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STATISTICAL MODELING OF SURVIVAL DATA USING FRAILTY MODELS 

Adams Kusi Appiah, Ph.D. 

University of Nebraska, 2020 

Supervisor: Hongying (Daisy) Dai, Ph.D. 

In many clinical trials, time-to-event endpoints are often adopted to demonstrate a 

clinically convincing effect of treatments appropriately. These variables might be 

clustered or correlated because of certain common features, such as genetic traits or 

shared environmental factors or repeated events. Observations from the same cluster 

are assumed to be correlated because they usually share specific unobserved 

characteristics. Ignoring the correlations between the survival times may lead to 

incorrect estimates of parameters of interest and invalid statistical inferences. The 

scientific interest may lie in the estimation of treatment effect while accounting for the 

correlated event times. This dissertation proposes a shared frailty model to fit correlated 

or clustered survival data and investigates the effect on the corresponding estimated 

regression coefficients. In this work, we propose new methods using hierarchical 

likelihood (h-likelihood) to fit a wide range of frailty models, in which the latent frailties 

are treated as “parameters” and estimated jointly with other parameters of interest. The 

adjusted profile likelihood is adopted to estimate the frailty parameter. In this 

dissertation, we (1) propose effective bias correction methods for the h-likelihood 

estimators under the shared gamma frailty models; (2) extend the h-likelihood to log-

logistic frailty model, a non-exponential family distribution, and describe the total 

derivative approach to estimate the model parameters; (3) propose a flexible log-skew 

normal distribution as the frailty distribution to model the dependency in multivariate 

survival data. The performance of the proposed models is examined via Monte Carlo 

simulations. We illustrate our methods using kidney infection and cow mastitis data.
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Chapter 1  

General introduction 

 

1.1. Introduction  

Time-to-event data or survival data are common in applied research such as 

medicine, engineering, economics, etc. For example, the time from diagnosis or start of 

treatment to death of cancer patients, time to infection after exposure to disease, lifetimes 

of equipment, duration of unemployment, etc. A distinguishing feature of time-to-event 

data is the possible presence of censoring. Censoring occurs when information about a 

subject’s survival time is incomplete. In this dissertation, we focus on right-censored data. 

The right-censoring happens when a subject is lost to follow-up before an event occurs or 

the event does not occur within the study period. The class of statistical techniques 

developed to deal with time-to-event data is known as survival analysis. 

1.2 Basic survival functions 

Suppose that we have a random sample of 𝑛 subjects, 𝑖 = 1,2, … , 𝑛. Let 𝑌𝑖 be a 

non-negative random variable representing the survival time from a homogeneous 

population and 𝐶𝑖 be the censoring time. Throughout this dissertation, we assume non-

informative censoring (i.e., the censoring time distribution is unrelated to the parameter 

of interest from the failure time distribution) and independent censoring mechanisms. Let 

𝑇𝑖 = min(𝑌𝑖, 𝐶𝑖) and 𝛿𝑖 be the censoring indicator equal to 1 if 𝑇𝑖 = 𝑌i and 0 if 𝑇𝑖 = 𝐶𝑖. The 

survival function and the hazard function are two probability distributions of 𝑇𝑖 that are 

particularly essential in survival applications. The survival function, denoted by 𝑆(𝑡), is 

defined as the probability that the 𝑇𝑖 exceeds the specified time 𝑡. That is 

          𝑆(𝑡) = Pr(𝑇𝑖 ≥ 𝑡),    0 < 𝑡 < ∞,                                           (1.1) 

where 𝑆(𝑡) is a monotone non-increasing left continuous function with 𝑆(0) = 1 and 
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 𝑙𝑖𝑚
𝑡→∞

𝑆(𝑡) = 0. The hazard function, 𝜆(𝑡), gives the instantaneous rate of failure at time 𝑡 

on condition that individual surviving up to 𝑡, and is given by, 

𝜆(𝑡) = 𝑙𝑖𝑚
𝛥𝑡→0

Pr(𝑡 ≤ 𝑇𝑖 < 𝑡 + Δ𝑡|𝑇𝑖 ≥ 𝑡)

Δ𝑡
.                              (1.2) 

The relationship between 𝑆(𝑡) and 𝜆(𝑡) can be written as, 

𝑆(𝑡) = exp (−∫ 𝜆(𝑢)
𝑡

0

𝑑𝑢).                                                   (1.3) 

1.3 Proportional hazard (PH) models 

The proportional hazards (PH) model is the most widely used survival regression 

model to investigate the presence of a vector of explanatory variables that may affect 

time-to-event through the hazard function. It assumes that the covariates have a 

multiplicative effect on the hazard and that, this effect is constant over time. 

The proportional hazard (PH) model can be written as,  

𝜆𝑖(𝑡) = 𝜆0(𝑡) exp(𝒙𝑖
𝑇𝜷),                                                         (1.4) 

where 𝜆𝑖(𝑡) is the hazard for subject 𝑖 at time 𝑡, hazard function; exp(𝒙𝑖
𝑇𝜷) is the relative 

risk of subject 𝑖, where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3, … , 𝑥𝑖𝑝)
𝑇
 is a 𝑝 × 1 vector of explanatory 

variables, 𝜷 is the associated vector of fixed unknown regression parameter, and 𝑇 is a 

transpose. For two individuals with covariate vectors 𝒙 and 𝒙∗, the ratio of their hazard 

rates is 

𝜆0(𝑡) exp(𝒙𝑖
𝑇𝜷)

𝜆0(𝑡) exp(𝒙𝑖
∗𝑇𝜷)

= exp[(𝒙𝑖
𝑇 − 𝒙𝑖

∗𝑇
)𝜷],                                        (1.5) 

which is a constant. That is, the conditional hazard functions have a fixed ratio over time.  

The Cox PH modelCox (1992) is the most popularly used statistical method for 

analyzing time-to-event data. The Cox PH model assumes a semiparametric form for the 
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hazard 𝜆𝑖(𝑡) in equation (1.4). That is, 𝜆0(𝑡) is an unspecified common baseline hazard 

function. The 𝜷 parameters may be estimated by maximizing the partial likelihood.(Cox 

1975) Let 𝑇(1), 𝑇(2), … , 𝑇(𝐾) be the distinct failure times, then partial likelihood function is 

defined as 

𝐿(𝜷) = ∏(
exp(𝒙𝑘

𝑇𝜷)

∑ exp(𝒙𝑙
𝑇𝜷)𝑙∈ℛ(𝑘)

)

𝐾

𝑘=1

𝛿𝑘

,                                                                       (1.6) 

where ℛ(𝑘) is the risk set of subjects at the time 𝑇(𝑘). That is the set of individuals who 

have not failed or been censored by that time. 

Certain non-negative probability distributions can be used to describe the 

functional form of the baseline hazard, 𝜆0, in the equation (1.4) leading to parametric 

survival models that are frequenlty used to analyze time-event-data. The exponential 

and Weibull models, Gompertz, log-logistic, for example, are widely used. The Weibull 

regression model, which has been successfully employed in many fields, including 

reliability and medical studies, can be considered as an attractive alternative to the Cox 

PH model in analyzing survival data. It is the most extensively used parametric model in 

time-to-event data analysis in both physical and social sciences. The reason being that, 

the Weibull regression model can be expressed as both accelerated failure time (AFT) 

regression model and PH regression model, so both hazard ratios and time ratios can be 

estimated. The classical maximum likelihood approach can be used to obtain the 

estimates of parameters in parametric survival models. The maximum likelihood 

function, 

 𝐿(. ) = ∏ {𝜆0(𝑡) exp(𝒙𝑖
𝑇𝜷)}

𝑛

𝑖=1

𝛿𝑖

exp(−𝛬0(𝑡) exp(𝒙𝑖
𝑇𝜷)),                            (1.7) 
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where Λ0(t) = ∫ 𝜆0(𝑢)𝑑𝑢
𝑡

0
 is the cumulative baseline hazard function. For example, for 

the Weibull parametric survival models, Λ0(t) = 𝜌𝑡𝛾. The estimation of the parameters 

are obtained by solving the score equations 

 𝑆𝑗(𝛏) =
𝜕 log 𝐿(𝝃)

𝜕𝜉𝑗
= 0, 𝑗 = 1,2,3, 

where 𝝃 = (𝜌, 𝛾, 𝜷𝑇)𝑇. 

However, analytical solutions to the score equations are intractable and require 

numerical methods such as the Newton-Raphson algorithm. 

1.4 Multivariate survival data 

The traditional applications and development of the classical PH survival analysis 

techniques assume that survival times of different subjects are independent. Multivariate 

survival data frequently occur in medical research, especially in clinical trials and cohort 

studies. Examples include clustered survival data, recurrent events, competing risk 

events, etc. These survival times may be correlated due to some natural, artificial 

clustering or shared environmental factors of subjects, or repeated events that may 

influence the same cluster or subject's failure times. Thus, the classical Cox PH or the 

parametric (e.g., Weibull PH) models may not be appropriate since the assumption of 

independence may not be valid. 

Several statistical methods have been proposed for the analysis of multivariate 

survival data. One of the approach is to use the marginal models where the covariates 

effects are specified unconditionally. Those methods were discussed in.(Wei, Lin et al. 

1989, Prentice and Cai 1992, Pipper and Martinussen 2003) However, these marginal models 

have been used in different settings. One can also adopt a general framework such as 

the counting process(Aalen 1978, Aalen and Hoem 1978, Prentice and Cai 1992) for 

analyzing multivariate survival data. The fixed effects models, where the clusters are 
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introduced as fixed effects, have also been used in the literature.(Petersen 1998, Yin and 

Cai 2004, Yin 2007) 

To model multivariate survival data, a natural approach is to incorporate random 

effects called frailties into the proportional hazard model to account for the dependency 

on survival outcomes.(Vaupel, Manton et al. 1979, Aalen 1988, Aalen 1994) The frailty 

model introduced by(Clayton 1978) has become increasingly popular in analyzing 

multivariate survival data. In this dissertation, we mainly focus on the shared frailty 

model, where all subjects within the same group share common frailty, and the frailties 

of different groups are independent. 

1.5 Shared frailty models 

The shared frailty model for right-censored failure time can be described as 

follows. Let 𝑌𝑖𝑗 be the failure-time variable corresponding to individual or repeated event 

𝑗 (𝑗 = 1,2,… , 𝑛𝑖) from cluster or subject 𝑖 (𝑖 = 1,2,… , 𝐺). Thus the total sample size is 

𝑁 = ∑ 𝑛𝑖
𝐺
𝑖=1 . Let 𝐶𝑖𝑗 be the non-informative right-censoring time and independent of 𝑌𝑖𝑗, 

𝑇𝑖𝑗 = min(𝑦𝑖𝑗 , 𝐶𝑖𝑗), 𝛿𝑖𝑗 is the censoring indicator with 𝛿𝑖𝑗 equal to 1 if 𝑇𝑖𝑗 = 𝑦𝑖𝑗 and 0 if 

𝑇𝑖𝑗 = 𝐶𝑖𝑗, and 𝒙𝑖𝑗 = (𝑥𝑖𝑗 , … , 𝑥𝑖𝑗𝑝)
𝑇
 is a 𝑝 × 1 covariate vector associated with the fixed-

effect parameters 𝜷. The conditional hazard function of 𝑇𝑖𝑗 given the unobserved frailty 

random variable 𝑢𝑖 and 𝒙𝑖𝑗, can be written as 

𝜆𝑖𝑗(𝑡𝑖𝑗|𝑢𝑖, 𝒙𝑖𝑗) = 𝜆0(𝑡) exp(𝒙𝑖𝑗
𝑇 𝜷) 𝑢𝑖.                                                (1.8) 

The 𝑢𝑖, 𝑖 = 1,… , 𝐺 are independent, identically distributed random variables with some 

common density function 𝑓(𝑢𝑖; 𝜃), where 𝜃 is the parameter of the frailty distribution. In 

addition to the independent and non-informative censoring mechanism assumption, 

these two assumptions are extended to the frailty models. That is, given 𝑈𝑖 = 𝑢𝑖, the 

pairs {(𝑇𝑖𝑗, 𝐶𝑖𝑗) 𝑗 = 1, . . . , 𝑛𝑖}  are conditionally independent and both 𝑇𝑖𝑗 and 𝐶𝑖𝑗 are also 
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conditionally independent for 𝑗 = 1,… , 𝑛𝑖, and given 𝑈𝑖 = 𝑢𝑖 , {(𝑇𝑖𝑗 , 𝐶𝑖𝑗) 𝑗 = 1, . . . , 𝑛𝑖} are 

conditionally non-informative of 𝑇𝑖𝑗. 

A Cox PH model with shared frailty is where baseline hazard function 𝜆0(𝑡) in 

equation (1.8) is unspecified, whereas a parametric distribution can be assumed to the 

baseline hazard leading to parametric frailty models. The natural parametric distribution 

is the Weibull because it allows for both the PH and AFT models. 

A variety of probability distributions has been proposed for the frailty 𝑢𝑖. The 

frequently studied frailty distributions belong to the Hougaard’s(1986) power variance 

function (PVF) family. The gamma, inverse Gaussian, positive stable, and compound 

Poisson distribution are all members of this family. These frailty densities lead to 

tractable integration due to the closed form of Laplace approximation of these 

distributions.(Hanagal 2009) However, except for gamma frailty distribution, these 

tractable integrations are of a much more complex form. A further important frailty 

distribution is the lognormal distribution. However, this distribution is not a member of the 

power variance function family, and thus, it does not have a simple expression for the 

Laplace transform. Numerical integration is often used to approximate the integral. 

Techniques to fit frailty models for multivariate survival data have been proposed 

in the literature. The expectation-maximization (EM) algorithm(Dempster, Laird et al. 1977) 

can be used to obtain parameter estimates in the semiparametric frailty model. In this 

approach, the EM method considers full data likelihood, which is a function of the 

observed event times and the unobserved random variables. The expectation step is 

often approximated using Laplace approximation. The following authors discussed the 

EM algorithm-based estimation approach.(Klein 1992, Nielsen, Gill et al. 1992, Xue and 

Brookmeyer 1996, Sastry 1997, Cortiñas and Burzykowski 2005, Yu 2006, Chen, Tong et al. 

2009) The Bayesian version of the EM algorithm has also been proposed, where the 
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expectation step is approximated with Markov Chain Monte Carlo (MCMC) 

methods.(Vaida and Xu 2000, Ripatti, Larsen et al. 2002) 

The penalized partial likelihood (PPL) approach is another commonly used 

approach to estimate parameters in frailty models. In this approach, the full data 

likelihood consists of two parts. The first part consists of the likelihood of the data given 

the frailties. The second part corresponds to the distribution of the frailties. In most 

cases, the distribution of the frailties is considered as the penalty term. However, one 

can consider penalizing the baseline hazard function. A detailed discussion of PPL 

approaches can be found in.(McGilchrist and Aisbett 1991, McGilchrist 1993, Ripatti and 

Palmgren 2000, Therneau, Grambsch et al. 2003, Duchateau and Janssen 2004, Wang 2006) 

Rondeau, Commenges et al. (2003) discussed inference methods based on the penalized 

full likelihood. 

Other estimation methods in frailty models include the Bayesian approach(Sinha 

1993, Sahu, Dey et al. 1997, Yin and Ibrahim 2005, Komárek and Lesaffre 2008), and the 

generalized estimating equations approach (Cai and Prentice 1995, Zhang 2006). 

The hierarchical-likelihood (a.k.a. h-likelihood), proposed byLee and Nelder (1996), 

has been recently applied to estimate parameters in both semiparametric and parametric 

frailty models.(Ha, Lee et al. 2001, Ha and Lee 2003) For the lognormal and gamma frailty 

models,(Ha, Lee et al. 2001, Ha and Lee 2005, Ha, Sylvester et al. 2011, Jeon, Hsu et al. 2012, 

Ha, Jeong et al. 2018) and Weibull frailty model(Wang, Xu et al. 2011) developed estimation 

procedures using Cox's(Cox 1975, Cox 1992) partial likelihood. Ha and Lee (2003) proposed 

the hierarchical-likelihood approach to analyze both parametric and semiparametric 

frailty models. Hanagal (2010) used the h-likelihood to estimate the Weibull and lognormal 

frailty models with Weibull parametric baseline hazard. Ha and Lee (2005) applied the h-
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likelihood estimation method to multilevel frailty models. In this dissertation, we develop 

h-likelihood estimators for estimating parameters in shared frailty models. 

1.6. Hierarchical likelihood estimators 

The h-likelihood for frailty models initially developed byHa, Lee et al. (2001) to 

describe frailty models is defined as follow:  

First, define the h-likelihood function. Let 𝑖 = 1,2,… , 𝐺 be clusters or individuals where 

each cluster or each individual has 𝑗 = 1,2,… , 𝑛𝑖 observations or repeated events. 

FollowingHa, Lee et al. (2001) the contribution, ℎ𝑖 say, of the 𝑗𝑡ℎ observation or repeated 

events in the 𝑖𝑡ℎ cluster or by 𝑖𝑡ℎ individual is given by the logarithm of the joint density of 

(𝑇𝑖𝑗 , 𝛿𝑖𝑗 , 𝑢𝑖) 

ℎ𝑖𝑗 = ℎ𝑖𝑗(𝜷, 𝜆0, 𝜃; 𝑡𝑖𝑗 , 𝛿𝑖𝑗 , 𝑢𝑖) = log[ℒ1𝑖𝑗(. |𝑢𝑖)ℒ2𝑖(𝑢𝑖; 𝜃)],                                         (1.9) 

where ℒ1𝑖𝑗  is the conditional density of (𝑇𝑖𝑗 , 𝛿𝑖𝑗) given 𝑈𝑖 = 𝑢𝑖 with parameters (𝜷, 𝜆0) 

and ℒ2𝑖 is the density of 𝑈𝑖 with parameter 𝜃. By the conditional independence of 𝑇𝑖𝑗 , 𝐶𝑖𝑗 

given 𝑈𝑖 = 𝑢𝑖, and the non-informative censoring assumption, we have, 

ℒ1𝑖𝑗(𝑡𝑖𝑗 , 𝛿𝑖𝑗 , 𝜆0, 𝜷|𝑥𝑖𝑗 , 𝑢𝑖) = {𝜆0(𝑡) exp(𝒙𝑖𝑗
𝑇 𝜷)𝑢𝑖}

𝛿𝑖𝑗 exp{−Λ0(𝑡𝑖𝑗) exp(𝒙𝑖𝑗
𝑇 𝜷)𝑢𝑖}.            (1.10) 

The ℒ1𝑖𝑗  in the above equation becomes the ordinary censored-data likelihood given 

𝑈𝑖 = 𝑢𝑖, while Λ0(. ) is the conditional cumulative baseline hazard function of 𝑇𝑖𝑗 given 

𝑈𝑖 = 𝑢𝑖. Thus, the h-likelihood for the frailty is  

                              ℎ = ∑ℓ1𝑖𝑗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                                              (1.11) 

where ℓ1𝑖𝑗 = ℓ1𝑖𝑗(. |𝑢𝑖) = log(𝜆0(𝑡)) + log𝑢𝑖 + 𝒙𝑖𝑗
𝑇 𝜷 − Λ0(𝑡𝑖𝑗) exp(𝒙𝑖𝑗

𝑇 𝜷) 𝑢𝑖 is the logarithm 

of the conditional density of function for 𝑡𝑖𝑗 and 𝛿𝑖𝑗 given 𝑈𝑖 = 𝑢𝑖 and ℓ2𝑖 is the logarithm 

of the density of function 𝑓(𝑢𝑖; 𝜃). 
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A unique aspect of the h-likelihood approach is that it avoids multi-dimensional 

integration of the latent frailty variates when obtaining the parameter estimates, the 

frailty variates 𝒖 = (𝑢1, … , 𝑢𝐺)𝑇 are treated as parameters and jointly estimated along 

with the parameters of interests {𝜷, 𝜃, Λ0(. )}. The h-likelihood approach eliminates the 

unspecified baseline hazard via profile likelihood,  

                     ℎ∗ = ∑ℓ1𝑖𝑗
∗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                                      (1.12) 

and the Newton Raphson method is adopted to jointly estimate 𝝉 = (𝜷, 𝒖 ). The frailty 

parameters are obtained using the adjusted profile likelihood, which is given by,  

                               ℎ𝐴
∗ = ℎ∗|𝝉=�̂� +

1

2
log{det(2𝜋𝑯−1)}|

𝝉=�̂�
.                                         (1.13) 

where 𝑯 = −
𝜕2ℎ∗

𝜕𝝉2  is the asymptotic covariance matrix of �̂� and �̂� − 𝒖. The Newton-

Raphson method can be used to solve for 𝜃 in 
𝜕ℎ𝐴

∗

𝜕𝜃
. 

1.7 Dissertation organization  

This dissertation investigates h-likelihood approaches for estimating the 

regression parameters of Cox and Weibull proportional hazard (PH) regression models 

applied to multivariate survival data. It is organized into five chapters. Chapter 1 

presents a general introduction, including literature reviews of past work on the 

multivariate survival data, an introduction to PH regression models. The next three parts 

are papers in the form to be submitted to journals. The final section summarises the 

results of the previous chapters and discusses additional issues. 
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Chapter 2  

Bias reduction methods in the hierarchical likelihood approach for shared gamma 

frailty model in clustered failure time data 

 

Abstract 

Shared frailty models with both parametric and non-parametric baseline hazard functions 

are widely used for the analyses of survival data. A hierarchical likelihood (h-likelihood) 

approach has been developed for estimating the regression parameters and frailty 

variates, in which the latent frailties are treated as “parameters” and estimated jointly 

with other parameters of interest. The h-likelihood estimators generally perform well in 

various frailty models. However, they are known to be biased for non-normal random 

effects. Existing modifications to the h-likelihood employ the total derivative and second-

order Laplace approximation, which is computationally intensive with complicated 

mathematical derivations. In this work, we propose two effective bias correction methods 

for the h-likelihood estimators under the shared gamma frailty models. The first method 

modifies the adjusted profile likelihood by adding a logarithmic transformation of the 

variance of the frailty parameter to avoid zero estimates in the frailty parameter. The 

second approach modifies the score function of the adjusted profile likelihood. Thus, in 

the two modifications, we avoid the use of the total derivative and second-order Laplace 

approximation. Simulation studies show that the proposed approaches reduce the bias 

in the h-likelihood estimators, especially for the estimate of the frailty parameter (from 

30% to 3% when the frailty variance and sample size are small). Applications of both 

methods are illustrated using recurrent kidney infection data. Furthermore, the proposed 

bias correction methods can be extended to a broad class of frailty distributions and 

complex models such as joint modeling and competing risks. 
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Keywords: bias correction; hierarchical likelihood; frailty model; clustered survival data; 

profile likelihood. 

 

2.1. Introduction 

Clustered or grouped survival data frequently occur in many medical research 

studies, especially in clinical trials and cohort studies. For example, a typical clinical trial 

study may consist of multiple participating centers or hospitals. Observations within 

clusters (e.g., centers, hospitals, etc.) may be correlated due to some natural, artificial 

clustering or shared environmental factors of subjects that may influence the failure 

times of the same cluster. The natural approach is to incorporate random effects or 

shared frailties to account for within-cluster homogeneity in outcomes(Wienke 2010, Enki, 

Noufaily et al. 2014). Frailties, which are random effects in survival models, have been 

widely used for the analysis of clustered failure time data. 

The semiparametric frailty model, which assumes a non-parametric baseline 

hazard function, plays an important role in modeling clustered survival data. The gamma 

frailty model has received enormous considerations due to its mathematical 

convenience.(Clayton 1978, Keiding, Andersen et al. 1997) Other choices of frailty models 

have been developed.(Duchateau and Janssen 2007, Hougaard 2012) The parametric frailty 

models, where the baseline hazard function is assumed to follow a parametric 

distribution, have also been proposed.(Keiding, Andersen et al. 1997) When the 

assumption of the parametric distribution is valid, inferences lead to smaller standard 

errors for the hazard ratios and the survival time quantities compared to the non-

parametric baseline hazard model due to the existence of sufficient statistics in the 

parametric case. There is no sufficient statistics in the non-parametric baseline hazard 
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model. However, when the correct distribution of the baseline hazards is uncertain, the 

use of non-parametric models is desirable. 

Challenges remain in fitting frailty models for multivariate survival data. The 

expectation-maximization (EM) algorithm(Dempster, Laird et al. 1977) has been the 

fundamental tool for obtaining parameter estimates in the semiparametric frailty model. 

In this framework, the EM method considers full data likelihood, which is a function of the 

observed event times and the unobserved random variables (treated as missing). The E-

step involves the computation of the full likelihood with respect to the observed data. 

This expectation is often approximated using numerical integration since, in most cases, 

an analytic solution does not exist. The EM algorithm-based estimation procedure has 

been developed for the gamma frailty model.(Klein 1992) However, such an approach is 

shown to have a finite sample underestimation of the model parameters.(Barker and 

Henderson 2005) Inferences for the log-normal frailty has also been developed, where the 

conditional expectation of frailty given the observed data are usually computed using 

numerical integration.(Sastry 1997, Cortinas Abrahantes and Burzykowski 2005) The EM 

algorithm can also be conducted using the Bayesian framework, where the expectation 

step is approximated by MCMC methods.(Vaida and Xu 2000, Ripatti, Larsen et al. 2002) 

However, EM and other alternative approaches require complex numerical integration 

due to intractable integration, which can be computationally intensive, especially when 

the number of clusters is large. Therneau, Grambsch et al. (2003) proposed a penalized 

estimation method for frailty models by utilizing the partial likelihood function. This 

procedure leads to simple estimating equations but results in an underestimation of 

variances of the fixed effects parameters.(Ripatti and Palmgren 2000) 

The hierarchical-likelihood (a.k.a. h-likelihood), proposed by Lee and Nelder (1996), 

has been extended to estimate parameters in frailty models.(Ha, Lee et al. 2001, Ha, 
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Sylvester et al. 2011, Wang, Xu et al. 2011) A unique aspect of the h-likelihood approach is 

that it avoids multi-dimensional integration with respect to the latent frailty variates when 

obtaining the parameter estimates. Thus the frailty variates are jointly estimated along 

with the parameters of interest. This property is particularly appealing when the complex 

dependence structure among clustered failure times requires estimation of multiple 

frailties. The h-likelihood estimators generally perform well in various frailty models. 

However, they are substantially biased for non-normal random effects such as gamma 

frailty models.(Ha, Lee et al. 2001) 

In this paper, we propose two effective bias reduction methods for the h-

likelihood estimators in survival analysis. The remaining of the paper is organized as 

follows. Section 2.2 introduces the gamma frailty model as a proof of concept and the h-

likelihood estimators for both non-parametric and parametric baseline hazards survival 

models. In Section 2.3, we propose two bias correction approaches for the gamma frailty 

model. The proposed bias correction methods are also applicable to a broad class of 

frailty distributions and complex models such as joint modeling and competing risks. 

Section 2.4 presents the results of a simulation study in which the performance of the 

proposed methods is evaluated in cases when the baseline hazard is left unspecified or 

parametrically specified. Both proposed bias correction methods are also applied to the 

recurrent kidney infection data, and the results are discussed in Section 2.5. The 

discussion, presented in Section 2.6, concludes the paper. 

2.2. Gamma shared frailty model 

Let 𝑇𝑖𝑗 be the failure-time variable corresponding to individual 𝑗 (𝑗 = 1, 2, … , 𝑛𝑖) from 

cluster 𝑖 (𝑖 = 1, 2, … , 𝐺), and 𝐶𝑖𝑗 be a non-informative right-censoring time that is 

independent of 𝑇𝑖𝑗. Let 𝑦𝑖𝑗 = min(𝑇𝑖𝑗 , 𝐶𝑖𝑗) be the observed failure times, and 𝛿𝑖𝑗 =

𝐼(𝑇𝑖𝑗 ≤ 𝐶𝑖𝑗), where 𝐼(. ) is the indicator function. In particular, 𝑦𝑖𝑗 are observations on 𝑇𝑖𝑗 
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when censoring is not present. Below, all vectors are column-vectors, whereas their 

transposed (denoted by the superscript T) are row-vectors. The shared frailty model for 

gamma frailty can be written as, 

                           𝜆𝑖𝑗(𝑡𝑖𝑗|𝑢𝑖, 𝒙𝑖𝑗) = 𝜆0(𝑡𝑖𝑗)𝑢𝑖 exp(𝒙𝑖𝑗
𝑇 𝜷),                                             (2.1) 

where 𝜆0(𝑡𝑖𝑗) is the baseline hazard function, 𝒙𝑖𝑗 = (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝)
𝑇
 is a vector of fixed 

covariates, and 𝜷 is a 𝑝 × 1 vector of unknown regression parameters. Assume that the 

unobserved frailties 𝑈𝑖′𝑠, are independently and identically distributed gamma random 

variables, where mean is set to be 1 to avoid identifiability issues, and unknown variance 

is 𝜃. The probability density function of 𝑈𝑖 is given as follows, 

𝑓(𝑢𝑖; 𝜃) =
1

Γ(1/𝜃)𝜃
1
𝜃

𝑢
𝑖

(
1
𝜃
−1)

exp (−
𝑢𝑖

𝜃
).                                              (2.2) 

2.3 H-likelihood estimation 

The h-likelihood for shared frailty(Ha, Lee et al. 2001) is given by 

                                            ℎ = ∑ℓ1𝑖𝑗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                     (2.3) 

where ℓ1𝑖𝑗 is the logarithm of the conditional likelihood in 𝑇𝑖𝑗 and 𝛿𝑖𝑗 with parameters 

(𝜷, 𝜆0) given 𝑈𝑖 = 𝑢𝑖, and ℓ2𝑖 is the log density function of 𝑈𝑖 = 𝑢𝑖 with parameter 𝜃, 

shown below. 

Let 𝑣𝑖 = log(𝑢𝑖), and 𝒗 = (𝑣1, 𝑣2, … , 𝑣𝐺)𝑇. Also, let 𝒛𝑖𝑗 = (𝑧𝑖𝑗1, 𝑧𝑖𝑗2, … , 𝑧𝑖𝑗𝐺)
𝑇
 be a 𝐺 × 1 

cluster indicator vector. By defining 𝜂𝑖𝑗 = 𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒗, we have 

                  ℓ1𝑖𝑗 = 𝛿𝑖𝑗{log 𝜆0(𝑦𝑖𝑗) + 𝜂𝑖𝑗} − Λ0(𝑦𝑖𝑗) exp(𝜂𝑖𝑗),                         

ℓ2𝑖 = {𝑣𝑖 − exp(𝑣𝑖)}𝜃
−1 − log Γ (

1

𝜃
) − 𝜃−1 log 𝜃, 
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where Λ0(. ) is the cumulative baseline hazard function.  

 A unique aspect of the h-likelihood approach is that, instead of integrating out the 

latent frailty variates 𝒗 are treated as parameters and jointly estimated along with 

{𝜷, 𝜃, Λ0(. )}. 

2.3.1. Non-parametric baseline hazard models 

In this section, we will describe the h-likelihood estimation process in the semiparametric 

gamma frailty model. The semiparametric model is desirable when the underlying 

functional form of the baseline hazard is unknown. Suppose that the baseline 

hazard 𝜆0(𝑡𝑖𝑗) in equation (2.1) is unspecified. Given (𝜷, 𝒗), and 𝜃, one can solve the 

score equations 

𝜕ℎ

𝜕𝜆0𝑘
= 0, 𝑘 = 1,… , 𝐾, 

to obtain the non-parametric maximum hierarchical likelihood estimator of 𝜆0𝑘,  

                                          �̂�0(𝑦(𝑘)) =
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑦(𝑘))

,                                            (2.4) 

where 𝑦(𝑘) is the 𝑘𝑡ℎ smallest distinct event time. Thus, Λ̂0(𝑦𝑖𝑗) = ∑ �̂�0(𝑦(𝑘))𝑘:𝑦(𝑘)≤𝑡  

where 𝑑(𝑘) is the number of events at 𝑦(𝑘) and ℛ(𝑦(𝑘)) = {(𝑖, 𝑗): 𝑦𝑖𝑗 ≥ 𝑦(𝑘)}  is the risk set 

at 𝑦(𝑘). This estimator is an extension of the estimator of the baseline cumulative hazard 

function for the Cox model to the frailty model.(Breslow 1972, Breslow 1974) After 

substituting in the estimated baseline hazard, the kernel of the profile h-likelihood ℎ∗ =

ℎ|Λ0(𝑡)=Λ̂0(𝑡) satisfies: 

ℎ∗ ∝ ∑𝛿𝑖𝑗𝜂𝑖𝑗

𝑖𝑗

− ∑ 𝑑(𝑘)

𝑘:𝑦(𝑘)≤𝑡

log [ ∑ exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑦(𝑘))

] + ∑ℓ2𝑖.

𝑖

                    (2.5) 
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Given the frailty parameter 𝜃, the maximum h-likelihood estimators (MHLE) of 𝝉 = (𝒗, 𝜷) 

can be obtained by using the Newton-Raphson algorithm, as follows 

𝝉(𝑚+1) ≡ (
�̂�(𝑚+1)

�̂�(𝑚+1)
) = (

�̂�(𝑚) 

�̂�(𝑚)
) + (𝑯−1(𝝉)𝓢(𝝉))|

𝝉=(𝜷,𝒗)=(�̂�(𝑚),�̂�(𝑚))
,                           (2.6) 

where �̂�(𝑚) and �̂�(𝑚) represent the estimates of 𝜷 and 𝒗 at the 𝑚𝑡ℎ iteration, 𝑯(𝝉) =

−
𝜕2ℎ∗

𝜕𝝉2   is the (𝑝 + 𝐺) × (𝑝 + 𝐺) observed information matrix, and 𝓢(𝝉) = (
𝜕ℎ∗

𝜕𝜷
,
𝜕ℎ∗

𝜕𝒗
)
𝑇
 is the 

score function. Details of the mathematical derivation of 𝓢(𝝉) and 𝑯(𝝉) are given in 

Appendix A.  

 After direction calculation, the first-order Laplace approximation to the adjusted 

profile marginal likelihood, ℎ𝐴
∗ = log{∫ exp(ℎ∗)𝑑𝒗}, can be written as  

ℎ𝐴
∗ = ℎ∗|𝝉=�̂� +

1

2
log{det(2𝜋𝑯−1)}|

𝝉=�̂�
.                                                (2.7) 

The adjusted profile h-likelihood seeks to approximate the restricted likelihood of 𝜃 by 

accounting for the estimation of 𝜷 and 𝒗. Then, the estimator of frailty parameter 𝜃 can 

be obtained by solving the equation, 

𝜕ℎ𝐴
∗

𝜕𝜃
= 0,                                                                                      (2.8) 

and checking that �̂� is indeed the unique maximum of ℎ𝐴
∗ . 

2.3.2. Parametric baseline hazard models 

In the previous section, we outlined the h-likelihood fitting procedure for cases when the 

functional form of the baseline hazard is unknown. In this section, we will layout the h-

likelihood estimation process when the baseline hazard function follows a parametric 

distribution. Hence, the distribution of survival time can be estimated. The probability 

distributions of certain non-negative random variables can be used to describe the 
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functional form of the baseline hazard 𝜆0(𝑡𝑖𝑗) in the equation (2.1), leading to parametric 

survival models that are commonly used to analyze time-to-event data. For example, the 

exponential, Weibull, Gompertz, log-logistic are broad families of probability distributions 

that can be specified.  

We consider estimating the parameters in the parametric frailty models via 

Poisson hierarchical generalized linear models (HGLM). We can thus, utilize the iterative 

weighted least square (IWLS) technique for the estimation of the fixed effect and random 

effect parameters.(Ha and Lee 2003) The Poison representation of the parametric gamma 

frailties is as follows. We add zero to the ℓ1𝑖𝑗 in (2.3). That is, we add log [
Λ0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
] to ℓ1𝑖𝑗, 

and after some algebraic derivations, we obtain, 

                            ℓ1𝑖𝑗 = 𝛿𝑖𝑗{logΛ0(𝑦𝑖𝑗) + 𝜂𝑖𝑗  } − Λ0(𝑦𝑖𝑗) exp(𝜂𝑖𝑗) + 𝛿𝑖𝑗 log [
𝜆0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
], 

   = 𝛿𝑖𝑗 log(𝜇𝑖𝑗) − 𝜇𝑖𝑗 + 𝛿𝑖𝑗 log [
𝜆0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
],                                                  (2.9) 

where 𝜇𝑖𝑗 = Λ0(𝑦𝑖𝑗) exp(𝜂𝑖𝑗) and 𝜂𝑖𝑗 = 𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒗. 

The expression 𝛿𝑖𝑗 log(𝜇𝑖𝑗) − 𝜇𝑖𝑗 is similar to the kernel of the loglikelihood function of 

conditional Poisson for 𝛿𝑖𝑗 given 𝑽 = 𝒗 with mean 𝜇𝑖𝑗. Note that the last term log [
𝜆0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
] 

is independent of both 𝜷 and 𝒗. 

As an illustration, and assuming an exponential parametric baseline hazard function, the 

term 
𝜆0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
 becomes 

1

𝑦𝑖𝑗
 where 𝜆0(𝑦𝑖𝑗) = 𝜌 and Λ0(𝑦𝑖𝑗) = 𝜌𝑦𝑖𝑗 and no extra parameters 

are involved. It follows that 

log(𝜇𝑖𝑗) = log 𝜌 + log 𝑦𝑖𝑗 + 𝒙𝑖𝑗
𝑇 𝜷 + 𝒛𝑖𝑗

𝑇 𝒗. 



18 
 

We consider log 𝜌 as an intercept 𝛽0 on letting 𝛽0 = log𝜌. Thus, we have 

log(𝜇𝑖𝑗) = log 𝑦𝑖𝑗 + 𝒙𝑖𝑗
∗𝑇𝜷∗ + 𝒛𝑖𝑗

𝑇 𝒗, 

where 𝒙𝑖𝑗
∗𝑇 = (𝑥𝑖𝑗0, 𝒙𝑖𝑗

𝑇 )
𝑇
 with 𝑥𝑖𝑗0 = (1,… ,1)𝑇, 𝜷∗ = (𝛽0, 𝜷

𝑇)𝑇. Thus, the exponential 

baseline hazard frailty model can be directly fitted using PHGLM with the offset log 𝑦𝑖𝑗. 

In a second example, we  consider a Weibull baseline hazard frailty model where 

𝜆0(𝑦𝑖𝑗) = 𝛾𝜌𝑦𝑖𝑗
𝛾−1

 and Λ0(𝑦𝑖𝑗) = 𝜌𝑦𝑖𝑗
𝛾
. Therefore the term 

𝜆0(𝑦𝑖𝑗)

Λ0(𝑦𝑖𝑗)
 becomes 

𝛾

𝑦𝑖𝑗
, which 

depends on the unknown parameter 𝛾. We have 

log(𝜇𝑖𝑗) = 𝛾 log 𝑦𝑖𝑗 + 𝒙𝑖𝑗
∗𝑇𝜷∗ + 𝒛𝑖𝑗

𝑇 𝒗. 

We can combine the Weibull shape parameter 𝛾 with the frailty variates 𝒗 by letting 

𝑧𝑖𝑗0 = log𝑦𝑖𝑗, 𝑣0 = 𝛾, 𝒛𝑖𝑗
∗ = (𝑧𝑖𝑗0, 𝒛𝑖𝑗

𝑇 )
𝑇
, 𝒗∗ = (𝑣0, 𝒗

𝑇)𝑇  and log(𝜇𝑖𝑗) = 𝒙𝑖𝑗
∗𝑇𝜷∗ + 𝒛𝑖𝑗

∗𝑇𝒗∗. 

Thus, frailty models with exponential and Weibull hazard functions can be fitted 

via PHGLM using available standard statistical software. This approach can be extended 

to fitting parametric models with other baseline hazard functions such as Gompertz, 

extreme value distribution, etc. 

 Calculating the estimators will be simplified if matrices are used instead of the 

summations. Let 𝜼∗ = 𝑿∗𝜷∗ + 𝒁∗𝒗∗ where 𝑿∗ is the 𝑁 × (𝑝 + 1) a matrix whose 𝑖𝑗𝑡ℎ row 

vector is 𝒙𝑖𝑗
∗𝑇, 𝒁∗ is the 𝑁 × (𝐺 + 1) group indicator matrix whose 𝑖𝑗𝑡ℎ row vector is 𝒛𝑖𝑗

∗𝑇. 

Let 𝜹 be 𝑁 × 1 vector of 𝛿𝑖𝑗, and 𝝁∗ be an 𝑁 × 1 vector equal to exp(𝜼∗). Given the frailty 

parameter 𝜃, the MHLE for 𝜷∗ and 𝒗∗ in the parametric frailty models are obtained by 

solving the system of equations 

𝜕ℎ

𝜕𝜷
= 𝑿∗𝑇(𝜹 − 𝝁∗),                                                                           (2.10) 
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𝜕ℎ

𝜕𝒗∗
= 𝒁∗𝑇(𝜹 − 𝝁∗) + 𝑹∗,                                                                  (2.11) 

where 𝑹∗ =
𝜕

𝜕𝒗∗
(𝑑𝑖 log 𝑣0 , ℓ2𝑖)

𝑇 = (𝑣0
−1𝑑𝑖, 𝑹 ), with 𝑑𝑖 = ∑ 𝛿𝑖𝑗𝑖𝑗 , and 𝑹 =

ℓ2𝑖

𝜕𝒗
. 

Given the frailty parameter 𝜃, the IWLS method can be used to solve the above system 

for �̂�∗ and �̂�∗. 

 The IWLS equation for (𝜷∗, 𝒗∗) in the parametric gamma frailty model is given by 

(𝑿
∗𝑇𝑾𝑿∗ 𝑿∗𝑇𝑾𝒁∗

𝒁∗𝑇𝑾𝑿∗ 𝒁∗𝑇𝑾𝒁∗ + 𝑸∗) (
𝜷∗̂

𝒗∗̂
) = ( 𝑿∗𝑇𝑾𝒘∗

𝒁∗𝑇𝑾𝒘∗ + 𝑼∗
),                                            (2.12) 

where 𝒘∗ = 𝜼 + 𝑾−1(𝜹 − 𝝁), 𝑸∗ is the (𝐺 + 1) × (𝐺 + 1) diagonal matrix whose 𝑖𝑡ℎ 

element is (−
𝜕𝑹∗

𝜕𝒗∗), 𝑼∗ = 𝑸∗𝒗∗ + 𝑹∗ and 𝑾 = diag{exp(𝜼∗)}. 

The two score equations (2.10) and (2.11) can also be expressed in a more compact 

form as 

𝜕ℎ∗

𝜕𝝉∗
= 𝑬𝑇(𝜹 − 𝝁∗) + 𝑩,                                                                       ( 2.13) 

where 𝑬 = (𝑿∗, 𝒁∗) and 𝑩 = (𝟎𝑇 , 𝑹∗)𝑇. Thus, 𝑬𝝉∗ = 𝜼 = 𝑿∗𝜷∗ + 𝒁∗𝒗∗. 

Next, from (2.10) and (2.11), we obtain the negative second partial derivatives with 

respect to 𝜷∗ and 𝒗∗, 

    −
𝜕2ℎ∗

𝜕𝜷∗𝟐
= 𝑿∗𝑇𝑾𝑿∗,                

  −
𝜕2ℎ∗

𝜕𝜷∗𝜕𝒗∗
= 𝑿∗𝑇𝑾𝒁∗,                  

−
𝜕2ℎ∗

𝜕𝒗∗𝜕𝜷∗
= 𝒁∗𝑇𝑾𝑿∗,                 

−
𝜕2ℎ∗

𝜕𝒗∗2 = 𝒁∗𝑇𝑾𝒁∗ + 𝑸∗,  
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where 

        𝑸∗ = {−
𝜕𝑹∗

𝜕𝒗∗}.            

Therefore, 

  𝑯∗ = (𝑿
∗𝑇𝑾𝑿∗ 𝑿∗𝑇𝑾𝒁∗

𝒁∗𝑇𝑾𝑿∗ 𝒁∗𝑇𝑾𝒁∗ + 𝑸∗),                              (2.14) 

which can be written in a simple form as 

𝑯∗ = 𝑬𝑻𝑾∗𝑬 + 𝑭,                                                            (2.15) 

where 𝑭 = 𝑩𝑫(𝟎,𝑸∗) is a block diagonal matrix. 

From 𝝉∗̂ = 𝝉∗ + 𝑯∗−1 (
𝜕ℎ∗

𝜕𝝉∗), (13), and (15), we obtain, 

                       (𝑬𝑻𝑾𝑬 + 𝑭)𝝉∗̂ = (𝑬𝑻𝑾𝑬 + 𝑭)𝝉∗ + 𝑬𝑻(𝜹 − 𝝁) + 𝑩,   

                                          = (𝑬𝑇𝑾𝑬)𝝉∗ + 𝑬𝑻(𝜹 − 𝝁) + 𝒃, 

                     = 𝑬𝑇𝑾𝒘∗ + 𝒃,           

where 𝒃 = 𝑭𝝉∗ + 𝑩 and 𝒘∗ = 𝜼 + 𝑾−1(𝜹 − 𝝁∗). 

 The asymptotic covariance matrix for (𝝉∗̂ − 𝝉∗) is given by 𝑯∗−1 = (−
𝜕2ℎ

𝜕𝝉∗2)
−1

. So, 

the upper left-hand corner of 𝑯∗−1 gives the asymptotic variance-covariance matrix of 𝜷∗̂ 

as 

var(𝜷∗̂) = (𝑿∗𝑇𝚺−1𝑿∗)
−1

, 

where 𝚺 = 𝑾−1 + 𝒁∗𝑼∗−1𝒁∗𝑇. 

The adjusted profile hierarchical likelihood, 

           ℎ𝐴 = ℎ|𝝉∗=𝝉∗̂ +
1

2
log{det(2𝜋𝑯−1)}|

𝝉∗=𝝉∗̂
.                  (2.16) 
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is used for estimation of the frailty parameter 𝜃 by solving  

𝜕ℎ𝐴

𝜕𝜃
= 0.                  

2.4. Bias-corrected maximum hierarchical likelihood estimator (MHLE)  

The h-likelihood estimators generally perform well in various frailty models. However, 

they are known to be biased for non-normal random effects. Existing modifications to the 

h-likelihood first employ the total derivative approach, which considers 𝑣 as a function of 

𝜃. Thus,  the term 𝜕𝑣/𝜕𝜃 is added in the calculation since there is a direct dependence 

between �̂� when computing 
𝜕ℎ𝐴

∗

𝜕𝜃
.(Ha and Lee 2003) To further remove the bias, the 

second-order Laplace approximation is adopted.(Ha and Lee 2003) However, the total 

derivative and second-order Laplace approximation are computationally intensive by 

involving complex terms with complicated mathematical derivations.(Shun 1997, Ha and 

Lee 2003) Thus, the existing bias correction method cannot directly be applied to h-

likelihood estimation for a broad class of distributions, such as correlated gamma frailty 

models.  

In this chapter, we aim to provide adequate modifications of the adjusted profile 

h-likelihood estimators to improve the estimation for the parameter in the frailty 

distribution, as well as the estimates of regression coefficients. Remarkably, our 

proposed methods to remove the bias in the h-likelihood estimator are immediately 

applicable to a general class of frailty models, including correlated frailty models and 

joint modeling. 

2.4.1 Bias Corrected profile h-likelihood function (BC-HL) 

The estimate of the gamma frailty parameter 𝜃 is biased in a finite sample.(Ha and Lee 

2003, Wang, Xu et al. 2011) Thus, the accuracy of the estimators of other parameters may 
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be impacted. Under the linear mixed model framework, Morris(Morris 2006) proposed an 

adjustment on the classical likelihood function. We expand this adjustment procedure to 

the estimation of the h-likelihood dispersion parameter. The idea is to add an extra term 

to the adjusted profile h-likelihood function ℎ𝐴
∗  for estimating 𝜃 to avoid zero estimates.   

For our frailty model, we define the corrected profile as follows, 

ℎ𝑐 = ℎ𝐴
∗ + log(det(𝚺𝛉)),                                                        (2.17) 

where 𝚺𝛉 is a variance-covariance matrix for correlated random effects model. In our 

gamma frailty case, 𝚺𝛉 is 𝜃. In multivariate frailty model as shown in Section 2.3.3, 𝚺𝛉 

could be variance-covariance matrix to accommodate complex models. 

The corrected profile h-likelihood has the following properties: 

1. exp(ℎ𝑐) = exp(ℎ𝐴
∗) det(𝚺𝛉) ≥ 0. 

2. exp(ℎ𝑐) = 0 only if det(𝚺𝛉) = 0. This ensures that the zero estimates of the 

dispersion parameter could be avoided.(Li and Lahiri 2010) 

2.4.2  Modified score function to correct bias for profile h-likelihood (SC-HL) 

The second proposed modification seeks to prevent downward bias in the adjusted 

profile likelihood estimate of the gamma frailty parameter, especially when the sample 

size is small. We modify the score function of the adjusted profile h-likelihood for 

estimating 𝚺𝛉 by adding an extra term to remove the bias estimate in the frailty 

parameter. Based on the bias reduction in fixed-effect models proposed by Firth(Firth 

1993), we modified the adjusted profile likelihood score function equation. The goal is to 

prevent bias before computing �̂�𝛉, by adding a modification 𝑀(𝚺𝛉), of order 𝑂(1), to the 

adjusted profile likelihood score function. This leads to modified score adjusted likelihood 

equation, 
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𝑈𝑚(𝚺𝛉) = 𝑈(𝚺𝛉) + 𝑀(𝚺𝛉) = 𝟎,                                                      (2.18) 

where 𝑈(𝚺𝛉) =
𝜕ℎ𝐴

∗

𝜕𝚺𝛉
, 

The solution of (2.18) gives the estimate �̂�𝛉𝐦, where �̂�𝛉𝐦 is the bias-corrected estimate 

of 𝚺𝛉. The modification is chosen in such a way that 

𝐸𝚺𝛉
(�̂�𝛉𝐦 − 𝚺𝛉) = 𝑂(𝑛−2).                                      (2.19) 

The latter can be achieved using Taylor’s expansion for 𝑈𝑚(�̂�𝛉𝐦) around 0 and finding 

an expression for (�̂�𝛉𝐦 − 𝚺𝛉). By imposing condition (2.19), we find 

𝑀(𝚺𝛉) = −𝐼(𝚺𝛉)𝑏(𝚺𝛉),                                                                (2.20) 

where 𝐼(𝚺𝛉) = 𝐸𝚺𝛉
(−

𝜕2𝑙2𝑖

𝜕𝚺𝛉
𝟐⁄ ) and the expected value is used to remove the first-

order bias of �̂�𝛉𝐦. Thus, 𝑀(𝚺𝛉) does not depend on the observed sample. The bias 

𝑏(𝚺𝛉) is given by 

𝑏(𝚺𝛉) = −
1

2
𝐼(𝚺𝛉)

−2{𝑣𝑓,𝑔,ℎ + 𝑣𝑓,𝑔ℎ} = 𝑂(𝑛−1), 

and 

𝑣𝑓,𝑔,ℎ = 𝐸𝚺𝛉
{𝑈𝑓𝑈𝑔𝑈ℎ},      𝑣𝑓,𝑔ℎ = 𝐸𝚺𝛉

{𝑈𝑓𝑈𝑔ℎ},  

where 𝑈𝑓 and 𝑈𝑔ℎ denote the first and second derivative of 𝑙2𝑖. Here, 𝑙2𝑖 is the log of the 

frailty density function.  

Firth noticed the connection between 𝑀(𝚺𝛉) and Bayesian model-based priors. In 

full exponential models, the estimator �̂�𝛉𝐦 coincides with the mode of the posterior 

distribution obtained using Jeffrey’s non-informative prior |𝐼(𝚺𝛉)|
1

2. To extend the Firth’s 
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method, we proposed to use Jeffrey’s non-informative prior modification function 𝑀(𝚺𝛉) 

given by 

𝑀(𝚺𝛉) = |𝐼(𝚺𝛉)|
1
2.                                                                       (2.21) 

The mathematical derivation of 𝑀(𝚺𝛉) can be found in Appendix B. 

2.4.3 Extension to other frailty distributions and joint modeling 

The proposed bias correction methods (BC-HL and SC-HL) in Section 2.3.1-2.3.2 

can be directly extended to a broad class of frailty distributions and complex models 

such as joint modeling and competing risks. In Section 2.3.1-2.3.2, we illustrate our 

method using the gamma frailty mode as a proof of concept. However, the proposed 

methods can be applied to other frailty distribution such as the inverse Gaussian (IG) 

distribution,(Hougaard 1984) positive stable distribution,(Hougaard 1986) and Weibull 

distribution(Wang, Xu et al. 2011) that have been introduced as frailty distributions.  

Extension example 1 (other (normal) and non-normal frailty distribution): In the equation 

(2.2), we can propose the IG frailty distribution for the 𝑈𝑖 ’s with the probability density 

function with mean equal to 1 and unknown variance 𝜃, 

𝑓(𝑢𝑖; 𝜃) = [
1

2𝜋𝜃
]

1
2
𝑢

𝑖

−
3
2 exp [−

(𝑢𝑖 − 1)2

2𝑢𝑖𝜃
].                                      (2.22) 

The h-likelihood estimators of the IG frailty model or positive stable frailty model, or 

Weibull frailty model may lead to bias estimate of the model parameter since the 

distribution is non-normal. Thus, our approaches (BC-HL and SC-HL) can be extended 

to remove the bias in the h-likelihood estimators when the frailty distribution is not 

normal. 

Extension example 2 (multivariate frailty distribution): The shared frailty model in 

equation (2.1) can be extended to describe complicated dependencies between survival 
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times by introducing additional random effects. Here, a frailty model with more than one 

random component is of interest to model multilevel structures or hierarchical clustering 

of the data. The conditional hazard function of the multilevel frailty model may be written 

as 

𝜆𝑖𝑗(𝑡𝑖𝑗|𝑿, 𝜷, 𝒁1, … , 𝒁𝑆, 𝒗1, … , 𝒗𝑆, ) = 𝜆0(𝑡𝑖𝑗) exp(𝑿𝜷 + 𝒁1𝒗1 + 𝒁2𝒗2 + ⋯+ 𝒁𝑆𝒗𝑆) , (2.23) 

where 𝒁𝑟(𝑟 = 1,2, . . , 𝑆) are 𝑁 × 𝐺𝑟 with respect to the model matrices of 𝐺𝑟 × 1 frailty 

distribution. The aforementioned nested frailty or multicomponent model may result in a 

biased estimate of the variance component parameter.(Rondeau, Filleul et al. 2006) 

Therefore, interest lies in eliminating such bias, especially in finite samples. Our 

approaches in Section 2.3.1 and 2.3.2 to modify the h-likelihood estimator can be 

applied to reduce the bias in multicomponent frailty models.  

Extension example 3 (joint modeling): One of the extensions to the frailty model in 

equation (2.1) is the consideration of different types of baseline hazard functions 

𝜆0𝑟 (𝑟 = 1,… , 𝑆) for multivariate survival times (𝑇𝑖𝑗1, … , 𝑇𝑖𝑗𝑆). The shared frailty assumes 

that the censoring and event times are conditionally independent given the frailties. This 

assumption is violated when individuals who experience competing risk from different 

types of events might have different censoring mechanisms. However, traditional 

competing risk model is unable to tease out different censoring mechanisms. To address 

this issue, a generalization of the shared frailty model that incorporates competing risks 

as well as independent censoring is proposed. Thus, the cause-specific frailty model is 

given by  

𝜆𝑖𝑗𝑟(𝑡𝑖𝑗𝑟|𝑣𝑖, 𝒙𝑖𝑗) = 𝜆0𝑟(𝑡𝑖𝑗𝑟) exp(𝒙𝑖𝑗
𝑇 𝜷𝑟 + 𝑣𝑖𝑟),                                              (2.24) 

where 𝜆0𝑟 is the baseline hazard function for event type 𝑟 in cluster 𝑖 and 𝜷𝑟 is the 𝑝 × 1 

regression parameter for the 𝑟𝑡ℎ time-to-event variable. If there is only one time-to-event 
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variable, 𝑟 = 1 then the model above reduces to the shared frailty model in equation 

(2.1). The h-likelihood approach treats random terms as unknown parameters. Thus, the 

sample size increases as the frailty parameters increase. This might lead to non-

negligible bias to the coefficient parameter estimation. Therefore, it is worth investigating 

an appropriate bias reduction method, and our method to remove bias in the h-likelihood 

estimator can be applied. 

 

2.5. Simulation studies 

We conducted simulation studies to evaluate the finite sample performance of the 

proposed bias reduction methods of the h-likelihood estimators (BC-HL and SC-HL) and 

compared them with the h-likelihood estimators (HL)(Ha, Lee et al. 2001) for estimating the 

frailty parameter in the semiparametric gamma frailty model. BC-HL refers to the method 

described in Section 2.3.1, and SC-HL refers to the method described in Section 2.3.2. 

 The frailties 𝑢𝑖, 𝑖 =  1, . . , 𝐺, were generated from a gamma distribution with mean 

1 and variance parameter 𝜃 = 0.5, 1.0, and 2.0. Given 𝑈𝑖  =  𝑢𝑖, the independent survival 

times 𝑇𝑖𝑗, 𝑗 = 1,… , 𝑛𝑖 were generated from an exponential distribution with parameter 𝜆𝑖𝑗. 

Without loss of generality, we consider only one predictor. The regression parameter 𝛽 is 

related to the hazard rate 𝜆𝑖𝑗 via the frailty model 

𝜆𝑖𝑗 = 𝜆0(𝑡)𝑢𝑖 exp(𝛽𝑥𝑖𝑗),                                                            (2.25)  

where 𝜆0(𝑡) = 1.0, 𝛽 = 1.0. We set 𝑥𝑖𝑗 = 0 for the first 𝐺/2 individuals to form the control 

group, and 𝑥𝑖𝑗 = 1 for the remaining 𝐺/2 to form the treatment group. Thus, the survival 

time is 

𝑇𝑖𝑗 = (
− log𝑈𝑖𝑗

𝑢𝑖exp(𝛽𝑥𝑖𝑗)
) , 𝑈𝑖𝑗~𝑈𝑛𝑖𝑓𝑜𝑟𝑚 (0,1).                           (2.26) 
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 Given the 𝑢𝑖′𝑠, the corresponding censoring time 𝐶𝑖𝑗 was generated from a 

uniform distribution 𝑈(0, 𝑙) with parameter 𝑙 empirically determined to achieve 

approximately the desired censoring rate of 30%. We used a sample size 𝑁 = 𝐺 ∗ 𝑛𝑖 with 

𝑁 = 100 with (𝐺; 𝑛𝑖) = (25;  4) and 𝑁 = 200 with (𝐺; 𝑛𝑖) = (50;  4). From the sample of 

250 replications of simulated data, we computed the mean, the standard deviation, the 

mean of the estimated standard error, and the mean squared error for �̂�. The sample 

standard deviation is calculated by {
1

249
∑ (�̂�𝑖 − �̅�)250

𝑖=1

2
}
1/2

 where �̅� = 250−1 ∑ �̂�𝑖
250
𝑖=1 , and 

the sample mean squared error is given by {
1

250
∑ (�̂�𝑖 − 𝛽)250

𝑖=1

2
}. The sample standard 

error was obtained from the observed information 𝑯 in (6). Also, we calculated the 

empirical coverage probability for a nominal 95% confidence interval for 𝛽. Similarly, the 

mean, standard deviation, and mean squared error for 𝜃 were calculated for the frailty 

parameter 𝜃. For the comparison of the estimation methods for 𝜃, we also compute 

relative percent bias, denoted by %𝑏𝑖𝑎𝑠 = {
𝑚𝑒𝑎𝑛(�̂�)−𝜃

𝜃
} × 100. The empirical assessment 

was conducted using the R Software Version 4.0.2.(R Core Team 2020) 

 The results from fitting the semiparametric frailty models, where the 

baseline hazard function is assumed unknown, are summarized in Table 2.1 

and Table 2.2. To study the bias of omitting random effects, the semiparametric 

Cox proportional hazard model is estimated too. From the same simulation 

settings, we also fit the exponential and Weibull parametric frailty models, 

where the baseline hazard was specified to follow the exponential distribution 

and Weibull distribution, respectively, and the results are summarized in Table 

2.3 and Table 2.4. 

Table 2.1 summarizes the simulation results for the regression coefficient �̂� 

under the semiparametric frailty models. Here, the baseline hazard function is non-
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parametric, and the frailty follows gamma distribution. We found that when the cluster 

level is small, and the frailty variance is 0.5 or 1.0, the h-likelihood slightly 

underestimated the fixed effect parameter. Our proposed methods (BC-HL and SC-HL) 

reduced the bias in the h-likelihood estimator from 7% to 4% when the cluster level is 25 

and the frailty variance is 0.5. In all simulated scenarios, the proposed methods and the 

h-likelihood estimators provide a satisfactory estimate for the regression fixed effect 

parameter. As expected, the estimates of the regression coefficient are hugely 

underestimated when the random effect is ignored in the semiparametric Cox 

proportional hazard model. These results confirm the importance of incorporating frailty 

term into survival model to describe heterogeneity between clusters or individuals. 

Tables 2.2 lists the results from the simulation study for the frailty parameter 𝜃 

under the semiparametric frailty models. Our results show that the h-likelihood estimate 

of the frailty parameter is underestimated. The bias is more pronounced when the 

variance of frailty and cluster level is small but reduces as the sample size increases (as 

expected). In contrast, the proposed modifications (BC-HL and SC-HL) reduced the bias 

in the variance of frailty substantially, and the bias is minimal when the cluster level 

increases. It important to note that our proposed methods decreased the bias in the h-

likelihood from 30% to 3% when the frailty variance is 0.5 and cluster level 25. For the 

proposed method in which one term with dispersion parameter is added to the adjusted 

profile likelihood (BC-HL), the bias and mean squared error were consistently the lowest 

across all situations we considered. Also, the bias and MSE tend to zero in all the 

methods (HL, BC-HL, SC-HL) when cluster level increases. Thus, as a general rule, the 

results indicate that the h-likelihood and the proposed modification estimates of the 

gamma frailty models demonstrate good asymptotic properties.  
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Next, we investigated the performance of our procedure when the baseline 

hazard functions are misspecified. We assumed that the correct model follows the 

Weibull-gamma frailty models; that is, the correct baseline hazard and frailty distributions 

are Weibull and gamma, respectively. Given the gamma frailties 𝑢𝑖, 𝑖 =  1, . . , 𝐺, as 

shown above, the independent survival times were generated from Weibull distribution 

with scale parameter 𝑢𝑖 exp(𝛽0 + 𝛽1𝑥𝑖𝑗) and shape parameter  𝛾 = 1.5, indicating an 

increasing hazard. The parameters 𝛽0, 𝛽1, and 𝛾 are related to the hazard rate 𝜆𝑖𝑗
∗  via the 

frailty model 

𝜆𝑖𝑗
∗ = 𝜆0(𝑡)𝑢𝑖 exp(𝛽0 + 𝛽1𝑥𝑖𝑗).                                                       (2.27) 

where 𝜆0(𝑡) = 𝛾𝑦𝑖𝑗
𝛾−1

 and 𝛽0 = 𝛽1 = 1.0. The simulation setting is the same as that of the 

semiparametric gamma frailty model above. We fitted both parametric and 

semiparametric frailty models to each of the 250 simulated datasets. 

Table 2.3 summarizes the simulation results from fitting the exponential-gamma 

and Weibull-gamma parametric frailty models, where the correct baseline hazard follows 

exponential, and the frailty distribution is gamma. As expected, fitting both exponential-

gamma and Weibull-gamma frailty models gives good overall results of the estimate of 

the regression fixed effect parameter. However, the h-likelihood leads to the 

underestimation of the frailty parameter. Our methods to modify the h-likelihood reduce 

this bias. For example, in the exponential-gamma models, our proposed methods (BC-

HL and SC-HL) reduced the bias in the h-likelihood (HL) for the frailty parameter 

estimate from 27% to 6% and 11%, respectively, when the true frailty parameter was 

0.5, and the cluster level was 25. Furthermore, the frailty parameter bias decreased from 

12% in the HL to 2% in the BC-HL approach and 4% in the SC-HL approach when the 
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Weibull-gamma models were fitted considering the true frailty variance was 2.0, and the 

cluster level was 25. 

When the correct baseline hazard follows Weibull, and the frailty distribution is 

gamma, the simulation results are summarized in Table 2.4. Our results show that when 

the Weibull-gamma models are right, we find that the exponential-gamma fittings are 

very bad. Our methods (BC-HL and SC-HL) to modify the h-likelihood reduced the bias 

in the h-likelihood in all the scenarios considered. The simulation results of Table 2.4 

indicate that the misspecified baseline hazard creates substantial bias. In a nutshell, the 

correct model specifications about baseline hazards are crucial for valid inferences. If 

these are wrongly specified, the parameter estimates suffer from significant biases. 

Thus, when the correct baseline hazards are uncertain, the use of non-parametric 

models is desirable. When parametric frailty models are used, model-checking for 

baseline hazard is necessary. If correctly specified, the gain of information would be 

somewhat higher for frailty parameter estimation and therefore provides correct standard 

error estimation for regression parameter estimation. 

We also have found that the resulting pattern from fitting the semiparametric 

models under the correct Weibull-gamma are similar to those evident in the correct 

exponential-gamma as shown in Table 2.1 and Table 2.2. That is, our proposed 

methods (BC-HL and SC-HL) shrunk the bias of the h-likelihood (HL). 
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Table 2.1 Simulation results on the estimation of the regression parameter in the 
semiparametric model where the baseline hazard is non-parametric and the 
frailty distribution is gamma. 

𝜃 (𝐺, 𝑛𝑖) Method Regression Parameter 
(𝛽 = 1.0) 

Mean SD (se) MSE 95% CP 

0.5 25; 4 Cox 0.765 0.314 (0.249) 0.153 0.784 

  HL 0.928 0.371 (0.353) 0.142 0.932 

  BC-HL 0.958 0.382 (0.384) 0.147 0.956 

  SC-HL 0.952 0.380 (0.377) 0.146 0.956 

 50; 4 Cox 0.784 0.243 (0.175) 0.105 0.668 

  HL 1.017 0.293 (0.272) 0.086 0.948 

  BC-HL 1.032 0.296 (0.283) 0.089 0.952 

  SC-HL 1.029 0.296 (0.281) 0.088 0.952 

       

1.0 25; 4 Cox 0.606 0.403 (0.246) 0.317 0.556 

  HL 0.938 0.498 (0.453) 0.250 0.916 

  BC-HL 0.957 0.507 (0.478) 0.258 0.924 

  SC-HL 0.953 0.505 (0.473) 0.256 0.924 

 50; 4 Cox 0.624 0.296 (0.172) 0.228 0.436 

  HL 1.032 0.408 (0.352) 0.167 0.908 

  BC-HL 1.042 0.412 (0.361) 0.171 0.912 

  SC-HL 1.040 0.412 (0.359) 0.171 0.912 

       

2.0 25; 4 Cox 0.473 0.423 (0.244) 0.456 0.428 

  HL 0.991 0.597 (0.577) 0.355 0.948 

  BC-HL 1.006 0.607 (0.599) 0.367 0.952 

  SC-HL 1.004 0.605 (0.595) 0.365 0.948 

 50; 4 Cox 0.430 0.315 (0.171) 0.424 0.224 

  HL 0.985 0.509 (0.468) 0.258 0.936 

  BC-H 0.992 0.512 (0.477) 0.261 0.940 

  SC-HL 0.991 0.511 (0.476) 0.261 0.940 

The simulation is conducted with 250 replications for each of the sample sizes 𝑁, 𝐺 is th

e number of clusters, 𝑛𝑖 is the number of members in each cluster. Cox is the Cox propo
rtional hazard model ignoring frailty, HL is the original h-likelihood method, BC-HL is the 
proposed bias-corrected HL, SC-HL is the proposed score function modification on the H
L. Mean, SD, and MSE indicates the mean, standard deviation, and mean squared error 

for �̂�, respectively. Also, se and 95% CP indicate the mean of estimated standard errors 

for �̂� and empirical coverage probability for a nominal 95% of the confidence interval for 
𝛽. 
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Table 2.2 Simulation results on the estimation of the frailty parameter 𝜃 in the 
semiparametric model where the baseline hazard is non-parametric and the 

frailty distribution is gamma. 

𝜃 (𝐺, 𝑛𝑖) Method Mean SD  MSE %bias 

0.5 25; 4 HL 0.348 0.185 0.057 -30.4 

  BC-HL 0.483 0.187 0.035 -3.4 

  SC-HL 0.451 0.188 0.037 -9.8 

 50; 4 HL 0.440 0.158 0.029 -12.0 

  BC-HL 0.505 0.159 0.025 1.0 

  SC-HL 0.489 0.159 0.025 -2.2 

       

1.0 25; 4 HL 0.831 0.284 0.109 -16.9 

  BC-HL 0.982 0.298 0.089 -1.8 

  SC-HL 0.951 0.299 0.091 -4.9 

 50; 4 HL 0.943 0.233 0.057 -5.7 

  BC-HL 1.018 0.239 0.057 1.8 

  SC-HL 1.002 0.239 0.057 0.2 

       

2.0 25; 4 HL 1.656 0.380 0.262 -17.2 

  BC-HL 1.852 0.403 0.184 -7.4 

  SC-HL 1.821 0.403 0.194 -9.0 

 50; 4 HL 1.877 0.305 0.108 -6.2 

  BC-HL 1.976 0.314 0.099 -2.4 

  SC-HL 1.962 0.314 0.099 -3.8 

The simulation is conducted with 250 replications for each of the sample sizes 𝑁, 𝐺 is th

e number of clusters, 𝑛𝑖 is the number of members in each cluster. Cox is the Cox propo
rtional hazard model ignoring frailty, HL is the original h-likelihood method, BC-HL is the 
proposed bias-corrected HL, SC-HL is the proposed score function modification on the H

L. Mean and SD indicates the mean and standard deviation for 𝜃. MSE is the mean squa
red error.  
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Table 2.3 Simulation results on the estimation of the regression parameter in the 
exponential-gamma frailty models where the correct baseline hazard is 
exponential, and the frailty distribution is gamma 

𝜃 (𝐺, 𝑛𝑖) Model  Method Baseline hazard 

Parameters 

Regression Parameter 
(𝛽 = 1.0) 

Frailty  
Parameter 

     𝜌 = 1.0 𝛾 = 1.0 

0.5    Mean MSE Mean MSE Mean SD (se) MSE 95%

CP 

Mean MSE 

 25; 4 E-G HL 1.115 0.079 - - 0.942 0.365(0.348) 0.136 0.924 0.364 0.048 

   BC-HL 1.148 0.092 - - 0.949 0.369(0.372) 0.138 0.948 0.471 0.030 

   SC-HL 1.141 0.089 - - 0.947 0.368(0.366) 0.137 0.944 0.445 0.033 

  W-G HL 1.135 0.108 1.017 0.013 0.954 0.388(0.358) 0.152 0.924 0.380 0.054 

   BC-HL 1.184 0.135 1.040 0.015 0.977 0.397(0.386) 0.158 0.944 0.506 0.041 

   SC-HL 1.174 0.129 1.035 0.015 0.972 0.395 (0.380) 0.156 0.936 0.476 0.041 

 50; 4 E-G HL 0.916 0.034 - - 1.029 0.283 (0.268) 0.081 0.936 0.455 0.021 

   BC-HL 0.929 0.032 - - 1.032 0.283(0.276) 0.081 0.948 0.506 0.019 

   SC-HL 0.926 0.033 - - 1.031 0.283(0.275) 0.081 0.940 0.494 0.019 

  W-G HL 0.917 0.035 1.000 0.006 1.030 0.293 (0.274) 0.087 0.932 0.457 0.025 

   BC-HL 0.934 0.034 1.011 0.006 1.041 0.296 (0.284) 0.089 0.948 0.517 0.024 

   SC-HL 0.931 0.034 1.001 0.079 1.039 0.296 (0.282) 0.089 0.948 0.503 0.024 

1.0              

 25; 4 E-G HL 1.015 0.122 - - 0.953 0.497(0.451) 0.249 0.928 0.869 0.076 

   BC-HL 1.038 0.128 - - 0.955 0.497 (0.469) 0.248 0.928 0.988 0.063 

   SC-HL 1.034 0.126 - - 0.955 0.497(0.465) 0.248 0.928 0.963 0.065 

  W-G HL 1.026 0.135 1.011 0.012 0.960 0.511(0.461) 0.261 0.920 0.886 0.091 

   BC-HL 1.060 0.151 1.028 0.013 0.976 0.519 (0.483) 0.269 0.924 1.029 0.086 

   SC-HL 1.054 0.148 1.025 0.013 0.973 0.517 (0.479) 0.267 0.920 1.000 0.085 

 50; 4 E-G HL 0.866 0.073 - - 1.056 0.414 (0.353) 0.174 0.900 0.994 0.035 

   BC-HL 0.875 0.072 - - 1.057 0.415 (0.356) 0.175 0.900 1.052 0.040 

   SC-HL 0.874 0.073 - - 1.057 0.415 (0.358) 0.175 0.900 1.041 0.038 

  W-G HL 0.867 0.075 0.990 0.005 1.044 0.410 (0.357) 0.170 0.916 0.984 0.051 

   BC-HL 0.880 0.075 0.999 0.005 1.053 0.414 (0.365) 0.174 0.920 1.054 0.057 

   SC-HL 0.877 0.075 0.997 0.005 1.052 0.413 (0.364) 0.173 0.920 1.040 0.055 

2.0              

 25; 4 E-G HL 0.942 0.151 - - 1.012 0.593 (0.580) 0.350 0.948 1.774 0.141 

   BC-HL 0.960 0.156 - - 1.012 0.594(0.595) 0.351 0.948 1.927 0.104 

   SC-HL 0.958 0.155 - - 1.012 0.594(0.592) 0.351 0.948 1.904 0.108 

  W-G HL 0.942 0.173 0.997 0.012 1.011 0.605 (0.587) 0.365 0.952 1.767 0.186 

   BC-HL 0.971 0.186 1.011 0.013 1.024 0.615(0.606) 0.377 0.952 1.954 0.150 

   SC-HL 0.967 0.184 1.009 0.013 1.022 0.613 (0.603) 0.375 0.952 1.926 0.153 

 50; 4 E-G HL 0.871 0.140 - - 1.027 0.530 (0.478) 0.281 0.920 2.027 0.064 

   BC-HL 0.879 0.141 - - 1.026 0.530 (0.485) 0.281 0.920 2.105 0.077 

   SC-HL 0.878 0.141 - - 1.026 0.530 (0.485) 0.281 0.920 2.094 0.075 

  W-G HL 0.863 0.152 0.976 0.006 0.999 0.513 (0.476) 0.262 0.940 1.967 0.089 

   BC-HL 0.876 0.157 0.983 0.006 1.005 0.516(0.485) 0.265 0.940 2.062 0.097 

   SC-HL 0.874 0.156 0.982 0.006 1.004 0.516(0.483) 0.265 0.940 2.048 0.095 

E-G, BC-EG, and SC-E denote exponential-gamma frailty model, where the baseline ha
zard is assumed exponential and the frailty is gamma, the proposed bias-corrected EG, 
score function modification of EG, respectively. Similarly, W-G, BC-WG, and SC-WG rep
resent Weibull-gamma where the baseline hazard is assumed Weibull and the frailty is g
amma, the proposed bias-corrected WG, score function modification of WG, respectively
. HL is the original h-likelihood method, BC-HL is the proposed bias-corrected HL, SC-H
L is the proposed score function modification on the HL. 
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Table 2.4 Simulation results on the estimation of the model parameters in the Weibull-p 
gamma frailty models where the correct baseline hazard Weibull with shape 
parameter 𝛾 = 1.5 and the frailty distribution is gamma 

𝜃 (𝐺, 𝑛𝑖) Model Method Baseline hazard 

Parameters 

Regression Parameter 
(𝛽 = 1.0) 

Frailty  

Parameter 
     𝜌 = 1.0 𝛾 = 1.5 

0.5    Mean MSE Mean MSE Mean SD (se) MSE 95%C

P 

Mean MSE 

 25; 4 E-G HL 0.791 0.065 - - 0.758 0.279 (0.292) 0.136 0.868 0.185 0.115 

   BC-HL 0.818 0.055 - - 0.762 0.277 (0.326) 0.133 0.932 0.291 0.058 

   SC-HL 0.812 0.057 - - 0.761 0.278 (0.320) 0.134 0.928 0.265 0.069 

  W-G HL 0.899 0.071 1.513 0.028 1.055 0.386 (0.392) 0.151 0.952 0.507 0.048 

   BC-HL 0.933 0.073 1.547 0.032 1.077 0.395 (0.418) 0.161 0.960 0.635 0.068 

   SC-HL 0.925 0.073 1.540 0.030 1.072 0.393 (0.412) 0.159 0.956 0.605 0.062 

 50; 4 E-G HL 0.837 0.037 - - 0.760 0.202 (0.207) 0.099 0.760 0.161 0.122 

   BC-HL 0.853 0.032 - - 0.765 0.201 (0.221) 0.096 0.796 0.216 0.087 

   SC-HL 0.849 0.033 - - 0.764 0.202 (0.208) 0.096 0.784 0.203 0.095 

  W-G HL 0.971 0.033 1.511 0.013 1.056 0.280 (0.278) 0.081 0.960 0.466 0.024 

   BC-HL 0.991 0.034 1.529 0.014 1.069 0.283 (0.288) 0.085 0.960 0.527 0.024 

   SC-HL 0.986 0.034 1.524 0.014 1.066 0.282 (0.286) 0.084 0.956 0.512 0.023 

1.0              

 25; 4 E-G HL 0.813 0.072 - - 0.727 0.377(0.362) 0.215 0.836 0.438 0.345 

   BC-HL 0.834 0.065 - - 0.728 0.374 (0.383) 0.213 0.872 0.543 0.238 

   SC-HL 0.829 0.066 - - 0.728 0.375 (0.383) 0.214 0.860 0.518 0.262 

  W-G HL 0.986 0.136 1.500 0.025 1.006 0.508 (0.466) 0.258 0.932 0.890 0.098 

   BC-HL 1.021 0.151 1.528 0.026 1.022 0.517 (0.489) 0.267 0.940 1.034 0.095 

   SC-HL 1.015 0.148 1.522 0.026 1.019 0.515 (0.484) 0.265 0.940 1.005 0.094 

 50; 4 E-G HL 0.738 0.082 - - 0.772 0.283 (0.278) 0.132 0.864 0.522 0.245 

   BC-HL 0.747 0.078 - - 0.773 0.282 (0.285) 0.131 0.872 0.571 0.201 

   SC-HL 0.745 0.079 - - 0.772 0.282 (0.283) 0.131 0.872 0.560 0.211 

  W-G HL 0.839 0.066 1.480 0.011 1.074 0.392 (0.361) 0.159 0.928 0.996 0.047 

   BC-HL 0.852 0.064 1.493 0.012 1.083 0.395 (0.370) 0.163 0.940 1.067 0.053 

   SC-HL 0.850 0.066 1.491 0.012 1.081 0.395 (0.368) 0.162 0.936 1.053 0.052 

2.0              

 25; 4 E-G HL 0.765 0.107 - - 0.703 0.441(0.479) 0.281 0.920 1.075 0.912 

   BC-HL 0.778 0.102 - - 0.704 0.436 (0.495) 0.277 0.936 1.198 0.704 

   SC-HL 0.776 0.103 - - 0.704 0.437 (0.492) 0.278 0.932 1.175 0.743 

  W-G HL 0.982 0.214 1.513 0.027 1.004 0.603 (0.604) 0.362 0.944 1.854 0.208 

   BC-HL 1.012 0.233 1.536 0.029 1.018 0.609(0.624) 0.370 0.956 2.045 0.212 

   SC-HL 1.008 0.231 1.533 0.028 1.017 0.608 (0.621) 0.369 0.956 2.017 0.210 

 50; 4 E-G HL 0.705 0.117 - - 0.749 0.374 (0.375) 0.203 0.888 1.203 0.659 

   BC-HL 0.712 0.114 - - 0.748 0.373 (0.382) 0.202 0.888 1.263 0.568 

   SC-HL 0.710 0.114 - - 0.748 0.374 (0.381) 0.202 0.888 1.252 0.584 

  W-G HL 0.848 0.112 1.472 0.012 1.053 0.507 (0.478) 0.259 0.924 1.980 0.072 

   BC-HL 0.860 0.112 1.483 0.012 1.060 0.511 (0.487) 0.263 0.928 2.075 0.081 

   SC-HL 0.858 0.112 1.482 0.012 1.059 0.510 (0.485) 0.263 0.928 2.062 0.079 

E-G, BC-EG, and SC-E denote the exponential-gamma frailty model, where the baseline
 hazard is assumed exponential, and the frailty is gamma, the proposed bias-corrected E
-G, score function modification of E-G, respectively. Similarly, W-G, BC-WG, and SC-WG
 represent Weibull-gamma where the baseline hazard is assumed Weibull and the frailty 
is gamma, the proposed bias-corrected W-G, score function modification of W-G, respec
tively. HL is the original h-likelihood method, BC-HL is the proposed bias-corrected HL, S
C-HL is the proposed score function modification on the HL. 
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2.6. Data example 

The kidney infectious data(Hanagal 2020) is related to the recurrence time to 

event, which is infection at the point of insertion of the catheter for 38 kidney patients 

using portable dialysis equipment. For each patient, the first and second recurrence time 

(in days) of infection from the time of insertion of the catheter until it has to be removed 

owing to infection was recorded. The catheter may have to be removed for reasons 

other than kidney infection, and this was regarded as censoring. The data consist of 

demographics variables age and sex, and three  dichotomous  disease type variables: 

Glomerulo Neptiritis (GN), Acute Neptiritis (AN), and Polycyatic Kidney Disease (PKD). 

The standard Cox model, the extended Cox Anderson-Gill (A-G) method,(Andersen and 

Gill 1982) the h-likelihood approach, and the proposed bias reduction methods were fitted 

to this data. The A-G method generalizes the Cox model, for analyzing data when all 

dependence between subsequent events is induced by time-dependent covariates. We 

report the results from fitting the semiparametric frailty models, where the baseline 

hazard is non-parametric, and the frailty is gamma distribution. The conditional Akaike's 

Information Criterion (cAIC) are reported for models considered. Details of the 

computation of cAIC can be found in Appendix C. 

From Table 2.5, we find that sex is the only significant effect, which indicates that 

females have a lower infection rate than males. The absolute value of the coefficient 

estimator of the effect of sex in the proposed bias-corrected models is larger than in the 

h-likelihood method. Thus, the modifications of the h-likelihood improve the fixed effect 

estimates. The estimators have a clear difference between the semiparametric Cox 

proportional hazard and A-G model and the frailty models. The estimators of the Cox 

and A-G methods are closer to zero more than the frailty models except for the 

coefficient of PKD. We found that the fitting of A-G produces overall the smallest 
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standard errors as expected. However, the model fitting is bad from the cAIC. The A-G 

model fails to describe the kidney data better because, in the kidney data, a subject can 

be censored in the first follow-up but can have an event in the second follow-up. The A-

G method assumes that censoring terminates further occurrence of the event. Thus, the 

A-G method may not be appropriate for analyzing the kidney data.  

 From the cAIC values, the two bias reduction methods (BC-HL and SC-HL) 

provide a better fit to the kidney data. The estimated variances of the frailty distribution 

are 0.459 and 0.411 from the proposed methods and 0.212 from the h-likelihood 

method. Based on the simulation results, the traditional h-likelihood method will 

underestimate the frailty variance, while the proposed methods will have a more precise 

estimate for this parameter. 

The h-likelihood approach allows for inference on the random effects rather than 

on just estimating the frailty parameters. Predictions and their intervals are important in 

investigating heterogeneity across centers. The estimation of the standard errors in the 

h-likelihood approach for the prediction of random effects, which is required to construct 

100(1 −  𝛼)% prediction intervals are obtained from the lower right-hand corner of 𝑯−1. 

However, the adjusted profile likelihood ℎ𝐴
∗  in equation (2.8) can give a zero estimate of 

the frailty parameter when the sample is small(Ha, Jeong et al. 2017), leading to null 

confidence intervals for 𝒗. We further show that our proposed methods (BC-HL and SC-

HL) are adequate to avoid zero estimates in the frailty parameter. We predict the 

realizations of the random effects for the kidney catheter data and construct the 95% 

Wald confidence intervals (CI) of individual frailties of each patient. Figure 1 (a)-(c) 

displays the estimated frailties of 38 patients and their 95% CI for HL, BC-HL, and SC-

HL models. The models included sex since is it the only statistically significant effect 

covariate. From the plots, we note that the patient’s realized frailty effects on the 
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recurrent times are heterogeneous. Patient 21 was identified to have a significantly lower 

hazard, and the corresponding 95% CI does not include zero. Thus, we find that a 

graphical display such as Figure 1 is useful to investigate a particular patient's 

heterogeneity.  

Table 2.5 Results of model fitting for kidney infection data. 

Model Cox Cox-A-G HL BC-HL SC-HL 

Age 0.003 (0.011) 0.005 (0.003) 0.004 (0.013) 0.004 (0.015) 0.004 (0.014) 

Sex -1.472 (0.358) -0.987 (0.097) -1.608 (0.417) -1.756 (0.473) -1.730 (0.463) 

GN 0.089 (0.407) -0.436 (0.086) 0.157 (0.472) 0.231 (0.543) 0.217 (0.530) 

AN 0.352 (0.400) -0.665 (0.096) 0.375 (0.470) 0.426 (0.546) 0.415 (0.532) 

PKD -1.428 (0.631) -1.210 (0.119) -1.154 (0.770) -0.825 (0.873) -0.878 (0.858) 

𝜃 - - 0.212 0.459 0.411 

cAIC 368.789 12290.78 364.769 362.230 362.583 

Notes: Sex = 1 for female and 0 for male; GLN = 1 represents glomerulus’s nephritis, els
e GN = 0; AN = 1 and PKD = 1 represent acute nephritis and polycystic kidney disease (
PKD), respectively, else CAN = 0 and PKD = 0, respectively; in parentheses are the stan

dard error, which is the square root of diagonal element of 𝑯−1; 𝜃 is the estimator of the f
railty parameter. Cox is the Cox proportional hazard model, Cox-A-G is the Anderson Gil
l approach, HL is the original h-likelihood method, BC-HL is the proposed bias-corrected 
HL, SC-HL is the proposed score function modification on the HL 
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Figure 2. 1. Frailty estimates and the 95% confidence intervals of individual frailties of 
patients under the gamma frailty model 

(a) HL method 

 

(b) BC-HL method 

 

(c) SC-HL method 
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2.7. Discussion 

In this chapter, we have considered two simple but effective bias correction 

methods for the hierarchical likelihood (h-likelihood) approach for the frailty model under 

both the semiparametric proportional hazard and also the parametric hazard framework. 

The h-likelihood method has multiple advantages in computation when the frailty 

distribution is multivariate because it avoids integration over the frailty distribution. 

Another appealing feature of the h-likelihood is the possibility to conduct statistical 

inference on the latent frailties, which is often not feasible under the classical maximum 

likelihood approach. For example, the EM algorithm, focused on only parameter 

estimation, where the latent frailties are integrated out to obtain the parameter estimates. 

The h-likelihood generally performs well but can be biased when the frailty distribution is 

not normal. Simulation study results demonstrate that the proposed bias reduction 

methods overcome this issue. The efficiency of the proposed bias reduction methods for 

𝜃 is improved. 

For the hierarchical generalized linear models, the previous studies have(Lee and 

Nelder 2001, Noh and Lee 2007) proposed the use of second-order Laplace approximation 

to estimate the dispersion parameters. Recently, some studies (Ha and Lee 2003, Wang, 

Xu et al. 2011, Christian, Ha et al. 2016) discussed the total derivative approach to reduce 

bias in h-likelihood estimators for frailty models. Their strategy uses the second-order 

Laplace approximation and 
𝜕�̂�

𝜕𝜃
 to estimate the dispersion parameters. However, this 

method could be hard to compute as it involves too many complicated terms and 

cumbersome mathematical derivations, especially, under competing risks and joint frailty 

models . Ha, Vaida et al. (2016) considered the adjustment of the h-likelihood estimators in 

section 2.3.1 for interval estimation for individual frailties of the clusters, not the 

parameters of the frailty distribution, and the frailty distribution was log-normal. When we 
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extended this adjustment to the gamma frailty to reduce the bias in the h-likelihood 

estimator of variance in frailty distribution, the bias is reduced substantially. The real 

data analysis further confirmed the superiority of the proposed method over the h-

likelihood by.(Ha, Lee et al. 2001) The bias reduction methods discussed in this paper are 

straightforward to implement, and integration with the estimation of the correlated frailty 

model using h-likelihood is an exciting prospect for future research. 
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Chapter 3  

Modeling heterogeneity for clustered survival data by log-logistic distribution  

 

Abstract 

We propose a proportional hazard regression model with heterogeneity (frailty or 

random effect), which is generated by log-logistic distribution. The iterative least square 

(ILS) approach is adopted to estimate the regression parameters and to predict the 

realizations of random effects in the frailty model. The adjusted profile hierarchical 

likelihood is used to estimate the parameter in frailty distribution. We demonstrate via 

simulation studies that the regression parameter estimates in the log-logistic model are 

accurate, which is similar to the gamma and lognormal frailty models. We also apply 

these models to real data as an illustration. 

 

KEYWORDS: iterative least square; frailty model; hierarchical likelihood; clustered 

survival data 
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3.1. Introduction 

 Frailty models have been widely used for the analysis of clustered survival data. 

The frailty, a common random effect acting multiplicatively on each individual’s hazard 

rate to model the dependence between the survival times. The reason is that the frailty 

describes the influence of common unknown factors. The introduction of a shared frailty 

term in each cluster is one way of modeling the dependence of clustered survival times. 

Such clusters could be, for example, hospitals, families, communities, or treatment 

centers. 

 Models with a gamma frailty distribution where the marginal likelihood has a 

closed form have been frequently used; see, for example.(Androulakis, Koukouvinos et al. 

2012, Giussani and Bonetti 2019, Martins, Aerts et al. 2019, Scudilio, Calsavara et al. 2019) The 

lognormal frailty distributions are also a common choice of frailty modeling due to its 

natural extension to the multivariate cases.(Xue and Brookmeyer 1996, Wang 2019) The 

power variance family frailty distribution is a broad class of distributions incorporating the 

gamma, positive stable, and inverse Gaussian as special cases, and thereby offers a 

flexible framework for modeling is also proposed in the literature.(Hougaard 1986) The 

frailty distribution choice is crucial to obtain correct estimates of the dependence 

structure.(Duchateau and Janssen 2007) However, in many situations, prior information 

about choosing among the distributions may not be available, and the frailty distribution 

is neither gamma nor lognormal. 

 This chapter focuses on multivariate frailty models for clustered data, which are 

extensions of the Cox proportional hazard model. These models' concept provides a 

convenient way of introducing unobserved heterogeneity and associations into the Cox 

model. The shared frailty model, which is a random effect model in survival analysis, is 

specified by 
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𝜆𝑖𝑗(𝑡𝑖𝑗|𝑢𝑖, 𝒙𝑖𝑗) = 𝜆0(𝑡)𝑢𝑖 exp(𝒙𝑖𝑗
𝑇 𝜷),                                                                  (3.1) 

where 𝜆0(𝑡) denotes the unspecified baseline hazard function, assumed to be common 

for all subjects in the study population, 𝒙𝑖𝑗 = (𝑥𝑖𝑗1, … , 𝑥𝑖𝑗𝑝)
𝑇
 is a vector of fixed covariates 

of subject 𝑗(𝑗 = 1, . . , 𝑛𝑖) in cluster 𝑖(1, … , 𝐺), 𝑇 is a transpose, and 𝜷 is a 𝑝 × 1 vector of 

unknown regression parameters. The frailty term 𝑢𝑖 is assumed to be equal for all 

individuals in cluster 𝑖. 

 The estimation of parameters in frailty models is often complicated because the 

marginal likelihood involves an intractable integral. When multiple frailties are involved, 

the dimensionality of a required integral will be high, and thus numerical integration 

would not be an ideal estimation method.(Wu and Bentler 2012) Thus we propose h-

likelihood for estimating parameters in statistical shared frailty models where the 

intractable integral is avoided. 

 The remaining of the chapter is organized as follows. Section 3.2 introduces the 

logistic frailty model and the h-likelihood estimation process. Section 3.3 presents a 

simulation study results in which the proposed frailty models' performance is evaluated, 

and compared to the frequently used gamma frailty model and the lognormal frailty 

model. Sections 3.4 and 3.5 presents a data example and conclusion, respectively. 

3.2. Log-logistic shared frailty model 

 In frailty models, it is common to specify the distribution of the frailty terms 𝜔𝑖 in 

equation (3.1). Historically, gamma frailty models dominated the literature because of 

their mathematical convenience based on the marginal likelihood's explicit form. The 

gamma frailty, although favorite, may have some drawbacks. That is, it weakens the 

effect of covariates.(Hougaard 1986) In this case, the convenience, however, may not 

necessarily assure that the fit is good. To overcome such drawbacks, models with other 

distributions of the frailties are needed. 
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 We introduce a new class of log-logistic frailty distribution to model multivariate 

survival data. This is the first attempt such frailty distribution is being used to 

characterize dependency in correlated survival data to the best of our knowledge. We 

assume that the failure-time variable 𝑇𝑖𝑗 corresponding to the 𝑗𝑡ℎ subject from the 𝑖th 

cluster, 𝐶𝑖𝑗 is non-informative right-censoring time, independent of 𝑇𝑖𝑗, 𝑦𝑖𝑗 = min(𝑇𝑖𝑗 , 𝐶𝑖𝑗), 

and 𝛿𝑖𝑗 = 𝐼(𝑇𝑖𝑗 ≤ 𝐶𝑖𝑗), where 𝐼(. ) is the indicator function. The shared frailty model for 

log-logistic frailty can be written as, 

                           𝜆𝑖𝑗(𝑡𝑖𝑗|𝑣𝑖 , 𝒙𝑖𝑗) = 𝜆0(𝑡) exp(𝒙𝑖𝑗
𝑇 𝜷 + 𝑣𝑖),                                            (3.2) 

where 𝑣𝑖 = exp(𝑢𝑖) in equation (3.1).  

 Assume that the unobserved frailties 𝑣𝑖′s  are independent and identically   

distributed logistic random variables with mean 0 and unknown frailty 𝜃 with probability 

density function given as follows, 

𝑓(𝑣𝑖; 𝜃) =
exp (−

𝑣𝑖
𝜃)

𝜃 (1 + exp (−
𝑣𝑖
𝜃 ) )

2 ,                                                  (3.3) 

where 𝐸(𝑉𝑖) = 0 and 𝑣𝑎𝑟(𝑉𝑖) =
𝜋2𝜃2

3
.  

 The h-likelihood for shared frailty(Ha, Lee et al. 2001, Ha and Lee 2003) is 

given by 

                                            ℎ    = ∑ℓ1𝑖𝑗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                                       (3.4) 

where ℓ1𝑖𝑗  is the logarithm of the conditional likelihood in 𝑇𝑖𝑗 and 𝛿𝑖𝑗 given 𝑉𝑖 = 𝑣𝑖 with 

parameters (𝜷, 𝜆0) and ℓ2𝑖 is the log density function of 𝑉𝑖 = 𝑣𝑖 with parameter 𝜃. 

Defining 𝜂𝑖𝑗 = 𝒙𝑖𝑗
𝑇 𝜷 + 𝑣𝑖, we have, 

                  ℓ1𝑖𝑗 = 𝛿𝑖𝑗{log 𝜆0(𝑦𝑖𝑗) + 𝜂𝑖𝑗} − Λ0(𝑦𝑖𝑗) exp(𝜂𝑖𝑗),                         

ℓ2𝑖 = −
𝑣𝑖

𝜃
− log(𝜃) − 2 log (1 + exp (−

𝑣𝑖

𝜃
) ),      
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where Λ0(. ) = ∫ 𝑓(. )𝑑𝑣𝑖
𝑡

0
 is the conditional cumulative baseline hazard function of 𝑇𝑖𝑗 

given 𝑉𝑖 = 𝑣𝑖. 

 Suppose that the functional form of 𝜆0(𝑡) is unknown. Furthermore, suppose that 

the events occur at 𝐾 distinct ordered event times 𝑇(1), 𝑇(2), … 𝑇(𝐾). Given 𝜷, and 𝒗 =

(𝑣1, … , 𝑣𝐺)𝑇 , and 𝜃, the score equations 

𝜕ℎ

𝜕𝜆0𝑘
= 0, 𝑘 = 1,… , 𝐾, 

gives the nonparametric maximum hierarchical likelihood estimator of 𝜆0𝑘, 

                                          �̂�0(𝑦(𝑘)) =
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑦(𝑘))

.                                            (3.4) 

Thus, Λ̂0(𝑦𝑖𝑗) = ∑ �̂�0(𝑦(𝑘))𝑘:𝑦(𝑘)≤𝑡 , where 𝑑(𝑘) is the number of deaths at 𝑦(𝑘) and 

ℛ(𝑦(𝑘)) = {(𝑖, 𝑗): 𝑦𝑖𝑗 ≥ 𝑇(𝑘)} is the risk set at 𝑇(𝑘). This estimator is an extension of the 

estimator(Breslow 1972, Breslow 1974) of the baseline cumulative hazard function for the 

Cox model to the frailty model. After eliminating the baseline hazard, the kernel of the 

profile hierarchical likelihood ℎ∗ = ℎ|Λ0(𝑡)=Λ̂0(𝑡) is as follows: 

ℎ∗ ∝ ∑𝛿𝑖𝑗

𝑖𝑗

𝜂𝑖𝑗 − ∑ 𝑑(𝑘)

𝑘:𝑦(𝑘)≤𝑡

log [ ∑ exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑦(𝑘))

] + ∑ℓ2𝑖.

𝑖

                    (3.5) 

3.2.1 Maximum hierarchical likelihood estimator (MHLE) of 𝝉 = (𝜷, 𝒗) 

Given the frailty parameter 𝜃, the MHLE of 𝝉 = (𝜷, 𝒗) can be obtained by solving the 

following scores equations, 

𝜕ℎ∗

𝜕𝛽𝑟
=

𝜕

𝜕𝛽𝑟
{∑𝛿𝑖𝑗

𝑖𝑗

𝜂𝑖𝑗 − ∑ 𝑑(𝑘)

𝑘:𝑦(𝑘)≤𝑡

log [ ∑ exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑦(𝑘))

] + ∑ℓ2𝑖

𝑖

} , 𝑟 = 1, . . . , 𝑝, 

𝜕ℎ∗

𝜕𝛽𝑟
= ∑𝛿𝑖𝑗

𝑖𝑗

𝒙𝑖𝑗𝑟 − ∑
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑡(𝑘))𝑘

∑ 𝒙𝑖𝑗𝑟exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡(𝑘))

,                                                   
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𝜕ℎ∗

𝜕𝛽𝑟
= ∑𝛿𝑖𝑗

𝑖𝑗

𝒙𝑖𝑗𝑟 − Λ̂0(𝑦𝑖𝑗) ∑ 𝒙𝑖𝑗𝑟exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡(𝑘))

.                                                                       (3.6) 

Similarly, 

𝜕ℎ∗

𝜕𝑣𝑖
= ∑𝛿𝑖𝑗

𝑖𝑗

− Λ̂0(𝑦𝑖𝑗) ∑ exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡(𝑘))

+ ∑
𝜕ℓ2𝑖(𝜃; 𝑣𝑖)

𝜕𝑣𝑖
𝑖

,                                                     (3.7) 

where Λ̂0(𝑦𝑖𝑗) = ∑
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑡(𝑘))
𝑘 . 

 Calculating the estimators will be much easier if matrices are used instead of 

summations. The following matrices and notations are used for the remainder of this 

chapter. Let 𝑿 be a 𝑁 × 𝑝 matrix of 𝑝 covariates, 𝒁 be a 𝑁 × 𝐺 cluster indicator matrix 

whose 𝑖𝑗th row vector is 𝒛𝑖𝑗
𝑇 , where 𝒛𝑖𝑗 = (𝑧𝑖𝑗1, 𝑧𝑖𝑗2, … , 𝑧𝑖𝑗𝐺)

𝑇
, 𝜹 be a 𝑁 × 1 vector of 𝛿𝑖𝑗, 

and 𝝁 be a 𝑁 × 1 vector with Λ̂0(𝑦𝑖𝑗) exp(𝑿𝑇𝜷 + 𝒁𝑇𝒗). The vector 𝝁 can be written as a 

simple form by using a weighted risk indicator matrix 𝑴, which contains the risk set 

𝑅(𝑘).(Ha and Lee 2003) Let 𝑴 = (𝑅1, 𝑅2, … , 𝑅𝐷) be a 𝑁 × 𝐷 at risk indicator matrix where 

the 𝑖𝑗th element is one if 𝐼(𝑦𝑖𝑗 ≥ 𝑦(𝑘)) and zero otherwise. Define 𝑩 = diag{Λ0(𝑦𝑖𝑗)} as a 

𝐷 × 𝐷 diagonal matrix. Let 𝑾𝟏 be 𝑁 × 𝑁 diagonal matrix with elements exp(𝑿𝑇𝜷 + 𝒁𝑇𝒗), 

and let 𝑪 be a diagonal 𝐷 × 𝐷 matrix where the 𝑘th element is 
(�̂�0(𝑡(𝑘)))

2

𝑑(𝑘)
. 

The score functions, from equations (3.6) and (3.7) can be written as follows: 

𝜕ℎ∗

𝜕𝜷
= 𝑿𝑇(𝜹 − 𝝁),                                                                     (3.8)  

𝜕ℎ∗

𝜕𝒗
= 𝒁𝑇(𝜹 − 𝝁) +

𝜕ℓ2𝑖

𝜕𝒗
.                                                       (3.9) 

 These are the estimating equations for a Poisson hierarchical generalized linear 

model, with 𝜹 as the response variable but with the offset log (Λ̂0(𝑦𝑖𝑗)). Given the frailty 
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𝜃, the joint maximization of for (𝜷, 𝒗) (i.e., 𝜕
2ℎ∗

𝜕(𝜷, 𝒗)2⁄ = 0) leads to the iterative least 

squares (ILS) score equations. 

The ILS equation for (𝜷, 𝒗) in the log-logistic frailty model is given by 

(
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝑸

) (�̂�
�̂�
) = ( 𝑿𝑇𝒘

𝒁𝑻𝒘 + 𝑹
),                                                     (3.10) 

where the adjusted dependent variable, 𝒘 = 𝑾(𝑿𝑇𝜷 + 𝒁𝑇𝒗) + (𝜹 − 𝝁), 𝑸 is the 𝐺 × 𝐺 

diagonal matrix whose 𝑖th element is −
𝜕2ℓ2𝑖

𝜕𝒗2  and 𝑹 = 𝑸𝒗 +
𝜕ℓ2𝑖

𝜕𝒗
. 

The asymptotic covariance matrix for �̂� − 𝝉 is obtained from 𝑯−1 where 𝑯 =

−𝜕2ℎ∗

𝜕(𝜷, 𝒗)2⁄ = (
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝑸

). So, the upper left-hand corner of 𝑯−1 gives the 

asymptotic variance matrix of �̂�, 

var(�̂�) = (𝑿𝑇𝚺−1𝑿)−1, 

where 𝜮 = 𝑾−1 + 𝒁𝑸−1𝒁𝑇 . 

We layout the mathematical derivations of the equation (3.10). The two equations (3.8) 

and (3.9), can be simply expressed as 

𝜕ℎ∗

𝜕𝝉
= 𝑬𝑇(𝜹 − 𝝁) + 𝑩,                                                                       ( 3.11) 

where 𝑬 = (𝑿,𝒁), 𝝉 = (𝜷, 𝒗), and 𝑩 = (𝟎𝑇 ,
𝜕ℓ

𝜕𝒗
)
𝑇
. Thus, 𝑬𝝉 = 𝜼 = 𝑿𝑇𝜷 + 𝒁𝑇𝒗 . 

 Next, we calculate the entries of the observed information matrix 𝑯 of 𝜷 and 𝒗. 

Following(Ha and Lee 2003), we define 𝑾 = 𝑾𝟏𝑩 − (𝑾𝟏𝑴)𝑪(𝑾𝟏𝑴). 

Next, from (3.8) and (3.9), we have the negative second partial derivatives with respect 

to 𝜷 and 𝒗, 
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−
𝜕2ℎ∗

𝜕𝜷2
= 𝑿𝑇𝑾𝑿,           

−
𝜕2ℎ∗

𝜕𝜷𝜕𝒗
= 𝑿𝑇𝑾𝒁,          

−
𝜕2ℎ∗

𝜕𝒗𝜕𝜷
= 𝒁𝑇𝑾𝑿,          

    −
𝜕2ℎ∗

𝜕𝒗2
= 𝒁𝑇𝑾𝒁 + 𝑸,   

leading to  

𝑯 =

(

 
 

−
𝜕2ℎ∗

𝜕𝜷2
−

𝜕2ℎ∗

𝜕𝜷𝜕𝒗

−
𝜕2ℎ∗

𝜕𝒗𝜕𝜷
−

𝜕2ℎ∗

𝜕𝒗2
)

 
 

= (
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝑸

).                                  (3.12) 

The equation (3.12) can be written in a simple form 

𝑯 = 𝑬𝑇𝑾𝑬 + 𝑭,                                                              (3.13) 

where 𝑭 = 𝑩𝑫(𝟎,𝑸), block diagonal matrix. 

From �̂� = 𝝉 + 𝑯−1 (
𝜕ℎ∗

𝜕𝝉
), (3.11), and (3.13), we obtain 

(𝑬𝑇𝑾𝑬 + 𝑭)�̂� = (𝑬𝑇𝑾𝑬 + 𝑭)𝜏 + 𝑬𝑇(𝜹 − 𝝁) + 𝑩,   

                     = (𝑬𝑇𝑾𝑬)𝝉 + 𝑬𝑇(𝜹 − 𝝁) + 𝒃,   

      �̂� = 𝑬𝑻𝑾𝒘 + 𝒃,                                                                    (3.14) 

where 𝒃 = 𝑭𝝉 + 𝑩 and 𝒘 = 𝜼 + 𝑾−𝟏(𝜹 − 𝝁). This completes the proof of the equation 

(3.10). 

Let 𝑷 = (
𝑿 𝒁
𝟎 𝑰𝐺

) and 𝑽 = (
𝑾 𝟎
𝟎 𝑸

), then the ILS equation (3.14) can be written in a new 

simple matrix form as 
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(𝑷𝑇𝑽𝑷)�̂� = 𝑷𝑇𝒚𝟎,                                           

where 𝒚𝟎 = (𝒘𝑇 , 𝑹𝑇)𝑇. Note that 𝑯 = −𝜕2ℎ∗

𝜕(𝜷, 𝒗)2⁄ = 𝑷𝑇𝑽𝑷. 

Mathematical derivations of 𝑹 = 𝑸𝒗 +
𝜕ℓ2𝑖

𝜕𝒗
, are as follows: The logarithm of the density 

function 𝑓(𝑣𝑖) in equation (3) is 

                                 ℓ2 = log 𝑓(𝒗; 𝜃),                                                  

                                          = −
𝒗

𝜃
− log(𝜃) − 2 log (1 + exp (−

𝒗

𝜃
) ),  

Therefore, 

                                             
𝜕ℓ2

𝜕𝒗
=

𝜕

𝜕𝒗
(−

𝒗

𝜃
− log(𝜃) − 2 log (1 + exp (−

𝒗

𝜃
) )),   

                                   = −
1

𝜃
− 2 [

−
1
𝜃

exp (−
𝒗
𝜃
)

1 + exp (−
𝒗
𝜃
)
],                     

                           
𝜕ℓ2

𝜕𝒗
= −

1

𝜃
+

1

𝜃
2𝝅𝒗 =

1

𝜃
[2𝝅𝒗 − 1],               

where 𝝅𝒗 =
exp(−

𝒗

𝜃
)

1+exp(−
𝒗

𝜃
)
. 

The negative second partial derivative of ℓ2 is a 𝐺 × 𝐺 diagonal matrix with 𝑖th element, 

𝓠 = −
𝜕2ℓ2

𝜕𝒗2
= −

𝜕 

𝜕𝒗
{
1

𝜃
[2𝝅𝒗 − 1]},                                         

   = −
1

𝜃
2𝝅𝒗

′  .                                                                                

But 

𝝅𝒗
′ =

𝜕 

𝜕𝒗
{

exp (−
𝒗
𝜃)

1 + exp (−
𝒗
𝜃)

},                                                             

                                     =
−

1
𝜃 exp (−

𝒗
𝜃) (1 + exp (−

𝒗
𝜃)) − (exp (−

𝒗
𝜃)) (−

1
𝜃 exp (−

𝒗
𝜃))

[1 + exp (−
𝒗
𝜃)]

2 ,           
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            = −
1

𝜃

[
 
 
 

[
exp (−

𝒗
𝜃
)

1 + exp (−
𝒗
𝜃
)
] − [

exp (−
𝒗
𝜃
)

1 + exp (−
𝒗
𝜃
)
]

2

]
 
 
 

,                            

𝝅𝒗
′ = −

1

𝜃
(𝝅𝒗  − 𝝅𝒗

2).                                                                          

Therefore,  

𝓠 = −
1

𝜃
2𝝅𝒗

′  ,                                                                                    

𝓠 =
2

𝜃2
(𝝅𝒗  − 𝝅𝒗

2).                                                                         

Thus, 

                              𝑹 =
𝒗

𝜃2
2[𝝅𝒗  − 𝝅𝒗

2] +
1

𝜃
[2𝝅𝒗  − 𝟏].                                                                        

3.2.2 Maximum hierarchical likelihood estimator (MHLE) of  𝜽 

 The estimate of the frailty 𝜃 is found by maximizingLee and Nelder (1996) adjusted 

profile h-likelihood(Ha, Lee et al. 2001, Ha and Lee 2003), 

ℎ𝐴
∗ = ℎ∗|𝝉=�̂� +

1

2
log{det(2𝜋𝑯−1)}|

𝝉=�̂�
.                                                (3.15) 

The adjusted profile h-likelihood is used to approximate the restricted likelihood of 𝜃 that 

considers the estimation of 𝜷 and 𝒗. The frailty parameter estimator 𝜃 can then be 

obtained by solving the equation,  

         
𝜕ℎ𝐴

∗

𝜕𝜃
= 0.                                                                                                           (3.16) 

The gradient vector 
𝜕ℎ𝐴

∗

𝜕𝜃
 is 

𝜕ℎ𝐴
∗

𝜕𝜃
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
−

1

2
𝑡𝑟𝑎𝑐𝑒 (�̂�−1

𝜕�̂�

𝜕𝜃
 ),                                                      (3.17) 

where �̂� = 𝐻|𝝉=�̂�. 

The observed information matrix −
𝜕2ℎ𝐴

∗

𝜕𝜃2  for the frailty parameter, 𝜃 is, 
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𝜕2ℎ𝐴
∗

𝜕𝜃2
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
−

𝜕

𝜕𝜃
{
1

2
𝑡𝑟𝑎𝑐𝑒 (�̂�−1  

𝜕�̂�

𝜕𝜃
)},                    

        −
𝜕2ℎ𝐴

∗

𝜕𝜃2
= −

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
+

1

2
𝑡𝑟𝑎𝑐𝑒 (−�̂�−1  

𝜕�̂�

𝜕𝜃
�̂�−1  

𝜕�̂�

𝜕𝜃
+ �̂�−1  

𝜕2�̂�

𝜕𝜃2).        (3.18) 

 Taking partial derivatives of 
𝜕ℎ𝐴

∗

𝜕𝜃
  should include 

𝜕�̂�

𝜕𝜃
 and 

𝜕�̂�

𝜕𝜃
. We consider the total 

derivation of ℎ𝐴
∗  since �̂� and �̂� are functions of 𝜃. Ignoring (

𝜕�̂�

𝜕𝜃
) and (

𝜕�̂�

𝜕𝜃
) do not work in 

some cases, such as data with binary covariates and small cluster sizes.(Ha and Lee 

2003, Ha, Jeong et al. 2017) However, 
𝜕�̂�

𝜕𝜃
  can be ignored because there is an indirect 

dependency between 𝜃 and �̂� whereas, 
𝜕�̂�

𝜕𝜃
 is included because there is a direct 

dependency between �̂� and 𝜃. 

 Thus, the total derivative of 
𝜕ℎ𝐴

∗

𝜕𝜃
 is  

𝜕ℎ𝐴
∗

𝜕𝜃
=

𝜕ℎ𝐴
∗

𝜕𝜃
+ (

𝜕ℎ𝐴
∗

𝜕𝜷
|
𝜷=�̂�

)
𝜕�̂�

𝜕𝜃
+ (

𝜕ℎ𝐴
∗

𝜕𝒗 
|
𝒗=�̂�

)(
𝜕�̂�

𝜕𝜃
).                             

The total derivative calculates the derivative of ℎ𝐴
∗  with respect to 𝜃 where the other 

arguments ℎ𝐴
∗ , �̂� and �̂� are allowed to depend on 𝜃; they do not have to remain constant.  

The total derivation of the first term 
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
  in (3.17) is,  

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
+ (

𝜕ℎ∗

𝜕𝒗
|
𝝉=�̂�

)(
𝜕�̂�

𝜕𝜃
). 

 
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
.                                                                          (3.19)  

since 
𝜕ℎ∗

𝜕𝒗
|
𝝉=�̂�

= 𝟎. 

Therefore,  

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
= ∑

𝜕ℓ2

𝜕𝜃
|
𝝉=�̂�

  ,

𝑖
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                                                                   = ∑[
𝜕

𝜕𝜃
{−

�̂�

𝜃
− log(𝜃) − 2 log (1 + exp (−

�̂�

𝜃
) )}]

𝑖

,         

                                              = ∑[
�̂�

𝜃2
−

1

𝜃
 − 2(

�̂�
𝜃2 exp (−

�̂�
𝜃)

1 + exp (−
�̂�
𝜃)

)]

𝑖

,                

                                   
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
= ∑[

�̂�

𝜃2
−

1

𝜃
 −

2�̂�

𝜃2
�̂��̂�]

𝑖

.                                                

The total derivation of the second term 
𝜕�̂�

𝜕𝜃
 in (3.17) is more complicated, 

                        
𝜕�̂�

𝜕𝜃
=

𝜕�̂�

𝜕𝜃
+ (

𝜕�̂�

𝜕𝒗
)(

𝜕�̂�

𝜕𝜃
).                                                            (3.20) 

First, we show how to compute 
𝜕�̂�

𝜕𝜃
 following Lee et al. (2006).  From ℎ∗ given 𝜃, let �̂�(𝜃) 

be the solution to 𝑔(𝜃) =
𝜕ℎ∗

𝜕𝒗
|
𝝉=�̂�

= 𝟎. Then,  

𝜕𝑔(𝜃)

𝜕𝜃
=

𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

+ (
𝜕2ℎ∗

𝜕𝒗2
|
𝝉=�̂�

)(
𝜕�̂�

𝜕𝜃
) = 𝟎.          

Solving for (
𝜕�̂�

𝜕𝜃
) gives, 

            (
𝜕�̂�

𝜕𝜃
) = (−

𝜕2ℎ∗

𝜕𝒗2
|
𝝉=�̂�

)

−1

(
𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

),                                  

= (𝒁𝑇�̂�𝒁 + �̂�)
−𝟏

(
𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

),                                                                 

where �̂� = 𝑾|𝝉=�̂� and �̂� = 𝑸|𝝉=�̂�. 

But, 

                         
𝜕ℎ∗

𝜕𝜃
=

𝜕𝑙2
𝜕𝜃

= (
𝒗

𝜃2
−

1

𝜃
 −

2𝒗

𝜃2
𝝅𝒗)|

𝝉=�̂�
.                                          

Therefore, 
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    �̂�′ =
𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

=
𝜕

𝜕𝒗
{(

𝒗

𝜃2
−

1

𝜃
 −

2𝒗

𝜃2
𝝅𝒗)|

𝝉=�̂�
}, 

                   =
1

𝜃2
−

2

𝜃2
�̂��̂� −

2�̂�

𝜃2
�̂��̂�

′ ,                                              

�̂�′ =
1

𝜃2
−

2

𝜃2
�̂��̂� +

2

𝜃
�̂�𝜃

′ .                                                                                     

where 

�̂�𝜃
′ =

𝜕

𝜕𝜃
𝝅𝒗|𝝉=�̂� =

𝜕

𝜕𝜃
{

exp (−
�̂�
𝜃
)

1 + exp (−
�̂�
𝜃)

},      

                                                     =
(

�̂�
𝜃2 exp (−

�̂�
𝜃
)) (1 + exp (−

�̂�
𝜃
))

(1 + exp (−
�̂�
𝜃
))

2 −

�̂�
𝜃2 exp (−

�̂�
𝜃
) (exp (−

�̂�
𝜃
))

(1 + exp (−
�̂�
𝜃
))

2 , 

 

                     �̂�𝜃
′ =

�̂�

𝜃2 [�̂��̂� − �̂��̂�
𝟐 ].                                                         

Hence 

     (
𝜕𝑣

𝜕𝜃
) = (𝒁𝑇�̂�𝒁 + �̂�)

−1
 �̂�′.                                                                        (3.21) 

Now since 𝑿 and 𝒁 are constant matrices that have no dependence on 𝜃 it follows that 

the total derivative 
𝜕�̂�

𝜕𝜃
 is,  

𝜕�̂�

𝜕𝜃
= (

𝑿𝑇�̂�𝑿 𝑿𝑇�̂�𝒁
𝒁𝑇�̂�𝑿 𝒁𝑇�̂�𝒁 + �̂�′),                                                                     (3.22) 

where �̂�′ =
𝜕�̂�

𝜕𝜃
 and �̂�′ =

𝜕�̂�

𝜕𝜃
. Since �̂� does not depend on 𝜃, it follows that the total 

derivative is,  

                                �̂�′ =
𝜕𝑾

𝜕𝜃
|
𝝉=�̂�

+ (
𝜕𝑾

𝜕𝒗
|
𝝉=�̂�

) (
𝜕�̂�

𝜕𝜃
) = (

𝜕𝑾

𝜕𝒗
|
𝝉=�̂�

) (
𝜕�̂�

𝜕𝜃
).                               (3.23)  
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Finally, we calculate the total derivative for 𝓠 since it depends on 𝒗. Thus, 

�̂�′ =
𝜕�̂�

𝜕𝜃
+

𝜕�̂�

𝜕𝒗
(
𝜕�̂�

𝜕𝜃
),                                                                   

�̂�′ = �̂�𝜃
′ + �̂��̂�

′ (
𝜕�̂�

𝜕𝜃
).                                                                     

The derivation of 
𝜕�̂�

𝜕𝜃
 is,  

             �̂�𝜃
′ =

𝜕

𝜕𝜃
 {

2

𝜃2 (�̂��̂� − �̂��̂�
𝟐) },                                                                        

 �̂�𝜃
′ = −

4

𝜃3 (�̂��̂� − �̂��̂�
𝟐) +

2

𝜃2
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ ).                        

Also, the derivation of 
𝜕�̂�

𝜕𝒗
 is,  

                
𝜕�̂�

𝜕𝒗
=

𝜕

𝜕𝒗
{(

2

𝜃2 (𝝅𝒗 − 𝝅𝒗
𝟐 )|

𝝉=�̂�
)},                                                  

                �̂��̂�
′ =

2

𝜃2
(�̂��̂�

′ − 2�̂��̂� ∗ �̂��̂�
′ ).                                                           

The next step is to calculate the terms in the observed information (3.18). First, we 

compute the total derivative of the first term in (3.18). 

      −
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
= ∑−

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2

𝑖

− ∑[(
𝜕2ℎ∗|𝝉=�̂�

𝜕𝒗𝜕𝜃
)(

𝜕�̂�

𝜕𝜃
)]

𝑖

,        

                         = −∑
𝜕

𝜕𝜃
[
�̂�

𝜃2
−

1

𝜃
 −

2�̂�

𝜃2
�̂��̂�]

𝑖

− ∑
𝜕

𝜕𝒗
[(

�̂�

𝜃2
−

1

𝜃
 −

2�̂�

𝜃2
�̂��̂�) (

𝜕�̂�

𝜕𝜃
)]

𝑖

, 

    −
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
= ∑[

2�̂�

𝜃3
−

1

𝜃2
 −

4�̂�

𝜃3
�̂��̂� +

2�̂�

𝜃2
�̂�𝜽

′ ]

𝑖

− ∑[(
1

𝜃2
 −

2

𝜃2
�̂��̂� −

2�̂�

𝜃2
�̂��̂�

′ ) (
𝜕�̂�

𝜕𝜃
)]

𝑖

. 

The last term needed to calculate in (3.18) is, 

𝜕2�̂�

𝜕𝜃2
= (

𝑿𝑇�̂�′′𝑿 𝑿𝑇�̂�′′𝒁
𝒁𝑇�̂�′′𝑿 𝒁𝑇�̂�′′𝒁 + �̂�′′),                                                                                           (3.24) 

where �̂�′′ =
𝜕2𝓠

𝜕𝜃2 , �̂�
′′ =

𝜕2�̂�

𝜕𝜃2 . 
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The total derivative of �̂�′′ =
𝜕2�̂�

𝜕𝜃2  is  

𝜕2�̂�

𝜕𝜃2
= [(

𝜕�̂�

𝜕𝒗2
|
𝝉=�̂�

)
𝜕�̂�

𝜕𝜃
]
𝜕�̂�

𝜕𝜃
+ (

𝜕�̂�

𝜕𝒗
|
𝝉=�̂�

)
𝜕2�̂�

𝜕𝜃2
,                                                                          (3.25) 

The 
𝜕2�̂�

𝜕𝒗2  is found by twice differentiating 𝑾 = 𝑾𝟏𝑩 − (𝑾𝟏𝑴)𝑪(𝑾𝟏𝑴) with respect to 𝒗. 

The second derivation of 
𝜕2�̂�

𝜕𝜃2 is  

        
𝜕2�̂�

𝜕𝜃2
= −(𝒁𝑇�̂�𝒁 + �̂�)

−1
(𝒁𝑇�̂�′𝒁 + �̂�′ )(𝒁𝑇�̂�𝒁 + �̂�)

−1
(

𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

)   

+ (𝒁𝑇�̂�𝒁 + �̂�)
−𝟏

(
𝜕3ℎ∗

𝜕𝒗𝜕𝜃2
|
𝝉=�̂�

).     

Let 

     �̂�′′ =
𝜕3ℎ∗

𝜕𝒗𝜕𝜃2
|
𝝉=�̂�

=
𝜕

𝜕𝜃
�̂�′  =

𝜕

𝜕𝜃
{
1

𝜃2
−

2

𝜃2
�̂��̂� +

2

𝜃
�̂�𝜃

′ }, 

    �̂�′′ = −
2

𝜃3
+

4

𝜃3
�̂��̂� −

2

𝜃2
�̂�𝜃

′ −
2

𝜃2
�̂�𝜃

′ +
2

𝜃
�̂�𝜃

′′, 

   �̂�′′ = −
2

𝜃3
+

4

𝜃3
�̂��̂� −

4

𝜃2
�̂�𝜃

′ +
2

𝜃
�̂�𝜃

′′. 

Therefore 

 
𝜕2�̂�

𝜕𝜃2
= −(𝒁𝑇�̂�𝒁 + 𝓠)

−1
(𝒁𝑇�̂�′𝒁 + 𝓠′ )(𝒁𝑇�̂�𝒁 + 𝓠)

−1
𝐾′ + (𝒁𝑇𝑾𝒁 + 𝑸)−𝟏�̂�′′. 

The total derivation of �̂�′′ =
𝜕2

𝜕𝜃2 𝑸|𝝉=�̂� in (3.24) is  

�̂�′′ =
𝜕

𝜕𝜃
{
𝜕�̂�

𝜕𝜃
+

𝜕�̂�

𝜕𝒗
(
𝜕�̂�

𝜕𝜃
)} + (

𝜕

𝜕𝒗
{
𝜕�̂�

𝜕𝜃
+

𝜕�̂�

𝜕𝒗
(
𝜕�̂�

𝜕𝜃
)})(

𝜕�̂�

𝜕𝜃
), 

       =
𝜕2�̂�

𝜕𝜃2
+

𝜕2�̂�

𝜕𝜃𝜕𝒗
(
𝜕�̂�

𝜕𝜃
) +

𝜕�̂�

𝜕𝒗
(
𝜕2�̂�

𝜕𝜃2) +
𝜕2�̂�

𝜕𝒗𝜕𝜃
(
𝜕�̂�

𝜕𝜃
) +

𝜕2�̂�

𝜕𝒗𝟐
(
𝜕�̂�

𝜕𝜃
)
2

, 
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      = �̂�𝜃
′′  + �̂��̂�𝜃

′′ (
𝜕�̂�

𝜕𝜃
) + �̂��̂�

′ (
𝜕2�̂�

𝜕𝜃2) + �̂��̂�𝜃
′′ (

𝜕�̂�

𝜕𝜃
) + �̂��̂�

′′ (
𝜕�̂�

𝜕𝜃
)
2

, 

 �̂�′′ = �̂�𝜃
′′  + 2 ∗ �̂��̂�𝜃

′′ (
𝜕�̂�

𝜕𝜃
) + �̂��̂�

′ (
𝜕2�̂�

𝜕𝜃2) + �̂��̂�
′′ (

𝜕�̂�

𝜕𝜃
)
2

. 

The calculation of �̂�𝜃
′′ is 

      �̂�𝜃
′′ =

𝜕

𝜕𝜃
{−

4

𝜃3 (�̂��̂� − �̂��̂�
𝟐) +

2

𝜃2
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ )},                                          

            =
12

𝜃4 (�̂��̂� − �̂��̂�
𝟐) −

4

𝜃3
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ ) −

4

𝜃3
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ )

+
2

𝜃2
(�̂�𝜃

′′ − 2[�̂�𝜃
′ × �̂�𝜃

′ + �̂��̂� × �̂�𝜃
′′)]), 

           =
12

𝜃4 (�̂��̂� − �̂��̂�
𝟐) −

8

𝜃3
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ ) +

2

𝜃2
(�̂�𝜃

′′ − 2[(�̂�𝜃
′ )2 + �̂��̂� × �̂�𝜃

′′)]), 

where  

�̂�𝜃
′′ =

𝜕

𝜕𝜃
{
𝒗

𝜃2 (�̂��̂� − �̂��̂�
𝟐)}, 

�̂�𝜃
′′ = −

2𝒗

𝜃3 (�̂��̂� − �̂��̂�
𝟐) +

𝒗

𝜃2
(�̂�𝜃

′ − 2�̂��̂� ∗ �̂�𝜃
′ ). 

The calculation of �̂��̂�𝜃
′′  is  

�̂��̂�𝜃
′′ =

𝜕

𝜕𝜃
{
2

𝜃2
(�̂��̂�

′ − 2�̂��̂� ∗ �̂��̂�
′ )}, 

�̂�𝑣𝜃
′′ = −

4

𝜃3
(�̂��̂�

′ − 𝟐�̂��̂� ∗ �̂��̂�
′ ) +

2

𝜃2
(�̂��̂�𝜽

′′ − 𝟐[�̂�𝜽 ∗ �̂��̂�
′ + �̂��̂� ∗ �̂��̂�𝜽 

′′ ]), 

where 

                        �̂��̂�𝜽
′′ =

𝜕

𝜕𝜃
{(−

1

𝜃
(𝝅𝒗  − 𝝅𝒗

2)|
𝝉=�̂�

)},    

                                =
1

𝜃2 (�̂��̂�  − �̂��̂�
𝟐 ) −

1

𝜃
(�̂�𝜽

′  − 𝟐�̂��̂� × �̂�𝜽
′  ). 

The calculation of �̂��̂�
′′ is  
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                         �̂��̂�
′′ =

𝜕

𝜕𝑣
{
2

𝜃2
(�̂��̂�

′ − 2�̂��̂� ∗ �̂��̂�
′ )} 

=
2

𝜃2
(�̂��̂�

′′ − 2[�̂�′
�̂� ∗ �̂��̂�

′ + �̂��̂� ∗ �̂��̂�
′′])                                               

=
2

𝜃2 (�̂��̂�
′′ − 2[(�̂�′

�̂�)
𝟐 + �̂��̂� ∗ �̂��̂�

′′])                                                    

where 

�̂��̂�
′′ =

𝜕

𝜕𝑣
{(−

1

𝜃
(𝝅𝒗  − 𝝅𝒗

2)|
𝝉=�̂�

)},                                                     

�̂��̂�
′′ = −

1

𝜃
(�̂��̂�

′ − 2�̂��̂� ∗ �̂��̂�
′ ).                                                              

Note that the 𝑣𝑎𝑟(𝜃) is obtained from the inverse of −
𝜕2ℎ𝐴

∗

𝜕𝜃2 . 

3.3. Simulation studies 

 We conducted simulation studies to evaluate the proposed frailty model's finite 

sample performance and compare it to two widely used frailty models ( gamma frailty 

model and lognormal frailty models). Thus, three simulation studies are presented. We 

assume the frailty model is as follows: 

𝜆𝑖𝑗 = 𝜆0(𝑡)𝑢𝑖 exp(𝛽𝑥𝑖𝑗) = 𝜆0(𝑡) exp(𝛽𝑥𝑖𝑗 + 𝑣𝑖),                                           (3.26) 

where 𝑖 =  1, . . , 𝐺; 𝑗 = 1,2, … , 𝑛𝑖, 𝐺 is the cluster size, and 𝑛𝑖 is the number of individuals 

in each cluster. The binary independent variable 𝑥𝑖𝑗 is generated from a Bernoulli 

distribution with success probability 0.5. Given the 𝑣𝑖′s, the corresponding censoring 

times 𝐶𝑖𝑗 are generated from a uniform distribution 𝑈(0, 𝑙) with parameter 𝑙 empirically 

determined to achieve approximately the right censoring rate of 20%. We use a sample 

size 𝑁 = 𝐺 ∗ 𝑛𝑖 where 𝑁 = 60 with (𝐺; 𝑛𝑖) = (30;  2), 𝑁 = 120 with (𝐺; 𝑛𝑖) = (30;  4), 

𝑁 = 160 with (𝐺; 𝑛𝑖) = (80;  2) and 𝑁 = 120 with (𝐺; 𝑛𝑖) = (30;  4). From 200 

replications of simulated data, we compute the mean, the mean squared error for �̂�. The 

mean squared error is given by {
1

200
∑ (�̂�𝑖 − 𝛽)200

𝑖=1

2
}. Also, we calculate the empirical 
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coverage probability for a nominal 95% confidence interval for 𝛽. For the frailty 

parameter 𝜃; the mean and mean squared error for 𝜃 are also given. For the 

computation, we used R software Version 4.0.2. 

3.3.1 Data from the log-logistic frailty model 

 We assume that the random effects 𝑣𝑖 , 𝑖 =  1, . . , 𝐺, are generated from a logistic 

with mean 0 and frailty parameter with the probability density function 

𝑓(𝑣𝑖; 𝜃) =
exp (−

𝑣𝑖
𝜃 )

𝜃 (1 + exp (−
𝑣𝑖
𝜃

) )
2                                                           (3.27) 

Let the standard deviation of random effect be 1.0, then the true value of parameter 𝜃 is 

√3

𝜋
=  0.5513289.  

3.3.2 Data from the lognormal frailty model 

 Assume that 𝑣𝑖 comes from the lognormal distribution 𝐿𝑁 (0, 𝜃), then 𝑣𝑖 comes 

from the normal distribution 𝑁(0, 𝜃). We set 𝜃 = 1.0, and other characters of the data 

generation process are the same as before.  

𝑓(𝑣𝑖; 𝜃) =
1

√2𝜋𝜃
exp(−

𝑣𝑖
2

𝜃
).                                                             (2.28) 

3.3.3 Data from the gamma frailty model  

 Assume that the random effect comes from the gamma probability density 

𝑓(𝑢𝑖; 𝜃) =
1

𝛤(1/𝜃)𝜃
1
𝜃

𝑢
𝑖

1
𝜃
−1

exp (−
𝑢𝑖

𝜃
).                                                          (3.29) 

with 𝐸(𝑢𝑖)  =  1 and 𝑣𝑎𝑟(𝑢𝑖)  = 𝜃, then 𝑣𝑖  =  𝑙𝑜𝑔(𝑢𝑖) with 𝑣𝑎𝑟{𝑙𝑜𝑔(𝑢𝑖)} = 𝜓(1)(1/𝜃), 

where 𝜓 is digamma the function, and 𝜓(1) is the trigamma function. We want 

√𝜓(1)(1/𝜃) = 1.0, thus, we set 𝜃 =  0.70113689, which means that the standard 
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deviation of the random effects of different data generation processes are all 1.0. Other 

characteristics of the data generation process are the same as the log-logistic frailty 

model. The FriailtyHL R-package(Ha et al., 2012) was used for estimating parameters in 

the gamma frailty model and lognormal frailty models.  

 We estimated the log-logistic frailty model, the lognormal model, and the gamma 

frailty model simultaneously for the three generated data. The results are summarized in 

Tables 3.1–3.3 To study the impact of omitting random effects, the Cox model is 

estimated too. For the estimate of 𝛽, it can be seen that the log-logistic frailty model 

gives a similar accurate estimator to the lognormal frailty model and the gamma frailty 

model. The simulation results also indicate that the log-logistic frailty model is robust 

against misspecification of random effect, which is similar to the lognormal frailty model 

and the gamma frailty model. From the simulation results, we can conclude that the 

hierarchical likelihood method is suitable for the log-logistic frailty model outside the 

exponential family range. The log-logistic frailty model can provide a good choice for 

correlated survival data besides the lognormal frailty model and the gamma frailty model. 

 Tables 3.1–3.3 also listed the estimated mean for the frailty-parameter a and the 

corresponding mean of the frailty variance. All three simulations indicate that the frailty-

variance estimates of the three frailty models are reasonable, except when the frailty 

model was gamma, fitting incorrect lognormal frailty model slightly underestimated the 

frailty variance.  
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Table 3.1 Simulation results under Log-logistic data generation process with frailty 

parameter 𝜃 =
√3

𝜋
= 0.5513289. 

(𝐺, 𝑛𝑖) Model Regression parameter 
𝛽=1.0 

Frailty 
parameter 

Random Effect  
Std (1.0) 

Mean MSE 95% CP Mean MSE Mean MSE 

30;2 Cox 0.703 0.199 0.780 - - - - 

 LLM 1.001 0.171 0.955 0.650 0.044 1.180 0.146 

 LNM 1.040 0.218 0.940 1.064 0.286 1.064 0.286 

 GAM 1.006 0.187 0.945 0.801 0.300 1.073 0.293 

         

30;4 Cox 0.691 0.135 0.685 - - - - 

 LLM  0.994 0.059 0.960 0.542 0.012 0.982 0.041 

 LNM 1.006 0.062 0.955 0.962 0.053 0.962 0.053 

 GAM 0.990 0.059 0.960 0.678 0.067 0.972 0.064 

         

80;2 Cox 0.693 0.128 0.595 - - - - 

 LLM  0.978 0.063 0.925 0.599 0.008 1.087 0.027 

 LNM 0.993 0.073 0.910 0.966 0.077 0.966 0.077 

 GAM 0.984 0.069 0.925 0.676 0.066 0.970 0.064 

         

80;4 Cox 0.698 0.108 0.370 - - - - 

 LLM 0.986 0.025 0.950 0.544 0.005 0.987 0.017 

 LNM 1.008 0.026 0.935 0.976 0.022 0.976 0.022 

 GAM 0.992 0.025 0.935 0.686 0.026 0.984 0.025 

Std is standard deviation; G represents the cluster number; ni represents the number of 
observations per cluster; Cox represents the results of the Cox proportional hazard 
model; LLM for the log-logistic frailty model, LNM for the lognormal frailty model; GAM 
for the gamma frailty model. 
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Table 3.2 Simulation results under Lognormal data generation process with frailty 
parameter 𝜃 = 1.0 

(𝐺, 𝑛𝑖) Model Regression parameter 
𝛽=1.0 

Frailty 
parameter 

Random Effect  
Std (1.0) 

Mean MSE 95% CP Mean MSE Mean MSE 

30;2 Cox 0.724 0.177 0.850 - - - - 

 LLM 1.033 0.166 0.940 0.641 0.033 1.163 0.108 

 LNM 1.081 0.211 0.910 1.058 0.242 1.058 0.242 

 GAM 1.040 0.178 0.940 0.793 0.230 1.062 0.238 

         

30;4 Cox 0.694 0.143 0.68 - - - - 

 LLM 0.976 0.071 0.935 0.570 0.014 1.034 0.046 

 LNM 1.001 0.075 0.945 1.011 0.052 1.011 0.052 

 GAM 0.992 0.074 0.940 0.758 0.082 1.049 0.076 

         

80;2 Cox 0.669 0.136 0.540 - - - - 

 LLM 0.972 0.045 0.975 0.604 0.009 1.095 0.029 

 LNM 0.998 0.056 0.960 0.989 0.076 0.989 0.076 

 GAM 0.989 0.051 0.960 0.717 0.081 1.007 0.078 

         

80;4 Cox 0.668 0.125 0.265 - - - - 

 LLM 0.964 0.019 0.970 0.558 0.005 1.012 0.017 

 LNM 0.988 0.018 0.975 1.000 0.019 1.000 0.019 

 GAM 0.975 0.019 0.975 0.731 0.029 1.026 0.027 

Std is standard deviation; G represents the cluster number; ni represents the number of 
observations per cluster; Cox represents the results of the Cox proportional hazard 
model; LLM for the log-logistic frailty model, LNM for the lognormal frailty model; GAM 
for the gamma frailty model. 
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Table 3.3 Simulation results under gamma data generation process with variance 𝜃 =
0.70113689 

(𝐺, 𝑛𝑖) Model Regression parameter 
𝛽=1.0 

Frailty 
parameter 

Random Effect  
Std (1.0) 

Mean MSE 95% CP Mean MSE Mean MSE 

30;2 Cox 0.687 0.179 0.815 - - - - 

 LLM 0.984 0.155 0.940 0.580 0.019 1.052 0.061 

 LNM 0.992 0.188 0.925 0.885 0.199 0.884 0.199 

 GAM 1.007 0.180 0.930 0.686 0.199 0.963 0.205 

         

30;4 Cox 0.694 0.143 0.680 - - - - 

 LLM 0.976 0.071 0.935 0.570 0.014 1.034 0.046 

 LNM 1.001 0.075 0.945 1.011 0.052 1.011 0.052 

 GAM 0.992 0.074 0.940 0.758 0.082 1.049 0.076 

         

80;2 Cox 0.679 0.139 0.560 - - - - 

 LLM 0.984 0.058 0.955 0.584 0.007 1.060 0.024 

 LNM 0.993 0.067 0.920 0.928 0.071 0.928 0.071 

 GAM 1.012 0.066 0.940 0.713 0.078 1.006 0.073 

         

80;4 Cox 0.675 0.122 0.315 - - - - 

 LLM 0.979 0.022 0.970 0.521 0.004 0.946 0.016 

 LNM 0.998 0.023 0.950 0.924 0.023 0.924 0.023 

 GAM 1.004 0.022 0.965 0.672 0.024 0.969 0.023 

Std is standard deviation; G represents the cluster number; ni represents the number of 
observations per cluster; Cox represents the results of the Cox proportional hazard 
model; LLM for the log-logistic frailty model, LNM for the lognormal frailty model; GAM 
for the gamma frailty model. 

 

3.4. Data example (cow mastitis data) 

Mastitis, the udder infection, is economically the most important disease in the 

western world's dairy sector. Many organisms can cause mastitis, most of the bacteria, 

such as Escherichia coli, etc. Since each udder quarter is separated from the three other 

quarters, one quarter might be infected with the other quarters free of infection. In a 

study by(Adkinson, Ingawa et al. 1993), 100 cows are followed up for infections. This 

observational study aims to estimate the incidence of the different organisms causing 

mastitis in the dairy cattle population in Flanders. Also, the correlation between the four 

udder quarters of a cow's infection is an important parameter for taking preventive 
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measures against mastitis. Much attention should be given to the uninfected udder 

quarters of a cow with an infected quarter with a high correlation. A milk sample is taken 

monthly from each quarter and is screened for the presence of different bacteria. We 

model the time to infection with any bacteria, with the cow being the cluster and the 

quarter the cluster's experimental unit. Observations are right-censored if no infection 

occurs before the end of the lactation period, which is roughly 300-350 days but different 

for every cow, or if the cow is lost to follow-up during the study, for example, due to 

culling. In the analysis, one covariate is considered. Cow level covariates take the same 

value for every udder quarter of the cow (e.g., number of calvings or parity). Several 

studies have shown that prevalence, as well as the incidence of intramammary 

infections, increase with parity. Several hypotheses have been suggested to explain 

these findings, e.g., teat end condition deteriorates with increasing parity. Because the 

teat end is a physical barrier that prevents organisms from invading the udder, impaired 

teat ends make the udder more vulnerable for intramammary infections. For simplicity, 

parity is dichotomized into primiparous cows (heifer=1) and multiparous cows (heifer=0).  

The log-logistic frailty model, lognormal frailty model, and the gamma frailty 

model are estimated simultaneously for the cow mastitis data set. Table 3.6., we find that 

value of the coefficient estimator of heifer in the gamma frailty model is larger than in the 

log-logistic frailty model and the lognormal frailty model. The estimators have a clear 

difference between the Cox model and the frailty models, and the estimators of the Cox 

model are towards zero more than the frailty models. We can also find that the heifer 

effect is significant only in the gamma frailty model, which indicates that primiparous 

cows are more susceptible to infection than multiparous cows. 
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Table 3.4 Analysis of Cow Mastitis data 

Model Heifer  Frailty 

𝜃 

Variance 

𝑣𝑎𝑟(𝜃) 

 �̂� SE   

Cox 0.145 0.120 - - 

LLM  0.417 0.365 0.882 2.559 

LNM 0.448 0.363 2.388 2.388 

Gam 0.712 0.332 1.515 3.113 

LLM for the log-logistic frailty model, LNM for the lognormal frailty model; GAM for the 
gamma frailty model.  

 

3.5. Conclusion 

This chapter investigated log-logistic frailty distribution, which is out of the 

exponential family range in the Cox proportional hazard model. To estimate the log-

logistic frailty model, the hierarchical likelihood method is used to estimate the 

regression parameters and predict the realizations of random effects. The adjusted 

profile hierarchical likelihood is adopted to estimate the frailty parameters. It has been 

shown that the hierarchical likelihood method can give the accurate estimates of the 

parameter for the log-logistic frailty model, and the log-logistic frailty model is robust 

against misspecification of random effect through simulation studies. The estimating 

process is simplified mainly by using the hierarchical likelihood method, which avoids 

multidimensional integration over the frailties. The simulation studies indicate that the 

log-logistic frailty model is suited for multivariate survival data analysis besides the 

gamma frailty model and the lognormal frailty model. The research in this chapter is a 

good attempt to apply the hierarchical likelihood to nonexponential distribution. 
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Chapter 4  

Hierarchical likelihood estimation of the log skew normal shared frailty model 

 

Abstract 

In this chapter, we present a frailty model using the log-skew normal distribution 

as the frailty distribution. It is an extension of the popular lognormal frailty model. It 

includes the lognormal as a special case. This frailty distribution's flexibility makes it 

possible to detect a complex frailty distribution structure that may otherwise be missed. 

Due to the intractable integrals in the likelihood function, we propose the hierarchical 

likelihood estimation method of estimation for the model's parameters, which avoids 

integrating the likelihood functions. We investigate the properties of the proposed frailty 

model via a simulation study.  

 

 

KEYWORDS: skew-normal distribution, multivariate survival data, frailty model, 

hierarchical likelihood, adjusted profile likelihood 
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4.1. Introduction 

The frailty model has been widely used to analyze multivariate survival data to 

account for potential correlation among failure times. The frailty variable describes the 

heterogeneity in the data caused by unknown covariates or randomness in the data. A 

frailty model for survival data is defined as follows. Let (𝑡𝑖𝑗 , 𝛿𝑖𝑗 , 𝒙𝑖𝑗), 𝑖 = 1,… , 𝐺, 𝑗 =

1,… , 𝑛𝑖, be the failure time, censoring indicator, and a vector covariate of the 𝑗th 

individual in the 𝑖th cluster, where 𝛿𝑖𝑗 = 1 if 𝑡𝑖𝑗 is not censored and 0 otherwise. Let 𝑢𝑖 

denote the unobserved frailty shared by the individuals in the 𝑖th cluster usually 

assumed to be independent and identically distributed random variable with density 

function 𝑓(𝑢). Given 𝑢𝑖, the frailty model specifies that 𝑡𝑖𝑗 are independent with a 

proportional hazards function 

𝜆𝑖𝑗(𝑡𝑖𝑗|𝑢𝑖) = 𝜆0(𝑡𝑖𝑗)𝑢𝑖 exp(𝒙𝑖𝑗
𝑇 𝜷),                                                                  (4.1) 

where 𝜆0(𝑡) is a baseline hazard function  . 

4.2. Log skew-normal frailty model  

The skew-normal (SN) distribution is an extension of the normal distribution to 

allow for non-zero skewness by using a shape parameter.(Azzalini 1985) The random 

variable 𝒵 is said to have a scalar 𝑆𝑁(𝑎) distribution if its density is given by 

𝑓(𝓏; 𝑎) = 2ϕ(𝓏)Φ(𝑎𝓏),     − ∞ < 𝓏 < ∞; −∞ < 𝑎 < ∞,                  (4.2) 

where 𝑎 is the shape parameter which determines the skewness, and 𝜙 and Φ denote, 

respectively, the probability density function (PDF) and the cumulative density function 

(CDF) of a standard Gaussian random variable. When 𝑎 > 0, we have a distribution with 

positive skewness, and 𝑎 < 0 corresponds to negative skewness; if 𝑎 = 0, we are back 

to the usual standard normal density. The mean and variance of 𝒵 are 

𝐸(𝒵) = 𝜇𝓏 = √
2

𝜋

𝑎

√1 + 𝑎2
,                                                  
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𝑉𝑎𝑟(𝒵) = 𝜎𝓏
2 = 1 − 𝜇𝓏

2 = 1 −
2𝑎2

𝜋(1 + 𝑎2)
.                              

A transformation is required to extend the equation (4.2) with the introduction of a 

location and a scale parameter. Let 𝑣𝑖 = 𝜎
𝓏𝑖−𝐸(𝒵𝑖)

√𝑉𝑎𝑟(𝒵𝑖)
⇒ 𝓏𝑖 =

𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵𝑖) + 𝐸(𝒵𝑖), then the 

density function of 𝑣𝑖 is,  

 𝑓(𝑣𝑖) = 𝑓(𝓏𝑖; 𝑎) ×
𝜕𝓏𝑖

𝜕𝑣𝑖
= 2ϕ(𝓏𝑖)Φ(𝑎𝓏𝑖) ×

1

𝜎
√𝑉𝑎𝑟(𝒵𝑖), 

  =
2

√2𝜋
exp {−

𝓏𝑖
2

2
} × Φ(𝑎𝓏𝑖) ×

1

𝜎
√𝑉𝑎𝑟(𝒵𝑖), 

where 𝓏𝑖 =
𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵𝑖) + 𝐸(𝒵𝑖).  

 

We fix 𝐸(𝑉) = 𝜇 = 0, to avoid identifiability issues. We then define the conditional hazard 

function of the log-skew normal frailty model as 

𝜆𝑖𝑗(𝑡𝑖𝑗|𝑣𝑖) = 𝜆0(𝑡𝑖𝑗) exp(𝒙𝑖𝑗
𝑇 𝜷 + 𝑣𝑖),                                                                                      (4.3) 

where 𝑣𝑖 = log  𝑢𝑖 in equation (1), 𝜆0 is an arbitrary baseline hazard function and 

𝑣𝑖 , (𝑖 = 1,… , 𝐺) are independent and identically skew-normally distributed with 

mean 0, variance 𝜎2 and shape parameter 𝑎. The complete data likelihood is 

given 𝑣𝑖′s is  

ℒ(. ) = ∏∏(𝜆0 exp(𝒙𝑖𝑗
𝑇𝜷 + 𝑣𝑖))

𝛿𝑖𝑗

𝑛𝑖

𝑗=1

𝐺

𝑖=1

exp(−Λ0 exp(𝒙𝑖𝑗
𝑇𝜷 + 𝑣𝑖)) 𝑓(𝑣𝑖),      (4.4) 

where Λ0(. |𝑣𝑖) = ∫ 𝑓(𝑠)𝑑𝑠
𝑡

0
 conditional cumulative baseline hazard function of 𝑇𝑖𝑗 

given 𝑉𝑖 = 𝑣𝑖. 

4.3. Estimation procedure 

The h-likelihood(Lee and Nelder 1996, Lee and Nelder 2001) has been applied by 

several authors to estimate the parameters of Cox random effects models by treating the 
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frailty variates as parameters and estimating jointly with the parameters of interests; see 

specifically.(Ha, Lee et al. 2001, Ha and Lee 2003, Ha and Lee 2005, Christian, Ha et al. 

2016, Ha, Jeong et al. 2017) The h-likelihood for shared frailty is the logarithm of the 

complete data likelihood in the equation (4.4) and it is given by 

                                            ℎ = ∑ℓ1𝑖𝑗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                     (4.5) 

where ℓ1𝑖𝑗  is the logarithm of the conditional likelihood in 𝑇𝑖𝑗 and 𝛿𝑖𝑗 given 𝑉𝑖 = 𝑣𝑖  with 

parameters (𝜷, 𝜆0) and ℓ2𝑖 is the log density function of 𝑉𝑖 = 𝑣𝑖 with parameters 𝜽 =

(𝑎, 𝜎)𝑇. The logarithm of the conditional density function of (𝑇𝑖𝑗, 𝛿𝑖𝑗) given 𝑉𝑖 = 𝑣𝑖 is  

                  ℓ1𝑖𝑗 = 𝛿𝑖𝑗{log 𝜆0(𝑦𝑖𝑗) + 𝜂𝑖𝑗} − Λ0(𝑦𝑖𝑗) exp(𝜂𝑖𝑗),                               

where 𝜂𝑖𝑗 = 𝒙𝑖𝑗
𝑇 𝜷 + 𝒗, with 𝒗 = (𝑣1, … , 𝑣𝐺)𝑇 and the ℓ2𝑖 = log 𝑓(𝑣𝑖) is the logarithm of the 

probability density function of the frailty distribution given by  

log 𝑓(𝑣𝑖) = log 2 −
1

2
log(2𝜋) −

𝓏𝑖
2

2
+ log(Φ(𝑎𝓏𝑖)) + log {

1

𝜎
√𝑉𝑎𝑟(𝒵𝑖)}.                (4.6) 

We will now describe the h-likelihood steps in more detail. Notice that the 

functional form of 𝜆0(𝑡𝑖𝑗) in equation (4.3) is unknown. FollowingBreslow (1972) and Ha, 

Lee et al. (2001), we define the baseline cumulative hazard function to be a step function 

with jumps at 𝜆0𝑘 the observed event times 𝑡(𝑘), defined by 

Λ0(𝑡) = ∑ 𝜆0𝑘

𝑘:𝑡(𝑘)≤𝑡

,                                                                          (4.7) 

where 𝑡(𝑘) is the 𝑘th (𝑘 = 1,… , 𝐷) is the smallest distinct event time among the 𝑡𝑖𝑗
∗ ′s and 

𝜆0𝑘 = 𝜆0(𝑡(𝑘)). By substituting (4.7) into (4.5), the second term ∑ ℓ1𝑖𝑗𝑖𝑗  in (4.5) becomes  

∑ℓ1𝑖𝑗

𝑖𝑗

= ∑𝑑(𝑘)

𝑘

log 𝜆0𝑘 + ∑𝛿𝑖𝑗

𝑖𝑗

𝜂𝑖𝑗 − ∑𝜆0𝑘

𝑘

{ ∑ exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡(𝑘))

}, 

where 𝑑(𝑘) is the number of events at 𝑡(𝑘) and 
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ℛ(𝑡(𝑘)) = {𝑖𝑗: 𝑡𝑖𝑗
∗ ≥ 𝑡(𝑘)} 

is the risk set at 𝑡(𝑘). As the number of in 𝜆0𝑘′s in ∑ ℓ1𝑖𝑗𝑖𝑗  above increases with the 

number of events, the function 𝜆0(𝑡) is potentially of high dimension. FollowingHa, Lee et 

al. (2001), we use a profile h-likelihood after eliminating nuisances 𝜆0𝑘, given by 

ℎ∗ = ℎ|λ0=λ̂0
= ∑ℓ1𝑖𝑗

∗

𝑖𝑗

+ ∑ℓ2𝑖

𝑖

,                                                                       (4.8) 

where 

∑ℓ1𝑖𝑗
∗

𝑖𝑗

= ∑ℓ1𝑖𝑗|λ0=λ̂0
𝑖𝑗

= ∑𝑑(𝑘)

𝑘

log �̂�0𝑘 + ∑𝛿𝑖𝑗

𝑖𝑗

𝜂𝑖𝑗 − ∑𝜆0𝑘

𝑘

. 

Here  

�̂�0𝑘 = �̂�0𝑘(𝜷, 𝒗) =
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑡(𝑘))

, 

are the solutions of the estimating equations, 𝜕ℎ
𝜕λ0𝑟

⁄ = 0, for 𝑟 = 1,… , 𝐷. We thus see 

that ℎ∗ does not depend on 𝜆0.  

Let 𝑿 and 𝒁 be model matrices for 𝜷 and 𝒗, respectively. The score equations for 

fixed and random effects (𝜷, 𝒗) given 𝜽 = (𝜎, 𝑎)𝑇 are given by 

𝜕ℎ∗

𝜕𝜷
= 𝑿𝑇(𝜹 − 𝝁),            

𝜕ℎ∗

𝜕𝒗
= 𝒁𝑇(𝜹 − 𝝁) +

𝜕𝑙2𝑖

𝜕𝒗
. 

Here 𝝁 = exp(log Λ̂0(𝑡
∗) + 𝜼) with 𝜼 = 𝑿𝜷 + 𝒁𝒗, and 

Λ̂0(𝑡) = ∑ �̂�0𝑘

𝑘:𝑡(𝑘)≤𝑡

 

is the Breslow-type estimator of cumulative baseline hazard. 

The parameters 𝝉 = (𝜷𝑇 , 𝒗𝑇)𝑇 can be estimated via the iterative least square methodLee 

and Nelder (1996) and Ha and Lee (2003) given by 
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(
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝑸

)(�̂�

�̂�
) = ( 𝑿𝑇𝒘

𝒁𝑻𝒘 + 𝑹
),                                                    (4.9) 

where the adjusted dependent variable, 𝒘 = 𝑾(𝑿𝑇𝜷 + 𝒁𝑇𝒗) + (𝜹 − 𝝁), and the detailed 

matrix form of 𝑾 is given in Appendix B ofHa and Lee (2003), 𝑸 is the 𝐺 × 𝐺 diagonal 

matrix whose 𝑖th element is −
𝜕2ℓ2𝑖

𝜕𝒗2  and 𝑹 = 𝑸𝒗 +
𝜕ℓ2𝑖

𝜕𝒗
. 

 The asymptotic covariance matrix for �̂� − 𝝉 is obtained from 𝑯−1 where 𝑯 =

−𝜕2ℎ∗

𝜕(𝜷, 𝒗)2⁄ = (
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝑸

). So, the upper left-hand corner of 𝑯−1 gives the 

asymptotic variance matrix of �̂�, 

var(�̂�) = (𝑿𝑇𝚺−1𝑿)−1, 

where 𝜮 = 𝑾−1 + 𝒁𝑸−1𝒁𝑇. 

 4.3.1. Fitting procedure 

Let 𝑷 = (
𝑿 𝒁
𝟎 𝑰𝐺

) and 𝑽 = (
𝑾 𝟎
𝟎 𝑸

), then the fitting procedure consists of the 

following two steps:  

(𝑖) Estimation of fixed and random effects = (𝜷𝑇 , 𝒗𝑇)𝑇 . Following Lee et al. (2006), the 

ILS equations above reduce to a simple explicit form, 

(𝑷𝑇𝑽𝑷)�̂� = 𝑷𝑇𝒚𝟎,                                           

where 𝒚𝟎 = (𝒘𝑇 , 𝑹𝑇)𝑇. Note that 𝑯 = −𝜕2ℎ∗

𝜕(𝜷, 𝒗)2⁄ = 𝑷𝑇𝑽𝑷. 

(𝑖𝑖) estimation of the parameters 𝜽 can be estimated by maximizingLee and Nelder (1996) 

adjusted profile h-likelihood, 

ℎ𝐴
∗ = ℎ∗|𝜏=�̂� +

1

2
log{det(2𝜋𝑯−1)}|

𝜏=�̂�
.                                                (4.10) 
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The adjusted profile h-likelihood is used to approximate the restricted likelihood of 𝜃 that 

considers the estimation of 𝜷 and 𝒗. The estimating equations of 𝜃 is given by 

𝜕ℎ𝐴
∗

𝜕𝜽
= 𝟎.                                                                                                    (4.11) 

 The Newton-Raphson method is can be used to find 𝜃 the maximum hierarchical 

likelihood estimator of 𝜽. This requires finding the first and second derivatives of ℎ𝐴
∗  with 

respect 𝜽. Details of the direct calculation of first and second derivatives for the log 

skew-normal frailty model are available in Appendix 3.  

4.4. Numerical study 

Based on 250 replications of simulated data, a numerical study is presented to 

evaluate the proposed h-likelihood estimation method's performance to fit log-skew 

normal frailty models. The data were generated using the following conditional hazard 

model  

𝜆𝑖𝑗(𝑡) = 𝜆0(𝑡)exp(𝛽𝑥𝑖𝑗 + 𝑣𝑖).                                                                     (4.12) 

The model corresponds to the setting of 𝐺 = 30 clusters containing 𝑛𝑖  =  2 or 

5 (𝑖 = 1,… , 𝐺) subjects. The cluster effect 𝑣𝑖 was generated from the skew-normal 

distribution with a mean 𝜇 = 0, standard deviation 𝜎 = 1, and shape parameter 𝑎 =

(−4,0, 4). The true regression parameter was taken to be  𝛽 = 1.0, and we set 𝑥𝑖𝑗 to 0 for 

the first 𝐺/2 individuals, to form the control group, and 𝑥𝑖𝑗 to 1 for the remaining 𝐺/2, to 

form the treatment group. Given 𝑉𝑖  =  𝑣𝑖 the independent survival times 𝑇𝑖𝑗, 𝑗 = 1,… , 𝑛𝑖 

are generated from the model in (4.12) with a Weibull baseline hazard, that is 𝜆0(𝑡) =

𝜌𝛾𝑡𝑖𝑗
𝛾−1

, with 𝜌 = 1/80 and 𝛾 = 5. Data were censored using a right-censoring random 

variable generated from a uniform distribution on [0, 𝑙], with 𝑙 chosen to obtain a 

percentage of censoring in each simulated dataset around 20%. From the 250 

simulations, we computed the mean, standard deviation, and the mean of the SEs for 
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the fixed effects �̂�. For the frailty paramter �̂� and for the shape parameter �̂� we 

computed the mean and standard deviation. Further, we computed the coverages of the 

𝛽 (CP %), i.e., the percentage of simulated data for which the 95% confidence interval 

contains the real parameter. The results of the simulation studies are summarized in 

Table 4.1.  

From Table 4.1, we find that, in general, the fixed effects 𝛽 are estimated well by 

the proposed method. Note, however, that fixed effects are robust against 

misspecification of the frailty distribution. The variance of �̂� seems to be slightly 

overestimated since the standard error is slightly greater than the standard deviation. 

The frailty standard deviation �̂� is well estimated. However, the proposed method  

estimated the shape parameter very poorly. 

 

Table 4.1 Estimated parameters and their estimated and empirical (se) in 250 
simulations based on a shared frailty model with 𝐺 clusters and 𝑛𝑖 = (2,5) 
repetitions per cluster with standard deviation 𝜎 = 1.0 and skew parameter 

𝑎 = (−4,0,4).  

 

  Regression parameter  
(𝛽 = 1.0) 

Frailty Parameter 
(𝜎 = 1.0)  

Skew 
Parameter 

     Mean SD Mean SD 

𝑎 𝑛𝑖 Mean SD (se) 95% CP     

4.0 2 1.020 0.515 (0.516) 0.940 0.980 0.447 0.020 0.039 

 5 1.025 0.389 (0.426) 0.956 1.007 0.223 0.008 0.005 

         

0.0 2 1.003 0.518 (0.509) 0.944 0.979 0.345 0.013 0.021 

 5 0.998 0.416 (0.425) 0.936 1.008 0.206 0.007 0.002 

         

-4.0 2 1.022 0.547 (0.525) 0.936 1.027 0.369 0.011 0.014 

 5 0.992 0.413 (0.419) 0.964 0.989 0.219 0.007 0.0023 

Mean, and SD indicates the mean,and standard deviation 
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 4.5. Conclusion  

In this chapter, a log skew-normal frailty model is introduced, an extension to the 

classical lognormal frailty model(McGilchrist and Aisbett 1991, Ha, Lee et al. 2001, Therneau, 

Grambsch et al. 2003), to include an additional shape parameter. The shape parameter 

gives more flexibility to the distribution of the unobserved random effects. The flexibility 

is an important feature of the proposed method because the random effect distribution 

choice is crucial to obtain a more realistic estimate of the dependence structure. 

To fit the proposed model, we developed an h-likelihood algorithm to estimate 

the model parameters and to predict the realization of the random effects. The proposed 

approach produced good estimates of the fixed effects and the frailty parameters. 

However, the adjusted profile likelihood estimated the shape parameter very poorly from 

the simulation study. This shows that adjusted profile likelihood estimates of �̂� are robust 

with respect to the poor estimates of the shape parameter. The nice behavior of �̂� 

suggests we can combine the hierarchical likelihood method and the traditional 

maximum likelihood approach in the estimation process, where the hierarchical 

likelihood method is adopted to estimate parameters (𝜷, 𝒗, 𝜎), and the maximum 

likelihood is used to estimate the shape parameter 𝑎. However, the maximum likelihood 

function of the skew-normal distribution is monotone in 𝑎 and thus, the maximum 

likelihood estimate �̂� of the shape parameter 𝑎 takes on a ± ∞ with a non zero 

probability(Liseo 1990). To solve this problem, a penalized likelihood approach may be 

used. We are investigating if combining the h-likelihood with penalized likelihood is 

necessary to estimate the skewness parameters efficiently. 
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Chapter 5  

General conclusions 

In many clinical trials, time-to-event endpoints, which are often adopted to 

demonstrate a clinically convincing effect of treatments appropriately, maybe clustered 

or correlated because of certain common features such as genetic traits or shared 

environmental factors, or repeated events. Observations from the same cluster are 

assumed to be correlated because they usually share specific unobserved 

characteristics. When the correlation between survival times is present, the frailty model 

can explain the relationship between covariates and a time-to-event outcome. The frailty 

model concept provides a convenient way of introducing unobserved heterogeneity and 

associations into the classical proportional hazard survival model, a random effect model 

in survival analysis. 

Recently, the h-likelihood estimation procedure, a computationally efficient 

approach, has been developed to fit these types of models. A drawback of using the h-

likelihood is that it can be challenging to implement because of the numerous derivatives 

that need to be calculated. Once the derivatives are calculated, though, the analysis is 

computationally efficient. However, the frequently used expectation maximization (EM) 

algorithm will always be computationally intensive since it involves integration over 

multidimensional frailty variates to obtain marginal likelihood function.  

The current work considered frailty models for modeling dependence in 

multivariate survival data that arise because individuals in the same group (family, litter, 

study center) are related to each other, or the individual experience multiple recurrences 

of the same event. The frailty model assumes that all individuals are susceptible to the 

event of interest and will eventually experience this event if the follow-up is sufficiently 

long. However, it may be possible that a fraction of individuals in the population may not 
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be susceptible to the event under study. Thus, certain proportions of subjects in the 

population who are not expected to experience the events of interest can be considered 

cured. It may be interesting to consider cure rate frailty models when cure fractions are 

present.(Kuk and Chen 1992, Stoltenberg, Nordeng et al. 2020) This is a unique model in that 

it allows for modeling the heterogeneity in risk among those individuals experiencing the 

event of interest incorporating a surviving fraction. 

Another future work area is extending the gamma frailty model introduced in 

Chapter two to the correlated gamma frailty model. This will allow for the estimation of 

the variance parameter of the frailties as in shared frailty models and the estimation of 

an extra parameter for modeling the correlation between frailties in each or cluster. Thus 

the correlated frailty model becomes a natural extension of the shared frailty approach 

where subjects in a cluster are assumed correlated but not necessarily shared. It will be 

interesting to consider bivariate gamma frailty(Wienke, Holm et al. 2003, Fiocco, Putter et al. 

2009, Hens, Wienke et al. 2009) to model the kidney catheter data presented in Chapter 2 

and describe the h-likelihood approach for estimating the model parameters.   

 Another interesting scientific question in recurrent events research is whether a 

fatal event such as death could be correlated with repeated events such as multiple 

hospitalizations for heart attack and tumor relapse. Here, the usual assumption of 

noninformative censoring of the recurrent event process by death, required by the 

shared frailty model, may not be appropriate. This dependence should be accounted for 

in the joint modeling of recurrent events and deaths. Thus, it would be worthwhile to see 

the likelihood method applies to the joint frailty models.(Huang and Liu 2007, Belot, 

Rondeau et al. 2014, Emura, Nakatochi et al. 2017) 
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Appendix 

 

Appendix 1  

The appendix 1 lays out the mathematical derivation for the gamam frailty model in 

chapter 2.  

A1.1 Maximum hierarchical likelihood estimator (MHLE) of (𝜷, 𝒗) 

 From equation (2.5), we obtain the first partial derivatives 

𝜕ℎ∗

𝜕𝛽𝑟
= ∑𝛿𝑖𝑗

𝑖𝑗

𝑥𝑖𝑗𝑟 − ∑
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑡𝑘)𝑘

∑ 𝑥𝑖𝑗𝑟exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡𝑘)

, 𝑟 = 1, . . . , 𝑝,    

        = ∑𝛿𝑖𝑗

𝑖𝑗

𝑥𝑖𝑗𝑟 − Λ̂0(𝑦𝑖𝑗) ∑ 𝑥𝑖𝑗𝑟exp(𝜂𝑖𝑗)

𝑖𝑗∈ℛ(𝑡𝑘)

,           

where Λ̂0(𝑦𝑖𝑗) = ∑
𝑑(𝑘)

∑ exp(𝜂𝑖𝑗)𝑖𝑗∈ℛ(𝑡𝑘)
𝑘 . 

Thus, using matrix notations, we have  

   
𝜕ℎ∗

𝜕𝜷
= 𝑿𝑇(𝜹 − 𝝁 ).                                                                       

Similarly, we express 
𝜕ℎ∗

𝜕𝑣𝑖
, 𝑖 = 1,… , 𝐺 as  

𝜕ℎ∗

𝜕𝒗
= 𝒁𝑇(𝜹 − 𝝁) + 𝑹,                                                       

where 𝜷 is 𝑝 × 1 vector of fixed effects, 𝑿 is 𝑁 × 𝑝 matrix of 𝑝 covariates, 𝒗 is 𝐺 × 1 

vector of frailty variate, 𝒁 is 𝑁 × 𝐺 cluster indicator matrix, 𝜹 is 𝑁 × 1 vector of 𝛿𝑖𝑗, 𝝁 is 

𝑁 × 1 vector with Λ̂0(𝑦𝑖𝑗) exp(𝜼) where Λ̂0(𝑦𝑖𝑗) = ∑ �̂�0(𝑡𝑘)𝐼(𝑦(𝑘) ≤ 𝑦𝑖𝑗)𝑘 , and 𝑹 =
𝜕ℓ2𝑖

𝜕𝒗
, 

and 𝜼 = 𝑿𝑇𝜷 + 𝒁𝑇𝒗. 

The vector 𝝁  can be written as a simple form by using a weighted risk indicator matrix 

𝑴, which contains the risk set 𝑅(𝑘). Let 𝑴 = (𝑅1, 𝑅2, … , 𝑅𝐷) be a 𝑁 × 𝐷 at-risk indicator 

matrix where the 𝑖𝑗𝑡ℎ element in column 𝑘 is one if 𝐼(𝑦𝑖𝑗 ≥ 𝑦(𝑘)) and zero otherwise. 
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Define 𝑩 = diag{Λ0(𝑦𝑖𝑗)} as a 𝐷 × 𝐷 diagonal matrix. Let 𝑾𝟏 be 𝑁 × 𝑁 diagonal matrix 

with elements exp(𝜼), and 𝑪 be a diagonal 𝐷 × 𝐷 matrix where the 𝑘𝑡ℎ element is 

(�̂�0(𝑡(𝑘)))
2

𝑑(𝑘)
.  

Let 𝛀 = 𝑾𝟏𝑩 − (𝑾𝟏𝑴)𝑪(𝑾𝟏𝑴),(Ha and Lee 2003)then, the observed information matrix 

𝑯 in (6) has the following entries: 

                                                  𝑯 = (
𝑿𝑇𝛀𝑿 𝑿𝑇𝛀𝒁
𝒁𝑇𝛀𝑿 𝒁𝑇𝛀𝒁 + 𝓠

).                               

That is,  

−
𝜕2ℎ∗

𝜕𝜷2
= 𝑿𝑇𝛀𝑿,                

−
𝜕2ℎ∗

𝜕𝜷𝜕𝒗
= 𝑿𝑇𝛀𝒁,                  

−
𝜕2ℎ∗

𝜕𝒗𝜕𝜷
= 𝒁𝑇𝛀𝑿,                 

−
𝜕2ℎ∗

𝜕𝒗2
= 𝒁𝑇𝛀𝒁 + 𝓠.       

where 

                                               𝑸 = −
𝜕2ℓ2𝑖

𝜕𝒗2
.                                                

A1.2 Maximum hierarchical likelihood estimator (MHLE) of  𝜽 

The first order and second-order derivatives of the hierarchical likelihood(Ha, Lee et al. 

2001) are 

𝜕ℎ𝐴
∗

𝜕𝜃
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
−

1

2
trace (�̂�−1

𝜕�̂�

𝜕𝜃
 ),                                                           

where �̂� = �̂�|
𝝉=�̂�

. The observed information matrix −
𝜕2ℎ𝐴

∗

𝜕𝜃2  for the frailty parameter 𝜃 is, 

𝜕2ℎ𝐴
∗

𝜕𝜃2
=

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
−

𝜕

𝜕𝜃
{
1

2
trace(�̂�−1  

𝜕�̂�

𝜕𝜃
)}, 
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−
𝜕2ℎ𝐴

∗

𝜕𝜃2
= −

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
+

1

2
trace(−�̂�−1  

𝜕�̂�

𝜕𝜃
�̂�−1  

𝜕�̂�

𝜕𝜃
+ �̂�−1  

𝜕2�̂�

𝜕𝜃2).    

The partial derivation of 
𝜕�̂�

𝜕𝜃
,  

𝜕�̂�

𝜕𝜃
= (

𝑿𝑻�̂�′𝑿 𝑿𝑻�̂�′𝒁
𝒁𝑻�̂�′𝑿 𝒁𝑻�̂�′𝒁 + 𝓠′).        

where �̂�′ =
𝜕�̂�

𝜕𝜃
. Since �̂� does not depend on 𝜃, it follows that partial derivative is,  

𝜕�̂�

𝜕𝜃
= 0. 

Therefore, 

𝜕�̂�

𝜕𝜃
= (

0 0
0 𝓠′), 

where and 𝓠′ =
𝜕𝓠

𝜕𝜃
 is 𝐺 × 𝐺 diagonal matrix.  

Similarly,  

𝜕2�̂�

𝜕𝜃2
= (

0 0
0 𝓠′′), 

where 𝓠′′ =
𝜕2𝓠

𝜕𝜃2 is 𝐺 × 𝐺 diagonal matrix. 

A1.3. Calculation of Jeffreys prior bias-reducing function 

We have  

ℓ2𝑖 = [𝒗 − exp(𝒗)]𝜃−1 − log Γ (
1

𝜃
) − 𝜃−1 log 𝜃. 

The first-order derivative is  

𝜕ℓ2𝑖

𝜕𝜃
= 𝜃−2 [−(𝒗 − 𝑒  𝒗) + 𝜓(0)(

1

𝜃
) + (log 𝜃 − 1)], 

where 𝜓(0) =
Γ′(

1

𝜃
)

Γ(
1

𝜃
)
 is the digamma function. 

The second-order derivative is 
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−
𝜕2ℓ2𝑖

𝜕𝜃2
= 2𝜃−3 [−(𝒗 − 𝑒𝒗) + 𝜓(0) (

1

𝜃
) + 0.5𝜃−1𝜓(1) (

1

𝜃
) + log 𝜃 − 1.5]. 

where 𝜓(1) =
𝜕𝜓(0)

𝜕𝜃
 is the trigamma function. 

The expected information matrix is  

𝐼(𝜃) = 𝐸 (−
𝜕2ℓ2𝑖

𝜕𝜃2 ). 

Note that if  𝑉𝑖. is independent and identically distributed log-gamma with mean 

𝜓(0) (
1

𝜃
) + log(𝜃) then 𝑒𝑉𝑖 follows gamma with mean 1. 

𝐸 (−
𝜕2𝑙2𝑖

𝜕𝜃2 ) = 2𝜃−3 {−𝐸𝑉 + 𝐸𝑒𝑉 + 𝜓(0) (
1

𝜃
) + 0.5𝜃−1𝜓(1) (

1

𝜃
) + log 𝜃 − 1.5}, 

                      = 2𝜃−3 {−(𝜓(0) (
1

𝜃
) + log(𝜃)) + 1 + 𝜓(0) (

1

𝜃
) + 0.5𝜃−1𝜓(1) (

1

𝜃
) + log 𝜃 − 1.5}, 

                        = 2𝜃−3 {0.5𝜃−1𝜓(1) (
1

𝜃
) − 0.5}, 

              𝐼(𝜃) = 𝜃−4𝜓(1) (
1

𝜃
) − 𝜃−3.                             

Therefore, Jeffreys’s prior bias-reducing function for the gamma frailty is 

𝑀(𝜃) = |𝐼(𝜃)|
1
2 = |𝜃−4𝜓(1) (

1

𝜃
) − 𝜃−3|

1
2
 . 

A1.4 Calculation of the conditional AIC (cAIC) 

The conditional AIC is given by 

𝑐𝐴𝐼𝐶 = −2ℓ𝑝 + 2𝑑𝑓𝑐 , 

where 
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ℓ𝑝 = ∑𝛿𝑖𝑗(𝒙𝑖𝑗
𝑇 �̂� + 𝑣)

𝑖𝑗

− ∑𝑑𝑘

𝑘

log { ∑ exp(𝒙𝑖𝑗
𝑇 �̂� + 𝑣)

(𝑖,𝑗)∈𝑅(𝑘)

}, 

and 

𝑑𝑓𝑐 = 𝑑𝑓𝑐(𝜷, 𝒗, 𝜃) = 𝑡𝑟𝑎𝑐𝑒(𝑯−1𝑯𝑝
′ ) 

is an “effective degree of freedom adjustment” for estimating the fixed and random 

effects computed using the Hessian matrices, 𝑯 = −
𝜕2ℎ∗

𝜕𝝉2  and 𝑯𝑝
′ = −

𝜕2ℓ𝑝

𝜕𝝉2  with 𝝉 =

(𝜷𝑇 , 𝒗𝑇)𝑇.(Ha, Jeong et al. 2017) In the Cox PH model without frailty, a degree of freedom 

𝑑𝑓𝑐 becomes the number of the fixed effects, p, i.e., the dimension of 𝜷. 

 

Appendix 2 (total derivative approach) 

A2.1. Total derivative approach estimation of Lognormal frailty parameter  

The logarithm of the normal distribution is  

      ℓ2𝑖 = −
log(2𝜋𝜃)

2
−

𝑣𝑖
2

2𝜃
.                                                                                  

The first partial derivative with respect to 𝑣𝑖 

𝜕

𝜕𝑣𝑖
ℓ2𝑖|𝝉=�̂�     = −

𝑣𝑖

𝜃
.                                                                                                     

The negative second partial derivation is  

diag{𝓠} = −
𝜕2 

𝜕𝑣𝑖
2 ℓ2𝑖|𝝉=�̂� =

1

𝜃
.                          

The total derivative of the first term in (3.17) is  

𝜕

𝜕𝜃
ℎ∗|𝜏=�̂� = ∑

𝜕

𝜕𝜃
{−

log(2𝜋𝜃)

2
−

𝑣𝑖
2

2𝜃
}

𝐺

𝑖=1

,              

                           
𝜕ℎ∗|𝜏=�̂�

𝜕𝜃
= ∑(−

1

2𝜃
+

𝑣𝑖
2

2𝜃2)

𝐺

𝑖=1

.                                                   

The derivation of −
𝜕ℎ∗|𝜏=�̂�

𝜕𝜃2  in (3.18), is 
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−
𝜕ℎ∗|𝜏=�̂�

𝜕𝜃2
= −∑{

𝜕

𝜕𝜃
(−

1

2𝜃
+

𝑣𝑖
2

2𝜃2)}

𝐺

𝑖=1

− (
𝜕2ℎ∗|𝝉=�̂�

𝜕𝒗𝜕𝜃
)(

𝜕�̂�

𝜕𝜃
),  

                  −
𝜕ℎ∗|𝜏=�̂�

𝜕𝜃2
= ∑(−

1

2𝜃2
+

𝑣𝑖
2

𝜃3)

𝐺

𝑖=1

− [
𝜕

𝜕𝑣𝑖
(−

1

2𝜃
+

𝑣𝑖
2

2𝜃2)] (
𝜕�̂�

𝜕𝜃
),                   

= ∑(−
1

2𝜃2
+

𝑣𝑖
2

𝜃3)

𝐺

𝑖=1

−
𝑣𝑖

𝜃2
(
𝜕�̂�

𝜕𝜃
),               

where  

(
𝜕�̂�

𝜕𝜃
) = (𝒁𝑇�̂�𝒁 + 𝑸)

−𝟏
(

𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

),                 

= (𝒁𝑇�̂�𝒁 + 𝑸)
−𝟏

(
�̂�𝑖

𝜃2
).                    

The second derivation of 
𝜕2�̂�

𝜕𝜃2 is 

   
𝜕2�̂�

𝜕𝜃2
= −(𝒁𝑇�̂�𝒁 + �̂�)

−1
(𝒁𝑇�̂�′𝒁 + �̂�′ )(𝒁𝑇�̂�𝒁 + �̂�)

−1
(
�̂�𝑖

𝜃2
)  − 2(𝒁𝑇�̂�𝒁 + �̂�)

−𝟏
(
𝑣𝑖

𝜃3
).      

Since 𝓠 does not depends on 𝒗 no total derivative should be calculated. We have 

𝑸′ = diag {−
1

𝜃2}
𝐺×𝐺

  , 

and 

𝓠′′ = diag{2𝜃−3}𝐺×𝐺 . 

A2.2. Total derivative approach estimation of Gamma frailty parameter  

ℓ2𝑖
= (𝑣𝑖 − 𝑒𝑣𝑖)𝜃−1 − log Γ (

1

𝜃
) − 𝜃−1 log 𝜃. 

The first partial derivative with respect to 𝑣𝑖 

𝜕

𝜕𝑣𝑖
ℓ2𝑖|𝝉=�̂�

  = (1 − 𝑒�̂�𝑖)𝜃−1.                                                          

The negative second partial derivation is a diagonal matrix with 𝑖th element 

diag{𝓠} = −
𝜕2

𝜕𝑣𝑖
2 ℎ∗|𝝉=�̂� = −

𝜕 

𝜕𝑣𝑖
{(1 − 𝑒�̂�𝑖)𝜃−1},   

𝓠 =  𝜃−1𝑒�̂�𝑖 .                                            
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The total derivative of the first term in (3.17) is  

   
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
=  ∑

𝜕

𝜕𝜃
{(𝑣𝑖 − 𝑒�̂�𝑖)𝜃−1 − log Γ (

1

𝜃
) − 𝜃−1 log 𝜃}

𝑖=1

,                                   

 = −(𝑣𝑖 − 𝑒�̂�𝑖)𝜃−2 + 𝜃−2
Γ′ (

1
𝜃)

Γ (
1
𝜃
)

+ 𝜃−2 log 𝜃 − 𝜃−2 ,              

𝜕ℎ∗|𝝉=�̂�

𝜕𝜃
= −(𝑣𝑖 − 𝑒�̂�𝑖)𝜃−2 + 𝜃−2𝜓(0) (

1

𝜃
) + 𝜃−2 log 𝜃 − 𝜃−2 ,                          

where 𝜓(0) =
Γ′(

1

𝜃
)

Γ(
1

𝜃
)
 is the digamma function.  

The second total derivation of −
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2  is 

−
𝜕ℎ∗|𝝉=�̂�

𝜕𝜃2
= ∑−

𝜕2ℓ2𝑖

𝜕𝜃2

𝑖=1

− (
𝜕2ℎ∗|𝝉=�̂�

𝜕𝒗𝜕𝜃
)(

𝜕�̂�

𝜕𝜃
),                      

= ∑[−
𝜕

𝜕𝜃
{−(�̂�𝑖 − 𝑒�̂�𝑖)𝜃−2 + 𝜃−2𝜓(0) (

1

𝜃
) + 𝜃−2(log 𝜃 − 1)}]

𝑖=1

− [
𝜕

𝜕𝑣𝑖
{−(𝑣𝑖 − 𝑒�̂�𝑖)𝜃−2 + 𝜃−2𝜓(0) (

1

𝜃
) + 𝜃−2(log 𝜃 − 1)} (

𝜕�̂�

𝜕𝜃
)]. 

= ∑[2𝜃−3 {−(�̂�𝑖 − 𝑒�̂�𝑖) + 𝜓(0) (
1

𝜃
) + 0.5𝜃−1𝜓(1) (

1

𝜃
) + log(𝜃) − 1.5}]

𝑖=1

+ (1 − 𝑒�̂�)𝜃−2 (
𝜕�̂�

𝜕𝜃
), 

where 𝜓(1) =
𝜕𝜓(0)

𝜕𝜃
 is the trigamma function and 

(
𝜕�̂�

𝜕𝜃
) = (𝒁𝑇�̂�𝒁 + �̂�)

−𝟏
(

𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

),         

              = −(𝒁𝑇�̂�𝒁 + �̂�)
−𝟏

((1 − 𝑒�̂�)𝜃−2). 

The second derivation of 
𝜕2�̂�

𝜕𝜃2 

𝜕2�̂�

𝜕𝜃2
= −(𝒁𝑇�̂�𝒁 + �̂�)

−1
(𝒁𝑇�̂�′𝒁 + �̂�′ )(𝒁𝑇�̂�𝒁 + �̂�)

−1
(

𝜕2ℎ∗

𝜕𝒗𝜕𝜃
|
𝝉=�̂�

)   

+ (𝒁𝑇�̂�𝒁 + �̂�)
−𝟏

(
𝜕3ℎ∗

𝜕𝒗𝜕𝜃2
|
𝝉=�̂�

),      
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= −(𝒁𝑇�̂�𝒁 + �̂�)
−1

(𝒁𝑇�̂�′𝒁 + �̂�′ )(𝒁𝑇�̂�𝒁 + �̂�)
−1

((1 − 𝑒�̂�)𝜃−2)   

+ (𝒁𝑇�̂�𝒁 + �̂�)
−𝟏

(−2(1 − 𝑒�̂�)𝜃−3).     

The next step is to calculate the terms in the observed information in (3.18). First, we 

compute the total derivative of the first term in (3.18).   

𝜕3ℎ∗

𝜕𝒗𝜕𝜃2
|
𝝉=�̂�

= 2(1 − 𝑒�̂�)𝜃−3                                  

Finally, we calculate the total derivative for 𝓠 since it depends on 𝒗. Thus, from 

        �̂�′ =
𝜕

𝜕𝜃
𝑸|𝝉=�̂� +

𝜕

𝜕𝒗
𝑸|𝝉=�̂� (

𝜕�̂�

𝜕𝜃
). 

�̂�′ = �̂�𝜃
′ + �̂��̂�

′ (
𝜕�̂�

𝜕𝜃
).                    

Since 𝓠 = 𝜃−1𝑒�̂�, it follows that �̂��̂�
′′ = 𝑸�̂�

′ = �̂� =  𝜃−1𝑒�̂� and �̂�𝜃
′ = −𝜃−2𝑒�̂�. 

The second total derivative of 
𝜕2

𝜕𝜃2 𝑸|𝝉=�̂� is  

�̂�′′ = �̂�𝜃
′′  + 2 ∗ �̂��̂�𝜃

′′ (
𝜕�̂�

𝜕𝜃
) + �̂��̂�

′ (
𝜕2�̂�

𝜕𝜃2) + �̂��̂�
′′ (

𝜕�̂�

𝜕𝜃
)
2

. 

A2.3. Second-order Laplace approximation of Gamma frailty  

To reduce the bias further in estimating the dispersion parameters, the second-

order approximation 𝑆𝜏(ℎ
∗) needs to be used.  According toHa and Lee (2003), the 

second-order method is needed when estimating the frailty parameters. The second-

order approximation equation 𝑆𝜏(ℎ
∗) given by 

𝑆𝜏(ℎ
∗) = ℎ𝐴

∗ − {
𝐹(ℎ∗)

24
}, 

where 𝐹 = 𝑡𝑟𝑎𝑐𝑒(𝑆)|(𝝉=�̂�). The 𝑖th element of 𝐺 × 𝐺 diagonal matrix 𝑆 is given by 

𝑆 = 3
ℎ̃(4)

[ℎ̃(2)]
2 − 5

[ℎ̃(3)]
2

[ℎ̃(2)]
3, 

where ℎ̃(𝑘) = ℎ̃(𝑘)(�̃�) and ℎ̃(𝑘) = −
𝜕𝑘ℎ

𝜕𝑣𝑘. The estimation of the frailty parameter involves 

solving the socre function 
𝜕

𝜕𝜃
𝑆𝜏(ℎ

∗) = 0, which involves too many complicated terms.  
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Appendix 3 (mathematical derivation of the log skew-normal frailty) 

A3.1. Joint score functions  

The score functions from section 4.3 are 

𝜕ℎ∗

𝜕𝜷
= 𝑿𝑇(𝜹 − 𝝁),                                                                            

𝜕ℎ∗

𝜕𝒗
= 𝒁𝑇(𝜹 − 𝝁) +

𝜕

𝜕𝒗
ℓ2𝑖(𝜽; 𝑣𝑖).                                               

From equation (4.5), we have  

𝜕ℓ2𝑖(𝜽; 𝑣𝑖)

𝜕𝑣𝑖
=

𝜕

𝜕𝑣𝑖
{−

𝓏𝑖
2

2
+ log[Φ(𝑎𝓏𝑖)]},                                                           

since 𝑧𝑖 =
𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵), then 

𝜕

𝜕𝑣𝑖
(
𝓏𝑖

2

2
) = 𝑧𝑖

𝜕𝑧𝑖

𝜕𝑣𝑖
=

𝑧𝑖

𝜎
√𝑉𝑎𝑟(𝒵) and 

𝜕

𝜕𝑣𝑖
log[Φ(𝑎𝓏𝑖)] =

Φ′(𝑎𝓏𝑖) ∗ (𝑎𝓏𝑖)
′

Φ(𝑎𝓏𝑖)
 ,                                                                                       

=
𝑎

𝜎
√𝑉𝑎𝑟(𝒵)

𝜙(𝑎𝓏𝑖)

Φ(𝑎𝓏𝑖)
 ,                                                  

on letting 

𝑀 =
𝜙(𝑎𝓏𝑖)

Φ(𝑎𝓏𝑖)
,                                                                               

We have  

           
𝜕

𝜕𝑣𝑖
log[Φ(𝑎𝓏𝑖)] = 𝑀 ∗

𝑎

𝜎
√𝑉𝑎𝑟(𝒵) .          

Therefore, 

                                       𝑅 = −
𝓏𝑖

𝜎
√𝑉𝑎𝑟(𝒵) + 𝑀 ∗

𝑎

𝜎
√𝑉𝑎𝑟(𝒵),                                                    

                                       𝑅 =
1

𝜎
√𝑉𝑎𝑟(𝒵){−𝓏𝑖 + 𝑎𝑀}.                 

A3.2. Information matrix 

 Next, we show the direct calculation of 𝑸 in the observed information matrix 𝑯 of 

𝜷 and 𝒗 = (𝑣1, … , 𝑣𝐺)𝑇.  
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𝑯 = 𝑯(𝜷, 𝒗) = (
𝑿𝑇𝑾𝑿 𝑿𝑇𝑾𝒁
𝒁𝑇𝑾𝑿 𝒁𝑇𝑾𝒁 + 𝓠

)                                                             

where 𝓠 is a 𝐺 × 𝐺 diagonal matrix with the 𝑖th element given by the negative second 

derivative of the log of the joint density function for all random effects with respect to the 

vector 𝑣𝑖,  

                 −
𝜕2

𝜕𝑣𝑖
2 ℓ𝑖2(𝜃; 𝑣𝑖) = −

𝜕

𝜕𝑣𝑖
𝑅,                               

  = −
𝜕

𝜕𝑣𝑖
{
1

𝜎
√𝑉𝑎𝑟(𝒵){−𝓏𝑖 + 𝑎𝑀}},                      

= −{
1

𝜎
√𝑉𝑎𝑟(𝒵) {−

1

𝜎
√𝑉𝑎𝑟(𝒵) + 𝑎 ∗ 𝑀𝑣

′  }}. 

where 

𝑀𝑣
′ =

𝜕

𝜕𝑣
𝑀 = [

𝜙(𝑎𝓏𝑖)

Φ(𝑎𝓏𝑖)
]

′

=
Φ(𝑎𝓏𝑖) × [𝜙(𝑎𝓏𝑖)]

′ − 𝜙(𝑎𝓏𝑖)[Φ(𝑎𝓏𝑖)]
′

[Φ(𝑎𝓏𝑖)]
2

, 

But 

[𝜙(𝑎𝓏𝑖)]
′ =

𝜕

𝜕𝑣
𝜙(𝑎𝓏𝑖) =

1

√2𝜋
𝑒−

(𝑎𝓏𝑖)
2

2
 = −

𝑎2𝓏𝑖

𝜎
√𝑉𝑎𝑟(𝒵)𝜙(𝑎𝓏𝑖). 

Therefore  

                        𝑀𝑣
′ = −

𝑎2𝓏𝑖

𝜎
√𝑉𝑎𝑟(𝒵)

𝜙(𝑎𝓏𝑖)

Φ(𝑎𝓏𝑖)
−

𝑎

𝜎
√𝑉𝑎𝑟(𝒵) [

𝜙(𝑎𝓏𝑖)

Φ(𝑎𝓏𝑖)
]

2

,        

   𝑀𝑣
′ = −

𝑎

𝜎
√𝑉𝑎𝑟(𝒵){𝑎𝓏𝑖𝑀 + 𝑀2}.                                                                     

=
𝜕2

𝜕𝑣𝑖
2 ℓ𝑖2(𝜃; 𝑣𝑖) = −{

1

𝜎
√𝑉𝑎𝑟(𝒵) {−

1

𝜎
√𝑉𝑎𝑟(𝒵) + 𝑎 ∗ [−

𝑎

𝜎
√𝑉𝑎𝑟(𝒵)(𝑎𝓏𝑖𝑀 + 𝑀2)]}}, 

The 𝑖th element of the diagonal matrix 𝑸 is given by 

                    diag{𝑸} =
𝑉𝑎𝑟(𝒵)

𝜎2
[1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)].    
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A3.3. Mathematical derivations of frailty and shape parameters 

 From equation (4.9) the first and second derivative of the adjusted profile 

likelihood are given by  

𝜕ℎ𝐴
∗

𝜕𝜽
=

𝜕ℎ∗|𝜏=�̂�

𝜕𝜽
−

1

2
𝑡𝑟𝑎𝑐𝑒 (�̂�−1

𝜕�̂�

𝜕𝜽
 ),                                                    (𝐴3.1) 

and 

−
𝜕2ℎ𝐴

∗

𝜕𝜽2
= −

𝜕ℎ∗|𝜏=�̂�

𝜕𝜽𝟐
+

1

2
𝑡𝑟𝑎𝑐𝑒 (−�̂�−𝟏  

𝜕�̂�

𝜕𝜽
�̂�−1  

𝜕�̂�

𝜕𝜽
+ �̂�−1  

𝜕2�̂�

𝜕𝜽𝟐),     (𝐴3.2) 

respectively. The parameters 𝜽 = (𝜎, 𝑎)𝑇 can be estimated via the Newton-Raphson 

algorithm given by  

(�̂�
(𝑘+1)

�̂�(𝑘+1)
) = (�̂�

(𝑘) 
�̂�(𝑘)

) + (𝒥(𝜃)−1𝒮(𝜃))|
(𝜎,𝑎)=(�̂�(𝑘),�̂�(𝑘))

, 

where 𝓢(𝜽) =
𝜕ℎ𝐴

∗

𝜕𝜽
= (

𝜕ℎ𝐴
∗

𝜕𝜎
,
𝜕ℎ𝐴

∗

𝜕𝑎
)
𝑇

and 𝓙(𝜽)−1 = −
𝜕2ℎ𝐴

∗

𝜕𝜽2 = [
−

𝜕2ℎ𝐴
∗

𝜕𝜎2 −
𝜕ℎ𝐴

∗

𝜕𝜎𝜕𝑎

−
𝜕ℎ𝐴

∗

𝜕𝑎𝜕𝜎
−

𝜕2ℎ𝐴
∗

𝜕𝑎2

]. 

The partial derivation of first term 
𝜕

𝜕𝜃
ℎ∗|𝜏=�̂� in (𝐴3.1) is  

                 
𝜕ℎ∗|𝜏=�̂�

𝜕𝜽
= ∑

𝜕ℓ𝑖2(𝜽; 𝑣𝑖)

𝜕𝜽

𝐺

𝑖=1

,                                                                          (𝐴3.3) 

since ∑ ℓ1𝑖𝑗𝑖𝑗  does not involve 𝜽. 

The partial derivative of the second term 
𝜕�̂�

𝜕𝜃
 in (𝐴3.1)  is,  

𝜕�̂�

𝜕𝜽
= (

𝑿𝑇�̂�′𝑿 𝑿𝑇�̂�′𝒁
𝒁𝑇�̂�′𝑿 𝒁𝑇�̂�′𝒁 + 𝓠′),                                                      (𝐴3.4) 

where �̂�′ =
𝜕�̂�

𝜕𝜽
 and 𝓠′ =

𝜕𝓠

𝜕𝜽
. Since �̂� does not depend on 𝜽, it follows that the partial 

derivative is,  

𝜕�̂�

𝜕𝜽
= (

𝟎𝑝×𝑝 𝟎𝑝×𝐺

𝟎𝐺×𝑝 𝓠′ )                                                                          (𝐴3.5) 
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Now, we calculate the second derivatives. That is the term in the observed information 

matrix in (𝐴3.2). We have that  

−
𝜕ℎ∗|𝜏=�̂�

𝜕𝜽𝟐
= −∑

𝜕2ℓ𝑖2(𝜽; 𝑣𝑖)

𝜕𝜽2

𝐺

𝑖=1

.                                                                      (𝐴3.6) 

The last term needed to calculate in (𝐴3.2) is 

𝜕2�̂�

𝜕𝜽2
= (

𝑿𝑇�̂�′′𝑿 𝑿𝑇�̂�′′𝒁
𝒁𝑇�̂�′′𝑿 𝒁𝑇�̂�′′𝒁 + �̂�′′) = (

𝟎𝑝×𝑝 𝟎𝑝×𝐺

𝟎𝐺×𝑝 �̂�′′ )                   (𝐴3.7) 

where �̂�′′ =
𝜕2

𝜕𝜽2 𝑾|𝜏=�̂� = 𝟎 and  �̂�′′ =
𝜕2

𝜕𝜽2 𝓠|𝜏=�̂�. 

A3.3.1 Mathematical derivations of terms [
𝝏𝒉𝑨

∗

𝝏𝝈
] and [−

𝝏𝒉𝑨
∗

𝝏𝝈𝟐] 

From (𝐴3.3), we have that 
𝜕ℎ𝐴

∗

𝜕𝜎
 is  

𝜕ℎ∗|𝜏=�̂�

𝜕𝜎
= ∑

𝜕ℓ𝑖2(𝜃; 𝑣)

𝜕𝜎

𝐺

𝑖=1

                           

But 

𝜕

𝜕𝜎
ℓ𝑖2(𝜽; 𝑣)|𝜏=�̂� =

𝜕

𝜕𝜎
{( log 2 −

1

2
log(2𝜋) −

𝓏𝑖
2

2
+ log(Φ(𝑎𝓏𝑖)) + log {

1

𝜎
√𝑉𝑎𝑟(𝒵)}|

𝜏=�̂�

)}, 

Note:  

                              �̂�𝑖 =
𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵)                    

Thus 

                 
𝜕

𝜕𝜎
𝓏𝑖|𝜏=�̂� =

𝜕

𝜕𝜎
{(

𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵)|

𝜏=�̂�
)},           

                                   = −
𝑣𝑖

𝜎2
√𝑉𝑎𝑟(𝒵),     

                 
𝜕

𝜕𝜎
𝓏𝑖|𝜏=�̂� = −

�̂�𝑖

𝜎
,                                         
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and 

                       
𝜕

𝜕𝜎
𝓏𝑖

2|
𝜏=�̂�

= 2�̂�𝑖 (−
�̂�𝑖

𝜎
),                            

                               
𝜕

𝜕𝜎
�̂�𝑖

2 = −
2�̂�𝑖

2

𝜎
.                           

Also 

𝜕

𝜕𝜎
(log(Φ(𝑎𝓏𝑖))|𝜏=�̂�

) = (
Φ′(𝑎𝓏𝑖) ∗ (𝑎𝓏𝑖)

′

Φ(𝑎𝓏𝑖)
|
𝜏=�̂�

),                                  

                                           =
ϕ(𝑎�̂�𝑖) ∗ (−

𝑎�̂�𝑖
𝜎 )

Φ(𝑎�̂�𝑖)
, 

𝜕

𝜕𝜎
(log(Φ(𝑎𝓏𝑖))|𝜏=�̂�

) = −M̂ ∗ (
𝑎�̂�𝑖

𝜎
),          

where �̂� =
𝜙(𝑎�̂�𝑖)

Φ(𝑎�̂�𝑖)
. 

Hence 

            
𝜕

𝜕𝜎
ℓ𝑖2(𝜃; 𝑣)|𝜏=�̂� = 

�̂�𝑖
2

𝜎
− M̂ ∗ (

𝑎�̂�𝑖

𝜎
) −

1

𝜎
 .                

and 

                           
𝜕ℎ∗|𝜏=�̂�

𝜕𝜎
= ∑(

�̂�𝑖
2

𝜎
− M̂ ∗ (

𝑎�̂�𝑖

𝜎
) −

1

𝜎
) .

𝐺

𝑖=1

                                                  

The second partial derivation from (𝐴3.6) is  

−
𝜕ℎ∗|𝜏=�̂�

𝜕𝜎2
= −∑

𝜕2ℓ𝑖2(𝜃; 𝑣𝑖)

𝜕𝜎2

𝐺

𝑖=1

,                                                                          
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      = − {∑( − 
3�̂�𝑖

2

𝜎2
− �̂�𝜎

′ ∗ (
𝑎�̂�𝑖

𝜎
) − �̂� ∗ (

−2𝑎�̂�𝑖

𝜎2
) +

1

𝜎2)

𝐺

𝑖=1

}, 

   −
𝜕ℎ∗|𝜏=�̂�

𝜕𝜎2
= ∑( 

3�̂�𝑖
2

𝜎2
+ �̂�𝜎

′ ∗ (
𝑎�̂�𝑖

𝜎
) − �̂� ∗ (

2𝑎�̂�𝑖

𝜎2
) −

1

𝜎2)

𝐺

𝑖=1

,                                 

where  

       �̂�𝜎
′ =

𝜕

𝜕𝜎
𝑀|𝜏=�̂� = (

[𝜙(𝑎𝓏𝑖)]
′ × Φ(𝑎𝓏𝑖) − [Φ(𝑎𝓏𝑖)]

′ × 𝜙(𝑎𝓏𝑖)

[Φ(𝑎𝓏𝑖)]
2

|
𝜏=�̂�

). 

First consider  

                [𝜙(𝑎�̂�𝑖)]
′ =

𝜕

𝜕𝜎
𝜙(𝑎𝓏𝑖) |𝜏=�̂�, 

                                   =
𝜕

𝜕𝜎
{constant ∗ exp(−

𝑎2𝓏𝑖
2

2
)|

𝜏=�̂�

 }, 

                                   = contant ∗
𝑎2�̂�𝑖

2

𝜎
exp(−

𝑎2�̂�𝑖
2

2
),   

                [𝜙(𝑎�̂�𝑖)]
′ =

𝑎2�̂�𝑖
2

𝜎
𝜙(𝑎�̂�𝑖).                                     

Therefore, 

                            �̂�𝜎
′ =

𝑎2�̂�𝑖
2

𝜎 𝜙(𝑎�̂�𝑖)Φ(𝑎�̂�𝑖) +
𝑎�̂�𝑖
𝜎 × [𝜙(𝑎�̂�𝑖)]

2

[Φ(𝑎�̂�𝑖)]
2

, 

                                    =

𝑎2�̂�𝑖
2

𝜎 𝜙(𝑎�̂�𝑖)

Φ(𝑎�̂�𝑖)
+

𝑎�̂�𝑖
𝜎 × [𝜙(𝑎�̂�𝑖)]

2

[Φ(𝑎�̂�𝑖)]
2

, 

�̂�𝜎
′ =

𝑎�̂�𝑖

𝜎
{𝑎�̂�𝑖�̂� + �̂�2}.                                 

Next, we compute the �̂�𝜎
′ =

𝜕𝓠

𝜕𝜎
|
𝜏=�̂�

 term in (𝐴3.5) 

𝜕𝓠

𝜕𝜎
|
𝜏=�̂�

=
𝜕

𝜕𝜎
{(

𝑉𝑎𝑟(𝒵)

𝜎2
{1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)}|

𝜏=�̂�

)} 



99 
 

�̂�𝜎
′ = −

2

𝜎3
𝑉𝑎𝑟(𝒵){1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)} +

𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
−𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ } 

Finally, we compute �̂�𝜎
′′ =

𝜕2𝓠

𝜕𝜎2|
𝜏=�̂�

 

𝜕2𝓠

𝜕𝜎2
=

𝜕

𝜕𝜎
[−

2

𝜎3
𝑉𝑎𝑟(𝒵){1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)}

+
𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
−𝑎𝓏𝑖

𝜎
𝑀 + 𝑎𝓏𝑖𝑀𝜎

′ + 2�̂� ∗ 𝑀𝜎
′ }|

𝜏=�̂�

], 

=
6

𝜎4
𝑉𝑎𝑟(𝒵){1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)} −

2𝑎2

𝜎3
𝑉𝑎𝑟(𝒵) {

−𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ }

−
2𝑎2𝑉𝑎𝑟(𝒵)

𝜎3 {
−𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ }

+
𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
2𝑎�̂�𝑖

𝜎2
�̂� −

𝑎�̂�𝑖

𝜎
�̂�𝜎

′ −
𝑎�̂�𝑖

𝜎
�̂�𝜎

′ + 𝑎�̂�𝑖�̂�𝜎
′′ + 2(�̂�𝜎

′ )
2
+ 2�̂� ∗ �̂�𝜎

′′}, 

�̂�𝜎
′′ =

6

𝜎4
𝑉𝑎𝑟(𝒵){1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)} −

4𝑎2

𝜎3
𝑉𝑎𝑟(𝒵) {

−𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ }

+
𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
2𝑎�̂�𝑖

𝜎2
�̂� − 2

𝑎�̂�𝑖

𝜎
�̂�𝜎

′ + 𝑎�̂�𝑖�̂�𝜎
′′ + 2((�̂�𝜎

′ )
2
+ �̂� ∗ �̂�𝜎

′′)}, 

where 

�̂�𝜎
′′ =

𝜕

𝜕𝜎
𝑀𝜎

′ |𝜏=�̂�, 

      =
𝜕

𝜕𝜎
[
𝑎�̂�𝑖

𝜎
(𝑎�̂�𝑖�̂� + �̂�2)|

𝜏=�̂�
], 

�̂�𝜎
′′ = −

2𝑎�̂�𝑖

𝜎2 (𝑎�̂�𝑖�̂� + �̂�2) +
𝑎�̂�𝑖

𝜎
{−

𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ }. 

A3.3.2 mathematical derivations of terms [
𝝏𝒉𝑨

∗

𝝏𝒂
] and [−

𝝏𝟐𝒉𝑨
∗

𝝏𝒂𝟐 ] 

From (𝐴3.3), we have that 
𝜕ℎ𝐴

∗

𝜕𝑎
 is  

𝜕ℎ∗|𝜏=�̂�

𝜕𝑎
= ∑

𝜕ℓ𝑖2(𝜃; 𝑣𝑖)

𝜕𝑎

𝐺

𝑖=1

. 

But  
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𝜕

𝜕𝑎
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂� =

𝜕

𝜕𝑎
{ (log2 −

1

2
log(2𝜋) −

�̂�𝑖
2

2
+ log(Φ(𝑎�̂�𝑖)) + log {

1

𝜎
√𝑉𝑎𝑟(𝒵)}|

𝜏=�̂�

)}, 

=
𝜕

𝜕𝑎
{( −

�̂�𝑖
2

2
+ log(Φ(𝑎�̂�𝑖)) +

1

2
log(𝑉𝑎𝑟(𝒵))|

𝜏=�̂�

)}, 

where 

�̂�𝑖 =
𝑣𝑖

𝜎
√𝑉𝑎𝑟(𝒵) =

𝑣𝑖

𝜎
(1 −

2𝑎2

𝜋(1 + 𝑎2)
)

1
2

.                                  

Then on letting 𝐴 =
𝜕

𝜕𝑎
𝓏𝑖|𝜏=�̂�,  

𝐴 =
1

2

𝑣𝑖

𝜎
 (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
−4𝑎

𝜋(1 + 𝑎2)2
), 

𝐴 = −
𝑣𝑖

𝜎
 (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
2𝑎

𝜋(1 + 𝑎2)2
). 

and 

𝜕

𝜕𝑎
𝓏𝑖

2|
𝜏=�̂�

= 2𝓏𝑖

𝜕

𝜕𝑎
𝓏𝑖|

𝜏=�̂�
= 2�̂�𝑖𝐴.                                                  

Also, 

 

𝜕

𝜕𝑎 
log(Φ(𝑎𝓏𝑖))|𝜏=�̂�

=
Φ′(𝑎𝓏𝑖) ∗ (𝑎𝓏𝑖)

′

Φ(𝑎𝓏𝑖)
|
𝜏=�̂�

                                                                        

=
𝜙(𝑎�̂�𝑖) ∗ (�̂�𝑖 + 𝑎 ∗ 𝐴)

Φ(𝑎�̂�𝑖)
                              

𝜕

𝜕𝑎 
[log(Φ(𝑎�̂�𝑖))] = �̂�(�̂�𝑖 + 𝑎 ∗ 𝐴)                                                                               

and 

𝜕

𝜕𝑎 
[log(𝑉𝑎𝑟(𝒵))] =

𝜕

𝜕𝑎 
(1 −

2𝑎2

𝜋(1 + 𝑎2)
)                                                                    

    =
(

−4𝑎
𝜋(1 + 𝑎2)2)

𝑉𝑎𝑟(𝒵)
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we have  

𝜕

𝜕𝑎
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂� = −�̂�𝑖𝐴 + �̂�[�̂�𝑖 + 𝑎 ∗ 𝐴] −

1

2
[

4𝑎

𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)
].                                   

and 

𝜕ℎ∗|𝜏=�̂�

𝜕𝑎
= ∑{−�̂�𝑖𝐴 + �̂�(�̂�𝑖 + 𝑎 ∗ 𝐴) −

2𝑎

𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)
}

𝐺

𝑖=1

.              

Next, we calculate  

−
𝜕2

𝜕𝑎2
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂� = −

𝜕

𝜕𝑎
{−�̂�𝑖𝒜(𝑎, 𝜎) + ℳ̂(�̂�; 𝜃)[�̂�𝑖 + 𝑎𝒜(𝑎, 𝜎)] −

2𝑎

𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)
}, 

             = 𝐴2 + �̂�𝑖𝐴
′ − �̂�𝑎

′ (�̂�𝑖 + 𝑎 ∗ 𝐴) − �̂�(2𝐴 + 𝑎𝐴′) + 𝐶′            

−
𝜕2ℎ∗|𝜏=�̂�

𝜕𝑎2
= ∑[𝐴2 + �̂�𝑖𝐴

′ − �̂�𝑎
′ (�̂�𝑖 + 𝑎 ∗ 𝐴) − �̂�(2𝐴 + 𝑎𝐴′) + 𝐶′]

𝐺

𝑖=1

            

where 

𝐴′ =
𝜕

𝜕𝑎
𝐴, 

     = −
𝑣𝑖

𝜎

𝜕

𝜕𝑎
{ (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
2𝑎

𝜋(1 + 𝑎2)2
)}, 

𝐴′ = −
𝑣𝑖

𝜎
{ (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
2 − 6𝑎2

𝜋(1 + 𝑎2)3) + (1 −
2𝑎2

𝜋(1 + 𝑎2)
)

−
3
2

(
2𝑎

𝜋(1 + 𝑎2)2
)
2

},            

𝐶′ =
𝜕

𝜕𝑎
{

2𝑎

𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)
}, 

      =
2[𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)] − 2𝑎 [𝜋(1 + 𝑎2)2 (

−4𝑎
𝜋(1 + 𝑎2)2) + 𝑉𝑎𝑟(𝒵)(2𝜋)(1 + 𝑎2)(2𝑎)]

[𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)]2
, 

      =
2[𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)] − 2𝑎[−4𝑎 + 4𝑎𝜋𝑉𝑎𝑟(𝒵)(1 + 𝑎2)]

[𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)]2
, 

𝐶′ =
2[(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)] − 8𝑎2[−𝜋−1 + (1 + 𝑎2)𝑉𝑎𝑟(𝒵)]

𝜋[(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)]2
, 
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�̂�𝑎
′ =

𝜕

𝜕𝑎
�̂�|

𝜏=�̂�
=

[𝜙(𝑎𝓏𝑖)]
′ × Φ(𝑎𝓏𝑖) − [Φ(𝑎𝓏𝑖)]

′ × 𝜙(𝑎𝓏𝑖)

[Φ(𝑎𝓏𝑖)]
2

|
𝜏=�̂�

, 

       =
(−𝑎𝓏𝑖

2 − 𝑎2�̂�𝑖𝐴)𝜙(𝑎�̂�𝑖)Φ(𝑎�̂�𝑖) − (�̂�𝑖 + 𝑎 ∗ 𝐴)𝜙(𝑎�̂�𝑖)𝜙(𝑎�̂�𝑖)

[Φ(𝑎�̂�𝑖)]
2

, 

       = −𝑎�̂�𝑖(�̂�𝑖 + 𝑎 ∗ 𝐴)
𝜙(𝑎�̂�𝑖)

Φ(𝑎�̂�𝑖)
− (�̂�𝑖 + 𝑎 ∗ 𝐴) [

𝜙(𝑎�̂�𝑖)

Φ(𝑎�̂�𝑖)
]

2

, 

       = −𝑎�̂�𝑖(�̂�𝑖 + 𝑎 ∗ 𝐴)�̂� − (�̂�𝑖 + 𝑎 ∗ 𝐴)𝑀2, 

�̂�𝑎
′ = −(�̂�𝑖 + 𝑎 ∗ 𝐴)(𝑎�̂�𝑖�̂� + �̂�2). 

Next, we compute the term �̂�𝑎
′ =

𝜕𝓠

𝜕𝑎
|
𝜏=�̂�

in (𝐴3.5) 

�̂�𝑎
′ =

𝜕

𝜕𝑎
{
𝑉𝑎𝑟(𝒵)

𝜎2 (1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2))|
𝜏=�̂�

} 

  = −
1

𝜎2
(

4𝑎

𝜋(1 + 𝑎2)2
) [1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)]

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2𝑎(𝑎�̂�𝑖�̂� + �̂�2) + 𝑎2(�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2𝑀 ∗ �̂�𝑎

′ )} 

Finally, we compute term  𝑸𝑎
′′ =

𝜕2𝒬

𝜕𝑎2|
𝜏=�̂�

 in (𝐴3.7) 

𝑸𝑎
′′ =

𝜕

𝜕𝑎
{−

1

𝜎2
(

4𝑎

𝜋(1 + 𝑎2)2
) {1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)}

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2𝑎(𝑎𝓏𝑖𝑀 + 𝑀2) + 𝑎2(𝓏𝑖𝑀 + 𝑎𝐴𝑀 + 𝑎𝓏𝑖𝑀𝑎
′ + 2𝑀 ∗ 𝑀𝑎

′ )}|
𝜏=�̂�

} 
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       = −
4(1 − 3𝑎2)

𝜎2𝜋(1 + 𝑎2)3
{1 + 𝑎2(𝑎�̂�𝑖𝑀 + 𝑀2)}

−
1

𝜎2
(

4𝑎

𝜋(1 + 𝑎2)2
) {2𝑎[𝑎�̂�𝑖�̂� + �̂�2] + 𝑎2(�̂�𝑖𝑀 + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎

′ + 2�̂� ∗ �̂�𝑎
′ )}

−
1

𝜎2
(

4𝑎

𝜋(1 + 𝑎2)2
) {2𝑎(𝑎�̂�𝑖�̂� + �̂�2)

+ 𝑎2(�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ �̂�𝑎

′ )}

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2[𝑎�̂�𝑖�̂� + �̂�2] + 2𝑎[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ �̂�𝑎

′ ]

+ 2𝑎[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ ℳ̂𝑎

′]

+ 𝑎2 [𝐴�̂� + �̂�𝑖�̂�𝑎
′ + 𝐴�̂� + 𝑎𝐴′�̂� + 𝑎𝐴�̂�𝑎

′ + �̂�𝑖�̂�𝑎
′ + 𝑎𝐴�̂�𝑎

′ + 𝑎𝐴�̂�𝑎
′′

+ 2((�̂�𝑎
′ )

2
+ �̂� ∗ �̂�𝑎

′′)]} 

�̂�𝑎
′′ = −

4(1 − 3𝑎2)

𝜎2𝜋(1 + 𝑎2)3 {1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)}

−
1

𝜎2
(

8𝑎

𝜋(1 + 𝑎2)2
) {2𝑎[𝑎�̂�𝑖�̂� + �̂�2] + 𝑎2(�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎

′ + 2�̂� ∗ �̂�𝑎
′ )}

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2[𝑎�̂�𝑖�̂� + �̂�2] + 4𝑎[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ �̂�𝑎

′ ]

+ 𝑎2 [2𝐴�̂� + 2�̂�𝑖�̂�𝑎
′ + 𝑎𝐴′�̂� + 2𝑎𝐴�̂�𝑎

′ + 𝑎𝐴�̂�𝑎
′′ + 2((�̂�𝑎

′ )
2
+ �̂� ∗ �̂�𝑎

′′)]}, 

where �̂�𝑎
′′ =

𝜕

𝜕𝑎
𝑀𝑎

′ |𝜏=�̂�. That is  

           �̂�𝑎
′′ = −

𝜕

𝜕𝑎
{((𝓏𝑖 + 𝑎𝐴)(𝑎𝓏𝑖𝑀 + 𝑀2)|𝜏=�̂�)} 

   = −(2𝐴 + 𝑎𝐴′)[𝑎�̂�𝑖�̂� + �̂�2] − (�̂�𝑖 + 𝑎𝐴)[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ �̂�𝑎

′ ] 

ℳ̂𝑎
′′ = −{(2𝐴 + 𝑎𝐴′)[𝑎�̂�𝑖�̂� + �̂�2] + (�̂�𝑖 + 𝑎𝐴)[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎

′ + 2�̂� ∗ �̂�𝑎
′ ]}. 

A3.3.3 mathematical derivations of terms [−
𝝏𝟐𝒉𝑨

∗

𝝏𝝈𝝏𝒂
] and [−

𝝏𝟐𝒉𝑨
∗

𝝏𝒂𝝏𝝈
] 

The direct calculation of the term −[
𝜕2

𝜕𝑎𝜕𝜎
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂�] is  
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−
𝜕2

𝜕𝑎𝜕𝜎
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂� = −

𝜕

𝜕𝑎
{ (

𝓏𝑖
2

𝜎
− �̂� ∗

𝑎𝓏𝑖

𝜎
−

1

𝜎
|
𝜏=�̂�

)}, 

                                          = −
2�̂�𝑖

𝜎
𝐴 + �̂�𝑎

′ ∗
𝑎�̂�𝑖

𝜎
+

�̂�

𝜎
[�̂�𝑖 + 𝑎𝐴]. 

Therefore,  

                      −
𝜕ℎ∗|𝜏=�̂�

𝜕𝑎𝜕𝜎
= ∑{−

2�̂�𝑖

𝜎
𝐴 + �̂�𝑎

′ ∗
𝑎�̂�𝑖

𝜎
+

�̂�

𝜎
[�̂�𝑖 + 𝑎𝐴]}

𝐺

𝑖=1

. 

Also 

−
𝜕2

𝜕𝜎𝜕𝑎
ℓ𝑖2(𝜽; 𝑣𝑖)|𝜏=�̂� = −

𝜕

𝜕𝜎
{(−�̂�𝑖𝐴 + �̂�[�̂�𝑖 + 𝑎𝐴] −

2𝑎

𝜋(1 + 𝑎2)2𝑉𝑎𝑟(𝒵)
|
𝜏=�̂�

)}, 

                                          =
𝜕

𝜕𝜎
{(�̂�𝑖𝐴 − �̂�[�̂�𝑖 + 𝑎𝐴]|

𝜏=�̂�
)}, 

                                          = −
�̂�𝑖

𝜎
𝐴 + �̂�𝑖𝐴𝜎

′ − �̂�𝜎
′ [�̂�𝑖 + 𝑎𝐴] − �̂� [−

�̂�𝑖

𝜎
+ 𝑎𝐴𝜎

′ ], 

where 

             𝐴𝜎
′ =

𝜕

𝜕𝜎
𝐴 =

𝜕

𝜕𝜎
{−

𝑣𝑖

𝜎
 (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
2𝑎

𝜋(1 + 𝑎2)2
)|

𝜏=�̂�

} 

𝐴𝜎
′ =

𝑣𝑖

𝜎2
 (1 −

2𝑎2

𝜋(1 + 𝑎2)
)

−
1
2

(
2𝑎

𝜋(1 + 𝑎2)2
) = −

𝐴

𝜎
           

Therefore,  

−
𝜕2ℓ𝑖2(𝜽; 𝑣𝑖)

𝜕𝜎𝜕𝑎
= −

�̂�𝑖

𝜎
𝐴 −

�̂�𝑖

𝜎
𝐴 − �̂�𝜎

′ [�̂�𝑖 + 𝑎𝐴] − �̂� [−
�̂�𝑖

𝜎
− 𝑎

𝐴

𝜎
]                            

−
𝜕2ℓ𝑖2(𝜽; 𝑣𝑖)

𝜕𝜎𝜕𝑎
= −

2�̂�𝑖

𝜎
𝐴 − �̂�𝜎

′ [�̂�𝑖 + 𝑎𝐴] +
�̂�

𝜎
[�̂�𝑖 + 𝑎𝐴]                                            

−
𝜕ℎ∗|𝜏=�̂�

𝜕𝜎𝜕𝑎
= ∑{−

2�̂�𝑖

𝜎
𝐴 − �̂�𝜎

′ [�̂�𝑖 + 𝑎𝐴] +
�̂�

𝜎
[�̂�𝑖 + 𝑎𝐴]}

𝐺

𝑖=1

                          

Note: −
𝜕ℎ∗|𝜏=�̂�

𝜕𝜎𝜕𝑎
= −

𝜕ℎ∗|𝜏=�̂�

𝜕𝑎𝜕𝜎
, since 

𝑎�̂�𝑖

𝜎
�̂�𝑎

′ = −�̂�𝜎
′ [�̂�𝑖 + 𝑎𝐴].  

Next, we calculate the term �̂�𝑎𝜎
′′ =

𝜕𝑸

𝜕𝑎𝜕𝜎
|
𝜏=�̂�

 in (𝐴3.7) is 
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�̂�𝑎𝜎
′′ =

𝜕

𝜕𝑎
{−

2

𝜎3
𝑉𝑎𝑟(𝒵){1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)}

+
𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
−𝑎𝓏𝑖

𝜎
𝑀 + 𝑎𝓏𝑖𝑀𝜎

′ + 2𝑀 ∗ 𝑀𝜎
′ }|

𝜏=�̂�

} 

�̂�𝑎𝜎
′′ =

8𝑎

𝜎3𝜋(1 + 𝑎2)2 {1 + 𝑎2(𝑎�̂�𝑖�̂� + �̂�2)}

−
2

𝜎3
𝑉𝑎𝑟(𝒵){2𝑎[𝑎�̂�𝑖�̂� + �̂�2] + 𝑎2[�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎

′ + 2�̂� ∗ �̂�𝑎
′ ]}

+ (
2𝑎𝑉𝑎𝑟(𝒵)

𝜎2
−

4𝑎3

𝜎2𝜋(1 + 𝑎2)2) {
−𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ }

+
𝑎2𝑉𝑎𝑟(𝒵)

𝜎2 {
−�̂�𝑖

𝜎
�̂� −

𝑎𝐴

𝜎
�̂� −

𝑎�̂�𝑖

𝜎
�̂�𝑎

′ + �̂�𝑖�̂�𝜎
′ + 𝑎𝐴�̂�𝜎

′ + 𝑎�̂�𝑖�̂�𝑎𝜎
′′

+ 2[�̂�𝑎
′ ∗ �̂�𝜎

′ + �̂� ∗ �̂�𝑎𝜎
′′ ]}, 

where �̂�𝑎𝜎
′′ =

𝜕

𝜕𝑎
𝑀𝜎

′ |𝜏=�̂�. That is  

�̂�𝑎𝜎
′′ =

𝜕

𝜕𝑎
{
𝑎𝓏𝑖

𝜎
[𝑎𝓏𝑖𝑀 + 𝑀2]|

𝜏=�̂�
} 

�̂�𝑎𝜎
′′ =

1

𝜎
(�̂�𝑖 + 𝑎𝐴){𝑎�̂�𝑖�̂� + �̂�2} +

𝑎�̂�𝑖

𝜎
{�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎

′ + 2�̂� ∗ �̂�𝑎
′ } 

Finally, we calculate the term �̂�𝜎𝑎
′′ =

𝜕𝑸

𝜕𝜎𝜕𝑎
|
𝜏=�̂�

. 

�̂�𝜎𝑎
′′ =

𝜕

𝜕𝜎
{−

1

𝜎2
(

4𝑎

𝜋(1 + 𝑎2)2
) {1 + 𝑎2(𝑎𝓏𝑖𝑀 + 𝑀2)}

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2𝑎(𝑎𝓏𝑖𝑀 + 𝑀2) + 𝑎2(𝓏𝑖𝑀 + 𝑎𝐴𝑀 + 𝑎𝓏𝑖𝑀𝑎
′ + 2𝑀 ∗ 𝑀𝑎

′ )}|
𝜏=�̂�

} 
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�̂�𝜎𝑎
′′ = (

8𝑎

𝜋𝜎3(1 + 𝑎2)2
) {1 + 𝑎2(𝑎𝓏𝑖�̂� + �̂�2)}

−
4𝑎

𝜎2𝜋(1 + 𝑎2)2 {𝑎2 (−
𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ )}

− (
2𝑉𝑎𝑟(𝒵)

𝜎3 ) {2𝑎(𝑎�̂�𝑖�̂� + �̂�2) + 𝑎2(�̂�𝑖�̂� + 𝑎𝐴�̂� + 𝑎�̂�𝑖�̂�𝑎
′ + 2�̂� ∗ �̂�𝑎

′ )}

+ (
𝑉𝑎𝑟(𝒵)

𝜎2 ) {2𝑎 (−
𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2�̂� ∗ �̂�𝜎
′ )

+ 𝑎2 (−
�̂�𝑖

𝜎
�̂� + �̂�𝑖�̂�𝜎

′ + 𝑎𝐴𝜎
′ �̂� + 𝑎𝐴�̂�𝜎

′ −
𝑎�̂�𝑖

𝜎
�̂�𝑎

′ + 𝑎�̂�𝑖�̂�𝜎𝑎
′′

+ 2[�̂�𝜎
′ ∗ �̂�𝑎

′ + �̂� ∗ �̂�𝜎𝑎
′′ ])}, 

where �̂�𝜎𝑎
′′ =

𝜕

𝜕𝜎
(𝑀𝑎

′ |𝜏=�̂�). That is  

�̂�𝜎𝑎
′′ = −

𝜕

𝜕𝜎
{(𝓏𝑖 + 𝑎𝐴)[𝑎𝓏𝑖𝑀 + 𝑀2]|𝜏=�̂�} 

�̂�𝜎𝑎
′′ = −{(−

�̂�𝑖
2

𝜎
+ 𝑎𝐴𝜎

′ ) [𝑎�̂�𝑖�̂� + �̂�2] + (�̂�𝑖 + 𝑎𝐴) [−
𝑎�̂�𝑖

𝜎
�̂� + 𝑎�̂�𝑖�̂�𝜎

′ + 2 ∗ �̂� ∗ �̂�𝜎
′ ]} 
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