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Abstract
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Date: December 08, 2020

Biomedical count data such as the number of seizures for epilepsy patients,

number of new tumors at each visit or the number vomiting after each chemo-radiation

for the cancer patients are common. Often these counts are measured longitudinally

from patients or within clusters in multi-site trials. The Poisson and negative binomial

models may not be adequate when data exhibit over or under-dispersion, respectively.

On the contrary, a variety of dispersion conditions in count data can be captured by

Conway-Maxwell Poisson (CMP) model.

This doctoral dissertation relegates to developing a statistical methodology to

model longitudinal count data distributed as CMP via mixed effect modeling ap-

proach. We propose a Bayesian CMP regression model. Specifically, we develop a

regression model with random intercept and slope to capture heterogeneity among

subjects and dependence over time. In addition, a Bayesian generalized additive

mixed effect model based on CMP is proposed by assuming a non-linear shape of

the functional relationship between mean of longitudinal response and covariates.

Case studies demonstrating the usefulness of the proposed methodology by using real

life clinical trial data are also presented. We apply an adaptive variant of Hamilto-

nian MCMC to carry out Bayesian computation. The Deviance Information Criterion

(DIC), along with other Bayesian model assessment criteria such as (LPML), (WAIC),

(LOO) are used for model comparisons.
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Both in simulation studies and real data analysis, we conclude that in terms

of model fitting, CMP models outperform the competing models when data exhibit

dispersion.
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Chapter 1

Introduction

1.1 General Background

Count data is a common phenomenon in biomedical and public health research. Ex-

amples include number of hospitalizations of patients, number of physician visits,

number of epileptic seizures, distinct multiple sclerosis lesions, number of tender or

swollen joints of rheumatoid arthritis patients, symptom counts pertinent to a partic-

ular therapeutic regime , number of medicines consumed by patients for treatment of

a specific disease, number of dental caries for patients, number of road accidents, and

number of injury or death per road accidents, etc. Sometimes these data are longitu-

dinally measured or clustered among sites such as hospitals or clinics, hence induce

within-patient or within-cluster correlation. The underlying correlation invalidates

the crucial assumption of independence which is a base for many statistical methods.

To make valid inference, one must consider subject- or cluster-specific heterogeneity

by incorporating random effects in the model. Parameter estimates in random effect

models provide subject-specific interpretation (G. Fitzmaurice et al., 2008). Under-or

over-dispersion is another issue to consider in count data models. Inclusion of random

effects in the model accounts for additional variability in the data arise from repeated
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measures from same subject, and over- or under-dispersion involved in the counting

process (Morris et al., 2017).

The Poisson distribution is commonly used method for count data modeling.

Since Poisson distribution belongs to the exponential family, modeling in the gen-

eralized linear model (GLM) framework under the Poisson assumption is simple.

However, the Poisson distribution is not the best choice to deal with over- or under-

dispersed data as they violate equal mean and variance assumption. The Negative

Binomial model performs well for over-dispersed, but not for under-dispersed data.

Over-dispersion is highly discussed in the literature while under-dispersion in the

data is also common, especially in the case of rare events. Several generalizations of

Poisson models such as generalized Poisson, restricted generalized Poisson have been

suggested in the literature (del Castillo & Pérez-Casany, 2005; Famoye, 1993; Famoye

et al., 2004; Consul & Jain, 1973; Ridout & Besbeas, 2004). However, the downside

of generalized Poisson models is the inability to capture some level of dispersion due

to truncation of the dispersion parameter under certain conditions (Famoye, 1993).

In this case the Conway-Maxwell Poisson (CMP) distribution is the better choice as

it can capture a wide range of dispersion, and belongs to the exponential family for a

non-varying dispersion parameter (Conway & Maxwell, 1962; K. F. Sellers & Shmueli,

2010).

1.2 Literature Review

1.2.1 Chronology of CMP Distribution and its Applications

The CMP distribution was developed by Conway and Maxwell (Conway & Maxwell,

1962). Minka et al. (2003) discussed approximate computational schemes for mo-

ments, and maximum likelihood estimates (MLE) of the parameters of CMP distribu-

tion. Shmueli et al. (2005) studied the discrete nature of the distribution, probabilistic

2



properties, special cases of CMP, and the parameter estimation techniques (weighted

least square, maximum likelihood, and Bayesian). In addition, they discussed several

extensions of CMP distribution such as zero inflated, zero deflated CMP distribu-

tions, and CMP binomial distribution with a hint to extension to CMP multinomial

distribution.

The works, particularly by Shemueli et al.(2005) revived further research on

the CMP distribution during the last decade. Theoretical developments of CMP are

found in literature. For instances, the conjugate analysis of CMP (Kadane et al.,

2006), the explicit and exact expression of the cumulative density function (CDF) of

CMP along with its useful moments (Nadarajah, 2009), properties of CMP and its

generalization of binomial distribution (referred as CMB) (Daly & Gaunt, 2015), a

bi-variate CMP as a generalization of the bivariate count data model (K. F. Sellers et

al., 2016), sum of the CMP and its special cases (K. F. Sellers et al., 2017), asymptotic

expansion for the normalizing constant of the CMP (Gaunt et al., 2019). Sellers et

al. (2012) provides a good review of CMP modeling approaches, their applications,

and proposed a generalized control chart for CMP data.

Literature reveals the earlier applications of CMP as the modeling of the

state dependent service rates (Conway & Maxwell, 1962), word length in linguis-

tics (Wimmer & Altmann, 1996; Wimmer et al., 1994), count data in marketing and

e-Commerce (Boatwright et al., 2003; Borle et al., 2006; Kalyanam et al., 2007; Borle

et al., 2005; Singh et al., 2009), motor vehicle crashes (Lord et al., 2010, 2008), cure

rate models with application to cutaneous melanoma data (Rodrigues et al., 2009),

seizure counts in epileptic patients (K. F. Sellers et al., 2017). Survival data anal-

ysis with a Weibull-Conway-Maxwell-Poisson distribution was suggested by Gupta

& Huang (2017). Choo-Wosoba et al. (2018) studied longitudinal fluoride exposure

with dental fluorosis and dental caries .
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1.2.2 CMP Distribution

Let yi be the count response for subject i, then the probability mass function (PMF)

of the CMP distribution (Conway & Maxwell, 1962) with shape parameter θi and

dispersion parameter φ is given by

P (Yi = yi) =
θyii

(yi!)φZ(θi, φ)
, (1.1)

where θi > 0, φ ≥ 0, and Z(θi, φ) =
∑∞

k=0
θki

(k!)φ
is the normalizing constant for

i = 1, . . . , I.

The dispersion parameter, φ = 1, < 1, > 1 indicate equi-dispersion, over-

dispersion and under dispersion respectively. Special cases of CMP are Poisson

(φ = 1), Geometric (φ = 0, θi < 1), and Bernoulli (φ→∞, pi = θi/(1 + θi)), where pi

is the probability of success. There is no simple closed form for linking θi and φ. How-

ever, a formulation is given by Ralph Snider mentioned in K. F. Sellers et al. (2012)

as θi = E(Y φ), where θi is the expected value of power transform counts with power φ.

The approximated mean and variance are E(Y ) ≈ θ
1/φ
i −(φ−1)/2φ, V (Y ) ≈ (θ

1/φ
i )/φ

respectively. This approximation might not be accurate for φ > 1 or θ1/φ < 10

(Shmueli et al., 2005). When φ is close to 1 then θi approximates the mean. However,

in case of over-dispersion (φ < 1) or under-dispersion(φ > 1), θi deviates substantially

from the mean.

1.2.3 CMP in GLM

K. F. Sellers & Shmueli (2010) proposed a GLM approach by using a logarithmic

link for the shape parameter of CMP distribution. The authors discussed estimation,

prediction, inference, model diagnostics, interpretation, and test of over dispersion

in frequentist approach. Lord et al. (2010) fitted a GLM using dual links for shape
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and dispersion parameters respectively and compared gamma and Poisson models.

To account for group level dispersion in the data, K. F. Sellers & Shmueli (2013)

developed a generalization of CMP regression model.

Khan & Jowaheer (2013) modeled the shape parameter of CMP distribu-

tion to study longitudinal count data. They estimated the parameters using a joint

generalized quasi-likelihood estimating equation (JGQL) and generalized method of

moments (GMM). Choo-Wosoba et al. (2016) studied zero inflated clustered count

data. They used a modified Newton-Raphson method, maximum pseudo-likelihood

(MPL), and generalized estimating equation (GEE) techniques for parameter esti-

mation. K. F. Sellers & Raim (2016) studied a zero-inflated CMP model. Morris

et al. (2017) extended the CMP generalized linear regression model by incorporating

a random intercept for clustered data. They used a logarithmic link for the shape

parameter and indirectly linked it with the mean of the CMP model. This model is im-

plemented both in SAS (PROC NLMIXED) and R (integrate function for numerical

integration for approximation of marginal likelihood, nlminb function for optimiza-

tion). The COMPoissonReg R-package (K. Sellers et al., 2019) and COUNTREG

procedure in SAS (SAS Institute Inc. 2014) support CMP GLM and its zero inflated

variants. Choo-Wosoba & Datta (2018) studied zero inflated count data distributed

as CMP with cluster specific random effects using Gaussian-Hermite quadrature.

A number of Bayesian approaches to GLM with CMP distributional assump-

tion of count data found in literature. For instance, Guikema & Goffelt (2008)

proposed GLMs by modeling log link of shape and dispersion parameters simulta-

neously. They also modeled the centrality parameter (by using a transformation of

the shape and dispersion parameter) with a log link in Bayesian setting by using

Gibbs sampler. Chanialidis et al. (2014) proposed a method to estimate normalizing

constant of CMP using retrospective sampling algorithm. Further, Chanialidis et al.

(2018) proposed a rejection sampling approach combined with exchange algorithm

5



that does not require evaluation of normalizing constant. Wu et al. (2013) studied

a Bayesian spatio-temporal Conway–Maxwell Poisson model with dynamic disper-

sion parameter. Choo-Wosoba et al. (2018) proposed a Bayesian approach of GLM in

presence of many zero counts in the data.

1.2.4 GAM in Count Data

The Generalized additive model (GAM) was first introduced by T. J. Hastie &

Tibshirani (1990). They states that in clinical trials and observational studies the

GAM is useful for two reasons. It helps to prevent from model miss-specification

that may lead to invalid conclusions regarding treatment efficacy. The GAMs also

provide information regarding the relationship between prognostic factors and disease

risk (T. J. Hastie & Tibshirani, 1990). Ruppert et al. (2003) discussed the GAM

as a generalized nonparametric regression model.The generalized additive models for

the length of stay in hospitals was studied by Herwartz et al. (2016) in Bayesian

setting. They modeled count data by using Poisson, Negative Binomial, zero inflated

variants of Poisson, and Hurdle model by incorporating group-specific random effect.

T. Hastie (2008) developed a R package ‘gam’ to implement GAM. The available

software for dealing with GAM are VGAM (Yee et al., 2020), polspline (Kooperberg,

2015), mgcv (Wood & Wood, 2015), and gamlss (Stasinopoulos et al., 2017).

The distinctive features of allowing flexible predictor effects, interpretabil-

ity, and availability of ready-to use software have resulted widespread application

of GAMs. However, literature on GAM for count data is limited.

1.3 Gaps in Literature

The CMP is a general distribution that can capture a wide range of dispersion in count

data. Although biomedical research generates count data frequently, the application
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of CMP in the biomedical field is still limited. Morris et al. (2017) used longitudinal

epilepsy data and showed that CMP model fits better than the corresponding Poisson

and Negative Binomial models. They included subject- specific random intercept in

the model and used Akaike Information Criteria (AIC) (Akaikei, 1973) for model

comparisons. To account for more subject or cluster specific heterogeneity in count

data, we may need to fit models with random intercept and slope. However, literature

indicates that such model has not yet been studied in CMP model setting. Besides,

none of the existing packages supports CMP generalized Mixed Effect Model.

A crucial aspect of GAM is to capture the nonlinear relationship between the

link function and continuous covariates. The GAM was studied in literature using

count data including their zero inflated variants (Harezlak et al., 2018). The CMP dis-

tributional assumption of count data not yet been considered in GAM framework. In

addition, the available packages to deal with GAM do not support Conway-Maxwell-

Poisson modeling of count data generated from any of the cross sectional, longitudinal

or clustered type of studies.

1.4 Specific Aims

Dealing with CMP model is complicated. The CMP probability mass function in-

cludes a normalizing constant which is an infinite series, and leads to intractable inte-

gration or differentiation. The normalizing constant in CMP is being evaluated by (a)

truncation (Morris et al., 2017; Chanialidis et al., 2018) (b) asymptotic approxima-

tion (Minka et al., 2003), and (c) by using an MCMC scheme based on retrospective

sampling method (Chanialidis et al., 2014). The difficulty of this evaluation restricts

the wide application of the distribution for complex models, especially, when mod-

els includes high-dimensional random effects. Inclusion of random effects, makes the

CMP mixed model more complicated since the random effects are to be integrated
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out during estimation, especially in classical setting. In addition, dealing with flexible

semi-parametric model (e.g. GAM) is also complicated in classical setting for CMP

model.

To avoid these complexities mentioned above, a Bayesian approach will be

helpful. In Bayesian settings, Guikema & Goffelt (2008) used Gibbs Samplers, Choo-

Wosoba & Datta (2018) used Gibbs sampler and Metropolis-Hastings algorithms , and

Chanialidis et al. (2018) used rejection sampling with exchange algorithm. However,

these methods are computationally intensive, and they did not deal with longitudinal

data by including higher order random effects.

We attempt to use No-U-Turn-Samplers (NUTS), an adaptive variant of

Hamiltonian MCMC (HMC) to draw sample from a posterior distribution. Details

of NUTS and notable advantages of using HMC studied elsewhere (Hoffman &

Gelman, 2014). The use of HMC facilitates quicker convergence for high-dimensional

models irrespective of conjugate priors, and produces less auto correlated samples in

comparison to other sampling techniques.

The specific aims are as follows:

• Aim1:

To develop a Bayesian generalized linear mixed effect model (BGLMM) for

longitudinal count data distributed as CMP.

We hypothesize that inclusion of random effects in the CMP model will capture

more subject or cluster specific heterogeneity, and will perform better in terms

of model fit than the corresponding Poisson and negative binomial (NB) mixed

effect models. In addition, the proposed Bayesian model will be more flexible

to incorporate random effects than in models in the frequentist approach.

• Aim2:

To develop a Bayesian generalized additive mixed effect model (BGAMM) for
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longitudinal data distributed as CMP.

We hypothesize that the fitted BGAMM with the data distributed as CMP

will perform better in terms of model fit than the corresponding Poisson and

negative binomial (NB) additive mixed effect models. We also anticipate that

the proposed Bayesian model will be more flexible to incorporate random effects

than in the models in the frequentist approach.

• Aim3:

CMP mixed effect implementation in STAN language, and to apply the pro-

posed models in real biomedical data analysis.

We will apply these models to real datasets arising from randomized controlled

trials and compare them by using available model assessment tools, and provide

a tutorial on CMP modeling in STAN

Accomplishing these specific aims will allow us to model biomedical longitudinal or

clustered count data with a flexible distribution. We anticipate, the CMP model will

outperform competing count data models in terms of model fitting.

The inclusion of random intercept and slope in the CMP mixed effect model,

fitting a GAM in the context of CMP distribution, and the use of HMC to implement

the models will be the additions to the existing literature to study longitudinal count

data.

In Chapter 2, we develop a generalized linear mixed effect model. Development

of a generalized additive mixed effect model is outlined in Chapter 3. In Chapter 4,

we illustrate an application of the proposed model to real data arising from a clinical

trial. Overall conclusion and Future research directions are mentioned in Chapter 5.
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Chapter 2

Bayesian Generalized Linear Mixed

Effect model for Longitudinal

Count Data Distributed as

Conway-Maxwell Poisson

2.1 Introduction

In this chapter we assume that longitudinal or cluster count data follow Conway-

Maxwell Poisson (CMP) distribution. Statistical modeling on count response with

CMP distributional assumption can accommodate a wide spectrum of dispersion in

the data (Conway & Maxwell, 1962). Longitudinal or cluster count data analysis,

by generalized linear mixed effect model, often includes random intercept (or random

intercept and slope) to capture subject or cluster specific heterogeneity in the data.

In such a model, in classical approach, parameter estimation requires maximization

of marginal likelihood by integrating out the random effects. However, the inte-

gral with respect to the random effects becomes intractable due to the involvement
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of an infinite normalizing constant in CMP probability mass function. To override

the intractability, most classical approaches experience difficulties in approximating

the likelihood with Laplacian or quadrature methods (Choo-Wosoba et al., 2018).

Modeling with high-dimensional random effects or/and small sample size, we might

experience a substantial deviation in the shape of the integrand function from that

of the Gaussian density. The standard Laplace approximation may be inaccurate in

such a situation (Ruli et al., 2016). They also noted that in the classical approach,

model fitting via an iterative weighted least squared (IRLS) method encounters a

non-convergence problem when Fisher’s scoring matrix exhibits low rank for a given

diagonal weight matrix, and enhanced complexity leads to over-fitting of the model.

On the contrary, a Bayesian method can handle a mixed effect model by

avoiding the quadrature method or approximations to the likelihood function (Choo-

Wosoba et al., 2018). A Bayesian approach avoids these approximations by applying

iterative MCMC sampling schemes to draw the values of the random effects, and

allows more flexibility to choose a versatile form of random effects design matrix. In-

clusion of priors enables addressing the convergence issues, and avoiding over-fitting of

a model (Ruli et al., 2016). With suitable priors, Bayesian methods provide inference

based on posterior summary instead of maximizing the log-likelihood function.

K. F. Sellers & Shmueli (2010) developed the CMP generalized linear model

(GLM). Later on, in the frequentist setting, Morris et al. (2017) extended the GLM

by incorporating subject-specific random intercept for clustered count data with an

arbitrary truncation of normalizing constant. As a further extension, we propose a

Bayesian generalized mixed effect model (BGLMM) for longitudinal count data by

including random intercept and slope which avoids the integrational intractability.

Although the focus of the study is to incorporate random intercept and slope in the

mixed effect model with CMP distributional assumption of the data, we also explore

models with random intercept only in real data analysis.
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Section 2.2 includes the proposed statistical model while Bayesian inference

along with model assessment criteria are presented in Section 2.3. A detailed sim-

ulation study and sensitivity analysis are presented in Section 2.4 and Section 2.5

respectively. Application of the model with clinical trials data are illustrated in Sec-

tion 2.6. Discussion of the study is noted in Section 2.7. The full conditionals noted

in Appendix A.

2.2 The Proposed Model

2.2.1 CMP Regression Model

Let yi = (yi1, . . . , yini)
T be the independent count response vector of subject i for

i = 1, . . . , I and j = 1, . . . , ni,X i = (xi1, . . . ,xini)
T be a (ni×(p+1)) design matrix of

fixed effect covariates, where xTij = (1, xij1, . . . , xijp) is a (p+1) dimensional covariate

vector, Zi = (zi1, . . . ,zini)
T be a (ni × q), (q ≤ (p+ 1)) known design matrix, where

zTij = (1, zij1, . . . , zij(q−1)) is a q-dimensional covariate vector, ζi be a q-dimensional

vector of random effects for the subject i, and β be a (p + 1)-dimensional vector

of regression coefficients. Then, a generalized linear mixed effect model (GLMM) is

defined by

E(yi|β, ζi) = g−1(X iβ +Ziζi), (2.1)

where g−1(·) is a link function.

Further, let θij be the shape parameter of CMP distribution associated with

a response, yij from subject i at time j. Then, the GLMM for longitudinal count

response (distributed as CMP) is given by
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log(θij) = xTijβ + zTijζi, (2.2)

where ζi ∼ Nq(0,D),D is the covariance matrix for random effects. Let ζqi = (ζ0, ζ1)

be the vector of random intercept and random slope, then

D =

 σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

 ,
where σ2

0 and σ2
1 are the variances of intercept and slope, respectively, and ρ is the

correlation between them.

2.2.2 The Likelihood Function

By considering the random effects as the latent variables, the complete data likelihood

can be written in the following form:

L(β, φ,D) =
I∏
i=1

[
ni∏
j=1

f(yij|β, φ, ζi)f(ζi|D)

]
. (2.3)

When the response yij distributed as CMP, we can write equation (2.3) as

L(β, φ,D) =
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(

exp
(
xTijβ + zTijζi

))yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijζi

))k
(k!)φ

)−1

×
I∏
i=1

(2π)−(q/2)
exp

(
− 1

2

[
ζTi D

−1ζi
])

|D| 12
.

(2.4)
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2.3 Bayesian Inference

The Bayesian model fitting requires specification of prior distributions, generation of

the joint posterior distribution for the parameters of interest, and obtaining MCMC

samples from the posterior distribution by using suitable samplers to avoid complex or

intractable integration. Bayesian computation enables generating posterior summary

and exploring different characteristics of the parameters.

2.3.1 Priors and Posteriors

In order to fit a Bayesian GLMM, we assume that β, D, and φ are independent

apriori. Thus,

π(β,D, φ) = π(β)× π(D)× π(φ). (2.5)

We further assume that β ∼ Np(β0,Σ0), φ ∼ LN(µφ, ψ), and D ∼ IW (ϕ,ω). Then

the joint posterior distribution under the proposed model is given by

π(β,D, ζ, φ | y) =

[
I∏
i=1

ni∏
j=1

f(yij | β, φ, ζi)× π(β)

]
×

[
I∏
i=1

f(ζi |D)× π(D)× π(φ)

]

∝
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(

exp
(
xTijβ + zTijζi

) )yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijζi

))k
(k!)φ

)−1

×
exp

(
−1

2

[
(β − β0)

TΣ−10 (β − β0)
])

|Σ0|
1
2

×
I∏
i=1

exp
(
−1

2

[
ζTi D

−1ζi
])

|D| 12

× |D|−
(ϕ+q+1)

2 exp
(
− 1

2
Tr(ωD−1)

)
×

exp
(
− 1

2
(
log φ−µφ

ψ
)2
)

ψφ
.

(2.6)

In (2.6), we use inverse-Wishart (IW ) distribution forD and log-normal distri-

bution for φ. However, a wide variety of priors can be used with different parameter

specifications such as uniform prior for β, multivariate-t prior for random effects, and
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any distribution with positive support such as half-Cauchy, gamma or uniform for φ,

inverse gamma for variance parameters of the random effects. As discussed in Barnard

et al. (2000), the inverse-Wishart distribution is a natural choice of D due to con-

jugacy. The alternative choices of priors are scaled inverse-Wishart (O’Malley &

Zaslavsky, 2008), hierarchical half-t prior (A. Huang et al., 2013), restricted Wishart

distribution (Wang et al., 2018), and separation of covariance strategy (Barnard

et al., 2000). However, Alvarez et al. (2014) noted that the IW prior suffers from

the limitations, such as (a) a single degree of freedom parameter ϕ controls uncer-

tainty in all variance parameters and does not allow flexibility to incorporate various

amount of prior knowledge to various variance components (Gelman et al., 2013), (b)

if ϕ > 1, the marginal distribution of variance parameter retains lower density close

to the zero region and causes bias in the posterior estimate of variance (Gelman et

al., 2006), and (c) it imposes dependency between variance and correlation, mean-

ing that larger variances are associated with extreme correlations (near to +1 and

−1) while smaller variances are associated with correlations near to zero (Tokuda et

al., 2011). However, we can also consider distribution of correlation or its variants

as a prior. Alternatively, there is a separation strategy proposed in Barnard et al.

(2000), which treats variance and correlations independently. For example, using the

separation strategy, the covariance matrix D is decomposed as

D =

σ0 0

0 σ1

Ω

σ0 0

0 σ1

 ,
where Ω is a correlation matrix, and defined as

Ω =

1 ρ

ρ 1

 .
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Lewandowski et al. (2009) suggests the LKJ (Lewandowski, Kurowicka and

Joe) distribution to sample correlation matrix Ω uniformly from a space of positive

definite correlation matrices. Currently, the LKJ distribution is used as a default

option in Stan language (Carpenter et al., 2017).

If Ω ∼ LKJ(η), then the density is given in Lewandowski et al. (2009) as

f(Ω) ∝ det(Ω)(η−1).

The parameter η controls the shape of the distribution. The value η = 1

indicates the prior is uniform over all valid correlation matrices, η = 2 indicates ρ

retains high concentration at closer to zero region. The extreme correlation become

less plausible as the value of η increases (McElreath, 2020). The identity matrix

is the modal correlation matrix when η > 1 , and the density has a trough at the

identity matrix when 0 < η < 1 (Stan user’s guide, version 2.18).

The density of Ω under LKJ distribution with different values of the shape

parameter is shown in Figure 2.1.

Instead of directly modeling correlation matrix Ω with LKJ density, Stan lan-

guage provides an implicit parameterization in terms of Cholesky decomposition. For

η > 0, the Cholesky decomposition of Ω is given by

Ω = LLT =

l11 0

l12 l22


l11 l12

0 l22

 ,
where L is a lower triangular matrix with lmm > 0, for m = 1, 2 and each row Lm

has unit Euclidian length.
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The general form of LKJ density of a M ×M lower triangular matrix L is

given as

h(L|η) ∝ |J | det(LLT )(η−1) ∝
M∏
m=2

lM−m+2η−2
mm , (2.7)

where h(·) is the density of LKJ distribution, |J | is the Jacobian for the transformation

from Ω to L, and η has the similar interpretation as mentioned above. However, η = 1

does not imply that distribution of L is constant while distribution of LLT is constant

for the same (Stan user’s guide, version 2.18). In our analysis we use distribution of

L as a prior.

2.3.2 Bayesian Model Assessment

The commonly available Bayesian model comparison tools are Deviance Informa-

tion Criteria (DIC) (Spiegelhalter et al., 2002), Watanabe-Akaike Information Cri-

terion (WAIC), popularly known as widely applicable Bayesian information criterion

(Watanabe, 2013), Pareto smoothed importance sampling leave-one-out cross vali-

dation (PSIS-LOO) and K-fold-Cross Validation (K-fold CV) (Vehtari et al., 2017).

DIC suffers from problems as it uses point estimation rather than being fully Bayesian

(Plummer, 2008; Van Der Linde, 2005), DIC is not defined for singular models (Ve-

htari et al., 2017). The WAIC can overcome some pitfalls of DIC, although there

is no theoretical basis why WAIC is unreliable in some situations (Vehtari et al.,

2017). The k-fold CV provides more reliable results when importance sampling LOO

(IS-LOO) fails for a large number of data points (Vehtari et al., 2017). No method

can dominate all others. Therefore, as the Bayesian model assessment criteria, we

attempt to calculate Monte-Carlo version of conditional predictive ordinate (CPO),

and corresponding logarithm of pseudo-marginal likelihood (LPML) as discussed in

(Geisser & Eddy, 1979; Zhang et al., 2017; Gelfand et al., 1992; Chen et al., 2012).
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In addition, we calculate WAIC, Bayesian Leave One Out cross validation (LOO),

and Deviance Information Criteria (DIC) for Bayesian model assessment. Among

the competing models the best model is the one having the largest LPML, while the

lowest values of LOO, WAIC, and DIC indicate the best fit of the model.

2.3.2.1 Conditional Predictive Ordinate (CPO) and Logarithm of

Pseudo-Marginal Likelihood (LPML)

The conditional predictive ordinate (CPO) is calculated based on leave-one-out cross

validation. To define CPO, let us consider, y = (y1, . . . ,yI)
T be the longitudinal

response data. Then, the CPO provides the estimate of probability of observing a

future yi given the observed y(−i). The vector y(−i) = (y1, . . . ,yi−1,yi+1, . . . ,yI)
T

denotes all observations deleting the data points for ith subject. It is the posterior

probability of observing the value of yi when the model is fitted to all data except

yi. Higher value of CPO indicates a better fit of the model to yi while a lower value

reveals that yi is an outlier and influential observation. Following Geisser & Eddy

(1979); Chen et al. (2012), with the given notation the CPO for subject i is defined

as

CPOi =

∫
f(yi | Θ)π

(
Θ | y(−i)

)
dΘ. (2.8)

On simplification, as noted in (Zhang et al., 2017), we can write

CPOi =

[∫
1

f(yi | Θ)
π(Θ | y)dΘ

]−1
=

[
EΘ|y

(
1

f(yi|Θ)

)]−1
,

(2.9)
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where Θ includes (β, φ, and D). Following Chen et al. (2012); Zhang et al. (2017),

the Monte Carlo estimate of the CPO (B is the number of MCMC samples) is given

by

ĈPOi =

[
1

B

B∑
b=1

1

f(yi|Θ(b))

]−1
. (2.10)

Then, the LPML is defined as

LPML =
I∑
i=1

log(ĈPOi). (2.11)

2.3.2.2 Leave One-Out-Cross-Validation (LOO)

Following the similar notations in section 2.3.2.1, the leave-one-out predictive density

for a given dataset deleting the ith data point is given as

elpdloo =
I∑
i=1

log f(yi|y(−i)), (2.12)

where

f(yi|y(−i)) =

∫
f(yi|Θ)π(Θ|y(−i))dΘ. (2.13)

On simplification, as noted in Vehtari et al. (2017), from MCMC samples, (2.13) can

be approximated as

f(yi|y(−i)) ≈
[ 1

B

B∑
b=1

1

f(yi|Θ(b))

]−1
. (2.14)

Then, to provide the output on the conventional scale of deviance, we can write

LOO = −2
I∑
i=1

log
[ 1

B

B∑
b=1

1

f(yi|Θ(b))

]−1
. (2.15)
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2.3.2.3 Watanabe–Akaike Information Criterion (WAIC)

The WAIC is an alternative measure to estimating the expected log pointwise pre-

dictive density and is defined as

êlpdwaic = l̂pd− p̂waic, (2.16)

where the computed log point-wise predictive density (l̂pd) is

l̂pd =
I∑
i=1

log

[
1

B

B∑
b=1

1

f(yi|Θ(b))

]−1
, (2.17)

and the estimated effective number of parameters (p̂waic) is defined as

p̂waic =
I∑
i=1

Var
(

log f(yi|Θ(b))
)
. (2.18)

As mentioned in Vehtari et al. (2017), on the conventional scale of deviance or AIC

we can write

WAIC = −2
[1

I

I∑
i=1

log
{ 1

B

B∑
b=1

f(yi|Θ(b))
}]
−

I∑
i=1

Var
(

log f(yi|Θ(b))
)
. (2.19)

2.3.2.4 Deviance Information Criterion (DIC)

The Deviance Information Criteria (DIC) proposed by Spiegelhalter et al. (2002)

is the most widely used method for Bayesian model comparison which includes

goodness-of-fit of the model as well as complexity of the model in terms of effective

number of parameters (pD). Let y be generated from the probability model f(y|Θ),

then the marginal distribution of y, f(y) =
∫

Θ
f(y|Θ)π(Θ)dΘ, where π(Θ) is the

prior distribution of Θ. The posterior distribution, π(Θ|y) ∝ f(y|Θ)π(Θ). Then,

the DIC is defined as

DIC = ∆(Θ) + pD, (2.20)

20



where ∆(Θ) = −2 log f(y | Θ), is the deviance function, ∆(Θ) is the posterior mean

of deviance, and pD = ∆(Θ) − ∆(Θ̄) is the effective number of parameters. On

simplification,

DIC = 2∆(Θ)−∆(Θ̄). (2.21)

In addition, we monitor convergence of the MCMC chains by observing scale

reduction statistics R̂ that measures the ratio of the average variance of samples

within each chain to the variance of the pooled samples across chains. A value of R̂

closer to 1 indicates that each set of B simulated values is close to the target distri-

bution (Gelman et al., 1992). To monitor the performance of the MCMC samples,

we also observe effective number of sample size (ESS) where the higher ESS is an

indication of the higher number of independent MCMC samples, trace plots visual-

izing the convergence status of MCMC samples, auto-correlation plots (ACF plots)

where exponential shape is an indication of producing non-autocorrelated samples,

pair plots and density plots illustrating the non-disruption in MCMC samples for the

posterior means of the parameters (some of them are noted in Section 2.6).

2.4 Simulation Study

We perform a simulation study to demonstrate the flexibility and performance of the

CMP mixed effect model with correlated subject-specific random intercept and slope.

The datasets resemble clinical trial type of data where treatment arm consists of 40%

of the subjects. We generate 100 longitudinal datasets each of having n = 100 subjects

with 5 measurements in 5 distinct time points (t = 0, 1, . . . 4) in under-dispersed

(φ = 2.50), over-dispersed (φ = 0.30) and equi-dispersed (φ = 1.00) conditions

respectively. The time tij is then converted as binary variable (0 =baseline or 1=post-

baseline). We assume that patient condition improve by 1% during post-baseline

period, as it happens in some clinical trials due to counselling effect irrespective of
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intervention. The only explanatory variable, x ∼ Bernoulli(0.40) mimics a treatment

assignment to 40% of the patients, and we assume a moderate beneficial (5%) effect

of treatment on the subjects. Random effects are generated with the specifications of

ζ0 ∼ N(0, 0.052) and ζ1 ∼ N(0, 0.022). Correlation, ρ between random intercept and

slope is considered as −0.50. The true values of the regression coefficients β1=−0.05,

and β2=−0.01 represent the beneficial effect of treatment and time respectively. We

consider β0=−0.8. Then the response counts, yijs are generated with the specification,

yij ∼ CMP (θij, φ), where θij = exp (β0 + β1xij + (β2 + ζ1i)tij + ζ0i).

In each dispersion condition we applied CMP, negative binomial (NB), and

Poisson model respectively with 5, 000 iterations (50% warm-ups) in each of the 4

chains. We compute Monte-Carlo versions of CPO and LPML, LOO, WAIC, and

DIC along with their respective inter-quartile range (IQR) for the purpose of model

assessments. Posterior mean, standard error (SE), mean squared error (MSE), and

coverage probability (CP%) (in 95% credible interval) are reported in Tables 2.1,

2.2, and 2.3 for three dispersion conditions respectively. We also perform graphical

illustration of subject-wise CPOs from all samples for all dispersion conditions to

observe existence of extreme observations. However, we report here only the graph

for CMP model with under-dispersed data in Figure 2.2, and the rest are reported in

Appendix C.

Table 2.1 presents the results obtained from CMP, NB, and Poisson model

assuming under-dispersed (φ = 2.50) simulated data. The CMP model produces the

posterior mean of dispersion parameter as φ = 2.82 with a MSE=0.48. The result

supports that data are under-dispersed since φ > 1. On the other hand, NB model

produces a negligible value for φ (0.04). However, dispersion parameters in CMP

and NB carry different interpretations. When value of the dispersion parameter in

NB approaches to zero, it indicates there is no over dispersion in the data, and data

distribution approaches to the Poisson distribution. On the other hand, when the
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Table 2.1: Simulation results for under-dispersed data (φ = 2.50)

Model Param True Mean SE MSE CP (%) LPML LOO WAIC DIC

(IQR) (IQR) (IQR) (IQR)

CMP φ 2.50 2.82 0.61 0.48 91% −99.93 −199.87 714.39 714.39

β0 −0.80 −0.87 0.18 0.01 94% (3.45) (6.90) (26.45) (26.67)

β1 −0.05 0.03 0.18 0.04 92%

β2 −0.01 0.01 0.24 0.06 95%

σ0 0.05 0.13 0.05 0.01 100%

σ1 0.02 0.14 0.06 0.02 100%

ρ −0.50 −0.02 0.02 0.22 100%

NB φ - 0.04 0.00 - - −101.35 −200.71 713.01 732.27

β0 −0.80 −1.12 0.18 0.13 69% (3.51) (7.03) (26.13) (26.29)

β1 −0.05 0.02 0.14 0.02 95%

β2 −0.01 0.02 0.19 0.04 97%

σ0 0.05 0.07 0.01 0.00 100%

σ1 0.02 0.08 0.01 0.00 100%

ρ −0.50 −0.04 0.01 0.43 100%

Poisson β0 −0.80 −1.11 0.18 0.13 69% −100.33 −200.66 729.72 730.95

β1 −0.05 0.02 0.13 0.02 94% (3.51) (7.03) (26.06) (26.35)

β2 −0.01 0.02 0.19 0.04 96%

σ0 0.05 0.07 0.01 0.00 100%

σ1 0.02 0.07 0.01 0.00 100%

ρ −0.50 −0.04 0.01 0.21 100%

dispersion parameter in CMP equals to 1, it indicates there is no over dispersion in

the data, and data distribution approaches to the Poisson distribution.

In the case of NB the regression coefficients are β0=−1.12, β1= 0.02, β2= 0.02,

while in the Poisson model the corresponding values are β0=−1.11, β1= 0.02, β2=

0.02. In terms of parameter estimates we experience subtle differences between the

two models. Sellers and Shmueli,(2010) reports that both Poisson and NB produce

almost same regression parameter estimates for under-dispersed count response.

The posterior means of regression coefficient for intercept, treatment, and time

in CMP model are β0=−0.87, β1=0.03,and β2= 0.01. Apparently, it is observed that

there are substantial differences in the parameter estimates between CMP and other

two models. An approximate conversion (β/φ) of the CMP regression parameters

enable a direct comparison among the models, and are almost accurate for larger

count response. The converted values for CMP model β0/2.5=−0.30, β1/2.5=0.01,
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and β2/2.5=0.002 illustrate smaller effect sizes of the respective covariates on the

response than that of produced by other models. However, this comparison may not

be accurate as the under-dispersed simulation set up produces smaller counts in this

case. We observe that MSE for intercept parameter in the CMP model is the lowest

while for other parameters a bit higher than that of other models.

In comparison to the NB and Poisson model, the higher values of the estimates

for standard deviations σ0 = 0.13 and σ1 = 0.14 for random intercept and slope in

CMP model explain higher spread around the population level intercept and slope.

The negative sign in the correlation coefficients ρ between random intercept and slope

across models indicate that subjects having higher initial responses have slower rate

of improvement.

Based on 95% credible interval, the coverage probabilities for all parameters are

higher than 92% in CMP model while the same for both Poisson and NB are higher

than 69%. Both credible interval and highest posterior density (HPD) ( reported in

Appendix B) interval for all parameters from all models are almost coincided which

illustrates the symmetry of posterior means for respective parameters.

Although there exists no remarkable deviations in the values of LPML and

LOO across three models, we observe that CMP model results the highest value

of LPML (−99.93), and NB model results the lowest value of LOO (−200.71) . In

contrast, CMP model results the lowest values of WAIC (714.394), and DIC (714.393)

followed by Poisson model with WAIC (729.72), and DIC (730.95) respectively. It is

observed that CMP model fits the best on the basis of LPML, WAIC, and DIC. On

the other hand, NB model fits the best based on LOO with a negligible difference.

We applied CMP, NB, and Poisson model to simulated over-dispersed (φ =

0.30) data and report the results in Table 2.2. We observe that the posterior mean

of dispersion parameter in CMP model is φ=0.39 with a MSE=0.04, and reveals

the existence of over-dispersion. The negative signs in treatment effect β1=−0.01
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Table 2.2: Simulation results for Over-dispersed data (φ = 0.30)

Model Param True Mean SE MSE CP (%) LPML LOO WAIC DIC

(IQR) (IQR) (IQR) (IQR)

CMP φ 0.30 0.39 0.19 0.04 89% −77.00 −154.69 1039.48 1038.40

β0 −0.80 −0.83 0.19 0.04 88% (6.28) (12.55) (49.44) (49.85)

β1 −0.05 −0.01 0.10 0.01 97%

β2 −0.01 −0.02 0.16 0.03 91%

σ0 0.05 0.16 0.05 0.01 100%

σ1 0.02 0.17 0.05 0.03 98%

ρ −0.50 −0.17 0.05 0.11 100%

NB φ - 0.45 0.19 - - −77.00 −153.95 1040.76 1040.25

β0 −0.80 −0.58 0.18 0.08 72% (6.11) (12.38) (47.78) (47.92)

β1 −0.05 −0.01 0.13 0.02 96%

β2 −0.01 −0.02 0.20 0.04 90%

σ0 0.05 0.22 0.03 0.03 99%

σ1 0.02 0.24 0.07 0.05 95%

ρ −0.50 −0.18 0.06 0.11 100%

Poisson β0 −0.80 −0.64 0.20 0.06 85% −75.00 −150.29 1055.56 1045.37

β1 −0.05 −0.01 0.13 0.02 97% (5.49) (10.98) (50.56) (47.02)

β2 −0.01 0.00 0.21 0.04 89%

σ0 0.05 0.38 0.16 0.13 76%

σ1 0.02 0.41 0.17 0.18 44%

ρ −0.50 −0.33 0.17 0.06 100%

and time effect β2=−0.02 and the corresponding transformed values (β1/0.39=−0.03

) and (β2/0.39=−0.03) produced by CMP model indicate positive impacts of both

treatment and time on count response, and they are markedly different than that

of Poisson and NB model. The MSEs for β1 and β2 in CMP models are 0.01 and

0.03 respectively, also smaller than that of other models. The MSEs for σ0 and σ1 in

CMP model are much smaller than NB and Poisson models respectively. Coverage

probabilities in CMP model for all parameters are above 88% while the same for NB

model are more than 72% and for Poisson more than 44%. We observe that Poisson

model produces the highest value of LPML (−75.00) among the three models. On the

contrary, the lowest values of LOO (−154.69), WAIC (1039.48), and DIC (1038.40)

illustrate the best fit of CMP model among others. In addition, NB model fits better

than the Poisson model in case of over-dispersed data which is expected.
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Table 2.3: Simulation results for Equi-dispersed data (φ = 1.0)

Model Param True Mean SE MSE CP (%) LPML LOO WAIC DIC

(IQR) (IQR) (IQR) (IQR)

CMP φ 1.00 1.23 0.30 0.14 84% 90.10 −180.25 859.80 859.48

β0 −0.80 −0.81 0.16 0.03 96% (4.92) (9.82) (42.60) (43.12)

β1 −0.05 0.00 0.15 0.02 94%

β2 −0.01 −0.04 0.18 0.03 98%

σ0 0.05 0.23 0.07 0.04 100%

σ1 0.02 0.25 0.08 0.05 88%

ρ −0.50 −0.18 0.05 0.11 100%

NB φ - 0.07 0.03 - - 90.50 −180.93 859.12 859.88

β0 −0.80 −0.85 0.15 0.02 96% (4.91) (9.81) (42.51) (43.30)

β1 −0.05 −0.00 0.14 0.02 94%

β2 −0.01 −0.05 0.16 0.03 98%

σ0 0.06 0.18 0.04 0.02 100%

σ1 0.02 0.20 0.04 0.04 100%

ρ −0.50 −0.16 0.03 0.12 100%

Poisson β0 −0.80 −0.85 0.15 0.02 96% 90.30 −180.66 858.73 859.10

β1 −0.05 −0.00 0.14 0.02 94% (4.78) (9.45) (41.65) (42.97)

β2 −0.01 −0.05 0.16 0.03 98%

σ0 0.05 0.19 0.05 0.02 100%

σ1 0.02 0.21 0.05 0.03 98%

ρ −0.50 −0.16 0.03 0.11 100%

We report simulation results from equi-dispersed data in Table 2.3. We notice

that Poisson model retains the lowest WAIC (858.73) and DIC (859.10) values than

that of other models indicating the best fit while the second alternative is CMP model

based on DIC. On the contrary, both LPML and LOO values illustrate that NB model

fits better than others. However, differences in LPML and LOO across models are

minuscule. MSE for parameters in Poisson model are smaller or at least equivalent

to other models.

Both WAIC and DIC provide consistent conclusions regarding model fit for all

models while both LPML and LOO provides contradictory conclusions.

Figure 2.2 presents boxplots for subject-wise CPO from 100 under-dispersed

simulated samples. We produce similar graph for over- and equi-dispersed data cases

too (reported in Appendix C). Extreme low values of CPO indicate that the respective

data points are outliers. We observe that out of 100 subjects very few retain extreme
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low CPO values for some samples, which indicate that simulation data are more or

less homogeneous.

2.5 Sensitivity Analysis

We perform a sensitivity analysis for the over-dispersed (φ = 0.30) simulated data by

changing hyper parameters in priors as well as prior distributions to investigate their

influences on posteriors means. The results are presented in Table 2.4 and Table 2.5

respectively. We apply CMP model with correlated random intercept and slope with

the following prior specifications βk ∼ N(0, 10000), φ ∼ LN(0, 15), ζ ∼ N(0, σ2
ζ ), σ

2
ζ ∼

U(0,∞),L ∼ LKJ(2). Then we change parameter values in five scenarios for each

of the cases from O1 to O4 (see Table 2.4).

In Table 2.4 we observe that posterior means of the regression parameters are

almost identical for all scenarios (S1 to S5) for the cases O1 to O4. In O4, we notice

that for different choices of parameter η in LKJ distribution the posterior means of

the parameters σ0, σ1, and ρ vary remarkably. In particular, we experience notable

deviations in these parameter values when η moves downward from 1.5 to 0.5, meaning

that when density moves towards uniformity.

Table 2.5 illustrates the effect of prior changes on posterior means. In scenar-

ios S1 to S5, we consider defuse normal prior for regression co-efficients, gamma or

half-Cauchy prior for φ in place of log normal, and inverse gamma or half-Cauchy

for σ2
0 and σ2

1 instead of uniform, and experience no remarkable changes in regres-

sion co-efficients. However, we notice substantial changes in standard deviations and

correlation parameters across scenarios. It is evident that regression estimates are

not much sensitive to the priors while estimates for σ0, σ1, φ, and ρ are remarkably

sensitive.
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Table 2.4: Posterior summary for over-dispersed data with different choices of hyper-
parameters in priors

Scenarios

Posterior means

β̂0 β̂1 β̂2 σ̂0 σ̂1 ρ̂ φ̂

(95%HPD) (95%HPD) (95%HPD) (95%HPD) (95%HPD) (95%HPD) (95%HPD)

O1 :Parameters for βk vary

S1 : βk ∼ N(0, 10000) −0.71 0.01 −0.16 0.29 0.33 −0.22 0.40

(−1.01, −0.42) (−0.22, 0.22) (−0.43, 0.10) (0.00, 0.79) (0.00, 0.92) (−0.98, 0.62) (0.01, 0.70)

S2 : βk ∼ N(0, 100) −0.71 0.01 −0.16 0.26 0.31 −0.19 0.39

(−1.01, −0.42) (−0.22, 0.22) (−0.41, 0.08) (0.00, 0.65) (0.00, 0.79) (−0.94, 0.64) (0.01, 0.68)

S3 : βk ∼ N(0, 50) −0.70 0.01 −0.16 0.28 0.33 −0.20 0.40

(−1.01, −0.42) (−0.22, 0.22) (−0.41, 0.09) (0.00, 1.72) (0.00, 0.86) (−0.94, 0.67) (0.01, 0.70)

S4 : βk ∼ N(0, 3) −0.71 0.01 −0.16 0.28 0.34 −0.22 0.40

(−0.99, −0.42) (−0.22, 0.22) (−0.42, 0.08) (0.00, 0.75) (0.00, 0.89) (−0.94, 0.67) (0.01, 0.70)

S5 : βk ∼ N(0, 2) −0.70 0.00 −0.17 0.29 0.35 −0.21 0.41

(−1.00, −0.41) (−0.21, 0.22) (−0.41, 0.10) (0.00, 0.78) (0.00, 0.97) (−0.97, 0.65) (0.06, 0.75)

O2 :Parameters for φ vary

S1 : φ ∼ LN(0, 100) −0.70 0.01 −0.16 0.27 0.33 −0.20 0.40

(−1.00, −0.42) (−0.21, 0.23) (−0.41, 0.10) (0.00, 0.70) (0.00, 0.84) (−0.94, 0.66) (0.02, 0.71)

S2 : φ ∼ LN(0, 30) −0.71 0.01 −0.16 0.29 0.34 −0.21 0.40

(−0.99, −0.40) (−0.21, 0.23) (−0.41, 0.11) (0.00, 0.77) (0.00, 0.91) (−0.95, 0.66) (0.01, 0.70)

S3 : φ ∼ LN(0, 10) −0.70 0.01 −0.17 0.26 0.32 −0.20 0.40

(−0.99, −0.40) (−0.21, 0.23) (−0.40, 0.10) (0.00, 0.69) (0.00, 0.81) (−0.97, 0.64) (0.02, 0.71)

S4 : φ ∼ LN(0, 3) −0.70 0.01 −0.16 0.27 0.33 −0.21 0.41

(−1.00, −0.42) (−0.21, 0.22) (−0.42, 0.10) (0.01, 0.96) (0.01, 1.14) (−0.94, 0.73) (0.07, 0.75)

S5 : φ ∼ LN(0, 0.5) −0.63 −0.01 −0.18 0.34 0.40 −0.24 0.56

(−0.92, −0.34) (−0.22, 0.23) (−0.43, 0.09) (0.00, 0.85) (0.00, 1.00) (−0.98, 0.61) (0.31, 0.83)

O3 :Parameters for σ2
ζ vary

S1 : σ2
ζ ∼ U(0, 1000) −0.70 0.01 −0.16 0.30 0.36 -0.23 0.41

(−1.00, −0.40) (−0.21, 0.23) (−0.42, 0.09) (0.00, 0.82) (0.00, 0.98) (−0.97, 0.61) (0.02, 0.74)

S2 : σ2
ζ ∼ U(0, 30) −0.70 0.01 −0.16 0.31 0.36 -0.22 0.41

(−1.00, −0.41) (−0.22, 0.22) (−0.41, 0.09) (0.00, 0.98) (0.00, 1.10) (−0.97, 0.63) (0.01, 0.75)

S3 : σ2
ζ ∼ U(0, 10) −0.71 0.01 −0.16 0.26 0.32 -0.20 0.39

(−1.01, −0.41) (−0.21, 0.23) (−0.40, 0.10) (0.00, 0.68) (0.00, 0.82) (−0.99, 0.64) (0.01, 0.68)

S4 : σ2
ζ ∼ U(0, 3) −0.71 −0.01 −0.16 0.29 0.31 -0.22 0.41

(−1.00, −0.42) (−0.21, 0.23) (−0.42, 0.11) (0.00, 0.81) (0.00, 0.98) (−0.99, 0.63) (0.01, 0.72)

S5 : σ2
ζ ∼ U(0, 1) −0.71 0.01 −0.16 0.25 0.30 -0.19 0.39

(−1.01, −0.43) (−0.22, 0.23) (−0.42, 0.08) (0.00, 0.63) (0.00, 0.73) (−0.96, 0.64) (0.01, 0.68

O4 :Parameters for L vary

S1 : L ∼ LKJ(5) −0.70 0.01 −0.17 0.23 0.28 −0.08 0.40

(−0.99, −0.41) (−0.22, 0.22) (−0.42, 0.07) (0.00, 0.55) (0.00, 0.67) (−0.70, 0.50) (0.01, 0.68)

S2 : L ∼ LKJ(3) −0.70 0.01 −0.17 0.25 0.30 −0.13 0.39

(−1.01, −0.41) (−0.21, 0.22) (−0.42, 0.09) (0.00, 0.62) (0.00, 0.62) (−0.84, 0.62) (0.05, 0.72)

S3 : L ∼ LKJ(1.5) −0.71 0.01 −0.16 0.31 0.38 −0.27 0.41

(−1.01, −0.42) (−0.21, 0.23) (−0.42, 0.09) (0.00, 0.85) (0.00, 1.02) (−1.00, 0.68) (0.01, 0.73)

S4 : L ∼ LKJ(1) −0.72 0.01 −0.14 0.36 0.43 −0.38 0.41

(−1.01, −0.42) (−0.21, 0.21) (−0.39, 0.13) (0.00, 0.98) (0.00, 1.19) (−1.00, 0.75) (0.04, 0.73)

S5 : L ∼ LKJ(0.5) −0.73 0.01 −0.11 0.55 0.67 −0.61 0.45

(−1.06, −0.44) (−0.21, 0.24) (−0.41, 0.20) (0.00, 1.53) (0.00, 1.80) (−1.00, 0.83) (0.01, 1.02)
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To compare the regression parameter estimates across scenarios, we construct

forest plots, illustrated in Figures 2.3 to 2.7, for 95% HPD intervals and their re-

spective mean values (solid circles) obtained from Table 2.4 and Table 2.5. All the

figures evidence that posterior means for regression parameters are quite robust across

scenarios.

2.6 Application to Randomized Controlled Clini-

cal trials Data

To demonstrate the applicability of our proposed model we use data from two distinct

clinical trials. The first example involves data from placebo-controlled clinical trial

of epilepsy patients, and the second example relates to multi-vitamin supplement in

HIV patients. We report a short description for each dataset along with corresponding

analysis results.

2.6.1 Analysis of Epilepsy data

We fit models with random effects on Epilepsy data discussed in Thall & Vail (1990).

The dataset consists of the number of seizures for 59 patients suffering from epilepsy,

31 of them are assigned to the progabide group, the treatment arm, and the rest in

the placebo group. Seizure rates are longitudinally measured in an initial eight weeks

before baseline and then in every two weeks in four consecutive treatment periods.

The mean and variance of the seizure rate is 12.85 and 349.17 respectively, poten-

tially an indication of over-dispersion in the data. Figure 2.8 presents the individual

profile of seizure rates for selected subjects from placebo and progabide group. The

first measurement at zero is the number of seizures in eight weeks intervals before

randomization and the rests are in every two weeks. We illustrate the treatment arm-

wise profiles in Figure 2.9, and notice that one subject in progabide group retains
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extreme number of seizures. Trends in seizure rates are not obvious from both the

graphs. In Figure 2.10, we present treatment arm-wise average weekly seizure rates,

and observe that at the end of eight weeks subjects in progabide group experience

lesser seizure rates.

Time is an indicator variable of a period after baseline (0 if baseline, 1 if after

baseline), trt is defined as 1 if a patient receives an anti-epileptic drug (progabide)

and 0 if placebo, Tij is the offset, length of time period in weeks (8 if baseline, 2 if

after baseline). By observing the profiles, it is reasonable to assume that there is a

natural heterogeneity among subjects both in their baseline level and in the changes

in expected counts over time, rationalizes the inclusion of subject-wise random effects

in the model.

We consider three models and mention them one by one:

M1: A mixed effect model with subject-specific random intercept, and we

specify the model as

log(θij) = xTijβ + zTijζi, (2.22)

where xTij = (1, trtij, timeij, trtij × timeij), zTij = 1, ζi = (ζ0i), β = (β0, β1, β2, β3)
T .

More specifically,

log(θij) = (β0 + ζ0i) + β1 × trtij + β2 × timeij + β3 × trtij × timeij + log(Tij) (2.23)

M2: A mixed effect model with uncorrelated random intercept and slope.

With the general model noted in (2.22) the specifications are:

xTij = (1, trtij, timeij, trtij × timeij), z
T
ij = (1, timeij), ζi = (ζ0i, ζ1i)

T , β =
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(β0, β1, β2, β3)
T , and the variance-covariance matrix for random effects

D =

σ2
0 0

0 σ2
1

 .
In other words,

log(θij) = (β0+ζ0i)+β1×trtij+(β2+ζ1i)×timeij+β3×trtij×timeij+log(Tij) (2.24)

M3: A mixed effect model with correlated random intercept and slope. Fol-

lowing the similar notations in M1 and M2 the specifications are:

xTij = (1, trtij, timeij, trtij × timeij), zTij = (1, timeij), ζi = (ζ0i, ζ1i)
T ,

β = (β0, β1, β2, β3)
T , and the variance-covariance matrix for random effects

D =

 σ2
0 ρσ0σ1

ρσ0σ1 σ2
1

 .
In particular,

log(θij) = (β0+ζ0i)+β1×trtij+(β2+ζ1i)×timeij+β3×trtij×timeij+log(Tij), (2.25)

In our analysis, we consider the following prior distributions:

φ ∼ LN(0, 15)

L ∼ LKJ(2)

ζq ∼ N(0, σ2
ζq

), σ2
ζq
∼ IG(0.1, 0.1) for q = 0, 1

βk ∼ N(0, 10000) for k = 0, 1, 2, 3

To fit the models M1 andM2 we do not require prior for L as the models do

not include correlation between random effects. We assume that βk can take any value

with normal mean 0 and standard deviation 10000. The dispersion parameter φ > 0
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and we assign a log normal prior with mean zero and moderate standard deviation for

φ. Choo-Wosoba et al. (2018) use log normal distribution as a prior for φ. Since σ2
ζi

is

a scale parameter with a lower bound of zero, we assign a inverse-gamma prior for σ2
ζi

,

as suggested in Gelman et al. (2006). For the correlated random effects we assume

that the random effects are weakly correlated, the value η = 2, indicates that the

correlation ρ is close to zero. We perform Bayesian analysis by using Stan language

(named after Stanislaw Ulam, a mathematician) and rstan (R package) in four chains

with 5000 iterations having 2500 warm-up each. Since, from the simulation study we

obtain intuitive and consistent results across models for DIC, we report DIC for M1

andM2. ForM3 we report LPML, LOO, WAIC, and DIC for the model assessments

among the competing models CMP, NB and Poisson.

Table 2.6: Posterior summary under M1

Parameter
Poisson NB CMP

Mean Std 95% HPD Mean Std 95% HPD Mean Std 95% HPD R̂

β0 1.03 0.16 (0.71,1.34) 1.09 0.18 (0.74,1.45) −1.19 0.13 (−1.44,−0.93) 1

β1 0.12 0.05 (0.02,0.21) 0.02 0.10 (−0.18,0.22) −0.01 0.08 (−0.17,0.14) 1

β2 −0.03 0.22 (−0.47,0.42) 0.08 0.25 (−0.41,0.58) 0.98 0.05 (0.87,1.0) 1

β3 −0.10 0.06 (−0.23,0.02) −0.32 0.14 (−0.60,−0.04) −0.04 0.04 (−0.11,0.03) 1

σ 0.81 0.08 (0.66,0.98) 0.85 0.09 (0.68,1.02) 0.27 0.04 (0.20,0.36) 1

φ - - - 0.15 0.03 (0.11,0.21) 0.30 0.04 (0.23,0.37) 1

DIC 6591.67 3291.92 2604.62

∆(Θ) 6439.85 3179.1 2561.15

pD(approx.) 152 113 44

The output of the models M1, M2, and M3 are reported in Tables 2.6, 2.7,

and 2.8 respectively. Table 2.6 presents posterior mean of the parameters obtained

fromM1 for Poisson, NB , and CMP model, where σ indicates the standard deviation

of subject specific random intercept. The results show that σ = 0.27 is the least for

CMP model. Posterior mean for dispersion parameter φ both in NB (φ = 0.15)

and in CMP (φ = 0.30) postulate that the study data are over-dispersed. Although

not significant, the value β1=−0.01, 95% HPD: (−0.17,0.14) in CMP model shows

that progabide has positive impact on number of seizures. The negative sign for the

interaction co-efficients in all three models reveal the beneficial effect of study drug in
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reducing number of seizures for epilepsy patients. The values R̂ = 1 for all parameters

in CMP model express that the posterior is close to the target distribution. The least

value of DIC (2604.62) for CMP illustrates the best fit in comparison to NB and

Poisson models.

Table 2.7: Posterior summary under M2

Parameter
Poisson NB CMP

Mean Std 95% HPD Mean Std 95% HPD Mean Std 95% HPD R̂

β0 1.05 0.15 (0.77,1.35) 1.09 0.16 (0.77,1.41) -0.70 0.19 (−1.07,−0.31) 1

β1 0.02 0.12 (−0.21,24) 0.00 0.12 (−0.24,0.25) 0.02 0.10 (−0.17,0.21) 1

β2 0.06 0.20 (−0.34,0.47) 0.06 0.23 (−0.37,0.50) 0.73 0.09 (0.54,0.91) 1

β3 −0.31 0.16 (−0.62,0.00) −0.32 0.17 (−0.66, 0.02) −0.14 0.09 (−0.32,0.03) 1

σ0 0.75 0.08 (0.61,0.91) 0.75 0.09 (0.58,0.93) 0.34 0.06 (0.24,0.46) 1

σ1 0.52 0.07 (0.39,0.65) 0.42 0.11 (0.22,0.62) 0.24 0.05 (0.16,0.34) 1

φ - - - 0.11 0.03 (0.07,0.17) 0.44 0.06 (0.34,0.56) 1

DIC 7612.10 3767.87 2899.88

∆(Θ) 7312.48 3617.93 2861.42

pD(approx.) 240 150 39

We report posterior summary of the parameters for M2 from Poisson, NB ,

and CMP models in Table 2.7. Here we consider intercept and slope are independent.

We observe that σ0 = 0.34 and σ1 = 0.24 are the least(s) for CMP model. The values

φ = 0.11 for NB and φ = 0.44 for CMP evidence the existence of over-dispersion

in the data. The negative sign for the interaction between progabide and time co-

efficients in all three models reveal the beneficial effect of study drug in reducing

number of seizures for epilepsy patients, although not significant in case of CMP. The

values R̂ = 1 for all parameters in CMP model express good performance of MCMC

samples. LikewiseM1, the least value of DIC (2899.88) for CMP illustrates the best

fit of the model.

Posterior summary of the parameters for M3 from Poisson, NB, and CMP

models is presented in Table 2.8. The model considers correlated random intercept

and slope. We observe that σ0 = 0.30 and σ1 = 0.22 are the least(s) for CMP model.

The standard deviation of posterior means for all parameters in CMP model are the

least. The CMP model shows a significant correlation between random intercept and
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Table 2.8: Posterior summary under M3

Parameter
Poisson NB CMP

Mean Std 95% HPD Mean Std 95% HPD Mean Std 95% HPD R̂

β0 1.07 0.15 (0.78,1.34) 1.12 0.15 (0.83,1.1.42) −0.79 0.19 (−1.14,−0.42) 1

β1 0.05 0.20 (−0.33,−0.45) 0.05 0.21 (−0.36,0.46) 0.01 0.09 (−0.16,0.19) 1

β2 0.00 0.12 (−0.23,0.23) −0.03 0.12 (−0.26,0.20) 0.74 0.09 (0.56,0.91) 1

β3 −0.31 0.16 (−0.63,0.02) −0.32 0.17 (−0.64,0.01) −0.13 0.08 (−0.29,0.03) 1

σ0 0.75 0.08 (0.60,0.90) 0.68 0.09 (0.51,0.86) 0.30 0.05 (0.20,0.41) 1

σ1 0.52 0.07 (0.39,0.65) 0.37 0.09 (0.19,0.54) 0.22 0.04 (0.14,0.31) 1

ρ 0.14 0.16 (−0.17,0.43) 0.54 0.22 (0.06,0.91) 0.45 0.18 (0.08,0.78) 1

φ - - - 0.12 0.03 (0.08,0.17) 0.41 0.06 (0.30,0.52) 1

LPML −77.29 −63.29 −25.90

LOO 912.100 746.84 305.60

WAIC 13,694.43 15,802.57 5,315.11

DIC 6,861.52 3,581.57 2,900.48

∆(Θ) 6727.94 3463.82 2878.90

pD 134 118 22

slope resulting by ρ = 0.45 with a 95% HPD:(0.08, 0.78). The values R̂ = 1 for all

parameters in CMP model indicate good mixing of the MCMC samples. The highest

value of LPML (−25.90) and the least values of LOO (305.59), WAIC (5315.11), and

DIC (2900.46) for CMP model illustrate the best fit of the model among others.

The values φ = 0.12 for NB and φ = 0.41 for CMP illustrate that data are over-

dispersed. Although not significant, the negative sign for the regression coefficients of

the interaction between progabide and time in three models illustrate that progabide

has a positive impact in reducing number of seizures for epilepsy patients over time.

The regression parameter estimates in three models are not directly comparable since

θi does not represent mean of CMP as it does for NB and Poisson distributions. A

transformation, βk/φ provides a crude comparison with βks from Poisson and NB

model (K. F. Sellers & Shmueli, 2010), which is almost accurate for larger counts

having mean greater than 10. Therefore, the converted coefficients for CMP are

β0/0.41=−1.93, β1/0.41=0.02, β2/0.41=1.80, and β3/0.41=−0.317. The coefficients

across models are quite different except for the interaction term. The interaction

coefficients in Poisson, NB, and CMP reveal 26.65%, 27.38% , and 27.17% reduction
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respectively in the seizure counts in progabide group from baseline to post baseline

in comparison to placebo group.

Although we produce trace plots, pair plots, and ACF plots for all parameters

form the three modelsM1 toM3 in CMP, NB, and Poisson model setting, we report

here only for CMP model under M3. The trace plots in Figure 2.8 illustrates the

good mixing and convergence of MCMC samples for all parameters. The pair plots in

Figure 2.9 reveals density of the posterior means, and evidences no issues in MCMC

samples. The exponential shapes of ACF plots in Figure 2.10 for the regression

coefficients divulge a sign of non-auto correlated samples generation in MCMC.

2.6.2 Analysis of Multivitamin Supplementation in HIV In-

fected Adults Data

We illustrate another application of the proposed model to the data from a longitu-

dinal randomized double-blinded placebo controlled clinical trial. The trial explores

the beneficial effect of multivitamin among HIV-infected adults receiving highly ac-

tive antiretroviral therapy (HAART) in Uganda reported in Guwatudde et al. (2012).

The adults received either a multivitamin (MV) supplement (including vitamin B-

complex, C, and E) or placebo. We consider 354 subjects each of having measurements

at visits 3, 6, 12, and 18 months for the analysis data set. The number of missing pills

(mean =14.03, variance=43.55) during last month of each visit as an indirect measure

of non-adherence to the study medication is considered as a response variable, and

trt (MV or Placebo) and weight measures of the subject at each visit are taken as the

covariates. We run the CMP model with uncorrelated random intercept and slope

with the similar notation mentioned in Section 2.6.1.

The form of the subject specific random effects models is

log(θij) = (β0+ζ0i)+β1×trtij+(β2+ζ1i)×timeij+β3×log(weightij)+log(Tij), (2.26)
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where Tij is the offset term. As an offset, we consider log 3 for the visits at 3, and 6

months, and log 6 for the remaining two visits.

We conduct the Bayesian analysis with the following prior specifications

φ ∼ LN(0, 15)

ζq ∼ N(0, σ2
ζq

), σ2
ζq
∼ IG(0.1, 0.1) for q = 0, 1

βk ∼ N(0, 10000) for k = 0, 1, 2, 3

Table 2.9: Posterior summary under the mixed effect model on Multivitamin supple-
mentation in HIV infected adults data

Parameter
CMP

Mean Std 95% HPD R̂

β0 0.46 0.17 (0.14, 0.80) 1

β1 −0.02 0.02 (−0.05, 0.01) 1

β2 −0.33 0.01 (−0.34, −0.31) 1

β3 −0.01 0.04 (−0.09, 0.07) 1

σ0 0.07 0.01 (0.04, 0.09) 1

σ1 0.06 0.01 (0.05, 0.08) 1

φ 0.54 0.02 (0.50, 0.57) 1

From Table 2.9 we see, although not statistically significant, those who are

receiving multivitamin (β1=−0.02, 95% HPD: (−0.05, 0.01)), and gaining weight

(β3=−0.01, 95% HPD: (−0.09, 0.07)) are less likely to miss the intervention medica-

tion, indicating better adherence to the study medication. As the time of intervention

goes up adherence to the study medication (β2=−0.33, 95% HPD: (−0.34, −0.31))

significantly increases. The values of R̂s = 1 for all parameters reveal good mixing of

the MCMC samples, and convergence of the model.
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2.7 Discussion

K. F. Sellers & Shmueli (2010) mentions, in terms of model fit and predictive power,

CMP model outperforms NB and Poisson by having its ability to account for a wide

variety of dispersion conditions in a parsimonious way. Due to the longer tail, CMP

model can capture extreme observations. As special cases, a number of data dis-

tributions such as Poisson, geometric, Bernoulli distributions can be generated from

CMP distribution. Instead of fitting separate models, the CMP model enables us

to fit a single model for various dispersion conditions. This distinctive feature intro-

duces CMP model as a flexible regression model for count data. In this study we

propose a novel Bayesian approach to fit a CMP generalized mixed effect model by

using No-U-Turn Sampling (NUTS), a variant of Hamiltonian MCMC. In particular,

we incorporate random intercept and slope in CMP mixed effect model to capture

subject specific heterogeneity and inherent dispersion prevailing in the longitudinal

count data. We examine the model performance based on both simulated and real

data by using four Bayesian model assessment criteria namely, LPML, LOO, WAIC,

and DIC. Especially, we simulate data in under-, over-, and equi- dispersed condi-

tions and apply Poisson, negative binomial, and CMP model in each of the dispersion

conditions.

We experience from both simulated and real data analysis that each of the

model assessment criteria does not equally perform in all situations, similar evidence

mentioned in Vehtari et al. (2017). From the simulated data we see that WAIC

and DIC perform consistently in all situations. On the contrary, both LOO and

LPML performances are conflicting in case of under-and equi-dispersed data with

subtle deviations. We experience, in case of epilepsy data all four measurements are

giving similar conclusion. A close look to CPO calculation for epilepsy data reveals

that for some data points it provides unusual value for CPO which impacts LPML.

Calculation of Monte-Carlo version of LOO is also similar to CPO calculation, and
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probably that is why they behave similarly. In addition, WAIC involves calculation of

variance of log posterior likelihood across simulations is not reliable when it exceeds

0.04 (Vehtari et al., 2017). Therefore, it is reasonable to rely on DIC, at least for

this case as it is widely used method although retains some limitations (Vehtari et

al., 2017; Plummer, 2008; Van Der Linde, 2005).

In Our study, based on DIC, both the simulation and real data analysis reveal

that CMP model fits better than NB and Poisson for over- or under-dispersed data.

In case of under-dispersed simulated data, surprisingly, we observe that parameter

estimates in Poisson and NB model almost equivalent, while a bit different than that

of CMP model. K. F. Sellers & Shmueli (2010) found similar results in their analysis.

Therefore, it is reasonable to say that in case of under-dispersed data both Poisson and

NB produce similar results. The CMP model retains the lowest WAIC and DIC but

MSEs for the parameters are higher or equal except for the intercept in comparison

to other models. Poisson and NB are not optimal model for under-dispersed data.

Although predictive performance is not satisfactory, based on DIC and WAIC, the

CMP model may be viewed as the best model followed by Poisson. However, an

extensive simulation study by considering a wide range of under-dispersion levels and

true effect size may result different conclusion. In case of over-dispersed simulated

data we experience that CMP is the best model followed by NB. Poisson seems to be

the best model for equi-dispersed data while CMP is the second alternative.

The regression parameter estimates in three models are not directly compa-

rable since θi does not represent mean of CMP distribution like of NB and Poisson

distributions. A conversion, βk/φ provides an approximate comparison with βks from

Poisson and NB model (K. F. Sellers & Shmueli, 2010) for high counts. After trans-

formation, head to head comparisons reveal that parameter estimates are different at

least for some cases. By choosing an incorrect model there remains potential chance

of loosing information on the effect sizes of the covariates of interest.
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The sensitivity analysis with over-dispersed data illustrates that when LKJ

density approaches to uniform type of shape the posterior means of standard devia-

tions and correlation become more sensitive while a little sensitivity is noticed in case

of regression coefficients.

Epilepsy data are well studied in literature, and results are known regarding

dispersion and efficacy of progabide, a study drug. We examine whether our proposed

model could produce the similar results. The data are over-dispersed, and most of

the studies resulted non-efficacy of the progabide (Leppik et al., 1987). Our model

sufficiently produced the similar results to the previous studies. The model fitting on

multivitamin data to assess the adherence to medication in terms of missing pills also

depicts good convergence.

In epilepsy data analysis we encounter some unusual CPO values, and high

values of variance of log posterior likelihood across simulations that makes the relia-

bility of LPML and WAIC questionable, need further exploration. In this study we

did not deal with zero inflated longitudinal counts, missing mechanism of longitudi-

nal data, and modeling duel links (modeling log link of dispersion parameter) in the

context of CMP distribution which remains for further extension. In all cases the

model checking by Rhat, trace plots, pair plots,ACF plots were quite satisfactory.

With the advent of computation performed in this study, dealing with count

response, the proposed model is easily extendable to study subject and cluster specific

variability in multi-site clinical trials by adding cluster or site specific random effects in

the model. The model would be potentially useful and superior in biomedical, public

health, and business research while dealing with dispersed periodic count responses.
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Figure 2.1: LKJ density plot for 2× 2 Correlation Matrix Ω

Figure 2.2: Boxplot for subject-wise CPO for CMP model with φ = 2.50
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Figure 2.3: Comparison of posterior means of regression parameters with changing β
prior parameters

Figure 2.4: Comparison of posterior means of regression parameters with changing φ
prior parameters
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Figure 2.5: Comparison of posterior means of regression parameters with changing
σ2
ζ prior parameters

Figure 2.6: Comparison of posterior means of regression parameters with changing L
prior parameters
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Figure 2.7: Comparison of posterior means of regression parameters with changing
prior distributions

Figure 2.8: Profiles of seizure rates for selected subjects
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Figure 2.9: Treatment arm-wise profile of seizure rates

Figure 2.10: Weekly average seizure rates
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Figure 2.11: Trace plots for M3 (CMP model)

Figure 2.12: Pair plots for M3 (CMP model)

Figure 2.13: ACF plots forM3 (CMP model)
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Chapter 3

Bayesian Generalized Additive

Model for Longitudinal Count

Data Distributed as

Conway-Maxwell Poisson

3.1 Introduction

The parametric model, such as linear mixed effect model assumes that the shape

of the functional relationship between mean of the longitudinal response and covari-

ates is known and linear. The parametric model explains the relationship with a

relatively smaller number of regression coefficients, maintains model parsimony, and

keeps parameter interpretation simple. However, in clinical trials and observational

studies, there are situations where a non-linear relationship exists between response

and prognostic factors (T. J. Hastie & Tibshirani, 1990). In such a situation, us-

ing fewer parameters may be too restrictive in capturing the non-linear functional

relationship. Longitudinal model has to allow grater flexibility to account for the
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relationship via non/semi-parametric modeling approach. In non-parametric regres-

sion model, the shape of the functional relationship is not settled down in advance,

instead, it is largely determined by the data itself (G. M. Fitzmaurice et al., 2012).

In practice, we encounter count data analysis arising from a variety of studies

(e.g, cross-sectional, longitudinal or clustered). Likewise, linear mixed effect model,

the generalized linear parametric model may not be flexible to capture non-linearity

between the link function and covariates while modeling count data. To address the

situation, we can add more flexibility in the model by replacing the linear predictor

with splines. The resulting model is termed as generalized additive model (GAM).

According to T. J. Hastie & Tibshirani (1990), the GAM prevents model misspecifi-

cation, hence provides reasonable inference for the parameters of interest. The GAM

was studied in the literature by using count data with Poisson and Negative Bino-

mial distributional assumptions including their zero-inflated variants in Harezlak

et al. (2018). The available packages dealing with GAM do not support Conway-

Maxwell Poisson (CMP) distributional assumption of the count data. To the best

of our knowledge, no literature is available regarding GAM with longitudinal data

distributed as CMP both in frequentist and Bayesian settings. In order to capture

non-linearity between link function and covariates, to account for subject-specific het-

erogeneity, and to avoid integrational complexity (discussed in Chapter 2) we propose

a Bayesian generalized additive mixed model (BGAMM) for longitudinal count data

distributed as CMP.

This chapter is organized as follows. Section 2 includes the proposed statistical

model following Bayesian inference in Section 3. An illustration of the proposed

model with an application to a hypothetical data is presented in Section 4, and a

short discussion is noted in Section 5, and full conditionals in Appendix B.
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3.2 The Proposed Model

3.2.1 General form of B-Spline model

A spline of degree F is a function constructed by connecting polynomial segments

of degree F so that the function is continuous, has (F − 1) continuous derivatives,

and F th derivative between knots is constant. The linear mixed effect model of

penalized splines for longitudinal response demonstrates that the mean response is

a function of fixed effects, and two sets of random effects. The first set of random

effects ζi allows each individual to have her/his own piece-wise linear curve that is

offset from the smooth population averaged curve by ζi for i = 1, . . . , I, and the

additional random effects, γc for c = 1, . . . , C, are the coefficients for the truncated

line functions, (tij−Sc)+ for j = 1, . . . , ni, that produce a smooth regression function,

Ψ(tij). The amount of smoothing depends on the relative value of variance of γ (σ2
γ).

The γc takes care of the non-linear trend in the mean response, and ζi, varying across

subjects, accounts for correlation among the repeated measures. To fix this idea, we

consider the following expression

E(yij|X) = X iβ + Ψ(tij) + ζi, (3.1)

where, X iβ is the parametric part, a linear function of covariate X, and Ψ(tij) =∑C
c=1 γc(tij −Sc)+ is the nonparametric part, (tij −Sc)+ = (tij −Sc) if (tij −Sc) > 0,

and equal to zero otherwise. The Sc are the knot locations in the piece-wise linear

function of time tij, yij denotes the jth response on the ith individual at time tij,

ζi ∼ N(0, σ2
ζ ), and γc ∼ N(0, σ2

γ).
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3.2.2 Statistical Model

Let yi = (yi1, . . . , yini)
T be the independent count response vector of subject i for

i = 1, . . . , I and j = 1, . . . , ni,X i = (xi1, . . . ,xini)
T be a (ni×(p+1)) design matrix of

fixed effect covariates, where xTij = (1, xij1, . . . , xijp) is a (p+1) dimensional covariate

vector, Zi = (zi1, . . . ,zini)
T be a (ni×C), (C ≤ (p+ 1)) known design matrix, where

zTij =
(

(xij1−S1)+, . . . , (xij1−Sc)+, . . . , (xij1−SC)+

)
is a C-dimensional basis vector,

ζ = (ζ1, . . . , ζI)
T is the subject specific random intercept vector, ζ̃i = (ζi, . . . , ζi)

T , a

ni dimensional vector, and β = (β0, β1, . . . , βp)
T is a (p+ 1) dimensional fixed effect

co-efficient vector, γ = (γ1, γ2, . . . , γC)T is a C dimensional spline coefficient vector.

Then, a generalized additive mixed effect model (GAMM) is given by

E(yi|β,γ, ζ̃i) = g−1
(
X iβ +Ziγ + ζ̃i

)
, (3.2)

where g−1(·) is link function.

Further, let θij be the shape parameter of CMP distribution associated with

jth component of yi. Then, the GAMM for longitudinal count response (distributed

as CMP) is given by

log(θij) = xTijβ + zTijγ + ζi, (3.3)

where ζ ∼ N(0, σ2
ζ ), and γc ∼ N(0, σ2

γ).
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3.2.3 The Likelihood Function

By considering the random effects as latent variables, the complete data likelihood

can be written in the following form

L(β,γ, φ, ζi) =
I∏
i=1

[
ni∏
j=1

f(yij|β,γ, φ, ζi)f(ζi | σ2
ζ )

]
. (3.4)

When response yij distributed as CMP we can write equation (3.4) as

L(β,γ, φ, σ2
ζ ) =

I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(
exp

(
xTijβ + zTijγ + ζi

))yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1

×
I∏
i=1

(2πσ2
ζ )
−(1/2) exp

(
− ζ2i

2σ2
ζ

)
.

(3.5)

3.3 Bayesian Inference

The Bayesian modeling needs specification of prior distributions for the parame-

ters under consideration, and generation of the corresponding posterior distribution.

Then, obtaining MCMC samples from the posterior distribution by using suitable

samplers, and generating posterior summary (means) to avoid complex or intractable

integration. Bayesian analysis enables us to explore different characteristics of the

parameters. Inclusion of zeros in the 95% HPD intervals of the regression parameters

reveal the non-significance of the respective traits associated with the parameter.

3.3.1 Priors and Posteriors

In order to fit a BGAMM, we assume that β, γ, σ2
ζ , and φ are independent apriori.

Then

π(β,γ, φ, σ2
ζ ) = π(β)× π(γ)× π(φ)× π(σ2

ζ ). (3.6)
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We further assume that, β∼ Np(β0,Σ0),γ ∼ Nq(γ0,Σγ), φ ∼ LN(µφ, ψ),and σ2
ζ ∼

IG(α, δ). Then the posterior distribution under the proposed model is given by

π(β,γ, ζ, φ|y) =

[
I∏
i=1

ni∏
j=1

f(yij|β,γ, φ, ζi)× π(β)× π(γ)

]
×

[
I∏

1=1

f(ζi|σ2
ζ )× π(σ2

ζ )× π(φ)

]

∝
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(
exp

(
xTijβ + zTijγ + ζi

))yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1
×

exp
(
−1

2

[
(β − β0)TΣ−10 (β − β0)

])
|Σ0|

1
2

×
exp

(
− 1

2

[
(γ − γ0)

TΣ−1γ (γ − γ0)
] )

|Σγ|
1
2

×
I∏
i=1

(σ2
ζ )
−(1/2) exp

(
− ζ2i

2σ2
ζ

)

× δα

Γ(α)
σ
−2(α+1)
ζ exp

(
− δ
α

)
×

exp
(
−1

2

(
logφ−µφ

ψ

)2)
ψφ

.

(3.7)

3.4 Illustration of GAM

We illustrate the proposed model with a hypothetical data example. Data consist

of count measurements from 50 subjects in five occasions (at different ages of the

subjects). The continuous age variable is generated from normal distribution with a

standards deviation 2 and a randomly selected mean from uniform distribution hav-

ing a support (15, 50). The age variable is considered as varying time in the mixed

effect GAM (no fixed time points of measurements). The range of age in analysis

data is (51.10 − 13.12) years. Treatment variable is generated from Bernoulli dis-

tribution with probability, pr = 0.55. We generate under-dispersed count data as

yij ∼ CMP (50 × 5, θij, 1.8), where the positive shape parameter θij is generated by

taking an absolute value of a term simulated from normal distribution with standard

deviation 1 and a randomly selected mean from uniform distribution with a support
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(1, 2). The mean and variance of the count response are 0.812 and 0.578 respectively.

The Figure 3.1 illustrates the shape of count response distribution. The relationship

between age vs count response, and age vs log(count response) along with their re-

spective trends and 95% confidence intervals are presented in Figures 3.2, and 3.3 (a)

and (b) respectively. In both cases we notice that the relationships are non-linear

even after taking logarithmic transformation of the counts. This situation leads us to

the use of generalized additive model.

3.4.1 Specific model

In a two group setting (study drug vs control, exposed vs non-exposed) the time

trend can be incorporated in semi-parametric fashion by allowing the mean response

change in a highly non-linear and non-predetermined way. This set up could be very

inviting in clinical trials where a pre-determined analysis plan is required but the

actual form of mean time trend is not known in advance. The group effect is added

in a parametric way that allows a relatively simple and powerful test of it on the

mean change over time. Therefore, we include treatment (trt) as a covariate in the

model to examine the treatment effect on the function of mean count change. We fit

Poisson, Negative binomial (NB), and CMP model with B-spline and perform model

assessments by using DIC, LPML, LOO, and WAIC.

We specify a mixed effect GAM with subject-specific random intercept as

log(θij) = xTijβ + zTijγi + ζi, (3.8)

where xTij = (1, trtij, ageij, trtij × ageij), ζqi = (ζ0i), β = (β0, β1, β2, β3)
T , and

γ = (γ1, . . . , γC)T , and the basis vector for B-spline is zTij = [(ageij−S1)+, . . . , (ageij−
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SC)+].

More specifically,

log(θij) =β0 + β1 × trtij + β2 × ageij + β3 × trtij × ageij

+ γ1 × (ageij − S1)++, . . . ,+γC × (ageij − SC)+ + ζi,

(3.9)

In fitting a spline regression, knots are usually specified in advance. The exact

locations and number of knots (C) usually not too sensitive to the predictive value of

the regression (Harrell Jr, 2013). A good number of approaches have been discussed

in the literature to select the number of knots, and places in the generalized additive

model (GAM) setting. Some of them are heuristic (Harrell Jr, 2013), and some of

them are statistical method based (Wood & Wood, 2015). Harrell Jr (2013) suggests

if the sample size, n ≥ 100 then C = 5, and if n ≤ 30 then C = 3. The function gam()

in R package mgcv (Wood & Wood, 2015) uses generalized cross-validation (GCV)

approach that automatically chooses the number of knots for the model. However,

mgcv package does not support CMP distribution. Akaike information criterion (AIC)

can also be used to choose the number of knots in a GAM fitting (Van Houwelingen

& Le Cessie, 1990). This approach chooses C to maximize model likelihood ratio

χ2 − 2C (Harrell Jr, 2013).

Once, the number of knots is chosen we can use them in equally spaced loca-

tions. However, other options can also be applied. Some of the alternative approaches

can be mentioned here. In most cases, researchers use 3 to 5 of knots and they are

placed at fixed percentiles of the data. Harrell Jr (2015) suggested heuristic per-

centiles which is popular to the biostatisticians. If the sample size is less than 100,

Stone & Koo (1985) suggested replacing outer quantiles with 5th smallest and 5th

largest and the inner three quantiles at equally spaced positions of the variable. How-
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ever, in our analysis we use C = 30 arbitrarily to increase the model complexity, and

to observe the model implementation time via our code.

The model assumes a single realization of (γ1, . . . , γC), and these C random

coefficients are shared by all individuals. These random coefficients must be con-

strained to have the same variance σ2
γ to avoid non-convergence in model fitting

(G. M. Fitzmaurice et al., 2012). Bayesian analysis takes care the uncertainty in

smoothing parameters. Therefore, the assumption γc ∼ N(0, σ2
γ) is appropriate if we

use O’Sullivan Spline (Harezlak et al., 2018). O’Sullivan penalized splines imitates the

natural boundary behavior of smoothing splines (https://arxiv.org/abs/0707.0143).

We are using such splines in our analysis. Harezlak et al. (2018) implemented a GAM

with normally distributed response in rstan in Bayesian setting. We implement here

a similar setting with different distributional assumption of count data.

In our analysis, we consider the following prior distributions

φ ∼ LN(0, 15)

ζ ∼ N(0, σ2
ζ ), σ

2
ζ ∼ IG(0.2, 0.2)

βk ∼ N(0, 10000) for k = 0, 1, 2, 3

γc ∼ N(0, σ2
γ) for c = 1, . . . , 30, and

σ2
γ ∼ IG(0.2, 0.2)

We assume that βk can take any value with normal mean 0 and standard

deviation 10000. The dispersion parameter φ is positive, 0 < φ < 1 indicates over-

dispersion, and φ > 1 indicates under-dispersion. We assign a log normal prior with

mean zero and moderate standard deviation for φ. Wosoba et al. (2018) use log

normal distribution as a prior for φ. Since σ2
ζ is a scale parameter with a lower bound

of zero, we assign a inverse-gamma prior for σ2
ζ , as suggests in Gelman et al. (2006).

We perform Bayesian analysis by using Stan language and rstan R package in four

chains with 10000 iterations having 2500 warm-up each. We report LPML, LOO,
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WAIC, and DIC for the model assessments among the competing models such as

CMP, NB and Poisson. The results are presented in Table 4.1.

Table 3.1: Posterior summary under Poisson, NB, and CMP model

Parameter

Poisson NB CMP

Mean Std 95% HPD R̂ Mean Std 95% HPD R̂ Mean Std 95% HPD R̂

β0 −1.11 0.44 (−1.98,−0.24) 1 −1.12 0.46 (−2.01,−0.22) 1 −1.07 0.57 (−2.17,0.05) 1

β1 0.66 0.56 (−39,1.78) 1 0.65 0.58 (−0.46,1.82) 1 1.00 0.72 (−0.42,2.40) 1

β2 0.03 0.01 (0.00,0.05) 1 0.02 0.01 (0.00,0.05) 1 0.04 0.02 (0.01,0.07) 1

β3 −0.02 0.02 (−0.05,0.01) 1 −0.03 0.02 (−0.06,0.01) 1 −0.03 0.02 (−0.08,0.01) 1

σζ 0.15 0.07 (0.04,0.28) 1 0.15 0.07 (0.04,0.28) 1 0.25 0.13 (0.05,0.49) 1

σγ 0.16 0.08 (0.04,0.33) 1 0.17 0.08 (0.04,0.33) 1 0.21 0.12 (0.04,0.43) 1

φ - - - - 0.03 0.02 (0.01,0.07) 1 2.16 0.30 (1.57,2.73) 1

DIC 1011.44 977.62 721.34

∆(Θ) 768.47 571.77 632.44

pD(approx.) 226 209.15 89

LPML −27.15 −13.92 0.37

LOO 2715.09 1392.65 −36.43

WAIC 2034.88 1493.28 719.64

Posterior summary of the parameter φ = 2.16 from CMP model reveals that

data are under-dispersed as we assumed while simulation. The values for R̂ for all

parameters in all models illustrate good performances of the model. The DIC values

for Poisson, NB, and CMP models are 1011.44, 977.62, and 721.34 respectively. The

smallest values of DIC (721.34), LOO (−36.43), WAIC (719.64), and highest value of

LPML (0.37) for CMP model, illustrate the best fit of the CMP model in comparison

to Poisson and NB model. Likewise in chapter 2, we notice that both Poisson and

NB model produce similar parameter estimates as the data are under-dispersed, but

different from CMP model outputs. The converted regression coefficients for CMP

model are β0/2.16 =−0.50, β1/2.16 =0.46, β2/2.16 =0.02, β3/2.16 =− 0.01 are also

a bit different from other models.

We produce trace-plots, density plots, plot for Metropolis acceptance rate, his-

togram for R̂ and ACF plots for all parameters from CMP, and reported them in

Figures 3.2 to 3.6 respectively. The caterpillar like shape of the trace plots depict

the good mixing of the posterior samples across chains. The bell shapes of density

plots for posterior means for all parameters depict non-disruption in MCMC sam-
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pling process. In Figure 3.4 we observe that log posterior is bell shaped which is an

indication of better convergence of the model. The mean metropolis acceptance rate

also high. The average R̂ is closer to 1 reveals that posterior distribution is close

to the target distribution. Exponential shape of ACF plots in Figure 3.6 stipulates

relatively lesser auto-correlated samples generation which is an advantage of using

Hamiltonian samplers (No-U-Turn samplers) over other MCMC sampling techniques.

3.5 Discussion

Dealing with generalized linear model (GLM), K. F. Sellers & Shmueli (2010) opines

that CMP model is a better alternative to NB and Poisson while count data ex-

hibit dispersion. However, the application of CMP generalized additive mixed model

dealing with longitudinal count data was unexplored in literature. In this study we

attempt to examine alternatives of GAM by considering usual count data distribu-

tions such as CMP, NB, and Poisson by using a hypothetical dataset. The response

data here is under-dispersed. From the analysis dataset we notice that CMP model

with B-spline fits better than NB and Poisson model on the basis of all Bayesian

model assessment criteria we did consider. A crude comparison of model regression

parameters across models is possible with a suitable conversion (βk/φ) of CMP model

coefficients, we perform this point-wise comparison across models. We experience that

both Poisson and NB model result almost same values for respective parameters that

conforms similar findings by Sellers et al.(2010) for under-dispersed data. However,

the values are different in case of CMP model.

We do not accommodate automated knot selection in GAM in CMP distri-

butional setting. In fact, no package is available for selecting number of knots and

implementing GAM when count data distribution is assumed as CMP. The heuristic

percentiles for knot location suggestion by Harrell Jr (2015) may be followed. The
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other alternatives might be followed by fitting GAM using mgcv R package with the

logarithmic link by considering either Poisson or Negative Binomial or both to deter-

mine C first and then use that C in CMP setting. We can also check model fitting

by calculating DIC for different choices of C and determine the value of C based on

the lowest DIC value. However, use of excessive number of knots might minimize the

roughness of the non-linear curve with a high chance of producing over-fitting model

(G. M. Fitzmaurice et al., 2012). The GAM is extremely useful to study the efficacy

of the intervention drug or devices in clinical trials where functional relationship be-

tween mean count response and time is found to be non-linear. We were limited due

do unavailability of a good real data set to explore a scientific research question of

interest in CMP GAM setting which remains for further exploration. In addition, we

do not consider zero inflated longitudinal counts, missing data issues, and duel links

(modeling log link of dispersion parameter) in CMP GAM fitting which also remain

for further extension.
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Figure 3.1: Distribution of the data

Figure 3.2: Relationship between counts and age
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Figure 3.3: Relationship between log(counts) and age

Figure 3.4: Trace plots for CMP model with B-spline
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Figure 3.5: Density plots for CMP model with B-spline

Figure 3.6: Metropolis acceptance rate for CMP model with B-spline
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Figure 3.7: Histogram for Rhats for CMP model with B-spline

Figure 3.8: ACF plots for CMP model with B-spline
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Chapter 4

Association Between Multivitamin

Supplementation and Overall

well-being in HIV

Patients:Application of the

Bayesian Generalized Mixed Effect

Model

4.1 Introduction

There has been a substantial decrease in the number of new HIV infections during the

past decade. However, recent estimates from United States indicate that there were

36,400 new cases in 2018 and an estimated 1.2 million people had HIV (prevalence)

(for Disease Control et al., 2020). The advent of highly active combined antiretro-

viral therapy (cART) has tremendously altered the natural history of HIV infection
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transforming the disease from a fatal infectious one to a manageable chronic condition

(Deeks et al., 2013). With an enhanced life expectancy, the patterns of comorbidities

have changed among the HIV-infected population. Along with the continued man-

agement of the HIV infection, this population needs care of age-related comorbidities

which may be complicated by issues such as medication associated toxicities (Chu &

Selwyn, 2011). Given the situation, there is continued need to exploit all potential in-

terventions to improve the health and health related quality of life of the HIV-infected

population, and nutritional interventions are one of them.

Chronic diseases in general, have certain underlying pathologic mechanisms

that may be modified by nutrients such as reduction of oxidative damage by an-

tioxidants, DNA methylation regulated by folate and B vitamins, bone metabolism

regulated by vitamin D and calcium, and cell differentiation, proliferation, and growth

regulated by retinol, calcium, and vitamin D (H.-Y. Huang et al., 2006). Also, it is

well established that chronic diseases lead to micronutrient deficiencies that in turn

further increase the risk of disease progression and symptomatology (Erickson et al.,

2000). Thus, micronutrient supplementation may be beneficial in disease mitigation.

Regarding HIV-infected population, vitamin D supplementation has been studied

extensively. Recent studies have found that vitamin D supplementation attenuates

the effect of immune activation and decreases bone turnover markers in HIV-infected

population (Eckard et al., 2018; Nanayakkara et al., 2019; Sudjaritruk & Puthanakit,

2017).

The potential beneficial role of multi-micronutrient supplementation has been

evaluated to a relatively lesser extent in the HIV-infected population. Interventional

studies conducted on HIV-infected children have shown micronutrient supplementa-

tion beneficial in terms of improvement in CD4 counts, delay in the progression of

disease, improved appetite, reduced duration of pneumonia or diarrhea and improved

wasting (Gautam et al., 2014; Mda et al., 2010, 2013).
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However, the interventional studies conducted on adult HIV-infected popu-

lation exhibit mixed result probably dependent on the characteristics of the study

population or statistical analysis used. Majority of the studies conducted on adult

participants, evaluated the micronutrient supplementation through improvement in

biomarkers and mortality as the outcomes, and not through the disease symptomatol-

ogy. Where some studies found improved CD4 counts, reduced viral loads, decreased

mortality and reduced risk of AIDS defining condition with micronutrient supplemen-

tation (Baum et al., 2013; Hemsworth et al., 2012; Zhao et al., 2009; Kaiser et al.,

2006; Jiamton et al., 2003), others did not find any beneficial result (Makinde et al.,

2017; Motswagole et al., 2013; PrayGod et al., 2011; Semba et al., 2007).

Given the contradictory findings of the limited multi-micronutrient interven-

tional research conducted in the adult HIV-infected population, the subject needs

further evaluation, specially in terms of an effect on the overall symptomatology of

the disease. To fill the research gap, our study is using data from a randomized

double-blind controlled trial to determine the effect of multivitamin supplementation

(containing 1.4 mg B1, 1.4 mg B2, 1.9 mg B6, 2.6 mcg B12, 18 mg niacin, 70 mg C,

10 mg E, and 0.4 mg folic acid) in adult HIV-infected participants on overall disease

symptomatology, where overall well-being of the patients accounts for the reduction

in counts of sign and symptoms due to study drug.

A variety of regression models based on the Poisson distribution namely stan-

dard Poisson, negative binomial, restricted generalized Poisson regression model have

been used to model such kind of count data (Winkelmann & Zimmermann, 1995).

However, these models are based on certain assumptions. For example, Poisson model

assumes equality of mean of variance. In practice this ideal situation happens rarely,

instead, variance could be higher (over-dispersion) or lower (under-dispersion) than

mean. Failure to address these properties may lead to the inefficient estimation of

the model parameters. The Conway-Maxwell Poisson (CMP) as a count data distri-
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bution is able to accommodate a wide range of dispersion in the data and has been

proven superior to the alternative models (K. F. Sellers & Shmueli, 2010). To our

knowledge no previous interventional study has used the Bayesian generalized linear

mixed model (BGLMM) which enables us to deal with over/under dispersed longi-

tudinal counts of sign and symptoms, especially when the count data follow CMP

distribution. The first objective is to demonstrate the applicability of this model

as an alternative to study disease symptomatology, and the second objective is to

find the association between multivitamin supplements and overall well-being of the

HIV patients. The second section of this study includes methods along with data

source, response variable, predictor variables, model and statistical analysis. The

results are included in Section 3 followed by discussion and conclusion in Section 4.

We demonstrate CMP model implementation coding in the final Section.

4.2 Methods

4.2.1 Data Description

The longitudinal data for this study are collected from a randomized double-blind

placebo controlled clinical trial conducted to examine the beneficial effect of mul-

tivitamin among HIV-infected adults receiving highly active antiretroviral therapy

(HAART) in Uganda reported by Guwatudde et al. (2012). In this trial 400 adults

are randomly assigned to either a multivitamin (MV) supplement (including vitamin

B-complex, C, and E) or placebo arm with equal proportion who were continuing to

receive standard medical care according to Uganda’s Ministry of Health guidelines.

The current study utilizes the data from 354 subjects for whom complete measure-

ments at 3, 6, 12, and 18 months visits were available. In every visit, the subjects

were asked whether they experience any sign and symptoms during last three months

in forty five directions such as fatigue, general body weakness, fever, oral thrush etc.
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By combining individual answers we create a response variable, namely, the number

of symptoms and sign as an indication of overall well-being of the patients. Decrease

in the number of sign and symptoms may be viewed as improved health condition

of the subjects. The trial collected background and demographic information of the

subjects, among them baseline age and gender information were available. Whether

the subject receives multivitamin or placebo, baseline age , and gender of the subjects

are adjusted in the model as the the covariates.

4.2.2 Statistical Analysis

Let θij be the shape parameter of CMP distribution associated with jth component

of longitudinal count response vector yi for subject i. Then, under the notations

defined in Chapter 2, the specific model to study number of sign and symptoms is

given by

log(θij) = (β0 + ζ0i) + β1Trtij + (β2 + ζ1i)Timeij + β3Age+ β4Gender, (4.1)

where ζ0i and ζ1i are the subject specific random intercept and slope respectively, and

we assume they are correlated. The βs are the regression coefficients.

We perform Bayesian analysis in Stan language and rstan in four chains with

5000 iterations having 2500 warm-up each. By default Stan uses No-U-Turn Sampling

(NUTS), an adaptive version Hamiltonian MCMC. In our analysis we consider the

following prior distributions: βk ∼ N(0, 10000) for k = 0, 1, 2, 3, 4, a diffuse normal

prior. The dispersion parameter φ ∼ LN(0, 15), providing positive support for φ.

We assign ζq ∼ N(0, σ2
ζq

), σ2
ζq
∼ IG(0.1, 0.1) for q = 0, 1, as suggested in Gelman

et al. (2006). For the correlated random effects we decompose correlation matrix

Ω with Choleskey decomposition Ω = LTL, where L is a lower triangular matrix,
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and its distribution is assumed as LKJ(η). We assume that the random effects are

weekly correlated, the value η = 2, indicates that the correlation is close to zero. We

fit Poisson, negative binomial (NB) and CMP model, and compared fitness of the

models by using DIC, WAIC, LOO, and LPML.

A subgroup analysis has been conducted by segregating the data by sex with

CMP model. In subgroup analysis intervention (MV or Placebo) and age are con-

sidered as the covariates. The regression parameter estimates from CMP model are

not directly comparable with Poisson and NB as CMP model does not model link

function of the mean directly. A transformation (βk/φ) is used to compare coeffi-

cients across three (Possion, NB, and CMP) models as suggested in K. F. Sellers &

Shmueli (2010). Inclusion of zeros in 95% HPD intervals for coefficients are consid-

ered as non-significance of the respective covariates. We report incidence rate ratio

(IRR) for each of the covariates. An IRR< 1 indicates positive impact of the trait on

reducing number of signs and symptoms.

4.3 Results

We analyzed data from 354 HIV infected subjects of ages 18-67 years with a median

age 36 years (IQR=11), among them 173 (48.87%) received multivitamin and the rest

received placebo. Male participants are 108(30.5%). The response variable ranges

from 0 to 31 with a median sign and symptom count 7 (IQR=6).

In Table 4.1, we report posterior means, standard deviation, and 95% credi-

ble intervals for the parameters obtained from Poisson, negative binomial, and CMP

model outputs. In Figure 4.1, we illustrate posterior means of the CMP model pa-

rameters along with their 95% HPD intervals. The value of dispersion parameter

(φ = 0.84) in CMP model indicates that data are over-dispersed. The CMP model

retains the lowest DIC (6918.71), LOO (693.48), WAIC (7048.49), and the highest
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Table 4.1: Posterior summary under Poisson, Negative binomial and CMP model

Parameter
Poisson NB CMP

Mean Std. 95% HPD Mean Std. 95% HPD Mean Std. 95% HPD R̂

β0 2.25 0.11 (2.02,2.46) 0.81 0.06 (0.71,0.92) 1.89 0.14 (1.61,2.16) 1

β1 −0.10 0.05 (−0.20,0.00) −0.05 0.03 (−0.10,0.00) −0.09 0.05 (−0.17,0.01) 1

β2 −0.03 0.00 (−0.03,−0.02) −0.01 0.00 (−0.02,−0.01) −0.02 0.00 (−0.03,−0.02) 1

β3 0.00 0.00 (−0.01,0.01) 0.00 0.00 (0.00,0.00) 0.00 0.00 (−0.01,0.00) 1

β4 −0.26 0.06 (−0.37,−0.14) −0.13 0.03 (−0.19,−0.07) −0.22 0.05 (−0.32,−0.12) 1

σ0 0.47 0.03 (0.41,0.53) 0.20 0.0.02 (0.17,0.24) 0.38 0.04 (0.31,0.46) 1

σ1 0.03 0.00 (0.02,0.03) 0.01 0.00 (0.01,0.02) 0.02 0.00 (0.01,0.02) 1

ρ −0.32 0.10 (−0.50,−0.12) 0.03 0.16 (−0.27,0.36) −0.24 0.13 (−0.49,0.02) 1

φ - - - 0.03 0.01 (0.01,0.04) 0.84 0.05 (0.75,0.93) 1

DIC 7149.73 18650.71 6918.71

pD(approx.) 416 52 305

LPML −361.89 −1044.88 −346.74

LOO 723.79 2089.75 693.48

WAIC 7211.97 19244.44 7048.49

Figure 4.1: Posterior summary of the parameters from CMP model with 95% Credible
Interval

(−346.74) among the three models which indicate that the CMP model fits better

than Poisson, and negative binomial models. Since, the CMP model is appeared to

be the best, we explain results from CMP model. From CMP model, although not

significant but β1 < 0 = 97.20%, the incidence rate of suffering from different sign

and symptoms of HIV patients who consumes multivitamin is lower [β1=−0.09, 95%
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HPD: (− 0.17, 0.01), and the corresponding IRR= exp(−0.09/0.84)=0.91] than who

consumes placebo. The incidence rate of suffering from different sign and symptom

of HIV patients who consume multivitamin is lowed by 9% than those who consume

placebo while age and gender are adjusted.

For one month increase in the follow up time the incidence rate for sign and

symptoms decreases by 2 percent[β2=−0.02, 95% HPD: (−0.03, −0.02), and the

corresponding IRR= exp(−0.02/0.84)=0.98] among the HIV patients, and statisti-

cally significant. The incidence rate ratio for signs and symptoms among male is

significantly lower than that of women [β4=−0.22, 95% HPD: (−0.32, −0.12), and

corresponding IRR= exp(−0.22/0.84) = 0.77] while adjusting age, time and interven-

tion.

The subgroup analysis illustrates that, male receiving multivitamin experience

lesser number of signs and symptoms (IRR=0.91), the experience is also in the similar

direction for female (IRR=0.90). As time goes up the male patients experience higher

reduction of symptoms (IRR=0.96) than that of the female patients (IRR=0.98).

Both in male and female groups, baseline age does not have significant role in reducing

sign and symptoms. We present posterior mean along with their corresponding 95%

HPD interval in Figure 4.1. It is observed that gender effect is significantly lower

than zero and treatment effect is marginally lower than zero, which illustrate that

male, and individuals in multivitamin group experience lesser number of sign and

symptoms respectively.

4.4 Discussion

Based on all model assessment criteria, our study reveals that the CMP model is an

ideal alternative to study, and identify the factors affecting the symptomology status

in HIV patients receiving multivitamin as a supplementary intervention. The CMP
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model has been proven as a better alternative to dispersed count data (K. F. Sellers

& Shmueli, 2010; Morris et al., 2017).

It is evident from all three models that multivitamin, time, and male gen-

der have positive impacts in reducing the number of signs and symptoms. Limited

research has been conducted on the effect of multivitamin supplementation in HIV

patients. However, the roles of individual vitamins such as vitamin D and A have

been sufficiently studied in specific gender and comorbidity based sub-groups of HIV

infected population and such supplementation has been found to be beneficial. Mul-

tivitamin supplementation has been found to be associated with lower risk of death,

a higher CD4 count, lower viral loads, delayed disease progression, improved weight

gain and significant improvement in hematological status in pregnant females in Tan-

zania (Fawzi et al., 2004, 2007; Villamor et al., 2002). Similarly, among children,

probiotic and micronutrient supplementation has shown significant improvement in

CD4 count and delay in progression to advanced disease (Gautam et al., 2014). In

adult HIV infected population, multivitamin supplementation has shown a reduction

in oxidative stress (Allard et al., 1998). Individually, vitamin D deficiency has been

found to be associated with a higher all-cause mortality and AIDs event (Viard et

al., 2011), while its supplementation, and increase in serum concentration over time

is associated with a decrease in markers of T-cell activation, monocyte activation and

Interleukin-6 (an inflammatory biomarker) among adults (Benguella et al., 2018;

Eckard et al., 2018), and improved neuromuscular motor skills among children and

young adults (Brown et al., 2015). Majority of vitamin A supplementation studies

have been conducted in pregnant females and provide mixed results.

A systematic review of randomized control trials found no overall evidence of

a positive effect of intervention in mother to child transmission of disease, but they

did find significant positive effect on birth weight (Kongnyuy et al., 2009). Few

studies did not find any beneficial effects of vitamin supplementation (Guwatudde
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et al., 2015). We found that among males, the beneficial effects of multivitamin

supplementation were more evident as compared to females (as seen by the strength

of association). This is a novel finding to our knowledge as no previous interventional

study has assessed the role of gender. In this study, baseline age does not have any

significant association with sign and symptom.

This study has several strengths. The use of large double blind randomized

control trial data in HIV patients to study the effect of multivitamin is one of them.

Our results could be reliable because of large sample. Application of the Bayesian

CMP mixed effect model with higher order random effects to study longitudinal count

data as an alternative to other methods is another strength. However, this study is

not free from limitations. In our calculation, we observe that DIC, and WAIC for

NB model is substantially high in comparison to other models, seems to be counter

intuitive for over-dispersed data. Further investigation may be required. The model

could not adjust for other predictors especially certain comorbidities that could have

affected metabolism and mechanisms of actions of the vitamins as they were not

available from the original investigators. From this study, the sign of positive impact

of multivitamin supplementation in HIV patient’s health status would enhance the

application of multivitamin to the HIV patient population as a low cost therapy.

However, larger study may be conducted to produce generalizeable results.

4.5 CMP Model Implementation

No package supports mixed effect model when longitudinal count data distribution

is assumed as Conway Maxwell Poisson (CMP). We implement our analysis in R

environment with a R package rstan. It requires both Stan and R coding. We use

the matrix notation of mixed effect model of the form with the given notation in

Chapter 2
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log(θij) = xTijβ + zTijζ, (4.2)

where ζ ∼ N(0, σ2
ζ ), and θij is the shape parameter of the CMP distribution asso-

ciated with longitudinal count observation yij. CMP is not a default distribution

in Stan. Therefore, we had to adopt CMP distribution in Stan. The CMP model

implementation process are mentioned below step-wise (please follow the codes below

to match with steps):

1. Install the R package rstan with all its dependencies (R packages), and call

all required libraries.

# Library

library(rstan)

library(ggplot2)

2. Load data in R and generate a fixed effect design matrix. We can make a design

matrix for random effects too. However, we made here only design matrix for

fixed effects.

# Loading data assuming that data has trt,time,age,gender variables

data=read.csv("~data.csv")

#Design matrix for Fixed effects

X=(model.matrix(~1+trt+time+age+gender, data))

3. Express data as a list with the data to be used in the model, we call here it

standata.

# creating a list of data for modeling in Rstan

73



standata=list(Nobs=nrow(data),

Npreds = ncol(X),

Ngroups=length(unique(data$ID)),

y = data$countresponse,

X = X,

trt=data$trtment,

time=(data$visit_times),

group = as.integer(factor(data$ID)),

age=data$base_line_age)

4. Stan code can be written in two ways but we have to use one of them. Firstly:

write the Stan code in R environment with a name cmpcrs (say), all the Stan

code will be within inverted comma (‘. . . ’). Secondly: we can create a sep-

arate ‘∼ .stan’ file in notepad cmp.stan (say). Finally, call the code/file as

modelcode = cmpcrs or cmp.stan. However, here we apply first case as

cmpcrs = ‘.....’

5. Within Stan code user defined distribution’s loglikelihood can be developed.

In CMP distribution we have a normalizing constant which is an infinite sum,

we have to evaluate normalizing constant in 2 steps first with a main function.

Within the main function the function ‘ real Z (real theta, real phi) {...}’ evalu-

ates the normalizing constant Z(θi, φ) =
∑∞

k=0
θki

(k!)φ
for subject i for θi and fixed

φ. The successive terms in the sum are diminishing and we included the term

in the sum until difference between two term is attained to < 0.0001

real Z(real theta, real phi){

real sm;
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real sm_prev;

int i;

real diff;

sm=0;

i=0;

diff=1;

while (diff > 0.0001){

sm_prev=sm;

sm=sm+exp(i*log(theta)-phi*lgamma(i+1));

diff=sm-sm_prev;

i=i+1;

}

return(sm);

return(i);

}

In the second step, we have to evaluate the vector Zv for all observations.

vector Zv(vector theta, real phi){

int N = rows(theta);

vector[N] zs;

for (i in 1:N){

zs[i] = Z(theta[i], phi);

}

return(zs);

Finally, the log-likelihood.

real compoisson_lpmf(int y, vector theta, real phi){
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int N = rows(y);

return-sum(log(Zv(theta,phi)))-phi*sum(lgamma(y+1)) + sum(y.*log(theta));

}

Note: For default distributions in Stan we do not require this step.

6. In data block define data including design matrix.

data {

int<lower=0> Nobs; // number of observations

int<lower=0> Npreds; // number of fixed effects

int<lower=0> Ngroups; // number of subjects

int y[Nobs]; // response variable

matrix[Nobs,Npreds] X; // fixed effect design matrix

vector[Nobs] time; // measurement times or visit times

int<lower=1,upper=Ngroups> group[Nobs]; // group-wise observation

}

7. In parameter block define parameters of interest including regression coeffi-

cients, dispersion parameter, standard deviations of random effects that we

want to estimate. In this case to accommodate correlated random effects we

need to define Choleskey factor (L).

parameters {

real<lower=0.01> phi; // dispersion parameter

vector[Npreds] beta; // fixed effect regression coefficients

vector<lower=0>[2] sigma_zeta; // variance of random effects

cholesky_factor_corr[2] L_zeta;

// L,Choleskey factor of correlation matrix

matrix[2,Ngroups] z_zeta;
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// matrix of randomly distributed random variables //used to generate correlated random effects

}

8. In transform parameter block estimate theta from the proposed model, and

create correlated random effects by using



ζ01 ζ11

ζ02 ζ12

... ...

ζ0I ζ1I


=
(

diag(σζ0, σζ1)Lζzζ

)T

// transform parameter block

transformed parameters {

vector[Nobs] thetahat ; // vector of estimated theta

matrix[2,Ngroups] zeta; // matrix of random intercepts and slopes

zeta<-diag_pre_multiply(sigma_zeta,L_zeta)*z_zeta;

// creating correlated random-intercepts and slopes

// estimating thetas

for (i in 1:Nobs)

thetahat[i]<- exp(X[i]*beta+zeta[1,group[i]]+ zeta[2,group[i]]*time[i]);

}

9. In model block define priors of the parameters and generate posterior, here is

the end of Stan coding. we recommend uniform or normal priors for regression

parameters, uniform or inverse-gamma for variance parameter, log normal or

Halpf-Cauchy for dispersion parameter, LKJ with eta=2 or 1.5 for L

// model block

model {
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beta~ normal(0,10000); // fixed effect regression coefficients

L_zeta~lkj_corr_cholesky(2.0); // priors Choleskey factor

to_vector(z_zeta)~normal(0,1); // prior for to-vector

phi~lognormal(0,15); // prior for dispersion parameter

sigma_zeta~inv_gamma(0.1,0.1); // prior for dispersion parameter

y ~ compoisson(thetahat, phi);

10. Now run the model with modelcode=cmpcrs and data= standata. Number

of chains and cores may be 1 or 2 or 3 or 4. Any number of thinning can

be used to avoid dependent samples for posterior properties calculations. One

can monitor progress of MCMC by using any number of refresh. The step

size, maximum number of tree depth, and metropolis acceptance ratio can be

controlled for better performance of MCMC samples. Default warm-up is 1/2

of the iterations. However, one can select any number of warm-ups.

# Rstan code for model running

fit.cmpcrs_mf=stan(model_code=cmpcrs, data= standata, iter = 5000,

chains = 4, cores=4, thin=1, refresh = 1000, init_r=0.01)

11. Print the output, one can specify parameters and 95% credible interval to

print. To monitor performance of MCMC trace plots, ACF plots, Pair plots

can also be produced.

//printing parameter estimates

print(fit.cmpcrs_mf, pars=c("phi","beta[1]",

"beta[2]", "beta[3]", "beta[4]","beta[5]",

’sigmaint’), probs=c(0.025,0.5,0.975))
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—————————————Full CMP Modeling code—————

Library

library(rstan)

library(ggplot2)

# Loading data assuming that data has trt,time,age,gender variables

data=read.csv("~data.csv")

//

#Design matrix for Fixed effects

X=(model.matrix(~1+trt+time+age+gender, data))

//

# Creating a list of data for Rstan modeling

standata=list(Nobs=nrow(data),

Npreds = ncol(X),

Ngroups=length(unique(data$ID)),

y = data$countresponse,

X = X,

trt=data$trtment,

time=(data$visit_times),

group = as.integer(factor(data$ID)),

age=data$base_line_age)

//

#start of STAN coding block for the correlated random intercept

#and slope with the name "cmpcrs"

cmpcrs = ’

#evaluate the normalizing constant (infinite sum)

functions{

79



real Z(real theta, real phi){

real sm;

real sm_prev;

int i;

real diff;

sm=0;

i=0;

diff=1;

while (diff > 0.0001){

sm_prev=sm;

sm=sm+exp(i*log(theta)-phi*lgamma(i+1));

diff=sm-sm_prev;

i=i+1;

}

return(sm);

return(i);

}

vector Zv(vector theta, real phi){

int N = rows(theta);

vector[N] zs;

for (i in 1:N){

zs[i] = Z(theta[i], phi);

}

return(zs);

}

#define log likelihood

real compoisson_lpdf(vector y, vector theta, real phi){

80



int N = rows(y);

return-sum(log(Zv(theta,phi)))-phi*sum(lgamma(y+1)) + sum(y.*log(theta));

}

}

#data block

data {

int<lower=0> Nobs; // number of observations

int<lower=0> Npreds; // number of fixed effects

int<lower=0> Ngroups; // number of subjects

vector[Nobs] y; // response variable

matrix[Nobs,Npreds] X; // fixed effect design matrix

vector[Nobs] time; // measurement times or visit times

int<lower=1,upper=Ngroups> group[Nobs]; // group-wise observation

}

#parameter block

parameters {

real<lower=0.01> phi; // dispersion parameter

vector[Npreds] beta; // fixed effect regression coefficients

vector<lower=0>[2] sigma_zeta; // variance of random effects

cholesky_factor_corr[2] L_zeta; // L,Choleskey factor of correlation matrix

matrix[2,Ngroups]z_zeta;

// matrix of randomly distributed random variabl

//used to generate correlated random effects

}

#transform parameter block

transformed parameters {

vector[Nobs] thetahat ;
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// vector of estimated theta considered as parameters

matrix[2,Ngroups] zeta; // matrix of random intercepts and slopes

zeta<-diag_pre_multiply(sqrt(sigma_zeta),L_zeta)*z_zeta;

// creating correlated random-

//-intercept and slope

# estimating thetas

for (i in 1:Nobs)

thetahat[i]<- exp(X[i]*beta+zeta[1,group[i]]+ zeta[2,group[i]]*time[i]);

}

# model block

model {

beta~ normal(0,10000); // fixed effect regression coefficients

L_zeta~lkj_corr_cholesky(2.0); // priors Choleskey factor

to_vector(z_zeta)~normal(0,1); // prior for to-vector

phi~lognormal(0,15); // prior for dispersion parameter

sigma_zeta~inv_gamma(0.1,0.1); // prior for dispersion parameter

y ~ compoisson(thetahat, phi);

}’

#----- end of STAN coding block-------

# Rstan code for model running

fit.cmpcrs_mf=stan(model_code=cmpcrs, data= standata, iter = 5000, chains = 4,

cores=4, thin=1, refresh = 1000, init_r=0.01)

#Output posterior means with 95% Credible intervals

print(fit.cmpcrs_mf, pars=c("phi","beta[1]", "beta[2]", "beta[3]",

"beta[4]","beta[5]",

’sigmaint’), probs=c(0.025,0.5,0.975))
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Chapter 5

Conclusion and Future Research

Directions

Biomedical studies, clinical trials, and observational studies generate abundance of

count data. Often times, these data are measured longitudinally or cluster-wise.

McCullough & Nelder (1989) mentions that over-dispersion is a rule rather than

exception. Over-dispersion in the data arises for a variety of reasons. For instance,

when mean and variance are related in generalized linear models, due to important

predictor missing in the model, functional miss-specifications, correlation between

responses, excess variation in counts, and violation of distributional assumptions. On

the other hand under-dispersion is also arises when adjacent groups are correlated. It

can occur by data generating or modeling process, and usually seen in small sample

values. Failure to address over- and under-dispersion leads to bias inference and model

over-fitting respectively. Poisson model is a benchmark in count data analysis, and is

constrained by equi-dispersion assumption. Negative binomial model is dedicated to

deal with over-dispersion. Literature reveals that in terms of model fit and predictive

power, CMP model outperforms NB and Poisson as it can capture a wide spectrum

of dispersion in a parsimonious way (K. F. Sellers & Shmueli, 2010). In addition, the
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longer tail of the CMP distribution can capture extreme observations, and it enables

us to fit a single model instead of fitting separate models in different dispersion

conditions.

Besides, in modeling longitudinal count data, it is reasonable to think that

there is natural heterogeneity among the study subjects not only on their baseline

level but also in the change in the expected counts over time. In practice this situation

happens a lot. To address the heterogeneity and dispersion in count data we include

random effects in CMP regression model. The CMP model with subject-specific

random intercept and slope, and generalized additive mixed effect model with CMP

distributional assumption of count data were not studied in literature. Fitting such

models in the classical approach may be cumbersome due to complex nature of the

likelihood and integrational intractability. We propose a Bayesian approach for these

models and attempt to assess model performance based on the simulation and real

data analysis.

In Chapter 2, we fit a Bayesian generalized linear mixed effect model for longi-

tudinal count data distributed as CMP by assuming a linear functional relationship

between expected mean counts and covariate effects. We fit CMP, Poisson, NB model,

and do model assessments by using LPML, LOO, WAIC, and DIC. From both simu-

lated and real data analysis we experience that each of the model assessment criteria

does not perform equally in all situations, rather their performances are data specific.

The similar experience mentioned in Vehtari et al. (2017). Since we observe a con-

sistent performance of DIC across dispersion conditions, we recommend to the use of

DIC for Bayesian model assessments, although it suffers from some limitations men-

tioned in Vehtari et al. (2017); Plummer (2008); Van Der Linde (2005). In simulated

study, based on DIC, we observed that CMP models fit better than other models. We

use epilepsy data to check performance of our proposed model. Epilepsy dataset is

well studied in literature. The data are over-dispersed, and no statistically significant
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impact of study drug (progabide) was found in most of the analysis (Leppik et al.,

1987). Our proposed model also conforms similar findings.

In Chapter 3, we fit a Bayesian generalized additive mixed effect model for

longitudinal count data distributed as CMP by considering a non-linear functional

relation between expected mean counts and covariate effects. Such a model is widely

applicable in clinical trial data where functional relationship is not known in advance,

rather is data driven. We use an under-dispersed hypothetical dataset to fit the

proposed model. Our model could identify the under-dispersion in the data. Based

on all four model assessment criteria (LMPL, LOO, WAIC, and DIC) the CMP model

fits the best among others.

Whether the multivitamin supplementation is beneficial to explain symptomol-

ogy in HIV patients receiving highly active antiretroviral therapy? By using CMP

model, Chapter 4 deals with the above research question. We found, the CMP model

fits the best, and model convergence is quite satisfactory. The model depicts that

the incidence rate of suffering from different sign and symptom of HIV patients who

consume multivitamin is lowed by 9% than those who consume placebo while age and

gender are adjusted.

In this study we encounter some problems and could not explain the reason

why they are arising, require further investigation. Some of the issues are: (1) al-

though we do not encounter any problem in CPOs for simulated data, we experience

some subjects retain abnormally high values of CPO for epilepsy data, and makes

LPML questionable (2) in calculation of WAIC, variance of log posterior likelihood

across simulations produce high values (when exceeds 0.04 are not reliable) and makes

WAIC calculation unreliable for the real data (3) in Chapter 4 for a over-dispersed

multivitamin dataset, DIC for NB model is substantially high in comparing to the

other model.
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Our proposed models, Bayesian generalized mixed effect model with higher

order random effects, and Bayesian generalized additive mixed effect model are the

extensions to the existing literature for longitudinal count data modeling. The CMP

model saves us from model misspecification for count data. Due to unavailability of

ready to use software, the application of the CMP model is limited, despite having the

appealing properties of CMP distribution. We provide a tutorial for implementing

ting CMP model in STAN and Rstan, and attach full code in Appendix. We hope,

with the advent of computational procedure, the proposed model is easily extendable

to study subject and cluster specific variability in multi-site clinical trials by adding

cluster or site specific random effects in the model. While dealing with dispersed

longitudinal count responses, our proposed models can account for both linear and

non-linear relationship between expected counts and covariates arises from various

biomedical, public health, and business research.

Some noted future research plans are:

1. Developing CPO using weight function and corresponding logarithm of pseudo

marginal ikelihood (LMPL) as the Bayesian model assessment criteria with

Conway-Maxwell Poisson distributional assumption for longitudinal count data.

In Chapter 2, we used numerical calculation of CPO and LPML by using MCMC

samples based on CPO identity-I described in (Zhang et al., 2017). However,

we realized that CPO identity-II proposed in Zhang et al. (2017) remains unex-

plored in the context of CMP. CPO identity-II involves calculation of normal-

ized weight function by using random effects, and approximation of covariance

matrix of random effects which remains for further study.

2. Exploring posterior identifiability condition under non-informative priors on

regression parameters (βk) to develop a theoretical background. This involves

advance inequality techniques along with matrix rank calculation, to be explored

in future.
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3. In dealing with Bayesian mixed effect model and GAM in Chapter 2 and Chap-

ter 3 respectively, we did not deal with zero inflated and missing longitudinal

counts, and duel links (modeling log link of both shape and dispersion param-

eter), and automated knot selection in CMP setting which remain for further

extension.

4. Developing statistical joint model of time to event and longitudinal count data

distributed as Conway-Maxwell Poisson and its application in drug develop-

ment.

There is a growing interest in statistical joint modeling in drug and medical

instrument development industry. Literature reveals that joint model provides

better insight for biomarkers and survival events, produce less bias, provides

greater efficiency by lowering sample size in the drug development process

(Lawrence Gould et al., 2015). A joint model includes a longitudinal model to

deal with bio-marker (may be dispersed counts) trajectory and survival model

to deal with time to events. However, research scope remains open in both

components.

5. Methodology development to identify the distribution and shape of the longi-

tudinal data.

In practice, if longitudinal data is continuous, we assume normal distribution of

the data, for continuous rates/ratios/proportion we consider beta distribution,

categorical (binary, multinomial, ordinal) are dealt with binomial, multinomial

distribution, and count data with Poisson, negative binomial, CMP distribution,

etc;. But, rarely we pay attention to the shape of the distribution of the data. If

we want to see the shape of the longitudinal data, how can we do that? Should

we aggregate all data and plot them? Or should we plot data at each visit time

and address them with some mixture distribution? This option may be feasible
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for fixed time visits for patients, what about for continuous varying time points

(different visit times for different patients)? May need attention.

6. In case of joint modeling with multiple bio-markers, there is scope for method-

ology development when multiple bio-markers are measured in different time

points from the same subject.

7. Exploring both methodology and applied research windows relating to CMP

model in Biomedical and Public Health Research.

Use of CMP distribution is gaining popularity in biomedical and public health

research in recent years. For example, some of the studies are: study of propor-

tional hazard and proportional odds under CMP cure rate model (Balakrishnan

et al., 2017; Balakrishnan & Feng, 2018; Pal et al., 2018), interval censored cure

rate (Wiangnak & Pal, 2018), cure rate model computation (He & Emura,

2019), study of dispersion in positron emission therapy (Santarelli et al., 2016),

modeling doctor’s visit using right censored zero-inflated CMP (Saffari et al.,

2018), modeling motor vehicle crash frequency (Abdella et al., 2019), zero in-

flated number of dental caries (Choo-Wosoba et al., 2016), to study fertility

count data (Peluso et al., 2019), accident prediction in highway crossing (Lu &

Tolliver, 2016), Weibull CMP to study survival data (Gupta & Huang, 2017), to

model number of babies born alive in multiple pregnancy (Erkan et al., 2017),

to study highway rail grade traffic hazard, to study annual reproduction rate.

The above studies may be helpful to unveil potential research scopes, mostly in

survival analysis and traffic safety studies.
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Appendix A

This appendix includes full conditional for BGMM

π(β|D, ζ, φ,y) ∝
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Appendix B

Table B.1: 95% Credible Interval from simulated Under-dispersed (φ = 2.50) data

Model Param True Mean 95%Crl. HPD

CMP φ 2.50 2.82 (1.89, 3.87) (2.79, 3.87)

β0 −0.80 −.87 (−1.31, −0.45) (−1.30, −0.4)

β1 −0.05 0.03 (−0.33,0.39) (−0.33,0.39)

β2 −0.01 0.01 (−0.42,0.45) (−0.42,0.45)

σ0 0.05 0.13 (0.01,0.48) (0.00,0.41)

σ1 0.02 0.14 (0.01,0.52) (0.00,0.44)

ρ −0.50 −0.02 (−0.83,0.80) (−0.84,0.78)

NB φ - 0.04 (-) (-)

β0 −0.80 −1.12 (−1.50,−0.76) (−1.49,−0.75)

β1 −0.05 0.02 (−0.29,0.33) (−0.29,0.33)

β2 −0.01 0.02 (−0.36,0.41) (−0.36,0.40)

σ0 0.06 0.07 (0.01,0.26) (0.00,0.22)

σ1 0.02 0.08 (0.01,0.29) (0.00,0.25)

ρ −0.50 −0.04 (−0.83,0.80) (−0.85,0.77)

Poisson β0 −0.80 −1.11 (−1.50,−0.77) (−1.48,−0.76)

β1 −0.05 0.02 (−0.35,0.40) (−0.36,0.40)

β2 −0.01 0.02 (−0.35,0.40) (−0.36,0.40)

σ0 0.05 0.07 (0.01,0.27) (0.00,0.24)

σ1 0.02 0.07 (0.01,0.30) (0.00,0.24)

ρ −0.50 −0.04 (−0.83,0.80) (−0.85,0.78)
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Table B.2: 95% Credible Interval from simulated Over-dispersed φ = 0.30 data

Model Param True Mean 95%Crl HPD

CMP φ 0.30 0.39 (0.10, 0.75) (0.09, 0.71)

β0 −0.80 −0.83 (−1.12,−0.53) (−1.13,−0.53)

β1 −0.05 −0.01 (−0.23,0.22) (−0.23,0.22)

β2 −0.01 −0.02 (−0.28,0.25) (−0.29,0.25)

σ0 0.05 0.16 (0.01,0.43) (0.00,0.38)

σ1 0.02 0.17 (0.01,0.49) (0.00,0.42)

ρ −0.50 −0.17 (−0.89,0.75) (−0.93,0.67)

NB φ - 0.45 (0.01,0.12) (0.01,0.09)

β0 −0.80 −0.58 (−0.92,−0.25) (−0.91,−0.24)

β1 −0.05 −0.01 (−0.30,0.28) (−0.29,0.28)

β2 −0.01 −0.02 (−0.36,0.32) (−0.36,0.32)

σ0 0.05 0.22 (0.01,0.58) (0.00,0.50)

σ1 0.02 0.23 (0.01,0.54) (0.00,0.55)

ρ −0.50 −0.18 (−0.89,0.75) (−0.93,0.66)

Poisson β0 −0.80 −0.64 (−1.02,−0.32) (−1.00,−0.30)

β1 −0.05 −0.01 (−0.28,0.27) (−0.28,0.27)

β2 −0.01 0.00 (−0.32,0.39) (−0.34,0.36)

σ0 0.05 0.40 (0.04,0.82) (0.02,0.75)

σ1 0.02 0.41 (0.05,0.91) (0.03,0.84)

ρ −0.50 −0.33 (−0.91,0.65) (−0.95,0.53)

Table B.3: 95% Credible Interval from simulated Equi-dispersed φ = 1.00 data

Model Param True Mean 95%Crl HPD

CMP φ 1.0 1.23 (0.69,1.82) (0.68,1.80)

β0 −0.80 −0.81 (−1.20,−0.44) (−1.19,−0.44)

β1 −0.05 0.00 (−0.31,0.30) (−0.30,0.31)

β2 −0.01 −0.04 (−0.40,0.33) (−0.40,0.32)

σ0 0.05 0.23 (0.01,0.64) (0.00,0.55)

σ1 0.02 0.25 (0.01,0.71) (0.00,0.62)

ρ −0.50 −0.18 (−0.90,0.74) (−0.94,0.66)

NB φ - 0.07 (0.01,0.25) (0.01,0.21)

β0 −0.80 −0.85 (−1.20,−0.53) (−1.19,−0.52)

β1 −0.05 −0.00 (−0.29,0.29) (−0.29,0.29)

β2 −0.01 −0.05 (−0.39,0.31) (−0.39,0.30)

σ0 0.06 0.18 (0.01,0.48) (0.00,0.42)

σ1 0.02 0.20 (0.01,0.56) (0.00,0.47)

ρ −0.50 −0.16 (−0.89,0.75) (−0.93,0.68)

Poisson β0 −0.80 −0.85 (−1.20,−0.53) (−1.19,−0.53)

β1 −0.05 −0.00 (−0.29,0.29) (−0.29,0.29)

β2 −0.01 −0.05 (−0.38,0.31) (−0.39,0.30)

σ0 0.05 0.19 (0.01,0.51) (0.00,0.44)

σ1 0.02 0.21 (0.01,0.56) (0.00,0.49)

ρ −0.50 −0.16 (−0.89,0.75) (−0.93,0.68)
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Appendix C

Figure C.1: Boxplot for subject-wise CPO for CMP model with φ = 0.30
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Figure C.2: Boxplot for subject-wise CPO for CMP model with φ = 1.00
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Appendix D

This appendix includes full conditional for BGAMM

π(β|γ, ζ, φ,y) ∝
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(
exp

(
xTijβ + zTijγ + ζi

))yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1

×
exp

(
−1

2

[
(β − β0)TΣ−10 (β − β0)

])
|Σ0|

1
2

× 1

C

π(ζ|β,γ, φ,y) ∝
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i=1

ni∏
j=1

(
1

yij!

)φ
×
(
exp

(
xTijβ + zTijγ + ζi

))yij
×

(∑∞
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(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1

×
I∏
i=1

(σζ)
−(1/2) × exp

−ζ2i
2σ2

ζ

× 1

C

π(γ|β, ζ, φ,y) ∝
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×
(
exp

(
xTijβ + zTijγ + ζi

))yij
×

(∑∞
k=0

(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1

×
exp

(
− 1

2

[
(γ − γ0)
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π(φ|β,γ, ζ,y) ∝
I∏
i=1

ni∏
j=1

(
1

yij!

)φ
×

(∑∞
k=0

(
exp

(
xTijβ + zTijγ + ζi

))k
(k!)φ

)−1

×
exp

(
− 1

2
(
log φ−µφ

ψ
)2
)

ψφ
× 1

C
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Appendix E

#setwd("C:....")

setwd("C:/Users/Desktop/Simulation_dt_1.5_cont_woi")

rm(list=ls())

# -----------------------Library----------------------------------------#

library(compoisson)

library(ggplot2)

library(MASS)

library(StanHeaders)

library(rstan)

library(shapefiles)

library(BayesX)

library(dplyr)

library(tidyverse)

library(MCMCvis)

library(parallel)
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#--------------------------CMP longitudinal data simulation----------------#

#---coefficients------

b0=-0.80

b1=-0.05

b2= -0.01

#---------

N=100 #number of subjects

J=5 # number of measurements

#-----Data generation------

id=rep(1:N, rep(J,N))

x<-rep(c(0,1),N)

x1=x[rep(1:N,rep(J,N))]

tm=c(0,1,2,3,4)

t<-rep(tm,N)

t1=ifelse(t>0,1,0)

#---correlated random effects simulation--------

set.seed(123)

library(mvtnorm)

q = 0.05

r = -0.50

s = 0.02

cov <- matrix(c(q^2, r * q * s, r * q * s, s^2), nrow = 2,

byrow = TRUE)
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re <- rmvnorm(N, mean = c(0, 0), sigma = cov)

u1<-round(rep(re[,1], rep(J,N)),4)

u2<-round(rep(re[,2], rep(J,N)),4)

#---shape parameter estimation-------

theta<-cbind(exp(b1+u1+b2*x1+(b3+u2)*t1))

phi=1.5 # dispersion parameter

#View(cdata)

cmp.DIC=NB.DIC=pois.DIC=rep(NA,100)

cmp.loglik=NB.loglik=pois.loglik=rep(NA,100)

cmp.EP=NB.EP=pois.EP=rep(NA,100)

# Saving output

cmp.out=matrix(NA, nrow = 100,ncol = 63);

colnames(cmp.out)=c(’phi’, ’sdphi’, ’cbphi2.5’, ’cphi.5’, ’cphi97.5’,

’hphi95l’, ’hphi95u’, ’rphi’, ’esphi’,

’b0’,’ sdb0’, ’cb02.5’, ’cb0.5’, ’cb097.5’, ’hb095l’, ’hb095u’, ’rb0’, ’esb0’,

’b1’, ’sdb1’, ’cb12.5’, ’cb1.5’, ’cb197.5’, ’hb195l’, ’hb195u’, ’rb1’, ’esb1’,

’b2’, ’sdb2’, ’cb22.5’, ’cb2.5’, ’cb297.5’, ’hb295l’, ’hb295u’, ’rb2’, ’esb2’

’sigu0’, ’sdsigu0’, ’csigu02.5’, ’csigu0.5’, ’csigu097.5’, ’hsigu095l’,

’hsigu095u’, ’rsigu0’, ’essigu0’,

’sigu1’, ’sdsigu1’, ’csigu12.5’, ’csigu1.5’, ’csigu197.5’, ’hsigu195l’,

’hsigu195u’, ’rsigu1’, ’essigu1’,

’crr’, ’sdcrr’, ’ccrr2.5’, ’ccrr.5’, ’ccrr97.5’, ’hcrr95l’, ’hcrr95u’,
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’rcrr’,’escrr’)

NB.out=matrix(NA, nrow = 100,ncol = 63);

colnames(NB.out)=c(’phi’, ’sdphi’, ’cbphi2.5’, ’cphi.5’, ’cphi97.5’,

’hphi95l’, ’hphi95u’, ’rphi’, ’esphi’,

’b0’,’ sdb0’, ’cb02.5’, ’cb0.5’, ’cb097.5’, ’hb095l’, ’hb095u’, ’rb0’, ’esb0’,

’b1’, ’sdb1’, ’cb12.5’, ’cb1.5’, ’cb197.5’, ’hb195l’, ’hb195u’, ’rb1’, ’esb1’,

’b2’, ’sdb2’, ’cb22.5’, ’cb2.5’, ’cb297.5’, ’hb295l’, ’hb295u’, ’rb2’, ’esb2’,

’sigu0’, ’sdsigu0’, ’csigu02.5’, ’csigu0.5’, ’csigu097.5’, ’hsigu095l’,

’hsigu095u’, ’rsigu0’, ’essigu0’,

’sigu1’, ’sdsigu1’, ’csigu12.5’, ’csigu1.5’, ’csigu197.5’, ’hsigu195l’,

’hsigu195u’, ’rsigu1’, ’essigu1’,

’crr’, ’sdcrr’, ’ccrr2.5’, ’ccrr.5’, ’ccrr97.5’, ’hcrr95l’, ’hcrr95u’,

’rcrr’,’escrr’)

pois.out=matrix(NA, nrow = 100,ncol = 54);

colnames(pois.out)=c(’b0’,’ sdb0’, ’cb02.5’, ’cb0.5’, ’cb097.5’, ’hb095l’,

’hb095u’, ’rb0’,’esb0’,

’b1’, ’sdb1’, ’cb12.5’, ’cb1.5’, ’cb197.5’, ’hb195l’, ’hb195u’, ’rb1’, ’esb1’,

’b2’, ’sdb2’, ’cb22.5’, ’cb2.5’, ’cb297.5’, ’hb295l’, ’hb295u’, ’rb2’, ’esb2’,

’sigu0’, ’sdsigu0’, ’csigu02.5’, ’csigu0.5’, ’csigu097.5’, ’hsigu095l’,

’hsigu095u’, ’rsigu0’, ’essigu0’,

’sigu1’, ’sdsigu1’, ’csigu12.5’, ’csigu1.5’, ’csigu197.5’, ’hsigu195l’,

’hsigu195u’, ’rsigu1’, ’essigu1’,

’crr’, ’sdcrr’, ’ccrr2.5’, ’ccrr.5’, ’ccrr97.5’, ’hcrr95l’, ’hcrr95u’,

’rcrr’,’escrr’)
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#--------------------- Stan data preparation------------------------

m=5000

T=1 #thin

C=4 # of chain

k=(m*C/(2*T))

for (ir in 1: 100) {

y=rcom(N*J,theta,phi) # CMP response

mean(y)

var(y)

#-----Final data---------------------------

cdata<-data.frame(id,x1, t1, tm,t,u1,u2, y)

X<-(model.matrix(~1+x1+t1, cdata ))

standat <- list(N = nrow(cdata),

P = ncol(X),

J = length(unique(cdata$id)),

y = cdata$y,

X = X,

x1=(cdata$x1),

t=(cdata$t1),

d = as.integer(factor(cdata$id)))

standat
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#------------------------------------STAN code: CMP_U-------------

cat("----------------CMP model is running-----\n")

cmp = ’

functions{

real Z(real theta, real phi){

real sm;

real sm_prev;

int i;

real diff;

sm=0;

i=0;

diff=1;

while (diff > 0.0001){

sm_prev=sm;

sm=sm+exp(i*log(theta)-phi*lgamma(i+1));

diff=sm-sm_prev;

i=i+1;

}

return(sm);

return(i);

}

vector Zv(vector theta, real phi){

int N = rows(theta);

vector[N] zs;

for (i in 1:N){
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zs[i] = Z(theta[i], phi);

}

return(zs);

}

// define log likelihood

real compoisson_lpmf(int y, vector theta, real phi){

int N = rows(y);

return-sum(log(Zv(theta,phi)))-phi*sum(lgamma(y+1)) + sum(y.*log(theta));

}

}

data {

int<lower=0> N;

int<lower=0> P;

int<lower=0> J;

int y[N];

matrix[N,P] X;

vector[N] t;

int<lower=1,upper=J>id[N];

}

parameters {

real<lower=0.01> phi;

vector[P] beta;

vector<lower=0>[2] sigma_u;

cholesky_factor_corr[2] L_u;

matrix[2,J] z_u;

}
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transformed parameters {

matrix[2,J] u;

u<-diag_pre_multiply(sigma_u,L_u)*z_u;

}

model {

vector[N] thetahat ;

beta~ normal(0,10000);

L_u~lkj_corr_cholesky(2.0);

to_vector(z_u)~normal(0,1);

phi~lognormal(0,15);

sigma_u~inv_gamma(0.1,0.1);

for (i in 1:N)

thetahat[i]<- exp(X[i]*beta+u[1,id[i]]+ u[2,id[i]]*t[i]);

y ~ compoisson(thetahat, phi);

}’

#---------------Stan Model fitting:CMP_U--------

fit.cmp_u=stan(model_code=cmp, data= standat,

iter = m, chains = C, cores=4, thin=T,

refresh = 1000,init_r=0.01)

#--------------HPD calulation: CMP_U-----------

mc<-as.matrix(fit.cmp_u)

mc<-data.frame(mc)

cm<-read.csv("C:/Users/morshed.alam/Desktop/mc.csv")
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cm <- mc%>% select(-contains("z"))

%>%select(-contains("L"))

%>%select(-contains("sigma"))

%>%select(-contains("l"))

cm<-data.frame(subset(cm,select=c("phi","beta.1.","beta.2.","beta.3.")),

select(cm,contains("u.1.")),

select(cm,contains("u.2.")),

select(cm,contains("sigma_u.1.")),

select(cm,contains("sigma_u.2.")))

#----------DIC calculation: CMP_U--------

y <-cdata$y

t<-cdata$t1

loglikc <- NULL

for (i in 1:k){

Betac <- cm[i,2:4]

uic <- rep(unlist(cm[i,5:104]), each=5)

usc <- rep(unlist(cm[i,105:204]), each=5)

phic <- cm[i,1]

lambdac <- exp(X%*%t(Betac) + uic+usc*t)

likc<- sum(com.log.density(y,lambdac,phic, log.z=NULL))

loglikc <- c(loglikc,likc)

}

mean_simc<-mean(loglikc)
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# mean parameter calculation

theta_hatc = as.matrix(apply(cm, 2, mean))

Beta_hatc <- theta_hatc[2:4,1]

phi_hatc<-theta_hatc[1]

ui_hatc<-rep(unlist(theta_hatc[5:104,1]), each=5)

us_hatc<-rep(unlist(theta_hatc[105:204,1]), each=5)

lambda_hatc <- exp(X%*%Beta_hatc+ui_hatc+us_hatc*t)

likc_hat<- sum(com.log.density(y,lambda_hatc,phi_hatc, log.z=NULL))

Pc<-2*(likc_hat-mean_simc)

cmp.loglik[ir]<-likc_hat

cmp.EP[ir]<-2*(likc_hat-mean_simc)

cmp.DIC[ir]<--2*(likc_hat-Pc)

cat("----------------NB model is running-----\n")

#----------------------------------------------

nb=’

data {

int<lower=0> N;

int<lower=0> P;

int<lower=0> J;

int y[N];

matrix[N,P] X;

vector[N] t;

int<lower=1,upper=J>id[N];

}

parameters {
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real<lower=0.01> phi;

vector[P] beta;

vector<lower=0>[2] sigma_u;

cholesky_factor_corr[2] L_u;

matrix[2,J] z_u;

}

transformed parameters {

vector[N] thetahat;

matrix[2,J]u;

u<-diag_pre_multiply(sigma_u,L_u)*z_u;

for (i in 1:N)

thetahat[i]<-(X[i]*beta+u[1,id[i]]+ u[2,id[i]]*t[i]);

}

model {

beta~normal(0,10000);

phi~lognormal(0,15);

L_u~lkj_corr_cholesky(2.0);

to_vector(z_u)~normal(0,1);

sigma_u~inv_gamma(0.1,0.1);

y ~ neg_binomial_2_log(thetahat, 1/phi);

}’

fit.nb_u=stan(model_code=nb, data= standat, iter = m, chains = C,

cores=4, thin=T, refresh = 1000, init_r=0.01)

#---------------------------------HPD calulation: NB_U------------
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mn<-as.matrix(fit.nb_u)

mn<-data.frame(mn)

nm <- mn%>% select(-contains("z"))

%>%select(-contains("L"))

%>%select(-contains("sigma"))

%>%select(-contains("l"))

nm<-data.frame(subset(nm,select=c("phi","beta.1.","beta.2.","beta.3.")),

select(nm,contains("u.1.")),

select(nm,contains("u.2.")),select(nm,contains("sigma_u.1.")),

select(nm,contains("sigma_u.2.")))

#------DIC_NB-----------------#

y <-cdata$y

t<-cdata$t1

loglikn <- NULL

for (i in 1:k){

Betan <- nm[i,2:4]

uin <- rep(unlist(nm[i,5:104]), each=5)

usn <- rep(unlist(nm[i,105:204]), each=5)

phin <- nm[i,1]

lambdan <- exp(X%*%t(Betan) + uin+usn*t)

likn <- sum(y * log(phin*lambdan) - (y + 1/phin)*log(1+phin*lambdan) +

lgamma(y + 1/phin) - lgamma(1/phin) - lgamma(y+1))

loglikn <- c(loglikn,likn)

}

mean_simn<-mean(loglikn)
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# mean parameter calculation

theta_hatn = as.matrix(apply(nm, 2, mean))

Beta_hatn <- theta_hatn[2:4,1]

phi_hatn<-theta_hatn[1]

ui_hatn<-rep(unlist(theta_hatn[5:104,1]), each=5)

us_hatn<-rep(unlist(theta_hatn[105:204,1]), each=5)

lambda_hatn <- exp(X%*%Beta_hatn + ui_hatn+us_hatn*t)

likn_hat <- sum(y * log(phi_hatn*lambda_hatn) -

(y + 1/phi_hatn)*log(1+phi_hatn*lambda_hatn)

+lgamma(y + 1/phi_hatn) - lgamma(1/phi_hatn) - lgamma(y+1))

likn_hat

Pn<-2*(likn_hat-mean_simn)

DICn<--2*(likn_hat-Pn)

NB.loglik[ir]<-likn_hat

NB.EP[ir]<-2*(likn_hat-mean_simn)

NB.DIC[ir]<--2*(likn_hat-Pn)

cat("----------------Poisson model is running-----\n")

#----------------------------------------------------------------#

pos=’

data {

int<lower=0> N;
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int<lower=0> P;

int<lower=0> J;

int y[N];

matrix[N,P] X;

vector[N] t;

int<lower=1,upper=J>id[N];

}

parameters {

vector[P] beta;

vector<lower=0>[2] sigma_u;

cholesky_factor_corr[2] L_u;

matrix[2,J] z_u;

}

transformed parameters {

vector[N] thetahat;

matrix[2,J]u;

u<-diag_pre_multiply(sigma_u,L_u)*z_u;

for (i in 1:N)

thetahat[i]<- exp(X[i]*beta+u[1,id[i]]+ u[2,id[i]]*t[i]);

}

model {

beta~normal(0,10000);

L_u~lkj_corr_cholesky(2.0);

to_vector(z_u)~normal(0,1);

sigma_u~inv_gamma(0.01,0.01);
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y ~ poisson(thetahat);

}’

#---------------------- Stan Model fitting:Pos_U------------------

fit.pos_u=stan(model_code=pos, data= standat, iter = m, chains = C,

cores=4, thin=T, refresh = 1000,init_r=0.01)

#---------------------------------HPD calulation: NB_U------------

mp<-as.matrix(fit.pos_u)

mp<-data.frame(mp)

pm <- mp%>% select(-contains("z"))

%>%select(-contains("L"))

%>%select(-contains("sigma"))

%>%select(-contains("l"))

pm<-data.frame(subset(pm,select=c("beta.1.","beta.2.","beta.3.")),

select(pm,contains("u.1.")),

select(pm,contains("u.2.")),select(pm,contains("sigma_u.1.")),

select(pm,contains("sigma_u.2.")))

#----------------DIC Poisson--------------------------#

y <-cdata$y

t<-cdata$t1

# Calculation of mean loglikelihood from simulation
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loglikp <- NULL

for (i in 1:k){

Betap <- pm[i,1:3]

uip <- rep(unlist(pm[i,4:103]), each=5)

usp <- rep(unlist(pm[i,104:203]), each=5)

lambdap <- exp(X%*%t(Betap)+uip+usp*t)

likp <- sum(y * log(lambdap) - lambdap - lgamma(y+1))

loglikp <- c(loglikp,likp)

}

mean_simp<-mean(loglikp) #mean of the loglikehood for all simulation

# Calculation of posterior mean estimation and loglikelihood

theta_hatp = as.matrix(apply(pm, 2, mean))

Beta_hatp <- theta_hatp[1:3,1]

ui_hatp<-rep(unlist(theta_hatp[4:103,1]), each=5)

us_hatp<-rep(unlist(theta_hatp[104:203,1]), each=5)

lambda_hatp <- exp(X%*%Beta_hatp + ui_hatp+ us_hatp*t)

likp_hat <- sum(y * log(lambda_hatp) - lambda_hatp - lgamma(y+1))

likp_hat # loglikelihood at poterior mean

Pp<-2*(likp_hat-mean_simp) # number of effective parameters

pois.loglik[ir]<-likp_hat

pois.EP[ir]<-2*(likp_hat-mean_simp)

pois.DIC[ir]<--2*(likp_hat-Pp)

#--------Results need to save-----------------------#
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#-----------------------CMP Model output--------------------#

M0=as.matrix(MCMCvis::MCMCsummary(fit.cmp_u,

params = c(’phi’,’beta’, ’sigma_u’,’L_u’),

probs = c(0.025, 0.5, 0.975),

round = 3))

M0=t(M0)

M1=as.matrix(MCMCvis::MCMCsummary(fit.cmp_u,

params = c(’phi’,’beta’, ’sigma_u’,’L_u’),

HPD = TRUE,

hpd_prob = 0.95,

round = 3))

M1=t(M1)

result_c<-c(M0[1,1],M0[2,1],M0[3,1],M0[4,1],M0[5,1],M1[3,1],M1[4,1],

M0[6,1],M0[7,1],M0[1,2],M0[2,2],M0[3,2],M0[4,2],M0[5,2],M1[3,2],M1[4,2],

M0[6,2],M0[7,2],M0[1,3],M0[2,3],M0[3,3],M0[4,3],M0[5,3],M1[3,3],M1[4,3],

M0[6,3],M0[7,3],M0[1,4],M0[2,4],M0[3,4],M0[4,4],M0[5,4],M1[3,4],M1[4,4],

M0[6,4],M0[7,4],M0[1,5],M0[2,5],M0[3,5],M0[4,5],M0[5,5],M1[3,5],M1[4,5],

M0[6,5],M0[7,5],M0[1,6],M0[2,6],M0[3,6],M0[4,6],M0[5,6],M1[3,6],M1[4,6],

M0[6,6],M0[7,6],M0[1,9],M0[2,9],M0[3,9],M0[4,9],M0[5,9],M1[3,9],M1[4,9],

M0[6,9],M0[7,9])

cmp.out[ir,]<-result_c

#-----------------------NB Model output--------------------#

M0=as.matrix(MCMCvis::MCMCsummary(fit.nb_u,

params = c(’phi’,’beta’, ’sigma_u’,’L_u’),

probs = c(0.025, 0.5, 0.975),
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round = 3))

M0=t(M0)

M1=as.matrix(MCMCvis::MCMCsummary(fit.nb_u,

params = c(’phi’,’beta’, ’sigma_u’,’L_u’),

HPD = TRUE,

hpd_prob = 0.95,

round = 3))

M1=t(M1)

result_n<-c(M0[1,1],M0[2,1],M0[3,1],M0[4,1],M0[5,1],M1[3,1],M1[4,1],

M0[6,1],M0[7,1],M0[1,2],M0[2,2],M0[3,2],M0[4,2],M0[5,2],M1[3,2],M1[4,2],

M0[6,2],M0[7,2],M0[1,3],M0[2,3],M0[3,3],M0[4,3],M0[5,3],M1[3,3],M1[4,3],

M0[6,3],M0[7,3],M0[1,4],M0[2,4],M0[3,4],M0[4,4],M0[5,4],M1[3,4],M1[4,4],

M0[6,4],M0[7,4],M0[1,5],M0[2,5],M0[3,5],M0[4,5],M0[5,5],M1[3,5],M1[4,5],

M0[6,5],M0[7,5],M0[1,6],M0[2,6],M0[3,6],M0[4,6],M0[5,6],M1[3,6],M1[4,6],

M0[6,6],M0[7,6],M0[1,9],M0[2,9],M0[3,9],M0[4,9],M0[5,9],M1[3,9],M1[4,9],

M0[6,9],M0[7,9])

NB.out[ir,]<-result_n

#-----------------------Poisson Model output--------------------#

M0=as.matrix(MCMCvis::MCMCsummary(fit.pos_u,

params = c(’beta’, ’sigma_u’,’L_u’),

probs = c(0.025, 0.5, 0.975),
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round = 3))

M0=t(M0)

M1=as.matrix(MCMCvis::MCMCsummary(fit.pos_u,

params = c(’beta’, ’sigma_u’,’L_u’),

HPD = TRUE,

hpd_prob = 0.95,

round = 3))

M1=t(M1)

result_p<-c(M0[1,1],M0[2,1],M0[3,1],M0[4,1],M0[5,1],M1[3,1],M1[4,1],

M0[6,1],M0[7,1],M0[1,2],M0[2,2],M0[3,2],M0[4,2],M0[5,2],M1[3,2],M1[4,2],

M0[6,2],M0[7,2],M0[1,3],M0[2,3],M0[3,3],M0[4,3],M0[5,3],M1[3,3],M1[4,3],

M0[6,3],M0[7,3],M0[1,4],M0[2,4],M0[3,4],M0[4,4],M0[5,4],M1[3,4],M1[4,4],

M0[6,4],M0[7,4],M0[1,5],M0[2,5],M0[3,5],M0[4,5],M0[5,5],M1[3,5],M1[4,5],

M0[6,5],M0[7,5],M0[1,8],M0[2,8],M0[3,8],M0[4,8],M0[5,8],M1[3,8],M1[4,8],

M0[6,8],M0[7,8])

pois.out[ir,]<-result_p

}

#------COMP output---------------------#

cmp.out1<-cbind(cmp.out,cmp.DIC,cmp.loglik,cmp.EP)

write.csv(cmp.out1,

file ="C:/Users/morshed.alam/Desktop

/Simulation_dt_1.5_cont_woi/cmp.out_dt_1.5_cont_woi_1_uni_bc.csv")
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#------NB output---------------------#

NB.out1<-cbind(NB.out,NB.DIC,NB.loglik,NB.EP)

write.csv(NB.out1,

file = "C:/Users/morshed.alam/Desktop

/Simulation_dt_1.5_cont_woi/NB.out_dt_1.5_cont_woi_1_uni_bc.csv")

#------Pois output---------------------#

pois.out1<-cbind(pois.out, pois.DIC, pois.loglik, pois.EP)

write.csv(pois.out1,

file= "C:/Users/morshed.alam/Desktop

/Simulation_dt_1.5_cont_woi/pois.out_dt_1.5_cont_woi_1_uni_bc.csv")

#----------------End-------------------#
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