜕2ℎ

𝜕𝜷𝑇𝜕𝜷
=

𝜕

𝜕𝜷
(𝑿𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 exp(−𝑿𝜷 − 𝒁𝒖)𝑿) 

         = 𝑿𝑇
1

(1 + exp(−𝑿𝜷 − 𝒁𝒖))
(

1

1 + exp(𝑿𝜷 + 𝒁𝒖)
)𝑿  

                                            = 𝑿𝑇𝝅(𝟏 −  𝝅)𝑿 

                                            = 𝑿𝑇 𝑾𝑿 , 

 

−
𝜕2ℎ

𝜕𝜷𝜕𝒖
= 𝑿𝑇

𝜕

𝜕𝒖
((1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 exp(−𝑿𝜷 − 𝒁𝒖)) 

                                               = 𝑿𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−2𝒁 

                                              = 𝑿𝑇𝝅(𝟏 −  𝝅)𝒁 

                                              = 𝑿𝑇𝑾𝒁, 

 

−
𝜕2ℎ

𝜕𝒖𝜕𝜷
= −

𝜕

𝜕𝜷
(𝒁𝑇𝒚 − 𝒁𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 − 𝑮−1𝒖) 

                                              = 𝒁𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−2𝑿 

                                              = 𝒁𝑇𝝅(𝟏 −  𝝅)𝑿 

                                              = 𝒁𝑇𝑾𝑿 , 

 

−
𝜕2ℎ

𝜕𝒖𝑇𝜕𝒖
= −

𝜕

𝜕𝒖
(𝒁𝑇𝒚 − 𝒁𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 − 𝑮−1𝒖) 
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                                              = 𝒁𝑇(1 + exp(−𝑿𝜷 − 𝒁𝒖))−2𝒁 + 𝑮−1 

                                              = 𝒁𝑇𝝅(𝟏 −  𝝅)𝒁 + 𝑮−1 

                                             = 𝒁𝑇𝑾𝒁 + 𝑮−1,  

where 𝑾 is a 𝑁 × 𝑁 diagonal matrix with the diagonal elements of each block being 𝝅𝑖(𝟏 − 𝝅𝑖) 

for area 𝑖.  
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Appendix F.2 Based on Score Function for Canonical GLM Family  

Consider ℎ-likelihood 

ℎ = ℓ𝒚|𝒖 + ℓ𝒖, 

where ℓ𝒚|𝒖 = 𝒚𝑇(𝑿𝜷 + 𝒁𝒖) − 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)), and ℓ𝒖 = −
𝑚

2
log 𝜎2 −

1

2𝜎2 𝒖𝑇𝒖 + 𝑐. 

Now, in canonical GLM form 

𝜽=(𝑿𝜷 + 𝒁𝒖) , 𝑏(𝜽) = 𝟏𝑇 log(1 + exp(𝑿𝜷 + 𝒁𝒖)) = 𝟏𝑇 log(1 + exp(𝜽)) , 𝜙 = 1. 

Differentiate 𝑏(𝜽) with respect to 𝜽, 

𝑏′(𝜽) = (1 + exp𝜽)−1 exp 𝜽 = (1 + exp(−𝑿𝜷 − 𝒁𝒖))−1 = 𝝅, 

where 𝝅 = (1 + exp(−𝑿𝜷 − 𝒁𝒖))−1, 𝜽 = (𝜷, 𝒖). 

Thus, the score function of ℓ𝒚|𝒖 

𝑺(𝜃; 𝒚) =
𝒚 − 𝑏′(𝜃)

𝜙
= 𝒚 − 𝝅 

and 

𝜕ℎ

𝜕𝜷
= 𝑿𝑇𝑺(𝜽; 𝒚) = 𝑿𝑇(𝒚 − 𝝅), 

𝜕ℎ

𝜕𝒖
= 𝒁𝑇𝑺(𝜽; 𝒚) + 𝜵ℓ𝒖

1 = 𝒁𝑇(𝒚 − 𝝅) −
1

𝜎2
𝒖. 

Hence, 

𝓢 =

(

 

𝜕ℎ

𝜕𝜷
𝜕ℎ

𝜕𝒖)

 = (
𝑋𝑇(𝒚 − 𝝅)

𝒁𝑇(𝒚 − 𝝅) −
1

𝜎2
𝒖
), 

𝓙 = [
𝑿𝑇 𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝜵ℓ𝒖

2 ], 

Where 
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𝜵ℓ𝒖

2 = −
𝜕2ℓ𝒖

𝜕𝒖𝑇𝜕𝒖
=

1

𝜎2
, 

𝑾 = 𝐷𝑖𝑎𝑔(
1

𝑉𝑎𝑟(𝒚)(𝑔′(𝝁))
2), 

and 

𝑔(𝝁) = log𝝅(𝟏 − 𝝅) = log𝝁 → 𝑔′(𝝁) = 𝝁−1. 

Thus, 

𝑾 = 𝐷𝑖𝑎𝑔 (
1

𝝁(𝝁−1)2
) = 𝐷𝑖𝑎𝑔(𝝁) = 𝐷𝑖𝑎𝑔(𝝅(𝟏 − 𝝅)). 
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Appendix G. R Package for CHBC Approach in SAE 

A “hglmbc2” R package is developed for the proposed CHBC approach. The development version 

of the R package is available to download using devtools https://niroshar.github.io/hglmbc2/. The 

function “hglmbc” function estimates the fixed effects, random effects, and variance parameter 

based on the proposed method. 

hglmbc( 

  data, 

  mformula = NULL, 

  dom = NULL, 

  y.family = "binomial", 

  rand.family = "gaussian", 

  tol = 1e-05, 

  ... 

) 

Arguments 

data a data frame. 

mformula an object of class myFormula: a symbolic description of the model to be fitted. 
The details of the mformula is given under the details section. 

dom a domain/cluster/small area to specify the random effect. e.g. numeric zip 
code, county, or state code, and also the name of the county or name of the 
state. 

y.family a distribution from the exponential family to describe the error distribution. 
See "family". 

rand.family a description of the distribution of random effects. 

tol predefined tolerance value. Default value is tol = 1e-5. 

... other arguments, See the details section. 

 

Value  

An object of class hglmbc consists of the hierarchical maximum likelihood estimates (HMLEs) 
of fixed effects, random effects, and variance parameters with other values, 

est.beta 
HMLE of fixed effects. 

https://niroshar.github.io/hglmbc2/
https://niroshar.github.io/hglmbc2/reference/myFormula.html
https://rdrr.io/r/stats/family.html
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re 
HMLE of the random effects. 

var.par 
HMLE of the dispersion parameter for the random effects. 

fe.cov 
the estimated variance-covariance matrix of the fixed effects. 

fe.cov 
the estimated variance-covariance matrix of the random effects. 

iter 
the number of iterations at convergence. 

AIC 
A list of likelihood values for model selection purposes, where AIC is the AIC value, 
("AIC"), hLik is the h-likelihood value. 

Summary  

a summary object of the fitted model. 

Examples  

# 1. Using ever use of smoke data set. Discrete and continuous variables are 
defined. 
data <- eversmoke 
mformula <- "smoke_ever ~ as.factor(age) + as.factor(gender) + as.factor(race) 
+ as.factor(year) + povt_rate" 
dom <- "county" 
y.family <- "binomial" 
rand.family <- "gaussian" 
hglmbc.fit <- hglmbc(data=eversmoke, mformula, dom = "county", 
y.family="binomial") 
 

# 2. mformula is not defined, 
resp <- "smoke_ever" 
dom <- "county" 
catX <- c("year","gender","race","age") 
contX <- "povt_rate" 
hglmbc.fit <- hglmbc(data = eversmoke, resp, dom = "county",fe.disc = catX, 
fe.cont = contX, y.family = "binomial") 

 

hglmbc <- function(data, mformula = NULL, dom = NULL, y.family = 

"binomial",rand.family = "gaussian", tol=1e-05, ...) 

{ 

fit.hglmbc <- match.call() 

  namedList <- list() 

  if(!exists("data") | is.null(dom)){ 

    stop("Error! please define the data frame and random effect component.") 

  } 

https://rdrr.io/r/stats/AIC.html
https://rdrr.io/r/base/c.html
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  data <- data[order(data[ ,dom]), ] 

  # If mformula and dom is defined 

  if(!is.null(mformula) & exists("mformula") & exists("dom")){ 

    varOut <- getVars(mformula) 

    resp <- as.character(varOut[[1]]) 

    fe.disc <- as.vector(varOut[[2]]) 

    fe.cont <- as.vector(varOut[[3]]) 

  } 

  # if mformula is not defined, but resp is defined 

  if(is.null(mformula) & exists("resp") & exists("dom")){ 

    myformula <- myFormula(data, resp, dom) 

    # mformula <- as.formula(myformula) 

    varOut <- getVars(myformula) 

    resp <- as.character(varOut[[1]]) 

    fe.disc <- as.vector(varOut[[2]]) 

    fe.cont <- as.vector(varOut[[3]]) 

  } 

  if(is.null(mformula) & !exists("resp")){ 

    stop("At least mformula or the response variable (resp) with dom need to be 

defined!") 

  } 

  # cov_data <- data[ ,!colnames(data) %in% paste0(y,re)] 

  fe.data <- data[ ,colnames(data) %in% c(fe.cont,fe.disc)] 

  ## Get the design matrix for user defined referenced group 

  # Reference group for each categorical variable 

  if(!exists("ref.group")){ 

    minVal <- apply(data[ ,fe.disc], 2, min) 

    ref.group <- as.vector(paste0(names(minVal),minVal)) 

  } 

  X <- DesignM(data=fe.data,fe.cont,fe.disc,ref.group) 

  y <- data[ ,paste0(resp)] 

  uDom <- data[ ,paste0(dom)] 

  ## Initial parameters 

  m <- length(unique(uDom)) 

  ## Call function to obtain initial parameters   

  beta0 <- initPar(data, resp, dom) 

  beta00 <- bInitOrder(beta0,fe.cont) 

  beta_new <- as.matrix(beta00$est) 

  theta0 <- 0.1 

  u_new <- u0 <- as.matrix(rnorm(m,0,sd=sqrt(theta0))) 

  X <- as.matrix(X) 

  N <- nrow(data) 

  p <- ncol(X) 
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  zeta_new <- rep(1,m) 

  cnty <- unique(uDom) 

  delta <- NULL 

  beta_new_all <- beta_new ;u_new_all <- u_new;  

  theta_all <- theta_new; col_names <- c() 

  theta_new_all <- c(theta_new); delta_final <- conv_iter <- iter <- 0 

   

  repeat{ 

    beta <- as.vector(beta_new) 

    u <- as.vector(u_new) 

    theta <- theta_new; zeta <- zeta_new 

    BU_old <- rbind(as.matrix(beta),as.matrix(u)) 

    theta_inv <- solve(theta) 

    G_inv <- kronecker(theta_inv, diag(m)) 

    corr_ZU <- Z%*%(zeta*u_new + (theta*(1-zeta))/2) 

    J <- as.matrix(HessianM(X, Z, beta = beta_new, u = u_new, theta, y.family, 

rand.family)) 

    # J_inv <- solve(J, tol=10^-20) 

    # For non-singular matrices the pseudoinverse is equivalent to the standard 

inverse. 

    J_inv <- pseudoinverse(J) 

    D1h_B <- t(X)%*%(y-P) 

    D1h_u <- t(Z)%*%(y-P)- G_inv%*%u 

    S <- as.vector(rbind(D1h_B, D1h_u))   

    BU_new = BU_old + (J_inv%*%S)    # Newton Raphson 

    beta_new <- as.vector(BU_new[1:length(beta)]) 

    u_new <- as.vector(BU_new[(length(beta)+1):length(BU_new)]) 

    convergence_beta <- abs(beta_new-beta) 

    max(convergence_beta) 

    beta_new_all <- cbind.data.frame(beta_new_all,value=round(beta_new,6)) 

    u_new_all <- cbind.data.frame(u_new_all,value=round(u_new,6)) 

    rm(P); rm(W); rm(J); 

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++ # 

    #             Bias Correction                          # 

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++ # 

    # update J with estimated beta and u 

    J <- as.matrix(HessianM(X, Z, beta = beta_new, u = u_new, theta, y.family, 

rand.family))   

    Jhat_Inv <- pseudoinverse(J) 

    Tau <- Jhat_Inv[(p+1):(p+m),(p+1):(p+m)] 

    Taut <- as.vector(diag(Tau)) 

    zeta <- as.vector(theta)/(as.vector(theta)+Taut) 

    zeta <- as.vector(zeta) 
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    corr_u <- zeta*u_new     # Corrected u_new 

    rm(P); rm(W); rm(J); 

    iter <- iter + 1 

    ########### ----------------------------------############# 

    ######        Estimate theta using Dh/Dtheta=0       ###### 

    ########### ----------------------------------############# 

    D2h_UU <- t(Z)%*%W%*%Z + G_inv 

    J_inv22 <- pseudoinverse(D2h_UU) 

    theta_new <- 1/m*(t(u_new)%*%u_new)+1/m*func_trace(J_inv22) 

    ### To get the variance of u based on J 

    J <- as.matrix(HessianM(X, Z, beta = beta_new, u = u_new, theta = theta_new, 

y.family, rand.family))   

    J_inv <- pseudoinverse(J) 

    fe.cov <- J_inv[1:p,1:p]       ## Var-Cov matrix of fixed effects 

    re.cov  <- J_inv[(p+1):(p+m),(p+1):(p+m)]    ## Var-Cov matrix of random effects 

    fe.var <- diag(fe.cov)    ### Var of fixed effects 

    fe.var <- round(fe.var,10) 

    fe.var <- fe.var[fe.var != 0]  ## Remove coefs of ref group(which has very small 

values) 

    fe.std.err <- round(sqrt(fe.var), 5) 

    # +++++++++++++++++++++++++++++++++++++ # 

    convergence_theta <- abs(theta_new-theta) 

    delta <- max(convergence_beta,convergence_theta) 

    delta_final <- cbind.data.frame(delta_final,value=delta) 

    col_names <- c(col_names,paste0("iter",iter)) 

    # cat(paste0("delta: ",delta,"\n \n")) 

    if(delta <= tol){ 

break 

}  

} 

  est.beta <- round(beta_new, 5) 

  est.theta <- round(theta_new, 5) 

  est.re <- data.frame(Domain = cnty, est=round(u_new, 5)) 

  z1 <- est.beta/fe.std.err 

  est.fe <- data.frame(est=est.beta, std.err=fe.std.err,Z0 = round(z1,5), 

                       P = round(2*pnorm(-abs(z1)),5)) 

  colnames(est.fe) <- c("Estimate","Std.Error","Z Value","P(>|Z|)") 

  rownames(est.fe) <- beta00[ ,1] 

  fit.hglmbc$est.fe <- est.fe 

  fit.hglmbc$iter <- iter 

  fit.hglmbc$est.beta <- est.beta 

  fit.hglmbc$re <- est.re 

  fit.hglmbc$var.par <- est.theta 
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  fit.hglmbc$fe.cov <- fe.cov 

  fit.hglmbc$re.cov <- re.cov 

  fit.hglmbc$model.sel <- ModelSel(X, Z, est.beta, u = est.re, theta = est.theta, 

y.family, rand.family) 

  namedList <- list(`Model formula` = mformula, `random effect` = dom ,`fixed  

effects estimates`= est.fe, `dispersion paramerer` = est.theta,`hglm model 

inference`= model.sel, iter = iter, ` `= paste0("Converged in ",iter," iterations 

with tol = ",delta,".")) 

  class(namedList) <- "summary.hglm.fit" 

  fit.hglmbc$summary <- namedList 

  return(fit.hglmbc) 

  rm(mformula); rm(fe.cont); rm(fe.disc) 

  # cat(paste0("Converged in ",iter," iterations with tol = ",delta,". \n \n")) 

} 

HessianM <- function(X, Z, beta = NULL, u = NULL, theta = NULL, y.family, rand.family, 

...) 

{ 

if(y.family = "binomial"){ 

    P <- 1/(1+exp(-(X%*%beta+ Z%*%u)))     

    W <- Diagonal(P*(1-P)) 

}else (y.family = "Poisson"){ 

    P <- exp(X%*%beta+Z%*%u)     

    W <- Diagonal(P) 

} 

if(rand.family %in% c("gaussian","normal")){ 

           theta_inv <- solve(theta) 

    D2Lu <- G_inv <- kronecker(theta_inv, diag(m)) 

        } 

    D2h_BB <- t(X)%*%W%*%X   # or crossprod(t(crossprod(X,W)),X) 

    D2h_BU <- t(X)%*%W%*%Z 

    D2h_UB <- t(Z)%*%W%*%X 

    D2h_UU <- t(Z)%*%W%*%Z + D2Lu 
    J <- rbind(cbind(D2h_BB,D2h_BU),cbind(D2h_UB,D2h_UU))   
    J <- as.matrix(J) 
    return(J) 

} 

## Calculate AIC and adjusted h-likelihood 

ModelSel <- function(X, Z, beta = NULL, u = NULL, theta = NULL, offset = NULL, 

y.family, rand.family, ...) 

{ 
if(tolower(y.family) = "binomial"){ 

    P <- 1/(1+exp(-(X%*%beta+ Z%*%u)))     

    yt <- 1-y 

    logLik_y <- y*log(P) + yt*log(1-P) 

}else if(tolower(y.family) = "poisson"){ 
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If(!is.null(offset)){ 

thetaGLM <- exp(X%*%beta+Z%*%u + offset) 

}else{ 

thetaGLM <- exp(X%*%beta+Z%*%u) 

}     

    y <- ifelse(y==0, 0.0000001, y)  

    log_facty <- 1/2*log(2*pi*y) + y*log(y) - y 

    logLik_y <- y*log(lambda) - thetaGLM - log_facty    

} 

if(rand.family %in% c("gaussian","normal")){ 

           theta_inv <- solve(theta) 

    G_inv <- kronecker(theta_inv, diag(m)) 

    logLik_u <- -m/2*log(theta) -1/2*t(u_new)%*%G_inv%*%u_new - m/2*log(2*pi) 

} 

  ## Calculate AIC 

  sumlogylik <- sum(logLik_y) 

  sumlogulik <- sum(logLik_u) 

  hlik <- sumlogylik + sumlogulik 

  AIC <- -2*(sumlogylik + sumlogulik) + 2*(p + length(theta)+1)) 

  model.sel <- cbind.data.frame(AIC, hLik = hlik) 
  return(model.sel) 

} 

## Get variable names 

getVars <- function(mformula = NULL) 

{ 

  if(is.null(mformula)){ 

    stop("mformula needs to be defined!") 

  }else if(!is.null(mformula)){ 

    mform <- as.formula(mformula) 

    y_var <- as.character(gsub("\\~.*", "", mform)[2]) 

    mform <- as.character(unlist(splitFormula(mform, sep = "+"))) 

    mform <- as.character(gsub("~", "", mform)) 

    x_disc <- as.vector(vars_select(mform, starts_with("as.factor"))) 

    x_cont <- mform[!mform %in% x_disc] 

    x_disc <- gsub("as.factor\\(","",x_disc) 

    x_disc <- as.vector(gsub("\\)","",x_disc)) 

    varOut <- list(y_var,x_disc,x_cont) 

    return(varOut) 

  } 

} 
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## Get model formula 

myFormula <-  function(data,resp=NULL,dom=NULL, ...){ 

  if(!exists("resp") | !exists("dom")){ 

      stop("Please define the response variable and random effect!") 

  } 

  IntParFomular0 <- paste0(resp,"~") 

  dataF <- data[ ,!colnames(data) %in% c(resp,dom)] 

  if(ncol(dataF) > 0){ 

    if(!exists("fe.cont") & !exists("fe.disc")){ 

      # If discrete and continous variables are not defined, consider based on 

variable type 

      cat("Fixed effects and random effects are not defined, selected by variable 

type !!!!", "\n\n\n") 

      # Get discrete variables by variable type 

      unqV <- lapply(dataF, unique) 

      unqVC <- unlist(lapply(unqV, length)) 

      fe.disc <- c(names(unqVC[unqVC<=5])) 

      fe.cont <- c(names(unqVC)[!names(unqVC) %in% fe.disc]) 

      fe.cont <- c(fe.cont[fe.cont != c(dom) & fe.cont != c(resp)]) 

      discFomular <- IntParFomular0 

      if(length(fe.disc)!= 0){ 

        for(i in 1:length(fe.disc)){ 

          temp <- paste0("as.factor(",fe.disc[i],")+") 

          discFomular <- paste0(discFomular,temp) 

        } 

      } 

      if(length(fe.cont) != 0){ 

        for(j in 1:length(fe.cont)){ 

          temp <- paste0(fe.cont[j],"+")  # paste0(fe.cont[j]) 

          discFomular <- paste0(discFomular,temp) 

        } 

      } 

      IntParFomular <- discFomular 

    }else if(!exists("fe.cont") & exists("fe.disc")){ 

      fe.cont <- c(names(which(lapply(dataF, is.character)==FALSE))) 

      fe.cont <- c(fe.cont[fe.cont != c(dom) & fe.cont != c(resp)]) 

      discFomular <- IntParFomular0 

      for(i in 1:length(fe.disc)){ 

        temp <- paste0("as.factor(",fe.disc[i],")+") 

        discFomular <- paste0(discFomular,temp) 

      } 

      if(length(fe.cont) != 0){ 

        for(j in 1:length(fe.cont)){ 

          temp <- paste0(fe.cont[j],"+") 
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          discFomular <- paste0(discFomular,temp) 

        } 

      } 

      IntParFomular <- discFomular 

    }else if(exists("fe.cont") & !exists("fe.disc")){ 

      fe.disc <- c(names(which(lapply(dataF, is.character)==TRUE))) 

      discFomular <- IntParFomular0 

      if(length(fe.disc) != 0){ 

        for(i in 1:length(fe.disc)){ 

          temp <- paste0("as.factor(",fe.disc[i],")+") 

          discFomular <- paste0(discFomular,temp) 

        } 

      } 

      for(j in 1:length(fe.cont)){ 

        temp <- paste0(fe.cont[j],"+") 

        discFomular <- paste0(discFomular,temp) 

      } 

      IntParFomular <- discFomular 

    }else{ 

      fe.disc <- fe.disc 

      fe.cont <- fe.cont 

      discFomular <- IntParFomular0 

      for(i in 1:length(fe.disc)){ 

        temp <- paste0("as.factor(",fe.disc[i],")+") 

        discFomular <- paste0(discFomular,temp) 

      } 

      for(j in 1:length(fe.cont)){ 

        temp <- paste0(fe.cont[j],"+") 

        contFomular <- paste0(discFomular,temp) 

      } 

      IntParFomular <- contFomular 

    } 

    if(sapply(strsplit(as.character(IntParFomular), ""), tail, 1)=="+"){ 

      rmP <- sapply(strsplit(as.character(IntParFomular), ""), tail, 1) 

      IntParFomular <- stri_replace_last(IntParFomular, fixed = "+", "") 

    } 

    mformula <- IntParFomular 

  }else{ 

    stop("Error! No other variables exist except response response variable and 

random effect") 

  } 

  return(mformula) 

} 
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## Get the design matrix 

DesignM <- function(data,fe.cont,fe.disc,ref.group){ 

  DX_out <- data[, c(fe.cont)] 

  for(i in 1:length(fe.disc)){ 

    # i <- 1 

    var_temp <- fe.disc[i] 

    DX_temp <- data[,var_temp] 

    DX_temp <- as.factor(DX_temp) 

    DX_out <- cbind.data.frame(DX_out,DX_temp) 

  } 

  colnames(DX_out) <- c(fe.cont,fe.disc) 

  DX11 <- dummy_cols(DX_out, select_columns = paste0(fe.disc)) %>% 

    select(-c(paste0(fe.disc))) 

  # DX11 <- data.frame(Intercept=rep(1,nrow(DX_out)),DX11) 

  colnames(DX11) <- gsub("_","",colnames(DX11)) 

  DX11 <- DX11[ ,!colnames(DX11) %in% ref.group]    ### Remove ref group 

  DX <- DX11[ ,order(colnames(DX11))] 

  X <- data.frame(Intercept=rep(1,nrow(DX)),DX) 

  return(X) 

} 

## Get trace of a matrix 

func_trace <- function(X){ 

  n <- dim(X)[1] 

  tr <- 0    ### initialize trace 

  for (j in 1:n){ 

    k <- X[j,j] 

    tr <- tr + k 

  } 

  return(tr[[1]]) 

} 

## Get initial parameters 

initPar <- function(data, resp, dom, fe.disc = NULL, fe.cont = NULL, y.family = 

NULL, ...){ 

  myFormula <- myFormula(data, resp, dom) 

  mformula <- as.formula(myFormula) 

  # Returns the dist of y if not specified 

  if(is.null(y.family)){ 

    yVal <- data[ ,resp] 

    if(length(unique(yVal))==2){ 

      y.family <- "binomial" 

      cat(paste0("Distribution of response variable is taken as", y.family)) 

    }else if(length(unique(yVal)) > 2 & is.numeric(yVal)){ 

      y.family <- "gaussian" 
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      cat(paste0("Distribution of response variable is taken as", y.family)) 

    }else{ 

      stop("Error: Family is not defined !!!") 

    } 

  }else{ 

    y.family <- y.family 

  } 

  if(y.family == "binomial"){ 

    mdlFit <- glm(formula = mformula,family = binomial(link=logit),data=data) 

  }else if(y.family == "Poisson"){ 

    mdlFit <- glm(formula = mformula,family = poisson(link=log),data=data) 

  }else if(y.family == "gaussian"){ 

    mdlFit <- glm(formula = myFormula,family = gaussian(link="identity"),data=data) 

  } 

  beta0 <- data.frame(summary(mdlFit)$coefficients[,1]) 

  beta0 <- data.frame(parameter=rownames(beta0),est=beta0[,1]) 

  rownames(beta0) <- NULL 

  return(beta0) 

} 

## Get initial parameters ordered by variable names 

bInitOrder <- function(beta0,fe.cont){ 

  beta0_cont <- beta0[grepl("^as.factor", beta0$parameter)==FALSE, ] ## beta for 

non-discrete parameters(including intercept) 

  beta0_Int <- beta0_cont[!beta0_cont$parameter %in% fe.cont, ]        ## Intercept 

  beta0_cont <- beta0_cont[beta0_cont$parameter %in% fe.cont, ] 

  beta0_cont$parameter <- gsub("_","",beta0_cont$parameter) 

  beta0_Int$parameter <- gsub("\\(Intercept\\)","Intercept",beta0_Int$parameter) 

  beta0_dis <- beta0[grepl("^as.factor", beta0$parameter)==TRUE, ]  # beta for disc 

vars 

  beta0_dis$parameter <- gsub("as.factor\\(","",beta0_dis$parameter) 

  beta0_dis$parameter <- gsub("\\)","_",beta0_dis$parameter) 

  beta0_dis$col <- gsub("_.*","",beta0_dis$parameter) 

  unq <- unique(beta0_dis$col) 

  beta0_dis$parameter <- gsub("_","",beta0_dis$parameter) 

  beta0_dis$col <- NULL 

  beta0 <- rbind(beta0_cont,beta0_dis) 

  if(!is.character(beta0$parameter)){ 

  beta0$parameter <- as.character(beta0$parameter) 

  } 

  beta0 <- beta0[order(beta0$parameter), ] 

  beta0$est <- round(as.numeric(beta0$est),5) 

  beta00 <- rbind.data.frame(beta0_Int,beta0) 

  return(beta00) 
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} 

 

hglmbcJM model fit function in the multivariate joint model. The MHLEs are obtained using the 

CHBC method. 

hglmbcJM( 

  data, 

  JMformula = NULL, 

  dom = NULL, 

  JMy.family = c("Poisson","Poisson") 

  rand.family = "gaussian", 

  tol = 1e-05, 

  ... 

) 

 
Arguments 

data a data frame to be used for the multivariate joint model. 

JMformula A list with model formulas for each outcome variable, myFormula: a symbolic 
description of the model to be fitted. The details of the mformula is given under 
the details section. Ex. For two outcomes (y1,y2), mformula1 = y1~x1+x2+x3, 
mformula2 = y2~x1+x2, mvformula = list(mformula1, mformula2). 

dom A domain/cluster/small area to specify the random effect. e.g. numeric zip 
code, county, or state code, and also the name of the county or name of the 
state. 

JMy.family A vector of distributions for each response from the exponential family to 
describe the error distribution. multiY.family = c(“Poisson”, “Poisson”). 
See "family". 

rand.family A description of the distribution of random effects. Default is 𝑢~𝓝(0, 𝜎2). 

tol Predefined tolerance value. Default value is tol = 1e-5. 

... Other arguments, See the details section. 

 

## Obtain MHLEs of the bivariate joint model  

        X <- adiag(X1, X2) 

        Z <- adiag(Z1, Z2) 

        y <- rbind(as.matrix(y1),as.matrix(y2)) 

hglmbcJM <- function(data, JMformula = NULL, dom = NULL, JMy.family = NULL ,rand.family = 

"gaussian", tol=1e-05, ...) 

https://niroshar.github.io/hglmbc2/reference/myFormula.html
https://rdrr.io/r/stats/family.html
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{ 

    repeat{ 

        beta1 <- as.vector(beta1_new)     ### fixed effects for resp 1 

        beta1 <- round(beta1,10) 

        beta2 <- as.vector(beta2_new)     ### fixed effects for resp 2 

        beta2 <- round(beta2,10) 

        ## Bias correction  

        ## bias correction- replace u_hat by mu_tilde = sigma(sigma + v_i)^-1*u_hat  

        ## and exp(u_hat) by exp(mu_tilde + 1/2 diag(sigma_tilde)), where  

        ## sigma_tilde = (sigma - sigma (sigma + v_i)^-1 sigma) 

        est_U <- rbind(as.matrix(u1_new), as.matrix(u2_new)) 

        V <- V_new  

        sigmaBigM <- kronecker(sigmaNew, diag(m))   

        sigmaV_inv <- (sigmaBigM + V) 

        if(!is.na(det(sigmaV_inv))){ 

          mu_tilde <- round(sigmaBigM%*%pseudoinverse(sigmaV_inv),10)%*%est_U 

        }else if(is.na(det(sigmaV_inv))){ 

          next 

        } 

        # mu_tilde <- round(sigmaBigM%*%pseudoinverse(sigmaV_inv),10)%*%est_U 

        corr_U <- mu_tilde                           # ----------------- ** 

        corr_u1 <- corr_U[1:m] 

        corr_u2 <- corr_U[(m+1):nrow(corr_U)] 

        sigmaV_inv <- (sigmaBigM + V) 

        # sigma_tilde <- (sigmaBigM - sigmaBigM%*%pseudoinverse(sigmaV_inv)%*%sigmaBigM) 

        if(!is.na(det(sigmaV_inv))){ 

          sigma_tilde <- (sigmaBigM - sigmaBigM%*%pseudoinverse(sigmaV_inv)%*%sigmaBigM) 

        }else if(is.na(det(sigmaV_inv))){ 

          next 

        } 

        corr_ZU <- Z%*%(mu_tilde + 1/2*diag(sigma_tilde))  # not corrected exp(ZU) 

        corr_Zu1 <- corr_ZU[1:N1] 

        corr_Zu2 <- corr_ZU[(N1+1):nrow(corr_ZU)] 

        ## Bias corrected u 

        est_u1 <- as.vector(corr_u1) 

        est_u2 <- as.vector(corr_u2) 

        est_U <- corr_U    # rbind(as.matrix(est_u1), as.matrix(est_u2)) 

        beta_old <- rbind(as.matrix(beta1),as.matrix(beta2)) 

        BDU_old <- rbind(as.matrix(beta_old), as.matrix(est_U)) 

        sigma_inv <- solve(sigmaNew) 

        Q <- kronecker(sigma_inv, diag(m))  ## create 2m x 2m of sigma inverse 

        out1 <- funcW(yfamily1,X1,beta1,corr_Zu1) 

        W1 <- out1[[1]] 
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        mu1 <- out1[[2]] 

        out2 <- funcW(yfamily2,X2,beta2,corr_Zu2) 

        W2 <- out2[[1]] 

        mu2 <- out2[[2]] 

        mu <- as.matrix(rbind(mu1,mu2)) 

        D1Lu <- -dot(est_U,Q)  # -U(simga_inv)I_mm 

        D2Lu <- Q  ## create 2m x 2m of sigma inverse 

        D1h_B <- t(X)%*%(y-mu) 

        D1h_U <- t(Z)%*%(y-mu) + D1Lu #- dot(Ur,sigmaInvBlockDiag) 

        S <- as.vector(rbind(D1h_B, D1h_U))    

        # Hessian matrix 

        W <- adiag(as.matrix(W1), as.matrix(W2))   

        # Q <- sigmaInvBlockDiag  

        D2h_BB <- t(X)%*%W%*%X 

        D2h_BU <- t(X)%*%W%*%Z 

        D2h_UB <- t(Z)%*%W%*%X 

        D2h_UU <- t(Z)%*%W%*%Z + D2Lu 

        J <- rbind(cbind(D2h_BB,D2h_BU),cbind(D2h_UB,D2h_UU)) 

        J <- as.matrix(J) 

        # if(is.finite(det(J)) & det(J) != 0){ 

        # J_inv <- pseudoinverse(J) 

        if(!is.na(det(J))){ 

          J_inv <- pseudoinverse(J) 

        }else if(is.na(det(J))){ 

          next 

        } 

        # Newton Raphson 

        BDU_new = BDU_old + (J_inv%*%S)  

        p <- p1 + p2 

        beta_new <- as.vector(BDU_new[1:p]) 

        u_new <- as.vector(BDU_new[(p+1):length(BDU_new)]) 

        beta1_new <- beta_new[1:p1] 

        beta2_new <- beta_new[(p1+1):p] 

        u1_new <- u_new[1:m]  

        u2_new <- u_new[(m+1):(2*m)]    

        convergence_beta <- abs(beta_new - beta_old) 

        rm(P1); rm(P2); rm(W);  

        beta_new_all <- cbind.data.frame(beta_new_all,value=round(beta_new,6)) 

        u_new_all <- cbind.data.frame(u_new_all,value=round(u_new,6)) 

        # ----------------------------------------------------------------------- # 

        #                  Estimate sigma - var-cov matrix of U                   # 

        # ----------------------------------------------------------------------- # 

        ## score function of h_A = d(h_A)/d(theta) 
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        U_new <- rbind(as.matrix(u1_new),as.matrix(u2_new)) 

        Q <- kronecker(sigma_inv, diag(m)) 

        QPrime <- -1*Q%*%Q 

        Q2Prime <- 2*kronecker((sigma_inv%*%sigma_inv%*%sigma_inv), diag(m)) 

        corr_Zu1 <- Z1%*%u1_new 

        out1 <- funcW(yfamily1,X1,beta1_new,corr_Zu1) 

        W1 <- out1[[1]] 

        mu1 <- out1[[2]] 

        corr_Zu2 <- Z2%*%u2_new 

        out2 <- funcW(yfamily2,X2,beta2_new,corr_Zu2) 

        W2 <- out2[[1]] 

        mu2 <- out2[[2]] 

        W <- adiag(as.matrix(W1), as.matrix(W2)) 

        D2h_UU <- t(Z)%*%W%*%Z + Q 

        if(!is.na(det(D2h_UU))){ 

          J22_inv <- pseudoinverse(D2h_UU) 

        }else if(is.na(det(D2h_UU))){ 

          next 

        } 

        # J22_inv <- pseudoinverse(D2h_UU) 

        SA1 <- -m/2*func_trace(sigma_inv) 

        ## Bias correction for u - start ---------- 

        V <- J22_inv 

        sigmaBigM <- kronecker(sigmaNew, diag(m))  

        sigmaV_inv <- sigmaBigM + V 

        if(!is.na(det(sigmaV_inv))){ 

          mu_tilde <- sigmaBigM%*%pseudoinverse(sigmaV_inv)%*%u_new 

        }else if(is.na(det(sigmaV_inv))){ 

          next 

        } 

        # mu_tilde <- sigmaBigM%*%pseudoinverse(sigmaV_inv)%*%u_new 

        corr_U <- mu_tilde                                 # ----------------- ** 

        ## Bias correction for u - end ------------ 

        SA2 <- -1/2*t(corr_U)%*%QPrime%*%corr_U 

        SA30 <- J22_inv%*%QPrime 

        SA3 <- -1/2*func_trace(SA30) 

        D1hA_Sigma <- SA1 + SA2 + SA3   # ---------------------------- *** 

        ## components of 2nd derivative wrt to sigma 

        JA1 <- m/2*func_trace(sigma_inv%*%sigma_inv) 

        JA2 <- -1/2*(t(corr_U)%*%Q2Prime%*%corr_U) 

        JA30 <- J22_inv%*%Q2Prime - QPrime%*%J22_inv%*%QPrime%*%J22_inv 

        JA3 <- -1/2*func_trace(JA30) 

        JA <- JA1 + JA2 + JA3 
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        D2hA_Sigma <- -1*JA 

        D2hASigmaInv <- solve(D2hA_Sigma) 

        sigmaOld <- sigmaNew 

        D2D1 <- D2hASigmaInv%*%D1hA_Sigma 

        sigmaNew <- sigmaOld + as.numeric(D2D1) 

        rm(D2D1);  

        ## Update V with corrected u for next iteration 

        sigma_inv <- solve(sigmaNew) 

        Q <- kronecker(sigma_inv, diag(m)) 

        ## for poisson 

        corr_Zu1 <- Z1%*%u1_new 

        out1 <- funcW(yfamily1,X1,beta1_new,corr_Zu1) 

        W1 <- out1[[1]] 

        mu1 <- out1[[2]] 

        corr_Zu2 <- Z2%*%u2_new 

        out2 <- funcW(yfamily2,X2,beta2_new,corr_Zu2) 

        W2 <- out2[[1]] 

        mu2 <- out2[[2]] 

        W <- adiag(as.matrix(W1), as.matrix(W2)) 

        D2h_UU <- t(Z)%*%W%*%Z + Q 

        if(!is.na(det(D2h_UU))){ 

          J22_inv <- pseudoinverse(D2h_UU) 

        }else if(is.na(det(D2h_UU))){ 

          Next 

        } 

        # J22_inv <- pseudoinverse(D2h_UU) 

        V_new <- J22_inv                ## ------------------------ ** 

        convergence_sigma <- abs(sigmaNew - sigmaOld) 

        delta <- max(convergence_beta, convergence_sigma) 

        print(paste0("tolerance: ", delta)) 

        print(paste0("No of iterations: ", iter)) 

        iter <- iter + 1 

        # iter_all <- c(iter_all,paste0("iter",iter)) 

        iter_all <- c(iter_all, iter) 

        if(delta <= 1e-5){ 

          break 

        }else if(iter >= 100){ 

          Break 

        } 

      } 
} 

## Function to get the weight matrix 
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# funcW(X,beta,Z,u) 

funcW <- function(yfamily,X,beta,corr_zu){ 

  if(tolower(yfamily) %in% "poisson"){ 

    P <- exp(X%*%beta + corr_zu)  

    mu <- P 

    W <- Diagonal(x=as.vector(P))   

    out <- list(W,mu) 

  } 

  return(out) 

} 
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