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DECIPHERING THE CATALYTIC MECHANISM OF HUMAN MANGANESE 

SUPEROXIDE DISMUTASE 

Jahaun Azadmanesh, Ph.D. 

University of Nebraska, 2020 

Supervisor: Gloria E. O. Borgstahl, Ph.D. 

The livelihood of human cells is heavily dependent on the ability to modulate the presence of 

highly reactive oxygen-based molecules termed reactive oxygen species (ROS). In excess, ROS 

facilitate oxidative damage to the macromolecules of cellular life. SODs are the major family of 

antioxidant proteins that prevent the buildup of overwhelming amounts of ROS within cells. 

Sometimes dubbed the “first line of defense” against oxidative damage, SODs defend against the 

harmful accumulation of ROS by eliminating superoxide. Superoxide is a ROS itself that is also a 

precursor to much more harmful ROS molecules. MnSOD is the manganese containing form of 

human SODs that dwells within the mitochondria and is responsible for protecting the organelle 

against superoxide-mediated damage. The protein is arguably the most significant antioxidant 

enzyme as the mitochondria are especially integral for cellular vitality. This is exemplified by the 

embryonic lethality of mice lacking MnSOD and the multitude of human disease states that 

manifest as a result of dysfunctional MnSOD. The bioprotective attributes of MnSOD have 

attracted the attention of clinicians and is illustrated by the multiple ongoing clinical trials that 

attempt to mimic the function of the enzyme. While MnSOD has proven to be of significant 

importance for human vitality and has been studied extensively since its discovery over 50 years 

ago, its atom-by-atom mechanism has still been elusive and the mechanism of MnSOD has yet to 

be defined due to its nature of catalysis. MnSOD performs its function through concerted proton-

electron transfers (CPETs) at specific sites of the enzyme that have been extremely difficult to 

detect experimentally. An emerging biophysical tool capable of circumventing previous 

experimental obstacles is neutron protein crystallography. This method involves diffracting 
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neutrons off of crystallized protein samples with controlled electronic states into a pattern that can 

be deciphered for specific proton sites thereby permitting the experimental coupling of proton and 

electron transfers. In this thesis work, significant revelations are made for the mechanism of 

MnSOD using a multitude of approaches, including neutron crystallography where significant 

developments are also made for the emerging technique. 



iv 

 

Table of Contents 

Table of Contents .............................................................................................................................. iv 

List of Figures.................................................................................................................................... vi 

List of Tables .................................................................................................................................... vii 

List of Appendix Figures ................................................................................................................. viii 

List of Appendix Tables .................................................................................................................. viii 

Abbreviations .................................................................................................................................... ix 

Chapter 1: Introduction ....................................................................................................................... 1 

1.1 Reactive Oxygen Species and Mitochondria ............................................................................ 1 

1.2 Superoxide Production by the Mitochondria and Superoxide Dismutases ............................... 2 

1.3 Human Superoxide Dismutases ................................................................................................ 3 

1.4 Mitochondrial Preservation by Superoxide Dismutases ........................................................... 4 

1.5 Mitochondrial Oxidative Damage and its Mechanisms ............................................................ 6 

1.6 Catalytic Properties of Human Superoxide Dismutases ......................................................... 13 

1.7 Kinetic Properties of Human Manganese Superoxide Dismutase .......................................... 14 

1.8 Production Inhibition .............................................................................................................. 16 

1.9 Dysfunction of Human Manganese Superoxide Dismutase ................................................... 16 

1.10 Mechanistic Insights from Previous Structures .................................................................... 18 

1.12 Protein Crystallography ........................................................................................................ 25 

1.13 X-ray and Neutron Diffraction for MnSOD ......................................................................... 31 

Chapter 2: Substrate-analog Binding and Electrostatic Surfaces of Human MnSOD ...................... 36 

2.1 Introduction ............................................................................................................................ 36 

2.2 Materials and Methods ........................................................................................................... 37 

2.2.1 Protein Purification and Crystallization ........................................................................... 37 

2.2.2 Data Collection and Structure Determination .................................................................. 38 

2.2.3 Electrostatic Surface Calculations ................................................................................... 38 

2.3 Results and Discussion ........................................................................................................... 39 

2.3.1 Azide Binding to Human MnSOD .................................................................................. 39 

2.3.2 Electrostatic Guidance of Anionic Substrate to the Active Site ...................................... 44 

2.3.3 Players in Electrostatic Guidance and Substrate Entry into the Active Site .................... 45 

2.4 Conclusions ............................................................................................................................ 49 

Chapter 3: Developing a System for Neutron Diffraction of MnSOD ............................................. 50 

3.1 Introduction ............................................................................................................................ 50 

3.2 Materials and Methods ........................................................................................................... 51 

3.2.1 Adaptation to Deuterium ................................................................................................. 51 



v 

 

3.2.2 Perdeuterated Expression ................................................................................................ 52 

3.2.3 Purification ...................................................................................................................... 53 

3.2.4 Crystallization .................................................................................................................. 53 

3.2.5 Deuterium Exchange ....................................................................................................... 54 

3.2.6 Preparation for Neutron Diffraction ................................................................................ 55 

3.3 Results and Discussion ........................................................................................................... 56 

Chapter 4: Redox Manipulation of MnSOD ..................................................................................... 63 

4.1 Introduction ............................................................................................................................ 63 

4.2 Materials and Methods ........................................................................................................... 65 

4.2.1 Perdeuterated Expression, Purification, and Crystallization ........................................... 65 

4.2.2 Redox manipulation ......................................................................................................... 65 

4.2.3 Neutron Data Collection ...................................................................................................... 68 

4.3 Results and Discussion ........................................................................................................... 70 

4.3.1 Redox manipulation ......................................................................................................... 70 

4.3.2 Optimizing Treatment Conditions and Determining Which Technique to Use .............. 78 

4.3.3 Feasibility for Neutron Diffraction .................................................................................. 80 

4.4 Conclusions ............................................................................................................................ 81 

4.4.1 Mechanism of Interaction Between Redox Agents and MnSOD Crystals ...................... 81 

4.4.2 Hydrogen Peroxide as a Reducing Agent and Substrate ................................................. 82 

4.4.3 Future Directions ............................................................................................................. 83 

Chapter 5: Neutron Structures of Oxidized and Reduced MnSOD .................................................. 85 

5.1 Introduction ............................................................................................................................ 85 

5.2 Materials and methods ............................................................................................................ 88 

5.2.1 Perdeuterated expression, purification, and crystallization ............................................. 88 

5.2.2 Redox manipulation of perdeuterated MnSOD crystals .................................................. 88 

5.2.3 Neutron and X-ray data collection ................................................................................... 88 

5.2.4 Data processing and refinement ...................................................................................... 89 

5.2.5 Computational Details ..................................................................................................... 91 

5.2.6 Bonding orbital analysis .................................................................................................. 92 

5.3 Results and discussion ............................................................................................................ 93 

5.3.1 Direct evidence for CPETs at the active site metal with a previously unobserved and 

unusual glutamine deprotonation .............................................................................................. 93 

5.3.2 Tyr34 demonstrates an unusual pKa and forms a SSHB with the Gln143 amide anion 102 

5.3.3 Serendipitous ligand binding to Mn2+SOD helps explain catalysis ............................... 106 

5.3.4 His30 has unusual pKa that is tied to Tyr166 from across the dimer interface .............. 108 



vi 

 

5.4 Conclusions .......................................................................................................................... 113 

Conclusions and Future Directions................................................................................................. 116 

6.1 Conclusions .......................................................................................................................... 116 

6.2 Future Directions .................................................................................................................. 119 

Appendix 1: Preliminary Refinement of the Cryo-trapped W161F MnSOD-Peroxide Complex .. 122 

Introduction ................................................................................................................................ 122 

Materials and methods ................................................................................................................ 123 

Results ........................................................................................................................................ 125 

Appendix 2: Preliminary Refinement of Y34F MnSOD in Oxidized Form................................... 128 

Introduction ................................................................................................................................ 128 

Materials and methods ................................................................................................................ 128 

Results ........................................................................................................................................ 131 

References ...................................................................................................................................... 133 

 

List of Figures 

Figure 1.1 O2
•– production by the ETC. .............................................................................................. 5 

Figure 1.2 ROS are formed from O2
•–. ............................................................................................... 8 

Figure 1.3 Structure of human MnSOD. .......................................................................................... 19 

Figure 1.4 Human MnSOD 5-6-5 mechanistic model. ..................................................................... 22 

Figure 1.5 Bragg’s law. .................................................................................................................... 26 

Figure 1.6 Processes leading to the solution of a crystal structure ................................................... 30 

Figure 1.7 X-ray Versus Neutron Diffraction .................................................................................. 33 

Figure 2.1 Active site geometry and electron density of azide-soaked human MnSOD. ................. 42 

Figure 2.2 Solvent accessible electrostatic surfaces of oxidized human MnSOD with differing 

active site coordination. .................................................................................................................... 46 

Figure 2.3 Charged surface residues that contribute to the electrostatic surface potential of human 

MnSOD in the Mn3+-OH2
 state ......................................................................................................... 47 

Figure 3.1 Fermenter growth of perdeuterated human MnSOD ....................................................... 58 

Figure 3.2 Purification of human MnSOD. ...................................................................................... 60 

Figure 3.3 Crystals of perdeuterated human MnSOD ...................................................................... 61 

Figure 3.4 The diffraction pattern of human MnSOD from the spherical detector orientation of 

MaNDi .............................................................................................................................................. 62 



vii 

 

Figure 4.1 Representative Images of Perdeuterated As-isolated, Oxidized, and Reduced 

Perdeuterated Human MnSOD Crystals ........................................................................................... 67 

Figure 4.2 Redox Manipulation of Perdeuterated human MnSOD Crystals via Vapor Diffusion 

Within Capillaries ............................................................................................................................. 74 

Figure 4.3 Procedure for the ‘Touch Soak’ Method for Reduction of Perdeuterated MnSOD 

Crystals ............................................................................................................................................. 75 

Figure 4.4 Procedure for Reducing Perdeuterated MnSOD Crystals by a Full Soak Within a 

Capillary ........................................................................................................................................... 77 

Figure 4.5 Effects of Crystal Size and Dithionite Treatment Method on MnSOD Crystal Integrity 79 

Figure 5.1 Structure of tetrameric human MnSOD from PDB ID 5VF9 ......................................... 87 

Figure 5.2 Proton transfer between Gln143 and the Mn-ligated solvent molecule WAT1 .............. 95 

Figure 5.3 The suggested mechanism of Gln143 → WAT1 proton transfer .................................... 98 

Figure 5.4 Differential protonations and active site coordination of MnSOD ............................... 104 

Figure 5.5 Residual density for the hydroxyl group of Tyr34 in Mn2+SOD of chain B ................. 105 

Figure 5.6 Solvent accessibility differences between chains of the asymmetric AB dimer for P6122 

MnSOD .......................................................................................................................................... 107 

Figure 5.7 Differential protonation states of His30 and Tyr166 for Mn3+SOD .............................. 109 

Figure 5.8 Protonation states of His30 and Tyr166 for Mn2+SOD ................................................. 111 

Figure 5.9 A suggested mechanism for MnSOD-active site proton transfers that coincide with 

electron gain or loss at the Mn........................................................................................................ 115 

 

List of Tables 

Table 1.1 Comparison of WT and Y34F MnSOD Attributes ........................................................... 34 

Table 2.1 Crystallographic Data and Refinement Statistics for hMnSOD and hMnSOD-azide ...... 40 

Table 2.2 Active Site Geometry Comparisons of Native and Azide-Bound MnSOD ..................... 41 

Table 3.1 X-ray and Neutron Data Collection Statistics for a 0.26 mm3 Crystal ............................. 57 

Table 4.1 Neutron Data Collection Statistics for Oxidized and Reduced Crystals .......................... 69 

Table 5.1 Data collection and refinement statistics for oxidized and reduced MnSOD ................... 90 

Table 5.2 Gln143 bonding character from CLPO analysis ............................................................... 99 

Table 5.3 Charge and energy interactions of donor-acceptor CLPO analysis ................................ 100 

Table 5.4 Percent covalence of shared hydrogen atoms in SSHBs bonds from CLPO analysis .... 101 

 

file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010664
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010665
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010666
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010667
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010668
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010669
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010670
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010671
file:///C:/Users/jahaun.azadmanesh/Documents/Dissertation/dissertation-g.docx%23_Toc54010672


viii 

 

List of Appendix Figures 

Figure A-1.1 X-ray data of cryo-trapped peroxide at the active site of the W161F MnSOD ........ 126 

Figure A-1.2 Neutron data of cryo-trapped peroxide at the active site of the W161F MnSOD ..... 127 

Figure A-2.13 Preliminary structural refinement of neutron data obtained from a perdeuterated and 

oxidized Y34F MnSOD crystal ...................................................................................................... 132 

 

List of Appendix Tables 

Table A-1.1 Data collection statistics for W161F-MnSOD-Peroxide ............................................ 124 

Table A-2.1 Data collection statistics for Y34F MnSOD ............................................................... 130 

 

  

file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556181
file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556182
file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556183
file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556183
file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556215
file:///E:/Fall_2020/dissertation-g.docx%23_Toc54556216


ix 

 

Abbreviations 

ADP      Adenosine Diphosphate 

ATP      Adenosine Triphosphate 

C      Carbon 

CPET      Concerted Proton-Electron Transfer 

CuZnSOD     Copper Zinc Superoxide Dismutase 

D      Deuterium 

DFT      Density Functional Theory 

dG      Deoxyguanosine 

D2O2      Deuterated Perodixe 

DNA      Deoxyribose Nucleic Acid 

EC-CuZnSOD     Extracellular Copper Zinc Superoxide Dismutase 

E. coli      Escherichia coli 

ETC      Electron Transport Chain 

FeSOD      Iron Superoxide Dismutase 

H      Hydrogen 

H2O2      Hydrogen peroxide 

IC-CuZnSOD     Intracellular Copper Zinc Superoxide Dismutase 

MaNDi      Macromolecular Neutron Diffractometer 

MIMS      Mitochondrial Intermembrane Space 

MnSOD     Manganese Superoxide Dismutase 

MM      Molecular Mechanics 

N      Nitrogen 

NO•      Nitric Oxide 

NiSOD      Nickel Superoxide Dismutase 

NMR      Nuclear Magnetic Resonance 

NPC      Neutron Protein Crystallography 

O      Oxygen 

ONOO-      Peroxynitrite 

O2
•-      Superoxide 

-OH      Hydroxide 

•OH      Hydroxyl Radical 

QM      Quantum Mechanics 

ROS      Reactive Oxygen Species 

SOD      Superoxide Dismutase 

SSHB      Short-Strong Hydrogen Bond 

T. thermophilus     Thermus thermophilus 

 



1 

 

Chapter 1: Introduction 

1.1 Reactive Oxygen Species and Mitochondria 

 Reactive oxygen species (ROS) are oxygen-based molecules that are characterized by high 

reactivity. The majority of ROS are oxidants, meaning that they abstract electrons from the 

molecules they interact with. At basal levels, ROS are integral to cellular processes and human 

vitality. Major physiological systems of the human body rely on ROS for modulating their 

function. For example, the cardiovascular system utilizes ROS as signaling molecules for 

regulating vasodilation while white blood cells of the immune system use ROS to eliminate 

invaders [1,2]. In excess, the high reactivity of ROS imposes deleterious consequences to cells. 

Copious amounts of ROS inflict havoc on the molecules of cell that may lead to dysfunction of 

cellular processes or death. This is especially detrimental to the human body when cardiomyocytes 

and neurons are the recipients of high levels of ROS. Excessive ROS in these cells correlate with 

the presence of cardiovascular disorders and neurodegenerative diseases [1,2]. While these are only 

two examples of the detrimental effects on the human body, a plethora of disease states are related 

with elevated levels of ROS [3]. 

 Mitochondrion are essential for supplying cells with energy but are also responsible for the 

majority of endogenous cellular ROS production as a byproduct of energy metabolism [4]. To 

counteract the enrichment of ROS oxidants within and proximal to the organelle, evolution has 

provided several antioxidant systems that decrease ROS levels. This balance of ROS generation 

and ROS elimination composes the ROS-oxidative stress axis. A proper oxidative balance is 

present when antioxidant systems can properly decrease an abundance of ROS generated from 

mitochondrial metabolism. During this balance, ROS are prevalent only at the basal levels needed 

for optimal cellular function. A perturbation of the balance where ROS levels overwhelm the levels 

of antioxidants is termed oxidative stress [5]. Cells harbor an oxidative stress response to 

upregulate the expression of antioxidant genes during these periods. Such an adaptation is often 
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found in cell types with increased energy demands where the use of mitochondrial metabolism is 

elevated, such as cardiomyocytes [2]. In the event the cell’s oxidative stress response is not 

adequate for the amount of ROS present, such as in the presence of a mutated antioxidant gene or 

aberrant gene regulation, oxidative damage begins to occur. 

1.2 Superoxide Production by the Mitochondria and Superoxide Dismutases 

 The mitochondrial electron transport chain (ETC) is a group of protein complexes 

responsible for supplying cells with adenosine triphosphate (ATP), the ‘energy currency’ that 

powers processes within the cell. Electrons are transferred across the complexes of the ETC for the 

purpose of creating a proton gradient. The electrochemical gradient is then utilized by the ETC to 

drive the production of ATP within the mitochondria. While the mitochondrial ETC is the primary 

source of energy for cells, it is also the primary source of intracellular ROS [4]. Electron transport 

between complexes does not harbor complete fidelity due to the prevalence of electron leakage 

from the ETC. These leaky electrons have the potential to perform a one-electron reduction with 

molecular oxygen (O2) to form superoxide (O2
•-), the first ROS created sequentially as a byproduct 

mitochondrial metabolism. Whereas O2
•– is poorly reactive toward biological macromolecules, it is 

a precursor for the formation of highly reactive forms of ROS that are capable of causing damage 

to biological macromolecules. If left unmanaged, excessive amounts of O2
•- lead to an abundance 

of damaging ROS that are the basis of several disease states [6].  

 Superoxide dismutases (SODs) are antioxidant metalloproteins that are the ‘first line of 

defense’ against excessive ROS by lowering the levels of O2
•-. These metalloprotein enzymes 

convert O2
•– into either O2 or H2O2 depending on the redox state of the active-site metal. For all 

SODs excluding the CuZn isoform, a trivalent metal oxidizes O2
•– to form O2 while a divalent 

metal reduces O2
•– with the coupling of two proton transfers to form H2O2 (Scheme 1) [7]. The Cu 

of CuZnSOD instead shuffles between divalent and monovalent states while the divalent Zn plays 
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only a structural role (Scheme 2). The catalytic activity of SODs can thereby consist of cyclic 

redox reactions of the active site metal to convert O2
•– into its products. 

 The different isoforms of SODs can be defined by their core metal(s) coordinated at the 

active site: Ni, Fe, Cu/Zn or Mn. NiSOD is exclusive to prokaryotes while the other three are found 

in both prokaryotes and eukaryotes. In eukaryotes, FeSOD is found within chloroplasts, and 

CuZnSOD resides within the cytoplasm, mitochondrial intermembrane space (MIMS), and 

extracellular environment. MnSOD dwells within the mitochondrial matrix. The CuZn and Mn 

SODs are the only isoforms found in humans. The capacity for SODs to decrease O2
•– levels within 

cells is associated with longevity and the presence or absence of disease states. Each human 

isoform seems to play a preventive role in specific pathologies that reflects their location [8]. 

1.3 Human Superoxide Dismutases 

 The two human isoforms of CuZnSOD, intracellular-cytoplasmic/MIMS and extracellular 

forms (hereafter referred to as IC-CuZnSOD and EC-CuZnSOD, respectively), are 60% 

homologous with similar active site architecture and are likely to follow the same catalytic 

mechanism [9,10]. EC-CuZnSOD residing within the extracellular environment provides cells a 

defense against O2
•– generated from exogenous or environmental stress. EC-CuZnSOD does not 

seem to play a direct role in shielding mitochondria against ROS [11]. It is nonetheless vital in 

preventing oxidative effects outside cells, such as fibrosis in chronic obstructive pulmonary disease 

[9]. In regards to preserving mitochondrial function, the residence of IC-CuZnSOD within the 

MIMS is of major importance in conjunction with the mitochondrial MnSOD. 

Scheme 1:  

M3+ + O2
•- ↔ M2+ + O2  M2+ + O2

•- + 2H+ ↔ M3+ + H2O2  M = Mn, Fe, or Ni 

Scheme 2: 

M2+ + O2
•- ↔ M+ + O2  M+ + O2

•- + 2H+ ↔ M2+ + H2O2   M = Cu 

 

 

 

Cu2+ + O2
•- ↔ Cu+ + O2  Cu+ + O2

•- + 2H+ ↔ Cu2+ + H2O2  
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 For humans, IC-CuZnSOD compromises 90% of total SOD within a cell [12]. While 

MnSOD constitutes only a small fraction of total SOD, its specific concentration within 

mitochondria is significant due to the high levels of ROS production by the organelle [4]. IC-

CuZnSOD and MnSOD work in tandem to avert mitochondrial degeneration, as observed in 

knockout mice [12]. Mice lacking IC-CuZnSOD have ~70% of the lifespan compared to their 

wildtype counterparts [13]. These knockout mice appear normal during weaning but develop adult-

onset neuropathies as a consequence of mitochondrial dysfunction, which includes motor neuron 

degeneration and axonal damage [14]. Knockout mice of MnSOD die within the first ten days of 

life due to impairment of mitochondrial function in neurons and cardiac myocytes [15,16]. 

Together, IC-CuZnSOD and MnSOD are vital in preserving the mitochondria and thereby cellular 

function. 

1.4 Mitochondrial Preservation by Superoxide Dismutases 

 Among the mitochondrial ETC members involved in shuttling electrons, complexes I and 

III are the dominant sites of electron leakage for O2
•– formation (Figure 1.1). Complex I leaks 

toward the mitochondrial matrix whereas complex III leaks toward the intermembrane space [17]. 

Due to the permeability of the outer mitochondrial membrane, ROS may freely diffuse to the 

cytoplasm after passing through the intermembrane space. Conversely, O2
•– that is generated 

because of complex I electron leakage is confined within the matrix. This compartmentalization of 

O2
•– generation requires similar assortment of SODs to counteract the deleterious effects of the 

ROS. 

 IC-CuZnSOD cannot compensate for lack of MnSOD and vice versa which reflects their 

non-redundant and strategic locations [11]. The presence of IC-CuZnSOD in the intermembrane 

space and cytoplasm safeguards against O2
•– produced from complex III while the residence of 

MnSOD in the matrix dismutes O2
•– formed by complex I. However, O2

•– within the matrix is more  
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Figure Error! No text of specified style in document..A O2
•– production by the ETC. 

 
Figure 1.1: O2

•– production by the ETC. Complexes I-V are depicted on the inner mitochondrial 

membrane along with coenzyme Q (CoQ) and cytochrome c (Cyt c). Black arrows show the electron 

path normally used for ATP generation. Red arrows display sites of electron leakage from the ETC 

leading to O2
•– formation. Intracellular CuZnSOD dismutes O2

•– in the intermembrane space and 

cytoplasm while MnSOD protects against O2
•– produced in the matrix. 
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detrimental because of its confinement by the inner mitochondrial membrane, as ROS produced in 

the intermembrane space can diffuse to the cytoplasm. This explains why mice lacking MnSOD 

have a significantly short lifespan (< 10 days) compared to mice without IC-CuZnSOD (120 

weeks) [11]. 

1.5 Mitochondrial Oxidative Damage and its Mechanisms 

 Precise workings of biological macromolecules are instrumental for the preservation of 

life. These include proteins that act as biological catalysts, DNA that stores genetic information and 

is used to produce protein, and lipids that compose the semi-permeable membrane of cells. It is 

therefore in the interest of cells to maintain the integrity of these macromolecules to prevent 

dysfunction or death by utilizing their antioxidant systems. However, when the antioxidant systems 

become overwhelmed from excessive amounts of ROS, damage occurs due to the high-reactivity 

oxidative nature of ROS. This leads to protein inactivation, DNA fragmentation, and alterations to 

the permeability of the cell membrane due to lipid peroxidation [18]. 

 Cells are especially vulnerable to oxidative damage of the mitochondria. If oxidative 

damage causes mitochondrial energy supplying processes to malfunction, cells will lack the needed 

energy levels for life and die [19]. Excessive ROS levels are the cause of a significant number of 

diseases that manifest due to mitochondrial-related cell death [20]. The presence of these damaging 

amounts of ROS requires copious amounts of O2
•–. While O2

•– itself reacts poorly with biological 

macromolecules, it reacts with other endogenous small molecules, such as nitric oxide (•NO), to 

create products that are capable of harming mitochondria [21,22]. Within this section, the 

mechanism in which O2
•– and its derivatives harm mitochondria is briefly discussed. 

 The basis for the bio-protective significance of SODs is the removal of the O2
•– precursor 

that contributes to the formation of detrimental ROS. O2
•– is capable of reacting with several 

molecules to produce injurious reactive species, such as peroxynitrite (ONOO-), hydroxyl radical  
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(•OH), and nitrogen dioxide (•NO2) (Figure 1.2). All these molecules are highly reactive and 

capable of damaging the cellular macromolecules such as DNA, proteins, and lipids [4,23]. 

ONOO– is a product of a reaction between O2
•– and •NO. The source of endogenous •NO are nitric 

oxide synthases (NOSs), which carry out physiological signaling in processes such as vasodilation 

and inflammation [24]. There are three isoforms of NOS: NOS1, NOS2, and NOS3, each being 

cell/tissue type specific [25]. Depending on the cell type, more than one NOS isoform may be 

expressed with subcellular-specific localization, such as the Golgi apparatus or mitochondria [26]. 

•NO is a potent signaling molecule due to its ability to diffuse across membranes freely. Produced 

in the mitochondria it encounters the O2
•– confined in the mitochondria may encounter •NO 

produced within or out the organelle, formation of harmful ONOO– within the mitochondria [27]. 

The likelihood of ONOO– formation both within and outside the mitochondria is high given that the 

reaction between O2
•– and •NO is diffusion-limited, meaning that every time a pair of the two 

molecules collide, ONOO– is formed [24]. Another contributing factor to the likelihood of ONOO– 

production is the concentration of •NO. At basal physiological conditions, the concentrations of 

•NO are similar to the concentrations of endogenous SODs [24], meaning there is a delicate balance 

among the concentrations of O2
•–, SODs, and •NO that minimize ONOO– formation in 

physiologically normal (i.e., under low oxidative stress) cells. A disruption in this balance increases 

oxidative stress, such as neuroinflammation that increases the levels of O2
•– and •NO production, 

raising the amount of ONOO– proportionally. 

 There are several ways that ONOO– contributes to mitochondrial dysfunction. It can react 

with Fe-S clusters found in several crucial mitochondrial proteins, removing a Fe2+ atom, and 

inactivating them. Free Fe2+ can then lead to •OH formation via the Fenton reaction [28]. One 

example of vital mitochondrial protein inactivation is aconitase, which isomerizes citrate to 

isocitrate in the citric acid cycle. Aconitase Fe-S cluster inactivation contributes to mitochondrial 

dysfunction, cell death, and neurodegeneration as a result of the release of free Fe2+ [29]. Similarly,  
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Figure 1.2: ROS are formed from O2

•–. O2
•– may act as a reducing agent for free or enzyme-bound Fe3+ 

atoms to produce Fe2+. Subsequent Fenton reaction of Fe2+ with H2O2 yields highly reactive •OH. Fe3+ is 

reformed as a by-product and can be reused. Alternatively, O2
•– reacts with •NO at diffusion-limited rates 

to form ONOO–. ONOO– directly damages macromolecules of the cell but can also decompose to •OH 

and •NO2 upon its protonation. 
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ONOO– can react with Fe-S clusters found in complexes of the ETC, irreversibly inactivating them 

and disrupting ATP synthesis [28]. However, it is debated whether the Fe-S clusters of the ETC are 

somehow resistant to oxidative damage [30]. ONOO– contributes to a cascade of reactions that 

promote •OH formation and ATP synthesis inactivation. 

 ONOO– can also inactivate proteins through reaction with amino acids. For example, 

ONOO– can oxidize critical cysteine active site residues of enzymes and inactivate catalysis. 

Inactivation of tyrosine phosphatases by ONOO– oxidation is especially noteworthy [24], as this 

foregoes loss of anti-apoptotic signaling cascades in brain cells, leading to programmed cell death 

[31]. ONOO– can also oxidize methionine to form methionine sulfoxide, which can modulate 

enzyme activities. Excessive methionine sulfoxide formation correlates with development of 

Alzheimer’s disease in brain tissues [24]. Both IC- and EC-CuZnSODs can be inactivated by 

ONOO– by reacting with the active site metal and active site histidine to form a histidinyl radical, 

decreasing functional amounts of antioxidant systems [24]. ONOO– oxidizes and inactivates 

complexes of the ETC and antioxidant proteins that contribute to mitochondrial dysfunction. 

 A large part of mitochondrial toxicity is lipid peroxidation initiated by the decomposition 

products of ONOO-, •OH and •NO2 (Figure 1.2). These decomposition products are discussed in the 

subsequent paragraphs. Peroxidation of phospholipids is a prominent marker of mitochondrial 

dysfunction and neurodegeneration [32]. The direct effects of lipid peroxidation by •OH and •NO2 

are also explored in the subsequent paragraphs. 

 ONOO– also damages mitochondrial DNA and culminates in cell death by dysregulation of 

mitochondrial processes [6,24]. In particular, guanine is the most susceptible to oxidation by 

ONOO–, which results in its fragmentation. This process induces mutagenesis and double-strand 

breaks of mitochondrial DNA. ONOO– can also attack the sugar backbone of DNA to cause single-

strand breaks. These damaging processes of ONOO– to mitochondrial DNA (and nuclear DNA) are 

strongly related to cell death and inflammation, which ultimately generate additional ROS [24]. 
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 •OH is highly reactive and can damage neighboring molecules at near diffusion-limited 

rates [33-35]. Considered as the most biologically active and damaging free radical, •OH is a strong 

contributor to mitochondrial dysfunction that can lead to neurodegenerative pathologies [36,37]. 

Generation of •OH can occur through two reactions within mitochondria (Figure 1.2). First, a redox 

reaction of H2O2 with free Fe2+ leads to the formation of •OH with Fe3+ and hydroxide ion (OH–) as 

byproducts [36]. This reaction is also known as the Fenton reaction. In the presence of O2
•–, pools 

of the reactants for this pathway of •OH generation (H2O2 and Fe3+) are increased. Concentration of 

H2O2 is increased during an increase of O2
•– concentration due to catalysis by SODs (Scheme 1). 

Free Fe2+ becomes available as a result of O2
•– donating an electron to Fe3+ found in Fe-S cluster 

proteins of the mitochondria to generate Fe2+ and oxygen (Figure 1.2; top pathway). Fe in the 

divalent form favors disassociation from these clusters. Of note, these Fe-S clusters are abundant 

among proteins. Free Fe3+, a product of Fenton chemistry, can also be used to produce Fe2+. 

Second, at physiological conditions, ONOO– is protonated and degrades to •OH and •NO2 (Figure 

1.2; bottom pathway) [38]. At 37 °C, the pKa of ONOO– is 7.5. The mitochondrial matrix has a pH 

of 7 while the cytosol has a pH of 7.4, meaning that protonation of ONOO– is likely, with 

protonation more common in the mitochondrial matrix due to its lower pH value [39]. 

 •OH plays prominent roles during oxidative stress, specifically in the presence of O2. 

Furthermore, neurodegenerative diseases correlate with the prevalence of •OH formation [40]. O2
•– 

is a precursor of •OH, meaning the concentrations of O2
•– and the activity of SODs influence the 

amount of •OH formation within the mitochondria and cytosol. This highly biologically reactive 

free radical interacts with mitochondrial proteins, lipids, and DNA, leading to the deterioration of 

the mitochondria. 

 Macromolecular proteins are highly vulnerable to denaturation by •OH because tyrosine 

and tryptophan amino acid residues are susceptible to oxidation. Upon exposure to •OH, tyrosine 

residues bind other tyrosines covalently, and insoluble protein aggregates form due to this covalent 
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modification [46]. Tryptophan is also rapidly degraded by •OH [41]. Given the abundance of these 

two residues in proteins, the presence of •OH leads to aggregation, direct fragmentation, and 

intracellular proteolysis of critical proteins central for mitochondrial function. 

 •OH initiates the peroxidation of phospholipids and is a prominent marker of mitochondrial 

dysfunction and neurodegeneration [32]. Phospholipid peroxidation increases membrane 

permeability, which is catastrophic to the mitochondrial inner membrane because a large part of its 

biochemical function relies on a gradient of molecules between the mitochondrial matrix and 

MIMS [42]. A notable example of a process affected by increased membrane permeability is the 

generation of ATP by oxidative phosphorylation. The proton gradient that drives phosphorylation 

of ADP to ATP is disrupted by membrane permeability, leading to attenuated ATP synthesis. 

Various transporters and respiratory enzymes needed to maintain mitochondrial function and ATP 

synthesis are also affected by MIMS permeability. Peroxidation can also exacerbate neurological 

dysfunction during neuroinflammation. Lipids of myelin sheaths can undergo peroxidation by •OH 

leading to demyelination, causing impaired conductance of nerve signals [43]. Hence, peroxidation 

of lipids by •OH poses deleterious consequences to both mitochondrial function and neurological 

function. 

 One of the principal products of DNA oxidation is 8-oxo-2ʹ-deoxyguanosine (8-oxo-dG), 

which is generated by the addition of •OH [44,45]. Mitochondrial DNA is especially susceptible to 

oxidation compared to nuclear DNA given that O2
•– generation is more prominent within the 

mitochondrial matrix. The DNA adduct, 8-oxo-dG can lead to mutagenesis [46]. Mutations of the 

mitochondrial DNA may lead to aberrant protein function, including those of the ETC, leading to 

further electron leakage, subsequent O2
•– generation, and exacerbating oxidative insults to the 

mitochondria [44,45]. Also, •OH can attack the sugar moieties of mitochondrial DNA that result in 

DNA strand breaks. Thus, •OH contributes to mitochondrial dysfunction by damaging the protein-

encoding genes of mitochondrial DNA. 
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 Similarly to other reactive species, •NO2 also contributes to mitochondrial dysfunction by 

damaging molecules that maintain the vitality of this organelle. For example, •NO2 reacts with 

tyrosine to form 3-nitrotyrosine, adding a bulky element and lowering the pKa of the hydroxyl 

group 2–3 units [47]. When the nitro group causes steric restrictions for catalysis, or if a protonated 

hydroxyl group is required for hydrogen bonding critical to activity, then 3-nitrotyrosine can 

inactivate the enzyme. MnSOD is especially susceptible to inactivation by nitration of Tyr34, 

located at its active site [48]. The nitro group sterically impedes the substrate access funnel that 

O2
•– can enter and lead to nearly complete inhibition of MnSOD activity. This inactivation of 

MnSOD promotes further oxidative stress by compromising the central mitochondrial anti-oxidant 

system. Other critical mitochondrial proteins that are vulnerable to inactivation by nitration include 

cytochrome c, voltage-dependent anion channel, and enzymes of the citric acid cycle [49,50]. 

Excessive nitration ultimately leads to the formation of the permeability transition pore that leads 

to apoptosis [47]. 

 NO2 initiates lipid peroxidation [49] and causes mitochondria DNA damage [51]. As a 

radical, NO2 can abstract hydrogen atoms from either lipids or the sugar backbone of DNA to form 

lipid or sugar radicals, respectively. Lipid radicals either propagate formation of other lipid radicals 

by further abstracting hydrogen atoms from neighboring lipids or end up as peroxyl radical groups 

from the addition of O2 at the radical site. Membrane-bound proteins, such as those of the ETC, 

require particular lipid environments for their actions and are hampered by adjacent products of 

lipid peroxidation [57]. Sugar radicals lead to strand breaks of the mitochondrial DNA. Studies 

suggest that mitochondrial DNA damage plays a causative role to neurodegeneration [52,53]. Lipid 

peroxidation and mitochondria DNA damage are hallmarks of mitochondrial dysfunction and 

neurodegenerative diseases. 

 While the majority of O2
•– mediated damage is a consequence of it acting as a precursor to 

form reactive species, there exists a direct mechanism of O2
•– damage to the mitochondria. Like 
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ONOO–, O2
•– liberates Fe atoms from Fe-S clusters that normally act as needed cofactors for the 

enzymatic function of several mitochondrial proteins [54]. In particular, several enzymes of the 

citric acid cycle and amino acid biosynthesis pathway contain these clusters and are vulnerable to 

O2
•– mediated inactivation [54,55]. Consequently, excessive O2

•– levels in the mitochondria cause 

an elevation of free-iron levels. High free iron levels coupled with large amounts of H2O2 (such as 

from increased SOD activity due to high amounts of O2
•–) instigates Fenton reaction to produce 

copious sums of •OH (Figure 1.2). The damage to Fe-S by O2
•– and increased Fe levels underlie 

mitochondrial dysfunction and neurodegenerative disease progression [56,57]. 

 High levels of H2O2 are cytotoxic as it is a ROS and a precursor to the highly reactive •OH 

[58]. As SOD activity forms H2O2, it seems cells favor H2O2 production over the presence of O2
•–. 

Several molecular attributions explain this phenomenon; first, for every two O2
•– molecules 

removed by SODs one molecule of H2O2 is produced, which effectively reduces the concentration 

of ROS within a cell. Second, H2O2 is capable of crossing membranes while O2
•– is not [59]. For 

mitochondria, this is important because the inner mitochondrial membrane traps O2
•– within the 

organelle while H2O2 can diffuse out. Third, H2O2 is poorly reactive against biological molecules 

[58]. Its harmful effects come from reacting with Fe2+ to produce •OH, meaning the cytotoxicity of 

H2O2 is dependent on free iron concentrations [60]. Finally, multiple enzyme systems within cells 

eliminate H2O2, including catalases, peroxidases, and thioredoxin interacting proteins [61]. Cells 

tolerate the production of H2O2 by SODs as a trade-off for eliminating O2
•–. 

1.6 Catalytic Properties of Human Superoxide Dismutases 

 A crucial component of the antioxidant power of SODs is their enzyme kinetics. SODs 

have one of the fastest and most efficient rates of all enzymes. MnSOD is “diffusion-limited” 

(kcat/Km near 109 M-1 s-1), meaning the enzyme is so efficient that the rate-limiting steps for 

enzymatic activity are the diffusion of substrate and products into and out of the active site, 

respectively [62]. Catalysis by IC-CuZnSOD surpasses rates that are diffusion limited (kcat/Km of 2 
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× 109 M-1 s-1) by being inherently catalytically efficient and using charged electrostatic potentials 

on the enzyme surface to guide substrate to the active site and products out [63,64]. MnSOD also 

enhances diffusion with its electrostatic surface. However, unlike IC-CuZnSOD, MnSOD is 

product-inhibited by peroxide and thus does not have the catalytic efficiency of IC-CuZnSOD [65]. 

The high catalytic efficiency of SODs is paramount in maintaining mitochondrial and cell vitality. 

 In addition to electrostatic diffusion, a second integral component for the high catalytic 

efficiency of SODs is a rapid proton transfer relay [63,64]. The electron transfers performed by 

SODs and other oxidoreductases are almost always in tandem with a proton transfer, called CPET 

[66]. Since the active site metal shuffles between oxidation states (e.g., Mn3+ and Mn2+ for 

MnSOD; Cu2+ and Cu+ for CuZnSOD), the consequent changes in charge by the metal ion are 

counter balanced via H+ transfers to allow the active site to retain the net charge needed for electron 

transfers to occur. This coupling of a proton and electron transfer permits a thermodynamically 

favorable redox reaction that avoids ionized intermediates and is extremely efficient, being integral 

to the highest catalytic rates among enzymes [67-69].  

 Given the high catalytic speed and efficiency of SODs, a systematic relay of proton 

transfers along ionizable amino acids is thought to deliver protons to molecules that are 

coordinated to the active site metal [63,64]. While the exact path of the relay has yet to be 

determined, mutagenesis studies of the active site perturb catalysis significantly [10,63,70-73]. 

From these studies, it is difficult to determine which amino acids are responsible for the transfer of 

protons because they can fulfill more than one role for catalysis, such as stabilizing hydrogen 

bonds for substrate or maintenance of electrostatic charge. Nonetheless, a proton shuttling network 

contributes to the catalytic efficiency of SODs.  

1.7 Kinetic Properties of Human Manganese Superoxide Dismutase 

 Support for the presence of a protonation system is given by a simple comparison between 

the kinetics of O2
•– disproportionation (i.e. a reaction yielding an oxidized and a reduced product) 
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without and with enzyme. Without enzyme, two molecules of O2
•– are capable of reacting with 

each other in bulk solvent to form O2 and H2O2 at a kcat/KM of 105 M-1 s-1. For the enzyme-free 

reaction, the protons are acquired from the water molecules and consequently lead to the pH and 

pKa values dictating protonation kinetics. Due to the difference between the mitochondrial pH of 

7.8 and the pKa of 4.8 for O2
•–, the rate-limiting step for enzyme-free disproportionation is 

protonation of O2
•– from solvent. [74]. For the enzyme-mediated reaction, the kcat/KM is 109 M-1 s-1 

and the rate-limiting step is diffusion of substrate and product into and out of the active site [62]. 

This indicates that protonation is not the rate-limiting step in the enzyme-mediated reaction and the 

protons are primed for transfer prior to substrate entering the active site. Each redox reaction of 

MnSOD can be separated by their individual kinetic rates (Scheme 3) [63]. Since the rate-limiting 

step of the reactions is the diffusion of substrate into the active site, it is thought that the electron 

transfer is the component of the CPET reaction that is introduced by the O2
•– substrate while the 

proton transfer component is always available. Through inference of these kinetic properties, the 

notion that protonation rates are substantially enhanced by MnSOD is presented.  

 A unique characteristic of MnSOD that differentiates from other SOD isoforms is product-

inhibition. At steady-state levels (substrate concentration is an order of magnitude greater than the 

enzyme concentration to yield a saturated zero-order reaction), this inhibition pathway is accessed 

50% of the time from Mn2+ and O2
•– through the reaction of k3 to yield an inhibited-complex that 

slowly releases H2O2 through k4 (Scheme 4) [65,72]. Interestingly, protonation is the rate-limiting 

Scheme 3:  

Mn3+ + O2
•- ↔ Mn2+ + O2  k1 = 1.5 nM-1 s-1 

Mn2+ + O2
•- + 2H+ ↔ Mn3+ + H2O2 k2 = 1.1 nM-1 s-1 

 

Scheme 4:  

  Mn2+ + O2
•- ↔ (Mn3+- O2

2-)   k3 = 1.1 nM-1 s-1 

  (Mn3+- O2
2-) + 2H+ ↔ Mn3+ + H2O2  k4 = 120 s-1 
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step for k4. Since the interaction of Mn2+ and O2
•– can either occur through k2 or k3, the prevalence 

of each reaction is determined by the ratio of their kinetic rates. It should be noted that the kinetic 

appearance of k3 is only seen when [O2
•–] >> [MnSOD]. Otherwise, catalysis of MnSOD proceeds 

first-order through k1 and k2 where reaction rate doubles as [O2
•–] doubles. 

1.8 Production Inhibition 

MnSOD product-inhibition is thought to prevent the formation of overwhelming amounts 

of H2O2 at once and allowing the systems that clear H2O2, such as catalases and peroxidases, to 

‘catch up’ [65,72].This “self-regulation” performed by k3 and k4 (Scheme 4) is thought to use an 

array of proton transfers that are different from the canonical reactions, k1 and k2 (Scheme 3) as 

inferred from the kinetic rates. The inhibited complex has been suggested to be composed of a Mn-

peroxo interaction (Mn3+- O2
2-) from spectroscopic studies of bacterial MnSODs. In general, the 

literature of MnSOD accepts this interaction as the identity of the complex though it has yet to be 

verified due to experimental limitations [64]. The inability in resolving the identity of the complex 

arises from the technical difficulty in resolving the protonation state of the molecules bound to the 

Mn without perturbing the redox state of the active site metal [75]. Since electronic states and 

protonation states are integral to a CPET mechanism, any the exact identity of the inhibited 

complex is needed to correctly discern a mechanism. 

1.9 Dysfunction of Human Manganese Superoxide Dismutase 

 Given the need for adequate function of MnSOD for cellular life, dysfunction of its 

catalysis increases the susceptibility of an individual to mitochondrial degeneration and related 

pathologies [76]. The most prominent causes of dysfunction are polymorphisms (i.e., mutations) 

and aberrant regulation of post-translation modifications. Three polymorphic mutants and 

dysregulated acetylation, which neutralizes charged lysine residues that leads O2
•– to the active site, 

are responsible for inadequate clearance of oxidative stress in mitochondrial degeneration.  
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 Polymorphisms that affect MnSOD activity appear to cause late-onset diseases through 

various mechanisms. Some individuals with PD symptoms have an Ala16 to Val mutation in 

MnSOD [77], yet the same mutation has been reported in healthy individuals of Asian descent 

indicating that the genetic background for polymorphisms must be considered [78]. Residue Ala16 

is in the mitochondrial signaling sequence, and this mutation impairs translocation of MnSOD to 

the mitochondria. MnSOD is a nuclear-encoded gene that is translated with a 24-amino acid N-

terminal signaling sequence that mediates translocation across the mitochondrial membranes to the 

matrix. After translocation, the signaling peptide is cleaved off. Individuals with the Ala16Val 

variant have 40% lower MnSOD activity. While this mutation does not directly affect catalysis, it 

is a marker for several cancers [78], and it demonstrates the importance of localization of MnSOD 

within the mitochondria to prevent degeneration. Individuals with PD and breast cancer can also 

have an Ile58 to Thr polymorphism [78]. The Ile58 to Thr polymorphic variant causes two packing 

defects in each of the two four-helix bundles of the tetrameric interface. These cavities in the 

interface substantially decrease the stability of the enzyme, cause the tetramer to dissociate into 

dimers, and causes the enzyme to heat-inactivate at normal body temperatures with a resultant 

decrease in cells by one-third [79,80]. Also, a Leu60 to Phe variant found on the opposite side of 

the α-helix from Ile58 is prevalent among those with T-cell leukemia [81]. It appears that MnSOD 

polymorphic variants with translocation defects, decreased stability, and resultantly decreased 

activity appear to cause pathologies involving mitochondrial dysfunction. 

 Post-translational modifications regulate the activity of MnSOD probably by altering its 

electrostatic surface [82]. Acetylation of lysine residues neutralizes positive charges and alters the 

net electrostatic vectors that draw negatively charged O2
•– to the active site. For example, 

conserved residues, Lys29, Lys65, and Lys98 are not in the active site, but their acetylation has a 

substantial negative effect on the activity of MnSOD which highlights the influence of long-range 

electrostatic effects on O2
•– diffusion. The enzyme responsible for deacetylating MnSOD and 
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promoting its activity is Sirtuin 3 (SIRT3). SIRT3 is mostly localized to the mitochondria and has 

been shown to interact with MnSOD directly [83]. Mitochondrial-related pathologies show 

decreased SIRT3 levels and prominent examples are neurodegenerative diseases such as 

Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and Huntington’s disease. 

In these diseases, SIRT3 mRNA and protein levels are decreased and correlated with 

hyperacetylation and decreased activity of MnSOD [84]. Consequently, oxidant levels overwhelm 

the proper function of the mitochondria partially due to a lack of O2
•– clearance. 

 Another means of hampered MnSOD catalysis is overwhelming amounts of ROS. The 

conserved Tyr34 residue that is necessary for efficient enzymatic activity is susceptible to nitration 

by ONOO– in vitro and in vivo [85]. Nitration of this residue impedes the substrate access funnel 

which abolishes MnSOD activity completely [48,73]. A characteristic of several cancers is the 

upregulation of MnSOD with the absence of its activity as a result of ONOO– mediated 

inactivation. 

1.10 Mechanistic Insights from Previous Structures 

 Human MnSOD functions as a homotetramer, with each subunit containing an active site 

surrounding a manganese ion (Figure 1.3a). The metal is coordinated by His26, His74, His163, 

Asp159, and a single oxygen-containing molecule (denoted WAT1), thought to be either H2O or 

OH- (Figure 1.3b) [82]. These amino acids and ligands, termed the “inner sphere” residues, form a 

direct interaction with the manganese. The next layer of contacting amino acids, called the “outer 

sphere” residues, are essential for efficient dismutation. These are His30, Tyr34, Phe77, Trp78, 

Trp123, Gln143, Trp161, and from across the dimer interface, Glu162 and Tyr166 [65,70,73,86-

89]. Each of these residues play a role in catalysis. 

 A combination of mutagenesis, structural inference, and kinetic analysis suggest particular 

functions for the active site residues. Substrate is thought to diffuse into the active site through  
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Figure 1.3: Structure of human MnSOD. (a) Each subunit contains a manganese ion at the catalytic 

center, indicated by pink spheres. (b) The active site. The dashed lines represent the hydrogen bond 

network hypothesized to be the proton relay to the manganese ion used for catalysis. Glu162 hydrogen 

bonds with His163 across the dimer interface. Adapted from PDB entry 5VF9. 
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residues His30 and Tyr34 where it binds to the manganese ion in the position opposite Asp159 

[82]. The ~5 Å gap between His30 and Tyr34 is the only solvent-accessible area that allows entry  

into the active site (occupied by an oxygen molecule, denoted WAT2 in Figure 1.3b). Residues of 

the outer sphere, Phe77, Trp78, Trp123, and Trp161, form a hydrophobic cage around the base of 

the active site to promote substrate interaction with the manganese ion [65]. Glu162 and Tyr166 

from the adjacent subunit hydrogen bonds with His163 and His30, respectively, to stabilize 

oligomerization [89]. Tyr34, Tyr166, His30, Gln143, and two single-oxygen containing molecules 

(denoted WAT1 and WAT2) form a hydrogen-bond network that is thought to serve as a proton 

relay to the manganese ion for proton-assisted electron transfer (dashed lines, Figure 1.3b) [73,86-

88,90]. Investigations into the catalytic mechanism have been unable to determine the path of 

proton transfers owing to limitations in hydrogen detection. 

 MnSOD has one of that fastest and most efficient reaction rates of all enzymes, with a kcat  

of 40,000 s-1 and a kcat/KM of close to 109 M-1 s-1 [91]. Given that O2
•– is a negatively-charged 

substrate, MnSOD probably achieves rapid catalysis with the aid of electrostatic guidance. In 1983, 

Getzoff and colleagues were the first to calculate electrostatic field vectors for a SOD. For bovine 

Cu/ZnSOD, they found that O2
•– guidance to the active site is a long-range process [92], which 

means that neutralization of a charged amino acid far from the active site, such as acetylation of a 

lysine, would perturb the net field vectors and hamper guidance of the substrate to the active site 

[82]. Prior to the work of this thesis, electrostatic analysis has not been performed for human 

MnSOD. 

 How O2
•– interacts with the catalytic site has been difficult to investigate owing to the short 

half-life and high reactivity of O2
•– in solution. Crystallographic and spectroscopic studies have 

instead used azide (N3
-) as a substrate analog to study O2

•– binding [93-95]. The azide anion is a 

potent competitive inhibitor of SODs and binds directly to the active site metal [96,97]. Of note, 

azide and O2
•– are different enough in size that their binding to the active site can differ. 



21 

 

Regardless, two O2
•– binding mechanisms have been suggested based on studies with azide, the 5-

6-5 and associative-displacement mechanisms. 

 Lah and colleagues outlined a binding mechanism based on an azide-bound Thermus 

thermophilus MnSOD crystal structure (PDB entry 1MNG) where the azide molecule binds to a 

sixth coordinate position opposite to the metal-bound aspartate. They propose that the resting state 

of the MnSOD active site is five-coordinate distorted trigonal bipyramidal and shifts to six-

coordinate octahedral upon O2
•– binding (Figure 1.4) [93]. Widening of the angle of two adjacent 

histidine-ligands (His74 and His163 in Figure 1.4) accommodates binding opposite of the aspartate 

metal-ligand. A Caenorhabditis elegans crystal structure with azide bound also support this mode 

of binding (PDB entry 5AG2) [98]. A 100 K Escherichia coli MnSOD crystal structure at alkaline 

pH (8.5), in which the enzyme is inactive, shows a hydroxide anion at the sixth-coordinate position 

(PDB entry 1D5N) [99]. This further suggests that this position is the location of O2
•– binding at the 

active site. However, so far no one has structurally captured the location of the highly reactive O2
•– 

anion in the active site. The 5-6-5 mechanism describes the active site manganese dynamically 

changing its coordination during dismutation. 

 Whittaker and Whittaker proposed the associative displacement mechanism from their 

thermochromism (temperature-dependent optical spectra) studies of E. coli MnSOD with azide 

[100,101]. The associative displacement mechanism is an alternative mode of O2
•– binding, defined 

by a five-coordinate manganese ion in both the resting and substrate-bound forms.  Their findings 

suggest that active E. coli MnSOD remains five-coordinate trigonal bipyramidal at physiological 

temperature (295 K). Upon substrate binding, an unknown manganese ligand displaces, with 

protonated aspartate or the solvent molecule being the most likely candidates. At low-temperatures 

(275 – 280 K), the coordination becomes six. These spectroscopic observations are in conflict with 

the six-coordinate azide-MnSOD structure from T. thermophilus (PDB 1MNG), where the 

crystallization and data collection was at room temperature [93]. Since T. thermophilus thrives in  
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Figure 1.4: Human MnSOD 5-6-5 mechanistic model. Adapted from Lah et al., [93]. Dotted lines 

indicate hydrogen bonds. 
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relatively high temperatures (320 – 350 K), room temperature may be a ‘cold’ temperature for the 

thermophilic species. Whittaker and Whittaker do note that the six-coordinate complex is only 

marginally unstable at 295 K and suggest it could act as a kinetic intermediate.   Thus, the 

mechanism of superoxide dismutases studied with optical spectra suggest a differing mode of O2
•– 

substrate binding. 

 Density function theory (DFT) calculations performed by Jackson and co-workers with E. 

coli MnSOD indicate that the active site with azide adducts exists in a dynamic equilibrium 

between five and six coordinate states at 296 K. At 273 K, the coordination shifts to predominately 

six [102]. However, the active site states of either coordination were not supportive of 

displacement of metal bound ligands, indicating that these calculations were not supportive of the 

associative displacement mechanism. Instead, the authors propose that the O2
•– substrate may 

convert to products without coordination to the metal to remain five-coordinate, likely through 

hydrogen-bond interactions with Tyr34. In NMR studies of E. coli FeSOD by the Miller group, 

azide did not bind to the reduced form of the active site metal, but instead was near Tyr34. These 

studies could indicate that direct binding of O2
•– to the active site metal for catalysis does not occur 

for at least some portions of the enzymatic mechanism [103].  

1.11 Models of Enzymatic Proton Shuttling for Concerted Proton-Electron Transfer 

 As alluded by its 104 M-1 s-1 enhancement of protonation efficiency, MnSOD must have a 

systematic array of protonations for proton-assisted electron transfer. Extensive investigations 

through both experimental and theoretical approaches studied the proton-based mechanism and 

yielded several conflicting catalytic models [63,69,71,72,90,93,99,101,102,104-108]. The lack of 

consensus from the multitude of interdisciplinary approaches is a consequence of the experimental 

limitations of directly detecting protons. 

 To date, insight into the proton-based mechanism has come from indirect observations. X-

ray diffraction does not detect the hydrogen atom well, but analysis of X-ray crystal structures  
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reveal a hydrogen bond network at the active site, consisting of Tyr166-His30-WAT2-Tyr34-

Gln143-WAT1 (hereafter referred to as the superoxide-independent network, human MnSOD 

numbering, Figure 1.3b). This configuration is conserved in all Mn and FeSODs [109] and is 

thought to be involved in a proton relay for proton-assisted electron transfer at the active site metal 

[63,65,71,73,86,87,89,110]. Mutation of Tyr166, His30, Tyr34, or Gln143 disturb catalysis 

drastically, indicating the importance of these residues in enzymatic function [63]. 

 Theoretical studies of the proton-shuttling mechanism have been performed through 

quantum mechanical molecular mechanics (QM/MM) and DFT [90,102,104,106,111,112]. Such 

approaches attempt to address the underlying complexity of how pKas of amino acids and solvent 

are influenced at the active site to allow systematic proton transfers [113]. The positively-charged 

manganese at the active site lowers the pKas of amino acids and solvent allowing easier 

deprotonation. Conversely, positively charged ionization would be unfavorable and increase the 

pKas of molecules with such capacity. The extent of influence that manganese has on the pKas of 

molecules at the active site is dynamically changing through shuffling of its redox state. pKas are 

further determined by whether ionization would make a non-covalent interaction more favorable. 

Together, the net changes in ionization (i.e. proton transfers) at the active site must be energetically 

downhill and be able to regenerate through cycling of the redox state of the manganese cation.  

 Investigations through QM/MM and DFT calculations have studied WAT1, the metal-

bound solvent molecule. This molecule is probably a redox-linked proton accepter and perhaps the 

most studied component of the network [69,104,114]. Our current understanding is that in the Mn3+ 

state, the solvent ligand is in the deprotonated hydroxide form (OH-), with its ionization stabilized 

by the electrostatic interaction with Mn3+. Upon conversion to the Mn2+ state, the solvent ligand is 

protonated to become H2O that counterbalances the changes in the metal charge (Figure 1.4). The 

second half reaction regenerates the Mn3+-OH- state. The proton from the solvent ligand is thought 

to be involved in reducing superoxide to hydroperoxyl ion (HO2
-), which accounts for one of the 
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two protons for conversion into H2O2. The source of the second proton to convert HO2
- to H2O2 is 

more poorly understood and is hypothesized to come from His30, WAT2, Tyr34, or bulk solvent as 

evidence for any alternatives, theoretical or experimental, are not present [93,115]. Protonation and 

deprotonation of the solvent ligand likely happens when a superoxide is bound at the active site 

(not necessarily directly to the manganese) as this makes product disassociation exergonic and 

enhances product formation [116]. These theoretical studies attempt to clarify the source of the two 

protons during the enzymatic reaction of MnSOD. 

1.12 Protein Crystallography 

 The means in which a protein functions is directly dependent on its three-dimensional 

arrangement of atoms. This interdependent structure-function relationship has popularized the 

biophysical technique of crystallography. Crystallography elucidates the three-dimensional 

organization of atoms by diffracting entities that can be described as particles or waves (henceforth 

referred to as waves) off of a crystallized sample. These waves are typically those of X-rays 

(photons) but may also be neutrons or electrons. The interaction between a primary beam of waves 

and a crystalline sample results in scattering of the waves into a diffraction pattern that may be 

used to construct the electron density of the individual crystallographic unit. 

 The advantage of using a crystallized protein sample over a solution sample arises from the 

ordered and predictable nature of crystals. A crystal is composed of lattices of protein units that are 

fixed in place in contrast to the spontaneous dispersion of protein in solution. The interaction of an 

incident beam and a crystal lattice leads to the phenomenon of Bragg diffraction, a manifestation of 

Bragg’s law (Figure 1.5) [117]. Bragg diffraction yields reflections, instances of constructive 

interference from the scattering of waves off of a plane of atoms. Reflections only occur when the 

scattered waves are in the same phase, represented as the equation nλ = 2dsinθ for two atoms, 

where n is a whole integer, λ is wavelength, d is the distance between lattices of atoms, and θ is  
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Figure 1.5: Bragg’s law. The law describes reflection of an incident wave that has interacted with the 

crystal surface. The law states that the angle of an incident wave onto a crystal surface, θ, will scatter off 

of an atom (dots) with the same angle, θ. Two waves may scatter in the same phase from differing 

lattices to yield constructive interference, called a reflection, when the path difference between the 

lattices, d, is equal to a whole number, n, of wavelength. The condition of reflection may be expressed as 

nλ = 2dsinθ, where constructive interference occurs when the equation holds true. 
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incident and scattering angle (Figure 1.5). The distinctive symmetry elements of crystals, called 

space groups, cause reflections to be arranged into predictable patterns that are representative of the  

ordering of the protein lattice. Bragg diffraction is one of the major principles behind the science of 

crystallography. 

 The reflections produced by a diffraction experiment must be deconvoluted to yield 

information on the atomic arrangement of the crystal. Utilization of the reciprocal space system is 

one of the first steps to deconvolution. Reciprocal space is used to describe planes of atoms of a 

crystal lattice. The system is useful in defining reflections that are a product of constructive 

interference from planes of atoms. The reflections are characterized by the Miller indices (hkl) that 

describe a family of planes through the crystal. By a process known as indexing, individual 

reflections are associated with a particular (hkl). Indexing utilizes the geometric patterns of the 

reflections to give insight into the symmetry of the crystal and therefore the arrangement of the 

planes. The mathematical system of reciprocal space directly ties the reflections from a diffraction 

experiment to physical features of a crystal. 

 While indexing correlates reflections with lattice planes, the experimental data of a 

crystallography experiment lies in the intensity of the reflections. The process of integration 

assigns intensity values (I) to reflections along with a background value (σI). Since reflections may 

span over many diffraction images in order to capture data from differing crystal orientations, the 

data measured by integration are often scaled to take into account any perturbations (e.g. radiation 

damage) during data collection. The intensities hold incomplete information on the structure factors 

(Fhkl) that describe the contribution of diffraction from the contents of the unit cell. Structure 

factors are the principle reciprocal space quantities used to form the real space electron/nuclear 

density (ρxyz) maps representative of the atomic structure of the unit cell. 

 Structure factors are the scattered waves from the lattice planes and are composed of two 

key parts, amplitudes (Fhkl[A]) and phases (ϕhkl). In essence, structure factors are constituent sin 
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waves with differing frequencies that in summation approximate the distribution of density. This 

describes a Fourier transform (FT), a mathematical transform that deconstructs a function (i.e. 

density) into component sin wave frequencies (i.e. structure factors). Thus, the FT is the means to 

convert from terms of real space (xyz) to that of reciprocal space (hkl). 

ρxyz 
𝐹𝑇
→  Fhkl 

Likewise, the goal of a crystallographic experiment is to utilize the diffraction data for the inverse 

Fourier transform (FT-1). 

Fhkl 
𝐹𝑇−1
→    ρxyz 

However, this transform requires both the amplitude and phase components of the structure factors. 

A diffraction experiment only yields the amplitudes, where the intensity of the reflections are 

proportional to the amplitudes of the structure factors by I α Fhkl[A]2. The phase components of the 

structure factors are lost and need to be introduced through other methods. 

 Techniques to obtain phase information include isomorphous replacement, anomalous 

dispersion, and molecular replacement. For isomorphous replacement, a crystal sample is soaked or 

co-crystallized with a heavy atom. In principle, the structure factors from the heavy atom 

containing sample (Fph) are the sum of the structure factors of the heavy atom on its own (Fp) and 

the native crystal (Fh), inclusive of amplitude and phase components. 

Fph = Fp + Fh 

With the known contribution of the heavy atom, the phase of the structure factors from the native 

crystal can be solved. Anomalous scattering is a phasing technique that also utilizes a heavy-atom 

derivative. By using an incident X-ray beam with a wavelength approaching the absorption edge of 

the heavy atom, anomalous dispersion occurs and imparts a phase shift and magnitude change on 

scattering factor. Since the scattering factor of an atom is proportional to its structure factor, 

differences between the structure factors from anomalous scattering and non-anomalous scattering 

are used to obtain phasing information. In molecular replacement, phasing information is derived 

from a similar structure that was previously solved. From any 3D structure, a density may be 
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calculated which can be deconstructed into its structure factors inclusive of amplitude and phase 

components. Thus, the experimental amplitudes from a diffraction experiment are combined with 

calculated phases of a known structure to give a ‘starting’ density map. In summation, phasing 

information must be applied to the experimentally obtained diffraction data to yield real space 

density and can be provided through multiple methods. 

 After both the amplitude and phase components of the structure factors are known, an 

initial real space density map can be constructed. Using 3D graphics software, atoms may be 

placed in positions of density with the goal of creating a protein model representative of the 

density. Model building coincides with iterations of refinement, a computational process that 

statistically adjusts the atoms of the model to better fit the experimental data. This includes 

parameters for the model that ensure chemical reasonability, such as optimal bonds distances and 

angles. Refinement is the last but one of the most critical processes for solving a crystal structure. 

 A summary of the methods that lead to a protein model from diffraction of a crystal is as 

follows (Figure 1.6). The interaction of an incident beam with an ordered protein lattice yields 

reflections. These are a result of scattered waves constructively interfering according to Bragg’s 

law. The intensity of the reflections are the square of the structure factor amplitudes as reasoned 

from the physics corollary I = A2. Reflections of a sole diffraction experiment do not contain 

structure factor phase information and are obtained through other means, such as isomorphous 

replacement, anomalous dispersion, or molecular replacement. The amplitudes and phases of the 

structure factors are utilized to build an initial real space density map that ultimately provides the 

information needed to construct a protein model. Model building is performed with the goal of 

creating a structure that is representative of the density. This is done with iterations of refinement 

that systematically adjust the protein model to better fit the diffraction data while ensuring 

chemical reasonableness. Altogether, solving a crystal structure includes the involvement of 

biochemistry, physics, and computer science. 
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Figure 1.6: Processes leading to the solution of a crystal structure. Bragg scattering from the 

interaction of an incident beam with a crystal lattice yields reflections. The square root of the intensity 

for the reflections yields the structure factor amplitudes, Fhkl[A]. The phases of the structure factors, ϕhkl, 

are obtained through alternative means, such as isomorphous replacement, anomalous dispersion, or 

molecular replacement. From the mathematical manipulation of the structure factor components, an 

initial density map is constructed. The density map is used to construct an atom-by-atom model with 

iterations of refinement. Refinement statistically adjusts the model to better match the diffraction data 

while maintaining reasonable bond lengths and stereochemistry.  
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1.13 X-ray and Neutron Diffraction for MnSOD 

 The type of beam utilized for the diffraction of protein crystals has significant effects for 

structural analysis. Most biological structure-based knowledge is derived from X-ray diffraction of 

protein crystals due to the high flux and accessibility of X-rays. Small crystals that are less than 

0.05 mm3 are capable of producing a high-resolution data set due to the energies of X-ray sources 

that are often found at local universities. Neutron diffraction provides different but significant 

structural information but requires large crystals, ~1.0 mm3, to compensate for the lower fluxes of 

neutron sources. These sources are found only at large scientific institutions such as that of Oak 

Ridge National Laboratory due to the significant investment needed to produce neutrons. The 

lesser accessibility of neutron sources means users should have significant incentive to use them 

over X-rays. The incentive is the difference of scattering properties between the two particles. 

 X-rays and neutrons interact with C, N, O, and H atoms of a protein differently. X-ray 

scattering is the result of the interaction between a high-energy photon (i.e. an X-ray) with the 

electron cloud of an atom [118]. The more electrons an atom has, the greater the magnitude of 

scattering from X-rays. This leads to a periodic trend where X-ray scattering increases as a function 

of atomic number. Since C, N, and O have a similar number of electrons, they have similar 

scattering power (Figure 1.7a). The H atom scatters to a much lesser extent compared with the 

other atoms and is typically not discernible in electron density maps unless diffraction surpasses 

1.0 Å resolution. For this reason, the majority of X-ray crystal structures are modelled without H 

atoms. 

 Instead of interacting with an atom’s electron clouds for scattering, neutrons scatter due to 

an interaction with an atom’s nucleus. For this reason, the magnitude of neutron scattering for an 

atom depends on the contents and spin of the nucleus [119]. Atoms with neighboring atomic 

numbers are capable of much different scattering properties (Figure 1.7a). Likewise, isotopes of the 

same atom may scatter much differently due to the differences of the atomic nucleus. 
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For crystallography, neutron scattering is of significant value for those wishing to discern H atoms 

positions (Figure 1.7b-c). Scattering of H is on par with that of C, N, and O, making its 

discernibility in density maps feasible. However, H scattering by neutrons causes significant 

incoherent scattering and replacement of H in a crystal with D is preferred. D has approximately 

twice the absolute magnitude of coherent scattering compared to H while having 40 times less 

incoherent scattering. In a process called perdeuteration, recombinant expression systems 

specialized for fully deuterated media are prepared for the purpose of yielding protein with H 

replaced with D [120]. Neutron diffraction is able to discern the positions of H with much lesser 

difficulty compared to X-ray diffraction. 

 Many biological substrates and macromolecules rely on proton transfers (H+) to facilitate 

their function. Of particular note are oxidoreductases, enzymes that perform electrons transfers 

through a CPET mechanism, where electron transfers and proton transfers are energetically 

coupled. Oxidoreductase mechanisms are difficult to study with X-rays due to the low scattering 

interaction with H and the propensity for X-rays to reduce metals during diffraction [75]. Instead, 

neutron diffraction is a much more feasible means to study oxidoreductase mechanisms due to the 

scattering of H/D being on par with C/N/O while being inert to metal electronic states. In regards to 

the present work, MnSOD is an oxidoreductase that relies on proton transfers to facilitate its CPET 

mechanism. Prior to the work of this dissertation, the enzymatic CPET mechanism of MnSOD has 

been unclear and filled with puzzling observations since its discovery approximately half a century 

ago.  

 To exemplify the perplexing nature of the mechanism, consider residue Tyr34, the most 

studied residue for MnSODs. It is the closest titratable residue to the Mn and previous studies 

speculate it donates a proton for CPET. Tyr34 mutation to Phe though yields peculiar results (Table 

1.1). The redox potential of the enzyme is nearly unchanged compared to wildtype [105], the 

catalytic efficiency is unaffected [91], k1 (Mn3+ → Mn2+) is unchanged, and the active site structure  
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Figure 1.7: X-ray versus neutron diffraction. (a) The strength of X-ray scattering is dependent on the 

number of electrons the atom scatterer contains. C and O have 6 and 8 electrons, respectively, and have 

much greater scattering strength compared to H and D, both with 1 electron. For neutron scattering, the 

magnitude is related to the properties of an atom’s nucleus, such as spin. Isotopes have different 

scattering interactions due to the differing contents of the nucleus. This causes the four atoms presented 

to have similar scattering power. Of note, H scatters negatively whereas the other three atoms presented 

scatter positively. (b-c) Representative images of electron (2.0 Å) and nuclear density (2.3 Å) to highlight 

differences in information obtained. The nuclear density data were obtained from a fully deuterated 

crystal. 
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Table A Comparison of WT and Y34F MnSOD Attributes 

Table 1.1 Comparison of WT and Y34F MnSOD Attributes 

MnSOD WT Y34F 

kcat/KM (M-1 s-1) 109
 109 

kcat (ms-1) 40 3.3 

k1 (nM-1 s-1)  (Mn3+ + O2
•- ↔ Mn2+ + O2) 1.5 0.55 

k2 (nM-1 s-1)  (M2+ + O2
•- + 2H+ ↔ M3+ + H2O2)  1.1 < 0.02 

k3 (nM-1 s-1)  Mn2+ + O2
•- ↔ (Mn3+- O2

2-)  1.1 0.46 

k4 (nM-1 s-1)  (Mn3+- O2
2-) + 2H+ ↔ Mn3+ + H2O2 120 52 

Em (eV) 393 ± 29 435 ± 30 
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is very similar to the wildtype [91]. However, k2 (Mn2+ → Mn3+) is ablated while product-

inhibition is significantly increased (k3 >> k2) with slow disassociation (k4 ↓) [70]. If Tyr34 is 

indeed a proton donor for catalysis, it would be expected for the redox potential to change and for 

k1 (Mn3+ → Mn2+) to be ablated the proton donor is absent for CPET. This means proton transfer is 

still occurring near the Mn without Tyr34, though there are no other titratable solvent accessible 

residues nearby. Without being able to observe H atom positions, much is to be desired for 

discerning the mechanism of MnSOD. 
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Chapter 2: Substrate-analog Binding and Electrostatic Surfaces of Human MnSOD 

2.1 Introduction 

 Two mechanisms for the activity of iron and manganese SODs have been suggested. The 

first is called the 5-6-5 mechanism and proposes superoxide coordinates to the active site metal and 

becomes molecular oxygen or hydrogen peroxide in a two-step fashion. Here the coordination state 

of the active site metal converts from five-coordinate trigonal bipyramidal to six-coordinate 

octahedral upon substrate binding and back to five-coordinate upon substrate release [93-95]. In 

this mechanism, anionic substrate-analogs are believed to bind in the same position as superoxide, 

opposite Asp159. The second mechanism observed with studies of thermochromism is called 

associative displacement. This mechanism proposes that six-coordinate anionic complexes 

represent an inactive form of the enzyme that is seen only at low temperatures. A five-coordinate 

complex represents the active form at physiological temperature, with anion binding displacing one 

of the manganese ligands, either bound water or Asp159 [101,121]. The azide ion is a potent 

competitive inhibitor and is frequently assumed to act as a substrate analog to superoxide [97,122]. 

Published structures of azide in complex with MnSOD have been solved at room temperature for 

Thermus thermophilus (PDB entry 1MNG) and cryocooled for Caenorhabditis elegans (PDB entry 

5AG2) [93,98]. Both show the azide binding end-on to the manganese ion at the sixth coordinate. 

An unpublished structure of the Y174F MnSOD-azide complex from Escherichia coli (PDB entry 

1ZLZ) shows binding in the same manner as well, with the Y174F mutation breaking a hydrogen 

bond at the dimer interface. To date, the crystal structure of human MnSOD with bound azide has 

not been solved.  

 Here, the crystal structures of native human MnSOD and the human MnSOD-azide 

complex are reported and provide the binding position for azide in the active site. Electrostatic 

solvent accessible surface calculations were performed with these crystal structures to map the 

residues that are important for electrostatic guidance of the substrate to the active site. These 
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surface calculations were conducted with three differing active site states, including one with 

superoxide coordinated using the azide binding site as a model. 

2.2 Materials and Methods 

2.2.1 Protein Purification and Crystallization 

 Full length human MnSOD cDNA optimized for E. coli codons was cloned into the 

pACYCDuet-1 expression vector (Genscript) and transformed into the sodA-sodB- strain of E. coli, 

which lacks endogenous Mn and FeSODs [123]. Cells were grown in Terrific Broth with 0.8% 

(v/v) glycerol and supplemented with 0.75 g L-1 MnSO4 to provide the protein’s active site 

manganese ion. Cell strain fidelity was maintained with 30 µg mL-1 kanamycin. Recombinant 

protein was expressed upon addition of 1 mM isopropyl β-D-1-thiogalactopyranoside. Cells were 

harvested by centrifugation and stored at -80°C until purification. Cells were re-suspended in 50 

mM potassium phosphate (K2HPO4/KH2PO4), pH 7.8, prior to lysis using an Emulsiflex. Clarified 

lysate was incubated at 65° C for one hour and precipitated proteins were removed by 

centrifugation. Soluble protein was dialyzed against 5 mM potassium phosphate, pH 7.8, and 

applied to pre-swollen diethylaminoethyl (DE52) cellulose resin (GE Healthcare). The protein-

resin slurry was rocked for 1 hour at 10° C before vacuum filtration using Whatman #4 filter paper 

and a Büchner funnel. Resin was washed with an excess of 5 mM potassium phosphate, pH 7.8, 

then protein was eluted with 100 mM potassium phosphate, pH 7.8. Eluted protein was dialyzed 

against 2.5 mM 2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5, applied to a carboxymethyl 

(CM) sepharose (GE Healthcare) column, and eluted with a NaCl gradient. Fractions were 

concentrated using 5 kDa molecular weight cut-off concentrators (Sartorius) to 21 mg mL-1, as 

measured by NanoDrop ND-1000 spectrophotometer using an extinction coefficient of 43.43 

L/mol-1 cm-1 at 280 nm. Human MnSOD crystals were grown from 1.8 M potassium phosphate, pH 

7.8, by hanging-drop vapor diffusion at room temperature. Protein and reservoir solution were 

mixed at a 1:1 ratio to give a 2.0 µL drop and crystals appeared within 1 day. To obtain the azide 
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complex, 2.0 µL of reservoir containing 200 mM sodium azide were added to drops of 6 day 

crystals. Data was collected 3 h after azide addition. 

2.2.2 Data Collection and Structure Determination 

 Crystals were briefly passed through a cryoprotectant solution consisting of 3.6 M 

potassium phosphate, pH 7.8, using a microloop (MiTeGen). The MnSOD-azide crystals also had 

150 mM sodium azide in the cryoprotectant. Crystals were plunged into a 100 K stream of nitrogen 

gas provided by a Rigaku X-stream. X-ray diffraction data were collected using a Rigaku FR-E Cu 

Kα rotating-anode generator operating at 45 kV and 45 mA equipped with a R-AXIS IV++ detector. 

Data were processed using HKL-3000 for indexing, integration, and scaling [124]. Native MnSOD 

and the MnSOD-azide complex were solved using Protein Data Bank coordinates 1JA8 that had 

the same unit cell dimensions and space group [65]. Following removal of solvent and active-site 

metals, simple molecular replacement was performed through rigid-body refinement and 

subsequent restrained-positional refinement using REFMAC5 to 1.82 Å and 1.77 Å resolution for 

the native and azide complex structures, respectively [125]. Using Coot, omit electron density 

maps were analyzed and the protein model was fit [126]. New solvent structure and active-site 

manganese ions with bound azide were modeled into omit electron density maps. Azide occupancy 

was determined by adjusting until the B values refined reasonably to neighboring atoms. For both 

native and azide structures Tyr45 of chain B was modelled with dual conformers. Geometries of 

the final models were verified with MOLPROBITY [127]. 

2.2.3 Electrostatic Surface Calculations 

 Outside the active site, pKa calculations were performed by PROPKA 3.1 at pH 7.0 to 

generate partial charges. Then the partial charges were assigned on a per-atom basis in PQR file 

format using PDB2PQR within the same automated pipeline [128]. For the active site, partial 

charges from the literature [129] taking into account coordination of the manganese ion were 

manually applied to the PQR file. These charges also assumed a pH of 7.0. Electrostatic surfaces 
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were generated with APBS using ionic strengths of 0.15 and -0.15 M for the positive and negatively 

charged species, respectively [130].   

2.3 Results and Discussion 

 X-ray diffraction data from native MnSOD and MnSOD-azide complex crystals were 

measured at a resolution of 1.82 Å and 1.77 Å, respectively (Table 2.1). Pink, hexagonal 

bipyramidal crystals formed in the space group P6122 with unit cell dimensions of a = b = 77.91, c 

= 237.92 Å (native) and a = b = 77.90, c = 238.44 Å (azide complex). The crystal structures had 

two subunits in the asymmetric unit that were designated as chains A and B. Native 

oligomerization of human MnSOD consists of a tetramer formed from a dimer of dimers by 

crystallographic symmetry. The tetrameric interface is comprised of a four helix bundle [131].  

2.3.1 Azide Binding to Human MnSOD 

 The azide ion acts as a strong competitive inhibitor for SOD by binding directly to the 

active site metal [97,122]. A summary of active site bond distances and angles are listed in Table 

2.2. Chain A shows an azide molecule binding to the manganese ion at the sixth coordinate 

position to form a distorted octahedral active site geometry (Figure 2.1a). The azide binds end-on 

to the metal in the position opposite Asp159 with a bond distance of 2.01 Å and an angle of 124° 

and widens the Nε2(H74)-Mn- Nε2(H163) angle 15° compared to the native structure. Azide also 

interacts with WAT2 of the hydrogen bond network, with a bond distance of 3.37 Å (Figure 2.1b). 

The active site solvent structure is unchanged compared to the native structure, with a solvent 

molecule hydrogen bonded to WAT2 (designated WAT3) and another hydrogen bonded to Y34 

(designated WAT4).  While the hydrogen bond network is postulated to shuttle protons to the 

active site for superoxide dismutation, the mechanism and protonation state of the molecules in the 

network are not known. For chain B, the sixth position of the active site is empty and the five-

coordinate active site is the trigonal bipyramidal geometry.  
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Table B Crystallographic Data and Refinement Statistics for hMnSOD and hMnSOD-azide 

 

Table 2.1 Crystallographic Data and Refinement Statistics for hMnSOD and hMnSOD-azide 

Values for the outer resolution shell are given in parentheses.  

 hMnSOD hMnSOD-azide 

A. Data collection statistics   

Diffraction source  Rigaku FRE Cu Kα rotating-

anode  

Rigaku FRE Cu Kα rotating-

anode  

Wavelength (Å) 1.5418 1.5418 

Temperature (K) 100 100 

Detector R-Axis IV++ R-Axis IV++ 

Crystal-detector distance (mm) 240 240 

Rotation range per image (°) 0.5 0.5 

Exposure time per image (s) 300 300 

Space group P6122 P6122 

No. of molecules in asymmetric 

unit 

2 2 

a = b (Å)  78.24 77.90 

c (Å) 238.47 238.44 

α = β (°)  90 90 

γ (°) 120 120 

Mosaicity (°)  072 0.78 

Resolution range (Å) 67.5-1.82 (1.85-1.82) 67.5-1.77 (1.80-1.77) 

Total No. of reflections 231836 229527 

No. of unique reflections 38400 40060 

Completeness (%) 96.8 (89.6) 96.0 (84.0) 

Redundancy 6.0 (4.6) 5.6 (3.6) 

〈I/σ(I)〉  20.6 (3.0) 12.7 (2.0)  

Rmeas
a 0.08 (0.38) 0.16 (0.59) 

B. Refinement statistics  
 

PDB ID 5T32 5T30 

Resolution range (Å) 67.76-1.82 67.46-1.77 

Completeness (%) 96.5 94 

No. of reflections, working set 36515 (2434) 40053 (3139) 

No. of reflections, test set 1885 (162) 1964 (148) 

Final Rcryst  0.201 0.214 

Final Rfree  0.226 0.245 

No. of     

 Protein non-H atoms 3138 3154 

 Manganese ions  2 2 

 Phosphate ions 2 2 

 Potassium ions  1 2 

 Azide 0 2 (x 0.4) 

 Water 305 354 

R.m.s. deviations    

 Bonds (Å) 0.009 0.011 

 Angles (°) 1.32 1.38 

Mean B factors (Å2)    

 Protein 21 19 

 Manganese ions  17 15 

 Phosphate ions 39 37 

 Potassium ions 23 24 

 Azide  — 19 

 Water 26 24 

a Rmeas = 𝛴ℎ𝑘𝑙√
𝑛

𝑛−1
𝛴𝑗=1
𝑛 |𝐼ℎ𝑘𝑙,𝑗 − 〈𝐼ℎ𝑘𝑙〉| 𝛴ℎ𝑘𝑙⁄ 𝛴𝑗𝐼ℎ𝑘𝑙,𝑗 
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Table C Active Site Geometry Comparisons of Native and Azide-Bound MnSOD 

Table 2.2 Active Site Geometry Comparisons of Native and Azide-Bound MnSOD 

 hMnSOD hMnSOD-azide 

 Chain A Chain B Chain A Chain B 

Covalent bond (Å) 

 Mn-Nε2(H26) 

 Mn-Nε2(H74) 

 Mn-Oδ2(D159) 

 Mn-Nε2(H163) 

 Mn-O(WAT1) 

 Mn-N3(AZI) 

Hydrogen Bonds (Å) 

 Nε2(Q143)-O(WAT1) 

 Nε2(Q143)-OH(Y34) 

 O(WAT2)-OH(Y34) 

 O(WAT2)-Nδ1(H30) 

 O(WAT2)-N3(AZI) 

 OH(Y34)-N3(AZI) 

Bond angles (°) 

 Nε2(H26)-Mn- Nε2(H74) 

 Nε2(H26)-Mn-Oδ2(D159) 

 Nε2(H26)-Mn- Nε2(H163) 

 Nε2(H26)-Mn-O(WAT1) 

 Nε2(H74)-Mn-Oδ2(D159) 

 Nε2(H74)-Mn- Nε2(H163) 

 Nε2(H74)-Mn-O(WAT1) 

 Oδ2(D159)-Mn-   Nε2(H163) 

 Oδ2(D159)-Mn-O(WAT1) 

 Nε2(H163)-Mn-O(WAT1) 

 Nε2(H26)-Mn-N3(AZI) 

 Nε2(H74)-Mn-N3(AZI) 

 Oδ2(D159)-Mn-N3(AZI) 

 Nε2(H163)-Mn-N3(AZI) 

 Mn-N3(AZI)-N2(AZI) 

 N1(AZI)-N2(AZI)-N3(AZI) 

 

2.26 

2.25 

2.11 

2.27 

2.16 

— 

 

2.99 

2.87 

2.76 

2.63 

— 

— 

 

94.34 

82.71 

93.39 

165.71 

105.39 

136.44 

92.20 

118.10 

 

83.31 
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— 

— 

— 

— 

— 

— 
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2.21 

2.07 

2.28 

2.15 

— 

 

2.89 

2.87 

2.70 

2.69 

— 

— 

 

89.93 

81.98 

93.36 

169.29 

106.94 

138.44 

94.02 

114.55 

 

87.35 

90.28 

— 

— 

— 

— 

— 
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2.27 

2.27 

2.04 

2.21 

2.14 

2.69 

 

3.04 

2.94 

2.73 

2.66 

2.91 

4.04 

 

94.95 

84.09 

90.25 

165.91 

103.32 

140.44 

92.50 

116.23 

 

82.56 

91.60 

95.24 

72.96 

176.17 

67.51 

105.86 

179.57 

 

2.19 

2.26 

2.05 

2.25 

2.16 

— 

 

2.99 

2.87 

2.89 

2.64 

3.69 

3.60 

 

91.96 

80.17 

92.74 

166.65 

104.58 

138.16 

93.59 

117.19 

 

86.68 

91.21 

— 

— 

— 

— 

— 

— 
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Figure Error! No text of specified style in document..A Active site geometry and electron density of 

azide-soaked human MnSOD. 

 

Figure 2.1: Active site geometry and electron density of azide-soaked human MnSOD. (a) Six 

coordinate octahedral active site geometry at chain A. (b) Azide interaction with the active site 

manganese at chain A. Maps were calculated before azide was modelled and refined with Fourier 

coefficients Fo−Fc (green) contoured at 3.0 σ, and 2Fo−Fc density (blue) contoured at 1.5 σ. (c) Active 

site overlays of MnSOD-azide complexes from T. thermophilus (cyan, PDB entry 1MNG), C. elegans 

(yellow, PDB entry 5AG2), E. coli (pink, PDB entry 1ZLZ) and human (green, PDB entry 5T30). 

Overlays were performed using SUPERPOSE. Black, dashed lines indicate hydrogen bonds. 
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The extent of azide binding to the manganese of MnSODs was measured to be no more than 50% 

by high field electron paramagnetic resonance spectroscopy [132]. This is in good agreement with 

the estimate of 40% occupancy of azide molecules found in human MnSOD electron density maps 

of chain A. Also, it compares well with the other published MnSOD-azide complex crystal 

structures, with 50% occupancy for T. thermophilus and 30% occupancy for C. elegans. The 

average azide B factor of 16 Å2 illustrates a firm presence of the molecules. Azide molecules were 

not found elsewhere in the electron density maps. 

 In the three other MnSOD-azide structures, from T. thermophilus (PDB entry 1MNG), C. 

elegans (PDB entry 5AG2), and Y174F E. coli (PDB entry 1ZLZ) the azide is bound end-on at the 

active site manganese with the same coordination but with differing bond distances and angles 

(Figure 2.1c). The only structure with 100% occupancy for azide is 1ZLZ with the Y174F 

mutation. The other structures have partial occupancies and this complicates the interpretation of 

the analysis as the crystal structures represent an average between 5- and 6-coordinate active sites. 

The prokaryotic structures show a bond distance of 2.2 Å and an angle of 143° from T. 

thermophilus and a bond distance of 1.94 Å and an angle of 123° from E. coli. The eukaryotic C. 

elegans structure has a bond distance of 2.8 Å and an angle of 94°. All of the azide structures 

widen the Nε2(H74)-Mn- Nε2(H163) angle compared to their native forms. Of note, the azide 

molecule in the prokaryotic T. thermophilus structure is orientated differently than the eukaryotic 

structures, with the terminal N atom furthest from the manganese replacing the position of WAT2 

and the geometry of the molecule deviating slightly from linearity, with a N1-N2-N3 angle of 175°. 

It is also noteworthy that the T. thermophilus structure is the only one determined at room 

temperature.  

 There are other subtle structural differences in the active site solvent. WAT2 of both 

structures and both chains has a B value near 30 Å2
 compared to the average solvent values of 26  
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and 24 Å2 of the native and azide structures, respectively. While WAT2 is the least-defined atom of 

the hydrogen bond network in our structures, its higher B factor may be reflective of a dynamic 

nature during catalysis, and the same feature has been observed in the 100 K MnSOD structure 

from C. elegans [98]. The 100 K structure from E. coli reveals a well-defined WAT2, with an 

average B value of 18 Å2
 between the four chains among an average solvent value of 28 Å2 [133]. 

Studies of the catalytic mechanism have relied on the presence of WAT2 to shuttle protons to the 

active site metal but its presence in crystal structures may be a feature of cryocooling [90].  

2.3.2 Electrostatic Guidance of Anionic Substrate to the Active Site 

 Due to the anionic substrate, the solvent accessible surface area near the active site was 

hypothesized to be basic [134]. To study this, three electrostatic surfaces of the human MnSOD 

tetramer were calculated with differing active site coordination of an oxidized manganese ion 

(Mn3+): (1) five-coordinate with water as the solvent ligand (Figure 2.2a), (2) five-coordinate with 

hydroxide as the solvent ligand (Figure 2.2b), and (3) six-coordinate with hydroxide and 

superoxide ligands (Figure 2.2c). The position of the superoxide was modeled from the first two 

nitrogen atoms of the azide bound to the active site manganese in chain A. For these calculations, 

the partial charges for the atoms of all molecules ligated to the manganese ion were obtained from 

the work of Neves and coworkers [129]. These complexes represent the first half of the dismutation 

reaction. Unfortunately, partial charges for reduced manganese (Mn2+) are currently not available. 

 The resulting electrostatic surfaces reveal how substrate diffusion to the active site could 

be enhanced. Of the three coordination states modelled, the electrostatic surface near the five 

coordinate active site “pit”, with water as the solvent ligand, is the most basic (Fig 2.2d). The pit is 

also more basic than the rest of the tetramer and there is a “valley” of positively-charged patches 

surrounding the pit (Fig 2.2g). Coordination of hydroxide as the solvent ligand instead of water 

lowers the electrostatic surface potential of the active site pit (Fig 2.2e). The differing active site 

states had no effect on the electrostatic surface potentials of the valleys (Fig 2.2h, i). The six  
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coordinate active site pit with superoxide bound with hydroxide as the solvent ligand has a nearly 

neutral electrostatic surface potential at the pit (Fig 2.2f). Azide and hydroxide are known 

inhibitors of SODs and bind to the sixth coordinate position, presumably like superoxide [93-

95,133]. Binding of these inhibitors to the active site could neutralize the surface potential like 

superoxide does and provide yet another means of inhibition. 

 Direct evidence on whether the coordinated solvent ligand is a water molecule (Mn3+-OH2, 

Fig 3a) or a hydroxide molecule (Mn3+-OH-, Fig 2.2b) has been difficult to discern due to 

experimental limitations. Steady-state kinetic analysis of FeSOD from E. coli suggest the oxidized 

Iron has a hydroxide ligand coordinated (Fe3+-OH-) and proton uptake at the active site upon 

reduction of the metal ion results in Fe2+-OH2 [96]. NMR studies of FeSOD and MnSOD from E. 

coli reveal that amino acids at the active site do not become protonated upon metal ion reduction 

and the solvent ligand is the most probable proton accepter [69]. Further studies using density 

function calculations show that such protonation is energetically favourable in both E. coli FeSOD 

and human MnSOD [90]. These studies support the Mn3+-OH- state as the most chemically likely. 

2.3.3 Players in Electrostatic Guidance and Substrate Entry into the Active Site 

 The most influential residues to the electrostatic surface potential were identified by 

mapping charged residues to the surface (Fig 2.3a). The outer ridge is populated by negatively-

charged glutamate and aspartate residues while positively-charged lysine and arginine residues are 

found in the active site valley and pit. The residues from both subunits at the dimeric interface (red 

dashed line, Fig 2.3a) combine to form a valley of positive surface potential. These calculations 

indicate that anionic substrate is repelled away from the negatively-charged outer ridge of the 

hMnSOD tetramer and attracted into the center, towards an active site. 

 A cross-section view of the active site pit provides insight into the interaction of 

superoxide with the surface that enhances collision with the metal ion (Fig 2.3b). Three positively-

charged residues contribute to the basic surface potential at the active site pit, Lys29 of chain A and  
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Figure Error! No text of specified style in document..A Solvent accessible electrostatic surfaces of 

oxidized human MnSOD with differing active site coordination. 

 

Figure 2.2: Solvent accessible (sphere radius = 1.4 Å) electrostatic surfaces of oxidized human 

MnSOD with differing active site coordination. (a-c) Differing models of active site coordination used 

to generate the subsequent electrostatic surfaces. (d-f) Electrostatic potential at the active site quantified 

in kT. (g-i) Electrostatic potential of the tetramer. Arrow indicates one of four active sites seen with this 

orientation. (j) Ribbon diagram of the tetramer. Pink spheres indicate manganese ions and location of the 

active sites. Vertical dashed line indicates the dimeric interface that is evolutionarily conserved and the 

horizontal line indicates the tetrameric interface. 
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Figure 2.3: Charged surface residues that contribute to the electrostatic surface potential of human 

MnSOD in the Mn3+-OH2
 state. (a) Charged residues of chains A and C found to contribute to the 

solvent accessible surface area by AREAIMOL were mapped. The red, dashed line indicates the dimeric 

interface and thus the boundary separating the chains. (b) The active site pit formed by the dimeric 

interface. Glu162 is behind Arg173 in this view. Chain A is yellow and chain C is pink.  This side view 

of the active site pit is rotated approximately 90° relative to Figure 2.1. 
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Arg173 and Lys178 of chain C. For E. coli MnSOD, an electrostatic surface study also found a 

positively charged active site pit with a similar cluster of positively charged residues, consisting of 

four arginine residues contributed by two chains [110].  

 The high rate constant of MnSOD indicates that nearly all collisions to the active site are 

productive, and electrostatic forces may provide some pre-collision orientation. The placement of 

Glu162 and Arg173 6 Å apart may contribute to the effective diffusion of substrate into the active 

site. Glu162 is the closest negatively charged residue to the manganese ion, being 7 Å away, and 

Arg173 is the closest positively charged residue, being 12 Å away. Arg173 could draw in anionic 

substrate toward the gateway residues while Glu162 prevents non-productive association with 

Arg173. A similar pair of amino acids have been suggested for bovine CuZnSOD, where Glu131 

and Lys134 were found to work together to diffuse superoxide towards the active site [134].  

 Glu162 and Arg173 are conserved spatially in the C. elegans, T. thermophilus, and E. Coli 

MnSOD structures (PDB entries 5AG2, 1MNG, and 1D5N, respectively) and appear to be 

important for catalytic activity. Glu162 from across the dimer interface hydrogen bonds with Mn 

ligand His163. In E. coli MnSOD, residue Glu170 (Glu162 in human) is essential for dimer 

stability and metal selectivity [135]. For human MnSOD, Glu162Asp and Glu162Ala mutations 

retain the tetramer but activity is decreased 5-25% and the level of product inhibition is increased 

2-fold [89], indicating that Glu162 fulfils more than an electrostatic role . Previous studies have 

shown a positive charge at position 173 is essential for catalysis and enzyme activity can be 

abolished by chemical modification at this site [136,137] This model of human MnSOD indicates 

that positively-charged residues line the active site pit and strategic placement of Glu162 and 

Arg173 may contribute to productive interaction of anionic substrate with the active site. 

 Human MnSOD activity is regulated by post translational modifications [138,139]. The 

activity of MnSOD in cells is reduced through acetylation of lysines [140,141]. Acetylation causes 

lysines to be neutral in charge and presumably decreases superoxide attraction to the active site.  
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 Changes in net charge of the protein via acetylated lysines, even if far from the active site, 

could change the vector direction of the electrostatic field, as exemplified by Getzoff and 

coworkers [134]. Also, mass spectrometric analysis showed that Arg173 is dimethylated in 

proliferating and quiescent human fibroblast cells [142]. Methylation does not change the net 

charge of the arginine residue but adds bulky groups and reorients the charge. The functional role 

of Arg173 methylation and contribution to activity is unclear. How posttranslational modifications 

regulate MnSOD activity are of medical interest and the topic of future mechanistic studies.  

2.4 Conclusions 

 The crystal structure of the human MnSOD-azide complex, and in conjunction with 

electrostatic surface calculations, provides a model for the entry and binding position of the 

superoxide substrate to the active site. When inferring mechanistic data from the postulated 

superoxide binding site, the human and the recent C. elegans structures provide better models when 

comparing eukaryotic MnSOD structures. Electrostatic calculations suggest anionic substrate is 

guided toward the active site of MnSOD by a negatively-charged outer ridge and positively 

charged central valleys. Superoxide is then correctly oriented by Glu162 and Arg173, enters the 

active site by passing gateway residues Tyr34 and His30, and binds to the manganese ion at the 

sixth coordinate position.  
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Chapter 3: Developing a System for Neutron Diffraction of MnSOD 

3.1 Introduction 

 Despite their biological importance, the complete multistep enzymatic mechanisms of 

SODs are unknown due to limitations in identifying the hydrogen positions at the active site. 

Knowledge of the hydrogen positions are critical because (1) they are needed to differentiate the 

ligands in the active site, which are hypothesized to differ based on the redox state of the active site 

metal [93], and (2) they reveal the source and pathway of protons to the catalytic center for proton-

assisted electron transfer.  

 All X-ray crystal structures of MnSOD and FeSOD have an oxygen molecule coordinated 

to the active site metal which is thought to be involved in proton-assisted electron transfer. 

Whether the oxygen is a water or hydroxide molecule is not known due to the low X-ray scattering 

factor of hydrogen atoms and insufficient diffraction resolution. The hydrogen content of the 

molecule is postulated to depend on the redox state of the metal [69,90]. Discerning between 

superoxide and hydrogen peroxide is also difficult in X-ray crystallography. Hydrogen peroxide is 

produced during the oxidation step of the metal and dissociation of the oxidized product inhibited 

complex. X-ray crystal structures of fully-oxidized metalloproteins cannot be measured since 

photo-electrons reduce the metals during X-ray data collection [75]. This is yet another advantage 

of neutron crystallography, where the oxidation state of the active site metal is unaffected by the 

beam. 

 The source and pathway of proton transfer(s) used to dismute superoxide is not known. A 

conserved hydrogen bond network involving the coordinated oxygen molecule to the metal and 

several residues has been presumed to shuttle protons from bulk solvent to the catalytic center 

[63,93,143]. Mutation of residues contributing to the hydrogen bond network has been shown to 

highly affect catalytic activity and has suggested two differing pathways for reduction of 

superoxide [63,71,87,144]. 
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 Neutron diffraction of human MnSOD is being used to uncover the hydrogen positions, 

effect of metal oxidation state, the proton relay pathway, and the catalytic mechanism of SODs. 

Here, methods are presented for the production of perdeuterated human MnSOD, purification, large 

crystal growth, and neutron data collection to 2.30 Å using the MaNDi single-crystal diffractometer 

at Oak Ridge National Laboratory (ORNL). Perdeuteration, replacing every hydrogen atom with 

deuterium, was performed using the Perdeuteration Facility at ORNL. Perdeuteration is 

advantageous as it decreases the incoherent scattering by 40 fold compared to a hydrogenated 

sample thereby reducing background and increasing the resolution of diffraction. Our crystal 

system was particularly challenging for neutron diffraction due to our large unit cell edge of 240 Å. 

The human MnSOD data set provides the largest unit cell edge to be collected via neutron 

diffraction to sufficient resolution where hydrogen positions can be observed. 

3.2 Materials and Methods 

3.2.1 Adaptation to Deuterium 

 Full length human MnSOD cDNA optimized for E. coli codons was cloned into the 

pCOLADuet-1 expression vector and transformed into BL21(DE3). Cells were grown in Terrific 

Broth with 0.8% (v/v) glycerol while cell strain fidelity was maintained with 30 µg mL-1 of 

kanamycin for initial growth and deuterium adaptation. Deuterium adaptation was performed by 

subculturing from Terrific Broth to H2O minimal media and subsequent subcultures into increasing 

ratios of deuterium labelled minimal media (25, 50, 75 and 100%). Subculturing was performed by 

1:5 dilutions into 3 mL of media from an OD600 of 1 to a final of 0.2. The composition of minimal 

medium used for deuterium adaptation and human MnSOD expression was as follows: 5 g L-1 D8-

glycerol, 7 g L-1 (NH4)2SO4, 0.5 g L-1 ammonium citrate dibasic, 5.25 g L-1 Na2HPO4, 1.6 g L-1 

KH2PO4, 1 mL L-1 of 20% MgSO4·7H2O, and 1 mL L-1 of trace elements solution [145]. The 

1000X trace elements solution contained 0.500 g L-1 CaCl2·2H2O, 0.098 g L-1 CoCl2, 0.160 g L-1 

CuSO4·5H2O, 16.7 g L-1 FeCl3·6H2O, 0.114 g L-1 MnSO4·H2O, 22.3 g L-1 Na2EDTA·2H2O, and 
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0.180 g L-1 ZnSO4·7H2O [146]. For perdeuterated medium preparations used for fed-batch 

cultivation, minimal medium salts were dried and exchanged three times using a rotary evaporator 

prior to dissolution in 99.8% D2O [147]. All other solutions were prepared with 99.8% D2O and 

filter sterilized into dry, sterile containers prior to use.   

3.2.2 Perdeuterated Expression 

 Once adapted to D2O, glycerol stocks were stored at -80 °C for future use. All media used 

after adaptation used 100 µg mL-1 kanamycin. In preparation for fed-batch cultivation, 25 L of 

glycerol stock was used to seed 3 mL of D2O minimal medium, which was subsequently shaken at 

250 rpm and 37 °C. Once the culture reached an OD600 of ~1, it was subcultured 3X in D2O 

minimal medium at 1:20 dilution prior to scale-up for fed-batch cultivation, which utilized a Bioflo 

310 bioreactor system (Eppendorf). Prior to inoculation, a 2.5 L bioreactor vessel was steam-

sterilized and dried using sterile-filtered compressed air that had been first passed through a gas 

purifier containing Drierite® and 5 Å molecular sieves. Upon dryness, fresh perdeuterated minimal 

medium (1.4 L) was added to the vessel. Sensors for monitoring pH and dissolved oxygen were 

rinsed with deionized water and 70% ethanol prior to installation through the vessel headplate. 

Temperature and compressed air flow were set at 30 °C and 1.5 L min-1 (1 vvm) respectively. To 

inoculate the vessel, 50 mL of D2O-adapted cells were diluted to an initial OD600 of 0.14. 

Throughout the experiment, agitation was increased from 200 rpm to maintain dissolved oxygen 

above a set point of 30% and 10% (w/w) NaOD was added on demand to control pD  (>7.3). Upon 

depletion of D8-glycerol, the dissolved oxygen spike was used to initiate addition (9 mL h-1) of a 

feed solution consisting of 10% (w/v) D8-glycerol and 0.2% MgSO4 in 99.8% D2O. Upon reaching 

an OD600 = 8.3 after 21.8 hours, a D2O-exchanged solution of MnSO4 was added to 1.4 g L-1 and 

perdeuterated human MnSOD overexpression was induced by adding IPTG to a final concentration 

of 1 mM. After 26.2 h, the cell suspension was collected and pelleted at 6,000 x g via 

centrifugation at 4 °C for 30 minutes to yield 63.7 g wet weight of perdeuterated cell paste. 



53 

 

3.2.3 Purification 

 For purification, cells were re-suspended in 50 mM potassium phosphate, pH 7.8, adjusted 

by altering the ratio of dibasic (K2HPO4) and monobasic forms (KH2PO4) to 91% and 9%, 

respectively [148]. Lysis was conducted with an Emulsiflex and clarified lysate was incubated at 

60 °C for one hour to precipitate contaminant proteins which were removed by centrifugation. 

Soluble protein was dialyzed against 5 mM potassium phosphate, pH 7.8, and applied to pre-

swollen diethylaminoethyl (DE52) cellulose resin (GE Healthcare). The protein-resin slurry was 

rocked for 1 hr at 10 °C and poured into a Büchner funnel set with Whatman #4 filter paper while 

under vacuum. Once dry, resin was washed with 5 mM potassium phosphate, pH 7.8, then protein 

was eluted with 100 mM potassium phosphate, pH 7.8. Eluted protein was dialyzed against 2.5 mM 

2-(N-morpholino)ethanesulfonic acid (MES), pH 5.5, applied to a carboxymethyl (CM) sepharose 

(GE Healthcare) column, eluted with a sodium chloride gradient, and concentrated to 21 mg mL-1 

using 5 kDa molecular weight cut-off concentrators. Concentration was measured using a 

NanoDrop ND-1000 spectrophotometer using an extinction coefficient of 43.43 L mol-1 cm-1 at 280 

nm. Purification of hydrogenated and deuterated protein were identical.  

3.2.4 Crystallization 

 Optimization of large, hydrogenated crystal growth was conducted first. A protocol for 

hanging drop vapor diffusion growth was translated to a nine well glass plate sandwich box setups 

(sitting drop vapor diffusion, Hampton Research) and upscaled to 100 µl drops with differing ratios 

of protein at 21 mg ml-1
 to screen for large crystal growth. Well solution consisted of 1.8 M 

potassium phosphate, pH 7.8. Crystal setups were placed on neoprene vibration isolation pads 

(Grainger 5XR47) and kept inside an incubator kept at 20 °C (RUMED Rubarth Apparate GmbH).  

Ratios of protein to well solution of 3:2, 1:1, and 2:3 yielded the largest and highest quality 

crystals, as measured by X-ray diffraction resolution and mosaicity. Large crystal growth was also 

achieved at 10 °C using a higher salt concentration, of 2.5 M potassium phosphate at pH 7.8. 
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Crystals grew up to 3 mm3 after a month, although the largest crystals all had imperfections and/or 

diffracted X-rays poorly.  

 To identify if differing crystallization conditions were needed for perdeuterated crystals, a 

hanging drop grid screen was performed using 2 µl drops of 1:1 protein to well solution with 

varying pH and concentrations of potassium phosphate both at room temperature and 10 °C. 

Growth utilizing a reservoir solution of 1.93 M potassium phosphate, pH 7.8, at room temperature 

and 2.50 M potassium phosphate, pH 8.0 (adjusted by altering ratios of dibasic and monobasic 

forms, 94% and 6%, respectively), at 10 °C consistently yielded single crystal growth. The 

condition was translated to perdeuterated large crystal growth using 100 µl drops with protein, 21 

mg ml-1, to well solution ratios of 3:2, 1:1, or 2:3. Large volume crystals were grown at 20 °C in 

the same glass trays and incubator set up as described above. In these setups, perdeuterated crystals 

grew up to 2 mm3 after 3 weeks, though the largest crystals diffracted poorly with X-rays and 

displayed high mosaicity. A 0.26 mm3 perdeuterated crystal was used to collect our neutron data 

set. 

3.2.5 Deuterium Exchange 

 To vapor exchange titratable hydrogens in the crystals with deuterium, a suitable 

deuterated substitute reservoir solution was needed. For crystals grown in 1.93 M potassium 

phosphate, pH 7.8, at 20 °C, total substitution of reservoir with 2.43 M deuterated potassium 

phosphate, pH 7.4 (pD 7.8), maintained crystal stability.  Likewise, crystals grown in 2.50 M 

potassium phosphate, pH 8.0, at 10 °C maintained stability with substitution to 3.00 M deuterated 

potassium phosphate, pH 7.6 (pD 8.0). In general, a deuterated substitute reservoir solution 0.5 M 

above our native reservoir concentration caused no observable alterations in our crystals. 
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3.2.6 Preparation for Neutron Diffraction 

 To prepare for neutron data collection, crystals were mounted into quartz capillaries, vapor 

exchanged with deuterium, screened for diffraction viability using X-rays, and safely transported 

from the home lab to ORNL.  These steps are described in detail below. 

 For mounting crystals, thick-walled quartz capillaries (VitroCom, 1.5 ID X 1.8 OD, 

CV1518-Q-100) were preferred due to their transparency to neutrons and durability during 

handling and travel. Crystals were carefully drawn into the capillaries from their crystallization 

drops using a Captrol III Drummond Scientific Aspirator connected to rubber tubing with vacuum 

grease. Approximately 20 µl of reservoir solution was added to the crystallization drops prior to 

mounting to account for solution being drawn into the capillary. Crystals fixed to the well plates 

could be dislodged by repeatedly pipetting around the crystal slowly using a standard pipet. Once 

crystals were drawn into the capillaries, native mother liquor was removed and dried using paper 

wicks to avoid crystal slippage.  A conservative amount of mother liquor was left on the crystal to 

prevent its drying. Slugs of deuterated substitute reservoir solution, 10 µl, were placed on both 

sides of the crystal and the capillary was sealed by heating and cooling beeswax. To ensure 

saturation of deuterium exchange, capillaries were opened after 1 week with a heated syringe 

needle and and the slugs of deuterated reservoir were replaced with fresh solution before being 

resealed. 

 To preliminarily assess whether our crystals would be viable for neutron diffraction, 

diffraction was tested with 5 second exposure to X-rays. Exposures were kept as short as possible 

to avoid radiation damage but had to be extended to 5 seconds due to the thickness of the quartz 

capillary and the size of the crystal. 

 To further secure the beeswax seals of the capillaries, a thin layer of fingernail polish was 

applied prior to travel. Capillaries were either placed in 15 mL conical tubes surrounded by cotton 

wool or fastened in DVD cases with clay. Tubes and DVD cases were placed in cushioned areas of 
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luggage during travel, such as between foam padding in a dedicated suitcase that was checked or in 

a hand carried backpack. 

 Upon arrival to ORNL and prior to data collection, crystals were dried again to a minimal 

amount of mother liquor to minimize background signal and to avoid crystal slippage. Time-of-

flight (TOF) neutron diffraction data from a perdeuterated crystal 0.26 mm3 in volume at 293K 

were initially recorded to 2.30 Å using the MaNDi instrument [149,150] at the Spallation Neutron 

Source (SNS) onsite at ORNL using all neutrons between 2 to 4 Ångstrom (Table 3.1). The omega 

angle was fixed at 90° for data collection and each image was separated by a 20° phi rotation. 

These six images were processed and integrated using the Mantid package [151] and the Lauenorm 

program from the Lauegen package [152]. Lauenorm performs a wavelength normalization of the 

Laue data and scaling between Laue diffraction images. The X-ray diffraction data were collected 

at 293K on an in house Rigaku MM007-HF equipped with an RAXIS IV++ detector and were 

processed using the XDS package [153] and the Scala program from the CCP4 suite [154]. 

3.3 Results and Discussion 

 To produce deuterated human MnSOD, E. coli cells harbouring the recombinant plasmid 

were needed to grow in deuterated minimal media. BL21(DE3) cells with the endogenous SODs 

were used to adapt to fully deuterated media. Adaptation was performed by subculturing from 

Terrific Broth to H2O minimal media and subsequent subcultures into increasing ratios of 

deuterium labelled minimal media (25, 50, 75 and 100%) at OD600 of 1. Subculturing was 

performed by 1:5 dilutions into 3 mL of media from an OD600 of 1 to a final of 0.2 Expression of 

recombination human protein upon induction with IPTG was verified with a SDS-PAGE (Figure 

3.1).  Purification of human MnSOD were performed with nearly identical protocols as for the  
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Table D X-ray and Neutron Data Collection Statistics for a 0.26 mm3 Crystal 

Table 3.1 X-ray and Neutron Data Collection Statistics for a 0.26 mm3 Crystal 

 
Diffraction source  Rigaku MM007-HF  MaNDi  

 

Wavelength(s) (Å)  1.54    2-4 

Temperature (K)   293    293 

Detector(s)   Raxis IV++   40 SNS Anger cameras 

Xtal-to-detector distance (mm) 200    450 

Rotation range per image (°) 0.25    Fixed 

Number of Images Collected 400    6 

Total rotation range (°)  100    60 

Exposure time per image 30 seconds   48 hours 

Space group   P61 2 2    P61 2 2 

a, b, c (Å)   81.40, 81.40, 242.0  81.31, 81.31, 242.0 

α, β, γ (°)   90,90,120   90,90,120 

Resolution range (Å)  19.71 – 2.35 (2.48 –2.35) 14.62 – 2.30 (2.38– 2.30) 

Total No. of reflections  228827     43593  

No. of unique reflections  20582     16318  

Completeness (%)  99.7 (99.8)   74.29 (68.83) 

Redundancy   9.0 (11.0)   2.67 (2.07) 

<I/σ(I)>    8.7 (2.70)   5.4 (2.70) 

Rmerge (%)   7.6 (27.0)   19.2 (22.8) 

Rpim (%)    2.30 (8.7)   11.1 (15.9) 
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Figure 3.1: Fermenter growth of perdeuterated human MnSOD. SDS-PAGE of whole cell lysate 

from cells grown in perdeuterated media immediately before and 13 hr after induction. Monomeric 

human MnSOD has a molecular weight of 22 kDa. Samples were normalized to equivalent optical 

densities. 
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hydrogenated form (Figure 3.2).  Contamination by dimeric E. coli SODs were not detected on 

native gels (data not shown). Any concerns about such contamination were relieved when the 

perdeuterated sample crystallized in the space group and unit cell that is only associated with 

human MnSOD. 

 Prior to obtaining our neutron data set of a perdeuterated crystal, we attempted to collect 

data sets with hydrogenated crystals, 1.0-1.2 mm3, with titratable hydrogens exchanged with 

deuterium. Though these crystals diffracted well with X-rays, neutron data collection yielded 

diffraction up to 2.95 Å, a resolution insufficient to accurately observe hydrogen positions. The 

extent of diffraction was attributed to the large unit cell edge of 240 Å and incoherent scattering 

given by the hydrogen atoms at non-titratable positions. To improve diffraction intensities and 

extend the diffraction limit, data was later collected on perdeuterated crystals. The highest 

diffraction limit, to 2.30 Å, was achieved with a 0.26 mm3 perdeuterated crystal (Figure 3.3). 

 Large unit cell axes are highly problematic in Laue diffraction experiments due to the large 

number of closely packed reflections they generate [155]. Without the use of TOF methods which 

enable a multi wavelength Laue diffraction pattern to be broken up into monochromatic slices 

(Figure 3.4) a large proportion of the reflections would be spatially overlapped [149,156]. 

Furthermore, the reflection diffraction intensity is directly related to the volume of the crystal and 

the volume of the unit cell making data collection on large unit cells using the low flux available at 

neutron beams particularly challenging. 
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Figure 3.2: Purification of human MnSOD. SDS-PAGE of perdeuterated human MnSOD during 

purification. Purification steps are sequential from left to right. Heat was applied by placing samples in a 

water bath, anion exchange was conducted using DE52 resin and eluted with 100 mM potassium 

phosphate, pH 7.8, and cation exchange was performed with a CM column and eluted with a sodium 

chloride gradient. See materials and methods for further details of purification. 
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Figure 3.3: Crystals of perdeuterated human MnSOD. (a) A 0.26 mm3 perdeuterated human MnSOD 

hexagonal pyramidal crystal mounted in a quartz capillary for neutron data collection. (b) Measurements 

of base edge and height for volume calculation in (c). 
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the spherical detector orientation of MaNDi 

 

Figure 3.4: The diffraction pattern of human MnSOD from the spherical detector orientation of 

MaNDi. A selected time-of-flight slice of neutrons with wavelength of 3.0 - 3.1 Å is shown. 
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Chapter 4: Redox Manipulation of MnSOD 

4.1 Introduction 

 A large body of literature has attempted to discern the catalytic mechanism of human 

MnSOD but still remains enigmatic [63,69,71,72,90,93,99,101,102,104-108,157]. The difficulty in 

elucidating the mechanism is attributed to limitations in detecting hydrogen positions at the active 

site, especially for X-ray crystallography. Knowledge of the hydrogen positions is paramount to 

understanding the mechanism because the cyclic redox reaction of MnSOD relies on the coupling 

of electron transfers to proton transfers, also called proton-coupled electron transfers (PCETs) 

[158]. A consensus among the MnSOD literature is that proton-shuttling relays are present around 

the manganese ion to mediate systematic PCETs, as noted by the following detailed reviews 

[63,157]. This facilitates one of the fastest (kcat = 40,000 s-1) and most efficient (kcat/KM  close to 

109 M-1 s-1) reactions among all enzymes [91]. At least two unique relays exist, where utilization of 

a relay is based on the oxidation state of the manganese. The exact path of the proton relays has yet 

to be determined [104,112,157]. 

 Neutron protein crystallography is able to find hydrogen positions, unlike its X-ray 

counterpart [120,159]. This is a consequence of neutron coherent scattering lengths of deuterium 

atoms being on par with carbon, nitrogen, and oxygen whereas the X-ray scattering lengths of 

hydrogen and deuterium are approximately an order of magnitude less than the second row organic 

atoms [160]. Deuterium is especially noteworthy for neutron diffraction because it has 40 fold less 

incoherent scattering (i.e. background noise) compared to hydrogen and scatters positively whereas 

hydrogen scatters negatively [120]. Perdeuteration, replacing every hydrogen atom with deuterium, 

takes advantage of the properties of deuterium to improve neutron diffraction of a sample. Since 

50-80% of a protein crystal is typically water, using deuterated water (D2O) and as many 

deuterated mother liquor components as possible causes a large reduction in incoherent neutron 

scattering—reducing background. Half of all atoms found in biological macromolecules are 
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hydrogen, so replacing all hydrogen atoms with deuterium in the protein (perdeuteration) gives a 

sample that is fully optimized for neutron data collection. Perdeuteration also negates the issue of 

nuclear scattering density cancellation, where a combination of positive and negative scattering of 

nearby atoms yields a net scattering of zero. Combining the above use of deuterium and neutron 

crystallography makes discerning the catalytic mechanism of MnSOD possible.  

 Investigating mechanisms of oxidoreductase metalloproteins is challenging using X-ray 

diffraction. Metals are susceptible to being reduced by X-ray radiation, thus studying a completely 

oxidized metal complex is not feasible [75]. Even X-ray structures of MnSOD that are published as 

containing fully oxidized manganese ions are actually partially reduced, as determined by quantum 

mechanical and molecular modelling  [107,112,161]. When using neutrons, which are a 

nonionizing probe, no sort of radiation damage and consequently no redox changes occur to the 

metals [120,162]. As MnSOD utilizes differing proton relays based on the redox state of the 

manganese, being able to study both fully oxidized and fully reduced samples is crucial to 

understanding its mechanism [104,112,157].   

 In our previous work, we created a crystal system for MnSOD that was reliably applicable 

to neutron crystallography [163]. The known high symmetry space group (P6122) MnSOD crystal 

system was attractive since all precipitating agents could be purchased in a deuterated form and 

complete, redundant data could be collected in a handful of data frames (neutron beamtime is 

precious). Unfortunately, the cell dimensions are large (a = b = 90 Å, c = 240 Å) but is the largest 

unit cell to visualize hydrogen positions to date. The unit cell volume is especially difficult for 

neutron crystallography due to the low flux of neutron beamlines and the spatial overlap of 

reflections that large unit cells generate [155]. The macromolecular neutron diffractometer 

(MaNDi) beamline at Oak Ridge National Laboratory (ORNL), commissioned in 2014, 

circumvented the challenge of this large unit cell by using time-of-flight Laue (i.e. 

multiwavelength) diffraction [164,165]. Time-of-flight information allows polychromatic 
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diffraction patterns to be resolved into monochromatic slices, allowing discrimination of spatially 

overlapped reflections that are especially problematic with crystals harbouring large unit cells 

[156,164]. In conjunction with MnSOD perdeuteration and moderate crystal volumes (> 0.25 

mm3), neutron diffraction using the MaNDi beamline was achieved up to a resolution (2.14 Å) 

where deuterium positions could be observed [163].  

 After developing a pipeline for MnSOD perdeuteration, large crystal growth, and neutron 

diffraction to a resolution where hydrogen positions can be visualized, we next endeavoured to 

control the redox state of the manganese ion in this system. Visualizing the proton environment 

where the manganese ions are either all trivalent or divalent (rather than the native, mixed state) 

provides important snapshots of the proton-based catalytic mechanism , where differences in 

proton positions can then be used to track the path of proton transfers. In this work, several 

methods are provided for controlling the redox state of the active site manganese ion within 

MnSOD crystals (i.e. after crystallization) for neutron crystallography. The redox manipulation 

techniques described are intended to be applicable to other sorts of crystal treatments (neutron or 

X-ray) or other metalloprotein crystal systems. 

4.2 Materials and Methods 

4.2.1 Perdeuterated Expression, Purification, and Crystallization 

 The details of methods for perdeuteration, expression, purification, and crystallization of 

MnSOD were previously described in Chapter 3 section 2. 

4.2.2 Redox manipulation 

 Reduction of MnSOD was achieved with these chemicals, (1) hydrogen peroxide, (2) 

sodium ascorbate, and (3) sodium dithionite. Potassium permanganate was used as an oxidizing 

agent. These chemicals were supplemented in the deuterated substitute reservoir solution, 

composed of 2.43 M deuterated potassium phosphate pH 7.4 (pD 7.8). The redox state of the 
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manganese is detected by the intensity of the pink color of the crystals (Figure 4.1). A deep pink 

color indicates Mn(III) ions and colorlessness indicates Mn(II) ions [93,105]. Of note, 

electroparamagnetic resonance and optical spectra studies verify exclusive formation of Mn(III) 

from potassium permanganate oxidation and not Mn(IV) [98,166-169]. 

 Hydrogenated MnSOD was first crystallized in each well of a 24 well crystallization plate 

(VDXm plate from Hampton Research) via hanging drop vapor diffusion using identical 

crystallization conditions for each well, 1.8 M potassium phosphate pH 7.8. 1 µl each of reservoir 

solution and 23 mg ml-1 protein was used for the crystallization drop with crystals growing no 

bigger than 0.05 mm3
 [163]. Redox agent was then added to each reservoir solution in a gradient 

concentration across the whole plate along with concentrated potassium phosphate pH 7.8 to 

maintain the original molarity when necessary. The ‘new’ reservoir solution and the crystal were 

then allowed to vapor diffuse with each other for one week. The persistence of the native light-pink 

color (Figure 4.1a) was representative of too little redox agent while cracked or deformed crystals 

were characteristic of too much. Concentrations of redox agent that were able to change the 

intensity of pink without visibly compromising crystal integrity were used as a starting point to 

optimize redox changes of larger crystals contained within a capillary. 

 After mounting crystals in a capillary (mounting method provided in detail in [163]), three 

techniques were explained to control the redox state of the manganese ions of MnSOD crystals, 

vapor diffusion, a ‘touch soak,’ and a full soak. 

 First, the oxidation state of the manganese could be controlled solely through vapor 

diffusion by supplementing the redox reagent into the deuterated substitute reservoir solution 

intended to keep the crystal hydrated. The length of time in which the redox changes could be 

observed varied with concentration of the agent and the distance between the solution and the 

crystal. This was the primary method for obtaining oxidized crystals and was achieved by allowing  
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Figure Error! No text of specified style in document..A Representative Images of Perdeuterated As-

isolated, Oxidized, and Reduced Perdeuterated Human MnSOD Crystals 

 

Figure 4.1: Representative images of perdeuterated (a) as-isolated, (b) oxidized, and (c) reduced 

perdeuterated human MnSOD crystals. The oxidized crystals shown were obtained by the vapor 

diffusion method (see methods section) using deuterated substitute reservoir solutions supplemented with 

potassium permanganate within capillaries. The reduced crystals shown were obtained using the touch 

soak method (see methods section) using deuterated reservoir supplemented with sodium dithionite 

within capillaries. The images were taken with identical lightning and the crystal volumes varied from 

0.2 mm3 to 0.5 mm3.  
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reservoir solutions supplemented with 6.4 mM potassium permanganate to vapor diffuse with the 

sample. 

 Second, touch soaking was used when vapor diffusion was insufficient. This is achieved by 

cautiously using a pipet to move the redox agent supplemented reservoir slug within the capillary 

to barely contact the crystal. The slug is then pipetted away when the redox change is complete, 

which is intended to occur within a timeframe of seconds. To reduce the crystals with hydrogen 

peroxide (0.25-1.00%), this was the predominant method used.  

 Finally, a full soak of crystals in redox agent-supplemented deuterated substitute reservoir 

solution was performed while the sample is still within the capillary. Changes were observed 

within seconds but soaks could be performed over several days to ensure a persistent shift of 

oxidation state. This was the primary method for obtaining reduced crystals and was achieved by 

soaking crystals in reservoir solution supplemented with 0.2 M sodium dithionite. 

4.2.3 Neutron Data Collection 

 Prior to data collection, reservoir slugs of the capillaries bearing the crystal samples were 

replaced with fresh deuterated reservoir solution supplemented with redox agent. Neutron data was 

obtained on oxidized and reduced perdeuterated human MnSOD crystals (Table 4.1). Time-of-

flight wavelength-resolved neutron Laue diffraction data [156] was collected on the MaNDi 

instrument [164,165] at the Spallation Neutron Source (SNS) using all neutrons with wavelengths 

between 2-4 Å. During the collection of each diffraction pattern the crystal was held stationary and 

was rotated by 20° between successive diffraction patterns. The diffraction data was reduced using 

the Mantid [170] software and scaled and wavelength normalized using the Lauenorm [171] 

program from the Lauegen suite [172]. 
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Table E Neutron Data Collection Statistics for Oxidized and Reduced Crystals Table 4.1 Neutron Data Collection Statistics for Oxidized and Reduced Crystals 

 

Oxidation state of Mn Oxidized (3+) Reduced (2+) 

Diffraction source MaNDi MaNDi 

Size (mm3) 0.30 0.46 

Wavelength(s) (Å) 2–4 2–4 

Temperature (K) 293 293 

Detector(s) 40 SNS Anger cameras 40 SNS Anger cameras 

Crystal-to-detector distance (mm) 450 450 

Rotation range per image (°) 0 0 

No. of images collected 6 8 

Total rotation range (°) 120 160 

Exposure time per image 48 h 48 h 

Space group P6122 P6122 

a, b, c (Å) 81.4, 81.4, 242.3 81.4, 81.4, 242.3 

α, β, γ (°) 90, 90, 120 90, 90, 120 

Resolution range (Å) 15.27–2.14 (2.22–2.14) 15.67–2.30 (2.38–2.30) 

Total No. of reflections 68993 77229 

No. of unique reflections 21386 20454 

Completeness (%) 80.0 (69.3) 93.2 (93.6) 

Multiplicity 3.23 (1.94) 3.78 (3.46) 

〈I/σ(I)〉 4.50 (2.70) 5.7 (4.10) 

Rmerge (%) 21.7 (28.2) 22.0 (22.8) 

Rp.i.m. (%) 10.1 (21.4) 11.4 (15.7) 
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4.3 Results and Discussion 

4.3.1 Redox manipulation 

 To discover the optimal redox agent for manipulating the oxidation state of the manganese 

within crystals, a variety of agents, concentrations, and exposure methods were tested. Several 

redox agents and three manipulation methods were tested and their advantages and disadvantages 

are noted. Each agent and method had an appropriate use depending on the crystal size and stability 

as well as the susceptibility of the metal to redox changes (i.e. the redox potential) while 

maintaining adequate diffraction quality. In the case of MnSOD, the redox changes of the active 

site metal were detected by the change in intensity of the pink color of the crystals (Figure 4.1). A 

deep pink color is indicative of trivalent manganese ions whereas colorless crystals represent 

divalent manganese ions. [93,105]. 

 Four redox agents were screened using small crystals (<0.05 mm3) grown in a 24-well 

plate by supplementing the agent into the reservoir solution and allowing it to interact with the 

crystals via vapor diffusion.  

  First, hydrogen peroxide is a known oxidizing agent, but in the case of its interaction with 

the manganese of MnSOD, it acts as a reducing agent when in excess by forcing the backwards 

reaction of the second half reaction [65]. This is not feasible with Cu or Fe containing proteins as 

hydrogen peroxide imposes Fenton chemistry with these transition metals. Concentrations above 

1% hydrogen peroxide abolished diffraction without visible alterations to the crystals other than 

color while 0.1% was able to turn these small crystals colorless.  

 Second, sodium ascorbate, has been documented as a reducing agent for SODs in solution 

[166,173]. Signs of reduction were not detected with concentrations up to 0.85 M after one week of 

vapor diffusion or when soaking the crystals overnight. After 1 month, color changes were visible 

with concentrations of 0.85 M solely using vapor diffusion.   
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 Third, sodium dithionite has been applied in earlier X-ray crystallographic studies of SOD 

using soaking methods [93,105] and has been shown to influence the absorption spectra of the 

MnSOD chromophore [166]. For the vapor diffusion screen, concentrations greater than 0.3 M 

would sporadically grow salt crystals within the reservoir, on the crystals, or within the crystals. 

For the small crystals of this screening method, 0.2 M was sufficient to turn the crystals colorless 

after 1 day.   

 Fourth, potassium permanganate has been shown to increase the absorption spectra of the 

oxidized MnSOD chromophore [166]. It was not observed to have ‘side effects’ on the crystals 

when using concentrations up to 7 mM, which easily increased the pink intensity of the samples. 

Higher concentrations were not used due to concern over unwanted long-term effects. 

 While the screening described above determined that redox manipulation of small MnSOD 

crystals was possible, the techniques needed to be translated to larger crystals (> 0.2 mm3) to 

perform neutron diffraction. The suitable redox agent concentrations discovered using the small-

scale screen were used as a starting point to achieve redox manipulation of larger MnSOD crystals 

within capillaries. Finding the optimal concentrations for larger crystals in capillaries was more 

difficult owing to the large variability in crystals sizes as the amount of redox agent needed to 

change the redox state of the samples is proportional to the crystal volume. The distance between 

the reservoir slug and the crystal within a capillary also is a determinant in the potency of redox 

influence on the sample using vapor diffusion. Below, redox manipulation via vapor diffusion for 

neutron crystallography is addressed along with alternative methods for controlling the oxidation 

state of the active site manganese ion.  

 Vapor diffusion within a capillary is considered the least invasive method of redox 

manipulation with minimal amount of risk to crystal integrity as the crystal is not touched after it is 

mounted in a capillary. This technique involves simply adding the redox reagent to the deuterated 

substitute reservoir slugs in the capillary (Figure 2a), allowing vapor diffusion of both D2O and the 
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redox agent with the crystal. The speed of the redox change is proportional to the concentration of 

the redox agent in the reservoir slug and the distances of the slug(s) from the crystal. In general, a 

balance between these three elements should be considered. Redox and color changes can take 

between days and weeks depending on the parameters used. High amounts of a redox compound or 

close proximity between the slug and crystal increases the susceptibility of the sample to side 

effects. These include cracking of the crystal, salt or protein aggregates nucleating within the 

protein crystal, and/or deteriorating diffraction quality. Some crystals were more susceptible to 

these side effects than others when conditions are kept identical. This was probably due to 

differences in intrinsic quality of the crystals. The capillaries can be opened to replace the 

supplemented reservoir slugs with fresh ones every few days to speed up the process, but this also 

increases the likelihood of damaging the crystals due to handling. While vapor diffusion has the 

potential to be one of the least invasive techniques, one needs to compromise between time and risk 

when manipulating the samples. 

 The crystals were oxidized primarily through vapor diffusion due to the lack of apparent 

side effects from using 6.4 mM potassium permanganate, permitting liberal volumes of 

permanganate and close proximity between the slugs and the crystal (~3 cm). Potassium 

permanganate increased the pink color of the crystals over the course of one week (Figure 4.1b & 

4.2a). During the vapor diffusion process, the pink color of the permanganate solution decreased, 

indicative of the decay of the oxidizing agent. Upon this observation, the capillaries were opened 

and the reservoir slugs were replaced with ones containing ‘fresh’ permanganate. After several 

replacements, the pink color of the solution stabilized within the sealed capillary and the crystals 

held the deep pink intensity over the course of several months, likely a consequence of saturation 

of the redox reaction. Subsequent neutron diffraction utilizing this method was achieved on MaNDi 

to 2.14 Å resolution (Table 4.1). 
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 Reducing the manganese within the crystals using vapor diffusion was achieved but not 

without difficulties. Hydrogen peroxide concentrations ranging between 0.25 – 1.00 % were able to 

remove the pink intensity of the crystals in 1-3 d (Figure 4.2b-c), representative of divalent 

manganese ions within the sample, but at a consequence. The diffraction quality of these crystals 

seemed unaffected for ~2 wks, but was then rapidly abolished afterwards with no apparent changes 

to the visual quality of the samples. This may indicate saturation of the redox reaction between 

hydrogen peroxide and manganese and funnelling of hydrogen peroxide towards decomposing the 

protein by oxidizing reactions. The diffraction quality of a crystal could be compromised before the 

experiment is completed given the longer data collection times needed with neutrons. Even with 

this deleterious side effect, use of hydrogen peroxide as a reducing agent is feasible if data 

collection is performed within an adequate timeframe, such as with X-rays. Alternatively, 

hydrogen-peroxide soaked crystals could be cryotrapped for neutron data collection.  

 The advantage of vapor diffusion is the ability to chemically treat the crystals without 

direct contact, but its appeal diminishes when the higher concentrations of reagent used in the 

process still compromise the samples, such as with sodium dithionite. Another means to treat the 

samples is to lessen the concentration of the chemical agent in the reservoir slug and allow very 

little contact with the crystal, minimizing any potential damage to the sample. In the case of 

MnSOD, 0.2 M dithionite was able to reduce crystals with this approach, a concentration where 

aggregate growth was significantly less than at 0.3 M. This is achieved by cautiously using a pipet 

to move the redox agent supplemented reservoir slug within the capillary to barely create contact 

with the crystal (Figure 4.3). The slug is then pipetted away when the redox change is complete. 

The effects of the dithionite on the samples were noticeable within minutes, totally abolishing the 

intensity of the pink color of the crystals. In some cases, only contact with the mother liquor 

surrounding the crystal was needed. After redox treatment, the dithionite-supplemented reservoir 

slugs were replaced weekly to maintain a reducing environment within the capillary, as dithionite  
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Figure Error! No text of specified style in document..A Redox Manipulation of Perdeuterated human 

MnSOD Crystals via Vapor Diffusion Within Capillaries 

 

Figure 4.2: Redox manipulation of perdeuterated human MnSOD crystals via vapor diffusion 

within capillaries. Cracks were present prior to manipulation. (a) Images of crystals within capillaries 

along with deuterated reservoir supplemented with either potassium permanganate for oxidation or 

dithionite for reduction. (b) Time course of crystal reduction using reservoir solutions supplemented with 

1% hydrogen peroxide. The purple/pink background is from the microscope polarizer with its setting 

maintained between images while the lightning was consistent between the images of this panel. (c) 

Complete reduction by hydrogen peroxide is observed by the absence of pink color, achieved after 72 

hours after implementation of hydrogen peroxide. The image was taken with alternative lightning 

compared with panel (b) and without the polarizer to better observe the colorlessness. Diffraction quality 

was maintained during this time course (data not shown). (d) The same crystal was oxidized with 

supplementation of potassium permanganate and reduced with sodium dithionite. The purple background 

is from the microscope polarizer with its setting maintained between images. The lightning was kept 

consistent between the images.   
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Reduction of Perdeuterated MnSOD Crystals 

 

Figure 4.3: Procedure for the ‘touch soak’ method for reduction of perdeuterated MnSOD crystals. 

Arrows indicate the position of the crystal while black lines indicate positions deuterated reservoir slugs 

supplemented with dithionite. (a) A MnSOD crystal flanked by dithionite containing slugs within a 

capillary sealed with melted wax. (b) At one end, the wax is peeled off and the slug is removed. (c-d) 

Using a pipet, gently move the remaining slug using negative pressure to make minimal contact with the 

crystal. The redox change of the crystal is noticeable within minutes.  In some cases, only contact with 

the mother liquor is needed. This can be performed with or without the other end of the capillary sealed. 

If sealed, the slug will jump back to its original position once the negative pressure of the pipet is 

removed, otherwise, positive pressure with a pipet is applied to move the slug back to its original 

position. (e-f) Another slug supplemented with dithionite is added using a pipet attached with gel loading 

pipet tip and ends are sealed with melted wax.  
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decomposes in solution. This method also ensures a more extensive deuterium exchange between 

the crystal and the deuterated substitute reservoir than the vapor diffusion method. Neutron 

diffraction to a resolution where hydrogen positions could be observed was possible (Table 4.1). 

The advantages of this ‘touch soak’ method include use of a lower concentration of agent and rapid 

effects while difficulties can arise from the increased mosaicity and precision handling required.  

 MnSOD crystals that were larger in size, > 0.4 mm3, were resistant to redox changes 

through both vapor diffusion and touch soaking. The redox state of these crystals would revert to 

the native, mixed state over the course of several days. This is a consequence of the increased 

amounts of the metalloprotein contributing to the crystal size, requiring larger amounts of redox 

agent to shift the oxidation state of the crystal. In the case of sodium dithionite, increased 

concentrations (> 0.3 M) for the vapor diffusion or touch soak method were not feasible due to the 

worsening of unfavorable effects on the samples. To keep the concentrations of the agent low and 

still achieve shifts in the oxidation state of the crystals without reversion, full soaks were 

performed within the capillaries. This consisted of gently engulfing the crystals with deuterated 

substitute reservoir slugs supplemented with 0.2 M sodium dithionite (Figure 4.4). Some samples 

cracked once drowned in redox solution though these were usually poor quality crystals but one 

must consider this risk, nonetheless. The pink intensity of the crystals faded within 1 min of 

soaking, after which the solution can be pipetted off and the crystal laid dry. Some crystals could 

be soaked in the dithionite solution for weeks and still maintain adequate diffraction quality. Once 

the crystals were laid dry, dithionite supplemented (0.2 M) reservoir slugs were placed in the 

capillary to maintain a reducing environment via vapor diffusion. After one week of the removal of 

the soaking solution, small aggregates were observed on the protein crystal (Figure 4.5a). These 

aggregates did not grow larger and did not seem to exacerbate diffraction quality. Reversion of the 

oxidation state was not observed after a month. Full soaks are advantageous in their ability to  
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Crystals by a Full Soak Within a Capillary 

 

Figure 4.4: Procedure for reducing perdeuterated MnSOD crystals by a full soak within a 

capillary. Arrows indicate the position of the crystal while black lines indicate positions of reservoir 

slugs supplemented with dithionite.  (a) A MnSOD crystal flanked by dithionite containing slugs within a 

capillary heat-sealed using wax. (b) Both ends of the capillary are opened by peeling off the wax (without 

heat). (c-d) One of the slugs is removed using a pipet attached to gel loading pipet tip. (e-f) Using a pipet, 

negative pressure is applied to engulf the crystal in the slug solution. Panel (f) shows a crystal 

transitioning between redox states ~20 s after initiation of the soak while (g) depicts the full transition 

after 1 min. (h) The soaking solution is subsequently pipetted off or dried using wicks. During this 

process, ensure a slug is present within the capillary to ensure crystal hydration. (i) Another slug is added 

and the capillary is resealed.  
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ensure a redox shift of samples as well as promoting rapid deuterium exchange for neutron 

crystallography, though crystals are susceptible to cracking and may exhibit increased mosaicity. 

4.3.2 Optimizing Treatment Conditions and Determining Which Technique to Use 

 Discovering optimal conditions to treat large crystals intended for room temperature 

neutron diffraction has the potential to be a lengthy process. A brief workflow has been outlined to 

minimize the time required to find the appropriate treatment conditions for each of the three 

techniques. This proposed process assumes that the effects of treatment can be observed without 

diffraction, such as by eye or crystal absorption spectra, and that screening will be performed on 

large hydrogenated crystals. 

 (1) Find the minimum concentration of treatment agent (supplemented in substitute 

reservoir solution) needed to observe desired effects within minutes on samples upon a full soak. 

The rationale is that the concentration of treatment agent with full soaks is the least variant with 

crystal size as opposed to touch soaks or vapor diffusion. In addition, the change within a short 

timeframe is a rough indicator of whether the desired effects can be maintained with vapor 

diffusion in a sealed capillary after removal of the soaking solution. If the redox changes were 

immediate then relapse was less likely. 

 (2) A compatible concentration of treatment agent for touch soaking will likely be very 

similar to the concentration used for full soaks. Similar to the full soak, touch soaking should yield 

the desired effects within minutes. Touch soaking is more susceptible to reversion of the desired 

state due to its less rigorous nature and may require increased concentrations of agent compared to 

that of the full soak. The size of the crystals may also be another determinant, where smaller 

crystals may require lesser amounts of the treatment agent to obtain the desired effects.   

 (3) Vapor diffusion will require a higher concentration of treatment agent to observe 

changes within days/weeks compared to touch and full soak methods to compensate for its less  
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Method on MnSOD Crystal Integrity 

 

Figure 4.5: Effects of crystal size and dithionite treatment method on MnSOD crystal integrity. (a) 

Crystals that were soaked in a deuterated substitute reservoir solution supplemented with 0.2 M dithionite 

for 3 d. The small specks appeared 1 wk after removal of the soaking solution. These could be salt or 

protein aggregates. A full neutron data set was collected on the crystal shown in the left image due to its 

size and lesser mosaicity (judged by X-ray diffraction) compared to the other samples. (b) Crystals 

treated with dithionite using the touch soak method using the same solution as panel (a). The larger 

crystals in panel (a) would re-oxidize from the reduced state when using the touch soak method, which 

can be attributed to the ~25% large volumes compared to those in panel (b). (c) Images of crystals treated 

with 0.3 M dithionite through vapor diffusion. Arrows indicate aggregates on or within the crystals. The 

left image depicts minor detriment of aggregates to the protein crystal quality whereas the right image 

shows aggregate growth within the sample significantly affecting the quality of the protein crystal. 
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invasive nature. The concentrations of agent discovered from full and touch soak screens serves as 

a rough starting point for vapor diffusion screens, with up to 50% increases needed. Alternative 

ways to increase the speed of crystal changes from treatment is to decrease the amount of distance 

between the agent-containing slug and the sample as well as replacing the slug with freshly made 

agent-containing solution periodically. 

4.3.3 Feasibility for Neutron Diffraction 

 One intent of this work was to gauge the feasibility of collecting neutron data of redox-

treated, large, perdeuterated MnSOD crystals to a resolution where the positions of hydrogen atoms 

are observed. The possibility of this was unclear given the large unit cell dimensions of the 

MnSOD crystal form, which crowds diffraction spots, and the tendency for chemical crystal 

treatments to decrease diffraction quality, particularly through exacerbating spot crowding. Too 

much spot overlap ultimately reduces the resolution of the data. Neutron data sets were collected 

on crystals where manganese ions were manipulated to the trivalent state (‘oxidized’) or the 

divalent state (‘reduced’) (Table 4.1). The higher Rmerge values than what would be expected for 

monochromatic X-ray data are comparable to other Laue data sets collected from neutron spallation 

sources [174]. 

 Collecting data on oxidized perdeuterated MnSOD crystals did not bring any additional 

difficulties to those already inherent to neutron crystallography. The crystal from which data was 

collected was 0.3 mm3 in size and oxidized by vapor diffusion of potassium permanganate 

implemented into the deuterated substitute reservoir slug (Figure 4.2a, left box). Neutron data was 

collected and processed to 2.14 Å and is the highest resolution obtained for this crystal system. 

 For data collection of a reduced sample, a crystal 0.46 mm3 in size soaked in dithionite for 

3 days was chosen (Figure 4.5a, left image). One week after removal of the soaking solution, small 

aggregates were observed on the protein crystal. These aggregates did not grow larger and did not 

seem to exacerbate diffraction quality. Before data collection, the slugs within the capillary 
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containing the sample were replaced with fresh dithionite supplemented deuterated reservoir 

solution. After collecting data for 16 d, the crystal maintained its redox state (i.e. colorlessness). 

The diffraction data was strong, with a diffraction limit of ~ 2.0 Å resolution, attributed to the size 

and perdeuterated qualities of the sample. Despite the extent of diffraction, the quality of the data 

was hampered by spot overlap at higher resolutions. This is inherently an issue because of the unit 

cell dimensions but was further exacerbated by the increased mosaicity from dithionite treatment, 

increasing the size of the Bragg reflections. From the corresponding X-ray data, the mosaicity of 

this crystal was 0.49° compared to the 0.26° of the oxidized crystal. Consequently, the resolution 

had to be cut to 2.30 Å during processing, which is still sufficient to identify hydrogen positions.  

 As a comparison, our previous work that details neutron data collection on a perdeuterated 

MnSOD crystal that was not redox manipulated [163]. This crystal was 0.26 mm3 in volume and 

was collected and processed to 2.30 Å resolution. While this untreated crystal was of smaller size 

compared to the treated counterparts reported, it is apparent the redox manipulation methods 

discussed here do not significantly impair the resolution in which neutron data can be collected and 

processed. 

4.4 Conclusions 

4.4.1 Mechanism of Interaction Between Redox Agents and MnSOD Crystals 

 Both the size and charge of the redox agents allow an interaction with the active site 

manganese ion of MnSOD. The ~5 Å opening of the active site channel of MnSOD is large enough 

to accommodate both permanganate and dithionite entering and interacting with the manganese 

[82,175,176]. Both of these molecules are negatively charged and are likely guided to the active 

site by the same positive electrostatic surfaces of MnSOD that promote productive diffusion of 

anionic superoxide for its catalysis [82]. For the negatively-charged ascorbate, redox changes were 

absorbed at a much slower rate. This could be attributed to its bulkier size compared to the other 

agents tested. The size of ascorbate only permits it to enter the active site in specific orientations. 
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Nevertheless, a near direct interaction between redox agents and the active site manganese ion is 

possible. 

 The redox state can be influenced without any direct contact between the agent and the 

sample via vapor diffusion, indicating that permanganate, dithionite, hydrogen peroxide, and 

ascorbate can all diffuse through the capillary as a gas. The means by which this occurs is unclear. 

Diffusive water molecules could hydrate the redox agents and the evaporative hydration complex 

may be capable of traveling through the capillary. Nevertheless, redox agents that do not make 

contact with crystals within capillaries do exert observable effects (Figure 4.2). 

4.4.2 Hydrogen Peroxide as a Reducing Agent and Substrate 

 MnSOD is unique compared to FeSOD and CuZnSOD in that the active site metal can be 

reduced by excessive amounts of hydrogen peroxide. MnSOD exhibits reversible product 

inhibition by hydrogen peroxide, which is not observed by the other SODs due to the susceptibility 

of Fenton chemistry by Fe and Cu. Addition of copious amounts of hydrogen peroxide to MnSOD 

instigates the formation of a product-inhibited complex, which can only form when Mn is in the 

trivalent state [104]. Subsequently, the presence of the Mn3+-peroxo complex decays in conjunction 

with formation of Mn2+SOD.  This phenomenon is explained by Hearn and colleagues [65], where 

ample amounts of hydrogen peroxide first bind as the inhibited complex and then force the 

backwards reaction to produce superoxide in tandem with an electron reduction of Mn3+ to Mn2+. 

The generated superoxide then can interact with a Mn3+ ion to instigate the forward reaction with 

an electron reduction to yield diatomic oxygen (O2) and Mn2+. Hydrogen peroxide is thought to be 

incapable of binding to Mn2+ due to steric hindrance of the water molecule ligated to the 

manganese [104]. The water molecule is deprotonated to hydroxide in the Mn3+ state, which 

accommodates space for hydrogen peroxide to bind. The generated superoxide is capable of 

interacting with Mn2+ to oxidize the cation to a trivalent (Mn3+) state, but the excessive amounts of 

hydrogen peroxide and its cascade of reactions yields Mn2+ as the dominant species.  
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 The attribute of hydrogen peroxide acting both as an inhibitor and a reducing agent 

explains why hydrogen peroxide soaked structures of MnSOD may not reveal peroxide at the 

active site. This is exemplified by two hydrogen peroxide soaked E. coli MnSOD structures. One 

soaked with 0.4% hydrogen peroxide does not reveal peroxide at the active site (PDB code 1IXB, 

unpublished) while another soaked using 0.008% does (PDB code 3K9S) [108]. The former 

contains divalent manganese ions based on QM/MM calculations [161] whereas the redox state of 

the latter cannot be discriminated due to the peroxide being observed with partial occupancy. The 

amounts of hydrogen peroxide used in these soaks may determine whether a backwards reaction is 

forced or only binding to form a product-inhibited complex occurs.  

 The slow decay of crystal diffraction quality as a result of hydrogen peroxide treatment 

may be a consequence of oxidative damage. Hydrogen peroxide is known to react with amino acids 

cysteine, methionine, lysine, histidine, and glycine [177]. Flash-freezing to cryogenic temperatures 

has been shown to circumvent this deleterious effect [108,161] for X-ray crystallography. Cryo-

cooling is notoriously difficult for large crystals needed for neutron crystallography but is possible 

[178,179]. Cryogenic neutron crystallography has the potential to be amenable for large MnSOD 

due to the built-in Oxford Cryosystems Cobra cryostream at the MaNDi beamline, which is capable 

for temperatures between 80-200 K [165,180].   

4.4.3 Future Directions 

 Neutron data is normally refined with a X-ray data set from the same crystal or another 

mimicking the growth and treatment conditions of the original [181]. This is because neutron and 

X-ray data result in different but complementary information. X-ray structures are typically of 

higher resolution, which can be used to derive restraints for refining neutron data. However, this 

poses an issue for crystal structures intended to be fully oxidized, as X-ray exposure reduces the 

metal of metalloproteins while neutrons do not [75]. To circumvent this issue, restraints/data from 

the X-ray set need to be omitted for the area of the molecule that will be influenced by redox 
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changes. For example, the active site metal ion and its ligated amino acids as well as any 

neighboring residues should not incorporate X-ray data during refinement. An alternative for 

restraining these active site molecules is to input custom restraints derived from quantum 

mechanical/molecular mechanics (QM/MM) or density function theory (DFT) calculations. In the 

case of MnSOD, DFT calculations for the oxidized human form are published [90]. 
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Chapter 5: Neutron Structures of Oxidized and Reduced MnSOD 

5.1 Introduction 

 Oxidoreductases are a large class of enzymes that use unpaired electrons to facilitate redox 

reactions with other chemical species and are involved in nearly all aspects of life. The electron 

transfers performed by oxidoreductases are almost always coupled with a proton transfer [66]. 

Concerted proton and electron transfer (CPET) permits a thermodynamically favorable redox 

reaction that avoids ionized intermediates, is extremely efficient, and is an integral part of enzymes 

with the highest catalytic rates [67-69]. Particularly noteworthy is the prominence of CPET 

enzymes that regulate the concentration of reactive oxygen species (ROS) in the cell. ROS levels 

are central to programmed cell death and abnormal regulation by these oxidoreductases play 

significant roles in cancer and cardiovascular diseases [182]. CPETs are therefore of significant 

interest to study but a mechanistic understanding of these enzymes is still lacking. Deciphering 

these fundamental biochemical reactions is not only significant for its role in diseases, but for the 

biomedical design of CPET-dependent therapeutic interventions, irradiation protectants, and 

electrochemical biosensors [183,184].  

 Human MnSOD is a CPET-based oxidoreductase found in the mitochondrial matrix that 

reduces ROS levels by eliminating O2
•- with the unpaired electrons of the active site metal. The Mn 

is coordinated to inner-sphere residues His26, His74, His163, Asp159, and a single-oxygen species 

that could be either H2O or –OH (designated WAT1, Figure. 5.1). Trivalent Mn oxidizes O2
•- to O2 

(k1 = 1.5 nM-1s-1) [73] and the resulting divalent Mn reduces another O2
•- molecule to H2O2 (k2 = 1.1 

nM-1s-1) [73]. This is the only means the mitochondrial matrix has to keep O2
•- levels low enough to 

avoid damage to macromolecules and destruction of cellular function [2]. 

 

 

k1  Mn3+ +  O2
•− ↔ Mn2+ + O2 

k2  Mn2+ +  O2
•− + 2H+ ↔ Mn3+ + H2O2  
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 The major endogenous source of O2
•- is from electrons inadvertently leaking from the 

electron transport chain. Dysfunctional MnSOD activity, therefore, poses significant consequences 

on the mitochondria that contributes to several diseases. Genetic aberrations of MnSOD are 

associated with several cancer types, with mammary and prostate cancers being the most frequently 

noted in curated databases [185]. Polymorphisms of MnSOD have also been noted to be a predictor 

for deficient vascular function [186]. Therefore, the ability for MnSOD to utilize the high reaction 

rate and efficiency (kcat/Km > ~109 M-1s-1) of its CPET mechanism is correlated with the 

preservation of health [73]. 

 The CPET mechanism of MnSOD and the majority of other oxidoreductases has yet to be 

defined at the atomic level. The limitation in studying CPETs is the difficulty in directly detecting 

the protonation states of ionizable residues, solvent and ligands at the active site and correlating 

them with the electronic state of the active site metal. The second-sphere of MnSOD harbors five 

residues (His30, Tyr34, Gln143, Glu162, and Tyr166 (Figure 5.1)) and information about their 

protonation states would be of significant value in deciphering a catalytic mechanism. X-ray and 

spectroscopic techniques have been unable to provide this information due to the poor scattering of 

hydrogen atoms and the difficulty in discerning spectra for specific titratable positions. Neutron 

protein crystallography (NPC) is an emerging tool for analyzing hydrogen positions of biological 

macromolecules and possesses attributes that are especially useful in deciphering CPET 

mechanisms. In NPC, scattering of deuterium is on par with carbon, nitrogen, and oxygen, 

significantly increasing the ability to locate proton positions for the entire enzyme. An additional 

advantage is that NPC does not alter the electronic state of the metal unlike X-rays [120]. Here, we 

present room temperature neutron structures of human MnSOD at physiological pH in Mn3+ and 

Mn2+ and reveal how the atomic locations of all protons in the enzyme active site exchange when 

the active site metal goes through a redox cycle. To our knowledge, this study provides the first 

direct experimental evidence of a CPET enzymatic mechanism. 
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Figure Error! No text of specified style in document..A Structure of tetrameric human MnSOD from 

PDB ID 5VF9 

 

Figure 5.1: Structure of tetrameric human MnSOD from PDB ID 5VF9. (a) The active site of 

MnSOD is within a positively charged cavity formed from two adjacent subunits. The hydrogen bond 

network is denoted by green dashes and utilizes residues from both of these subunits. Solvent and 

substrate accessibility is possible only through the ~5 Å gap between His30 and Tyr34. (b) Side-view of 

the active site cavity rotated approximately 90° relative to (a). 
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5.2 Materials and methods 

5.2.1 Perdeuterated expression, purification, and crystallization 

 Detailed methods for recombinant MnSOD deuterated expression at ORNL biodeuteration 

lab, purification, and crystallization have been described previously [163]. Of note, expression was 

performed at 37 °C instead of the 30 °C in the citation, as this significantly increases Mn metal 

incorporation of MnSOD [187]. Purification and crystallization were performed with hydrogenated 

reagents. Deuterium exchange of crystals was performed by vapor diffusion in capillaries. 

5.2.2 Redox manipulation of perdeuterated MnSOD crystals 

 Methods for manipulating the Mn metal of MnSOD to either Mn3+ or Mn2+ have been 

described previously [188]. In brief, a crystal in a quartz capillary was soaked in deuterated 

reservoir solutions containing either 6.4 mM potassium permanganate (KMnO4) to achieve the 

Mn3+ state or 300 mM sodium hydrosulfite (Na2S2O4) to achieve the Mn2+ state. After drying the 

crystal from soaking solutions, the crystal was flanked in the capillary by slugs of the deuterated 

reservoir soaking solutions. Fortuitously, the decomposition products of the redox agents are 

unable to enter the active site of MnSOD [188]. 

5.2.3 Neutron and X-ray data collection 

 Data collection was preceded by the replacement of the deuterated and redox-agent 

containing reservoir slugs with fresh equivalents. Time-of-flight wavelength-resolved neutron Laue 

diffraction data were used to collect data from the 0.46 mm3 perdeuterated crystal using the MaNDi 

instrument [164,165] at the ORNL SNS using all neutrons with wavelengths between 2-4 Å. Data 

collection of each diffraction pattern was from the crystal held in a stationary position, with 

successive diffraction patterns being collected after 20° rotations along the Φ axis. A KMnO4-

treated perdeuterated crystal of 0.46 mm3 in volume at 296K was recorded to 2.20 Å resolution for 

the Mn3+SOD form and subsequently treated with Na2S2O4 to achieve the Mn2+SOD state where 

2.30 Å data were collected (Table 5.1). Na2S2O4 is noted to deteriorate diffraction quality and was 
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observed to increase the c unit cell axis by ~1 Å [188]. After neutron data were collected from the 

crystal in the Mn2+SOD state, X-ray diffraction data were collected at 296 K to 2.16 Å resolution 

using a Rigaku FR-E SuperBright home source. After room-temperature data collection, the crystal 

was not diffraction viable for Mn3+SOD data collection and a sister crystal grown from the same 

well was used instead for obtaining X-ray data to 1.87 Å resolution. 

5.2.4 Data processing and refinement 

 Neutron data were integrated using MANTID [189]. Integrated neutron data were scaled 

and wavelength-normalized using LAUENORM from the LAUGEN suite [171]. X-ray diffraction 

data were reduced using HKL-3000 for indexing, integration, and scaling [124]. The refinement of 

both X-ray and neutron models was completed with PHENIX.REFINE from the PHENIX suite 

[190].  

 The X-ray model was first refined against its corresponding data set and subsequently used 

as the starting model for neutron refinement. X-ray refinement was performed by removal of all 

non-protein entities in the starting model of 5VF9 [82], simple molecular replacement through 

rigid-body refinement, and subsequent restrained-positional refinement. With COOT [126], protein 

was manually fit into |Fo|-|Fc| peaks as needed and refined first. New solvent structure and Mn 

atoms were manually modelled into |Fo|-|Fc| density. Torsional backbone angle restraints were 

derived from the X-ray model and applied to neutron refinement using a geometric target function 

with PHENIX.REFINE [190]. As D atoms were manually added during iterations of neutron 

refinement, the stereochemistry weight scale was manually adjusted due to the increase of atoms at 

stereochemically sensitive positions. The neutron refinement process was performed to model the 

D atoms of the active site last to limit phase bias. For the initial rounds of refinement to fit protein 

structure, only non-exchangeable D atoms (which have stereochemically predictable positions) 

were present. Afterwards, each individual exchangeable position outside the active site was 

inspected for residual |Fo|-|Fc| nuclear density and modeled with D atoms appropriately before more  
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  Table F Data collection and refinement statistics for oxidized and reduced MnSOD Table 5.1. Data collection and refinement statistics  

Data Collection Statistics 

 Neutron X-ray 

 Oxidized Reduced Oxidized Reduced 

Diffraction Source MaNDi Rigaku FR-E SuperBright 

Temperature (K) 296 

Space group P6122 

a, b, c (Å) 81.30, 81.30, 

241.840 

81.33, 81.33, 

242.880 

81.14, 81.14, 

241.63 

81.13, 81.13, 

242.12 

 α, β, γ (°) 90, 90, 120 

Wavelengths (Å) 2-4 1.5418 

Exposure time 48 h 48 h 60 s 60 s 

No. of unique 

reflections 

24556  21719 31815 25718  

Resolution range 

(Å) 

14.64-2.20 

(2.28-2.20) 

14.65-2.30 

(2.38-2.30) 

50.00-2.02 

(2.07-2.02) 

50.00-2.16 

(2.20-2.16) 

Multiplicity 8.0 (6.1) 7.2 (5.7) 7.8 (3.5) 7.6 (4.1) 

I/σ(I) 7.0 (3.40) 6.2 (3.3) 8.3 (2.0) 4.8 (2.0) 

Rmerge  0.284 (0.314) 0.277 (0.294) - - 

Rmeas - - 0.291 (0.610) .459 (.683) 

CC 1/2  0.935 (0.275) 0.943 (0.319) 0.950 (0.730) 0.804 (0.638) 

Rpim  0.101 (0.129) 0.102 (0.124) 0.082 (0.320) 0.140 (0.326) 

Data completeness 

(%) 

98.83 (98.83) 98.94 (99.16) 100.0 (100.0) 97.5 (95.5) 

Refinement Statistics 

Rwork 0.2531 0.2662 0.2166 0.2195 

Rfree 0.2832 0.3038 0.2517 0.2636 
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iterations of refinement. Next, the O atoms of solvent molecules were first modelled manually 

outside the active site and refined to determining whether to model solvent as O, OD, or DOD 

using residual |Fo|-|Fc| nuclear density. The omit density peaks were also used to discern the 

appropriate orientation of the solvent molecules. After refinement of the solvent structure outside 

the active site, non-D atoms of the active site were modelled, including Mn and the O of solvent. 

Loose Mn-coordination restraints were derived from the Mn2+SOD X-ray structure and applied to 

the Mn2+SOD neutron model, whereas the Mn3+SOD neutron model used restraints derived from 

our own DFT calculations. In both cases, the R-free value was improved with theapplication of 

these restraints. Last, D atoms of the active site were modeled and refined manually. 

5.2.5 Computational Details 

 All quantum mechanical (QM) DFT calculations were performed with the NWChem 6.8 

software utilizing extra fine integration grid quadrature shown to provide high precision with 

restricted open-shell John-Sham (ROKS) treatment [191-193]. The geometry optimizations 

implemented the B3LYP exchange-correlation functional dispersion corrected according to Becke 

and Johnson damping (DFT-D3-BJ) [194,195]. Optimizations were first performed in the gas phase 

until electron density converged to an energy difference of < 0.0627 kcal/mol between macro-

iterations. The COSMO solvation model for real solvents was then implemented into the geometry 

optimizations to model the solution phase until an energy difference of < 0.31375 kcal/mol was 

reached between macro-iterations [196]. A less strict threshold was used for the solution phase due 

to its significant increase in computational load. There was no notable difference when 

optimizations began directly in the solution phase other than longer computational times. The def2-

TZVPD basis set was used for the Mn ion whereas the 6-31+G(d,p) Pople basis set was specifically 

used for all other atoms due to its use in predicting pKas under the B3LYP functional [197,198]. In 

accordance with other works, there was no significant benefit to using a larger Pople basis set. 

Likewise, a test using the relatively expensive def2-TZVPD basis set for all atoms yielded differing 
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free energies compared to the 6-31+G(d,p) basis set though harbored very similar 𝛥𝐺𝑎𝑞
∗ values 

which were used as the working terms for pKa calculations described below.The QM models 

utilized for DFT calculations encompassed the active site residues that had the O and N atoms of 

the peptide backbone truncated and the Cα fixed. Additional fixed restraints were placed on 

aromatic residues found on the periphery of the active site (Phe66, Trp123, Trp166, and Tyr166) to 

mimic the packing found in the native enzyme. Otherwise, the atoms were free to move during 

geometry optimization. The nearest three water molecules found in the neutron structure 

counterparts, representative of the ordered solvent found at the active site, were included in the QM 

models in addition to the Mn-ligated solvent. The Mn ion used the high-spin quintet and sextet 

states for trivalent and divalent systems, respectively, in accordance with experimental 

observations [199]. 

5.2.6 Bonding orbital analysis 

 The JANPA software package was used to calculate Chemist's Localized Property-

optimized Orbitals (CLPOs) from open-shell DFT geometry optimizations [200-203]. These are 

bonding and antibonding orbitals with maximum electron density computed through a series of 

localized basis set transformations. CLPOs are calculated with the same target quantity as Natural 

Bond Orbital (NBO) methods but make use of differing theory and yield highly comparable results 

[204-206]. The electron delocalization stabilization/destabilization energies utilized second-order 

perturbation theory analysis of the Fock matrix defined by the NBO methods [207] but were done 

in the CLPO basis of JANPA. The energy associated with electron delocalization from lone pair or 

bonding orbital i to anitbonding orbital j is defined as 

∆𝐸𝑖→𝑗
2 = −𝑞𝑖

〈𝑖|𝐹̂|𝑗〉2

〈𝑗|𝐹̂|𝑗〉 − 〈𝑖|𝐹̂|𝑖〉
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where 𝑞𝑖 is the donor orbital occupancy and 𝐹̂ is the effective orbital Hamiltonian [207]. Values 

〈𝑗|𝐹̂|𝑗〉 and 〈𝑖|𝐹̂|𝑖〉 are diagonal CLPO Fock matrix elements indicative of orbital energies and 

〈𝑖|𝐹̂|𝑗〉 is the off-diagonal matrix element representative of perturbation.  

5.3 Results and discussion 

5.3.1 Direct evidence for CPETs at the active site metal with a previously unobserved and 

unusual glutamine deprotonation 

 To visualize the effect of the electronic state of the metal on the active site protons, all-

atom D-labeled neutron structures were obtained for Mn3+SOD and Mn2+SOD to resolutions of 

2.20 and 2.30 Å, respectively. The two data sets collected were from the same crystal treated with 

appropriate oxidizing and reducing chemicals and the redox conditions were maintained during 

each data collection [188]. Neutron data at these resolutions is excellent and permitted ease in the 

visualization of deuterium atoms. The proton structure of the two active sites without O2
•- were 

specifically sought to define the effects of metal redox state independent of substrate binding.  We 

initially sought a crystallographic “check” for the success of the redox manipulations. WAT1 has 

historically been thought to obtain a proton (–OH → HOH) upon one-electron reduction of Mn3+ to 

Mn2+ for a CPET reaction but had not yet been directly observed and confirmed 

[69,93,104,106,107,158,161,208,209]. Indeed, careful inspection of the nuclear density between 

both neutron data sets suggested differential protonation of the WAT1 Mn-ligand dependent on the 

redox state of the Mn (Figure 5.2a-b). This was theoretically expected, verified our methods, and 

gave confidence in the data. To our knowledge, this is the first time the chemical reduction of the 

metal was visually observed to change the protonation state of an active site ligand. 

 For Mn3+SOD, a single nuclear |Fo|-|Fc| density peak for the D1 atom of WAT1 is seen 

suggesting the expected deuteroxide (–OD) molecule and is supported by the Mn-O(WAT1) 

distance of 1.8 Å [90,210]. The -OD acts as a hydrogen bond donor to the Oε2 of Asp159 with a 
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distance of 2.1 Å whereas the O(WAT1) atom is acting as a hydrogen bond acceptor from 

Dε21(Gln143) with a distance of 1.8 Å (Figure 5.2a). The data for WAT1 of Mn2+SOD instead has 

two nuclear |Fo|-|Fc| density peaks for D atoms indicating the –OD was converted to D2O upon 

metal reduction, as expected. Further support suggesting a D2O molecule is seen with the Mn-

O(WAT1) distance of 2.2 Å [90,210]. The D1(WAT1) atom position is similar to that found in the 

Mn3+SOD counterpart and hydrogen bonds with Oε2 of Asp159, albeit at a weaker interaction of 2.5 

Å distance (Figure 5.2b). Surprisingly, D2(WAT1) points toward Gln143 suggesting the WAT1 of 

Mn2+SOD is acting as a hydrogen bond donor to Gln143. This means Gln143 is a hydrogen bond 

acceptor in Mn2+SOD and its Dε21 atom is absent. Indeed, there is a lack of nuclear density for Dε21 

but not for Dε22. This interpretation was supported when attempts to model Dε21 led to negative |Fo|-

|Fc| nuclear density. In the Mn2+SOD structure the hydrogen bond between D2(WAT1) and 

Nε2(Gln143) is atypical with a bond distance of only 1.6 Å and O(WAT1)- D2(WAT1)-Nε2(Gln143) 

angle close to 180°. These are characteristics of a short-strong hydrogen bond (SSHB), a type of 

hydrogen bond that is thought to stabilize particular enzymatic steps and enhance catalytic rates 

[211-213]. SSHBs are noteworthy in several well-studied enzymes, such as α-chymotrypsin that 

utilizes a SSHB between the His and Asp of its catalytic triad [212]. This creates a ~7 kcal/mol 

stronger interaction to substantially increase the kinetic rate. For Mn2+SOD, the SSHB between 

WAT1 and Gln143 may contribute to the stability of the unusual redox state and the high catalytic 

efficiency of the enzyme. 

 The experimental data, therefore, suggest that Gln143 is undergoing deprotonation to form 

an amide anion and is especially unusual because glutamine residues are not expected to act as 

weak acids since the pKa of primary amides are 16 ~ 18. However, pKa studies of less acidic 

secondary amides suggest pKa values may be depressed to 7 ~ 8 depending on how the amide 

group is polarized (i.e. charge delocalization) [214]. This is supported by the known event of 

proton exchanges occurring at the amide groups of protein backbones. Moreover, several enzyme  
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Figure Error! No text of specified style in document..A Proton transfer between Gln143 and the Mn-

ligated solvent molecule WAT1 

 

Figure 5.2: Proton transfer between Gln143 and the Mn-ligated solvent molecule WAT1.  (a) 

Neutron structure at the active site of Mn3+SOD with magenta and orange omit |Fo|-|Fc| difference nuclear 

density displayed at 3.5σ and 3.0σ, respectively, and light blue 2|Fo|-|Fc| nuclear density displayed at 

1.0σ. Mn scatters negatively and therefore lacks nuclear density. Numbers are distances in Å. (b) Neutron 

structure at the active site of Mn2+SOD with green omit |Fo|-|Fc| difference nuclear density displayed at 

2.5σ and light blue 2|Fo|-|Fc| nuclear density displayed at 1.0σ. Representations of the amide and amide 

anions are included. 
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studies suggest glutamine or asparagine-mediated proton transfers for catalysis and support the 

plausibility of a Gln143 → WAT1 proton transfer. For example, an asparagine residue has been 

suggested to be deprotonated in prenyltransferases due to significant polarization from close 

proximity to a metal cation [215]. Nakamura and colleagues suggest their neutron diffraction data  

of cellulase Cel45A from Phanerochaete chrysosporium reveal proton donation and abstraction at 

Asn92 via amide-imidic tautomerization that is thought to be instrumental for the proton relay of 

the enzyme [216]. Infrared spectroscopy and computational calculations support the involvement 

of glutamine-mediated proton transfers in GTP hydrolysis by Ras-GAP and photoexcitation of 

photoreceptor proteins with the flavin-binding BLUF domain [217]. For MnSOD, the 

deprotonation of Gln143 for CPET to the active site ligand has not been observed before although 

it does explain the extremely high efficiency of the enzyme as a result of this internal proton 

source. 

 Density functional theory (DFT) quantum calculations of the active site using a system 

derived from the neutron structural data (inclusive of residues in Figure 5.1) support our 

interpretation of the nuclear density for deprotonation of Gln143. Chemist’s localized property-

optimized orbital (CLPO) analysis (highly akin to Natural Bond Orbitals [200,204,205]) was used 

to evaluate the interactions of Gln143 and WAT1 [201]. Reduction of Mn3+ to Mn2+ increases the 

electronegative character of the O(WAT1) lone pair facing the proximal amide proton of Gln143 

(green atom, Figure 5.3a). This polarization of -OH(WAT1) consequentially increases its basicity 

to the extent of abstracting a proton from the glutamine amide. In this way, a hard acid-hard base 

interaction (Mn3+--OH) has become a soft acid-soft base (Mn2+-OH2) interaction. The bonds of the 

deprotonated amide reorganize to stabilize its new negatively-charged state (Figure 5.3b). The Oε1 

atom of Gln143 bears the most electronegative charge as CLPO calculations suggest less covalent 

electrons for the Oε1-Cε1 bond compared to that of Nε2-Cε1, with bond orders of 1.33 and 1.52, 

respectively (Table 5.2). The presence of a SSHB is supported as well since the new Nε2 still has  
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covalent character with the donated proton (Figure 5.3c). Donor-acceptor orbital analysis from 

CLPOs indicate electron character is transferred from the Nε2 lone pair orbital to the σ*-antibonding 

orbital of O-H(WAT1) and is a 1.4 kcal/mol stabilizing hyperconjugation interaction (Table 5.3). 

As a result, the interaction between Nε2 and the donated proton demonstrates partial σ-bonding  

character. The extent of covalence is 36% for the Nε2-H bond and 64% for O-H bond (Table 5.4). 

Altogether, quantum calculations support both Gln143 deprotonation and the presence of an 

unusual hydrogen bond between WAT1 and Gln143. 

 An unusual and previously undetected change in the interaction of Gln143 with the 

neighboring Trp123 was observed. A SSHB of 1.5 Å is seen between the Oε1 of Gln143 and Nε1 of 

Trp123 (Figure 5.2b). The same hydrogen bond is seen in Mn3+SOD at a distance of 1.9 Å (Figure 

5.2a). The neutron data, therefore, support the notion that Oε1(Gln143) harbors stronger 

electronegative character during the Mn2+ redox state. This may be a consequence of Gln143 

deprotonation to the amide anion during the Mn3+ → Mn2+ redox reaction and negative charge 

stabilization through hydrogen bonding with Trp123. Charge stabilization is likely to be important 

for glutamine deprotonation as amide groups are known to deprotonate at neutral pH when 

electronegatively polarized at the carbonyl O atom [214]. Trp123 is especially competent at charge 

stabilization due to its own ability to polarize. CLPOs suggest that lone pair electrons of 

Nε1(Trp123) delocalize into the highly-conjugated aromatic ring of Trp123 when the glutamine 

amide is deprotonated (Figure 5.3e). Donor-acceptor analysis calculate the donation of Nε1(Trp123) 

lone pair electronic character into adjacent π*-antibonding orbitals (Figure 5.3f) as a 20.9 kcal/mol 

stabilization interaction (Table 5.3). This also permits the observation of close hydrogen bond 

interaction between Oε1(Gln143) and Hε1(Trp123). Quantum calculations indicate an important role 

for Trp123 in the deprotonation of Gln143. 

 If an O(WAT1)-Dε21(Gln143)- Nε2(Gln143) interaction is needed for redox cycling of Mn, 

mutation of Gln143 or a nearby residue that may stabilize amide deprotonation should affect  
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Figure 5.3 The suggested mechanism of Gln143 → WAT1 proton transfer utilizing bonding 

orbitals and optimal resonance structure calculated from DFT and subsequent CLPO analysis of 

the neutron structures. Orange and purple contours indicate the positive and negative orbital wave 

functions, respectively. Curved arrows represent electron pushing. (a-b) Reduction of Mn3+ to Mn2+ 

instigates a strong covalent need for the exposed lone pair (denoted LP) of  –OH(WAT1). This is 

chemically remediated by acquisition of a proton (green atom) from the proximal Gln143 amide. The 

dominant resonance structure of the amide anion is with a Nε2-Cε1 double bond as a result of Nε2 LP 

delocalization from (a). (c) Despite proton donation to WAT1, Gln143 still demonstrates covalent 

character with the proton (green atom). The new Nε2 LP participates in electron density transfer to the σ*-

antibonding orbital of O-H(WAT1). CLPO orbital-donor analysis calculate a stabilizing energy of 1.4 

kcal/mol for this hyperconjugation interaction. The inset in the lower-right corner illustrates individual 

orbital representations. (d) Due to the hyperconjugation illustrated in (c), the hydrogen bond between 

Nε2(Gln143) and O-H(WAT1) has partial σ-bonding character contributing to and increasing the strength 

of the hydrogen bond characteristic of SSHBs. CLPO calculations suggest the proton is covalently shared 

between WAT1 and Gln143, with percentages of 64% and 36%, respectively. (e-f) The increased 

electronegative character of Oε1 electrostatically polarizes Trp123. This is achieved through 

delocalization of the Nε1(Trp123) LP into the highly-conjugated ring. The stabilizing interaction energy 

of donation of electron density from the Nε1(Trp123) LP into the adjacent π *-antibonding orbitals is 20.9 

kcal/mol. Only the major π *-antibonding orbital acceptor is shown. The polarization of Trp123 allows a 

SSHB between Gln143 and Trp denoted by the green dashes. The hyperconjugation and polarization of 

Trp123 is thought to contribute to the stability of the amide anion. 
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Table G Gln143 bonding character from CLPO analysis 

Table 5.2 Gln143 bonding character from CLPO analysis. Numbers are calculated bond order. 

 
Five-Coordinate Mn3+ 

Y166(-)H30(ε)Y34(-) 

Five-Coordinate Mn3+ 

Y166(H)H30(δ)Y34(-) 

Six-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(-) 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 

Nε2-Cε1 1.36 1.37 1.56 1.52 

Oε1-Cε1 1.45 1.45 1.30 1.33 
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Table H Charge and energy interactions of donor-acceptor CLPO analysis 

Table 5.3 Charge and energy interactions of donor-acceptor CLPO analysis. 

Gln143 Nε2 Lone Pair → Gln143 Cδ-Oε1 π*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Five-Coordinate Mn3+ 

Y166(-)H30(ε)Y34(-) 
1.64 0.33 0.38 ↑ 12.28 

Five-Coordinate Mn3+ 

Y166(H)H30(δ)Y34(-) 
1.64 0.33 0.38 ↑ 10.41 

Trp123 Nε1 Lone Pair → Trp123 Cε2-Cδ2 π*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Six-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(-) 
1.57 0.15 0.52 ↑ 1.35 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 
1.58 0.15 0.52 ↓ 13.52 

Gln143 Nε2-Hε2 σ-bond → Gln143 Cδ-Oε1 σ *-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Six-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(-) 
1.98 0.01 0.04 ↑ 43.75 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 
1.98 0.01 0.03 ↓ 21.84 

His30 Nε2 Lone pair → His30 Oε1-Nδ1 π*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Five-Coordinate Mn3+ 

Y166(-)H30(ε)Y34(-) 
1.50 0.25 0.45 ↓ 15.57 

Gln143 Nε2 Lone pair → WAT1 O-H σ*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Six-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(-) 
1.81 0.14 0.15 ↓ 0.46 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 
1.78 0.17 0.18 ↓ 1.39 

His30 Nδ1 Lone pair → His30 Cγ-Cδ1 π*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 
1.53 0.16 0.30 ↑ 3.48 

His30 Nε2-Cε1 π-bond → His30 Cγ-Cδ1 π*-bond 

State 

Donor 

Occupancy 

(e-) 

Charge 

Transfer 

(e-) 

Acceptor 

Occupancy   

(e-) 

Energy 

(De)stabilization 

(kcal/mol) 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 
1.89 0.09 0.30 ↑ 8.33 
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Table I Percent covalence of shared hydrogen atoms in SSHBs bonds from CLPO analysis 

Table 5.4. Percent covalence of shared hydrogen atoms in SSHBs bonds from CLPO analysis. 

 
Five-Coordinate Mn3+ 

Y166(-)H30(ε)Y34(-) 

Five-Coordinate Mn3+ 

Y166(H)H30(δ)Y34(-) 

Six-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(-) 

Five-Coordinate Mn2+ 

Y166(H)H30(δ)Y34(H) 

(Gln143)Nε2-H-
O(WAT1) 

Nε2 O Nε2 O Nε2 O Nε2 O 

0.92 0.08 0.92 0.08 0.29 0.71 0.36 0.64 

(Tyr166)Oη-H-

Nε2(His30) 

Oη Nε2 Oη Nε2 Oη Nε2 Oη Nε2 

0.20 0.80 0.77 0.23 0.76 0.24 0.79 0.21 

(Tyr34)Oη-H- 
O(WAT2) 

Oη O Oη O Oη O Oη O 

0.15 0.85 0.23 0.77 0.20 0.80 0.90 0.10 

(His30)Nδ1-H-

O(WAT2) 

Nδ1 O Nδ1 O Nδ1 O Nδ1 O 

0.14 0.86 0.89 0.11 0.88 0.12 0.92 0.08 

 

 

 

 

 

 

 



102 

 

catalysis. In the literature, the Gln143Asn mutant has nearly ablated catalysis in both redox states 

while Trp123Phe can perform catalysis for Mn3+→ Mn2+ at deficient lower rates (20 ~ 50 %) but 

not at all for the Mn2+→ Mn3+ transition [144,218]. The effect of these mutations suggests that 

Gln143 is central to catalytic activity while Trp123 is most significant for the Mn2+ → Mn3+ half of 

the redox cycle. The detrimental effects for the Mn2+ state due to mutating residue Trp123 may 

therefore reflect their role in stabilizing the Gln143 amide anion. Indeed, the kinetic behaviors of 

these mutants were especially puzzling in past studies but amide proton transfer potentially 

explains them [65,91,144,219]. Further support of Gln143 amide deprotonation is found in other 

isoforms of MnSODs and prokaryotic FeSODs that have conserved active sites. A closer WAT1-

Gln distance correlates with increased redox potentials and catalytic rates [64]. This is perhaps 

because of an enhanced ability for proton transfers between O(WAT1) and Nε2(Gln143). Past 

mutagenesis studies, differences in catalytic rates among isoforms, and the high catalytic rate of 

MnSOD may be explained by Gln143 serving as an internal proton source for CPET via amide 

deprotonation. 

5.3.2 Tyr34 demonstrates an unusual pKa and forms a SSHB with the Gln143 amide anion 

 Tyr34 is positioned near the active site solvent channel, hydrogen-bonded to Gln143 

(Figure 5.1a), and has been hypothesized to be a proton source for MnSOD CPET [91]. For 

Mn3+SOD, Tyr34 does not have a nuclear peak for its hydroxyl proton. Deprotonated Tyr34 is 

making a very strong hydrogen bond with a nearby solvent molecule (designated WAT2) with a 

2.3 Å distance between heteroatoms Oη(Tyr34) and O(WAT2) (Figure 5.4a). While the deuteriums 

of WAT2 could not be discerned, the distance is characteristic of a SSHB where Tyr34 may be 

poised to accept a proton. This interpretation is supported by CLPO analysis from DFT, with 80/20 

covalent sharing of the proton (Table 5.4). For Mn2+SOD, a nuclear peak for the hydroxyl proton is 

present but not where it is expected. Refinement with the ideal 0.97 Å Oη-Dη distance for Tyr34 

persistently demonstrates residual |Fo|-|Fc| difference density (Figure 5.5) uncharacteristic of the 
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other MnSOD tyrosine residues. Between refinement, restraints were incrementally loosened from 

the 0.97 Å ideal hydroxyl distance until the |Fo|-|Fc| difference density was appropriately absent and 

the B factors were comparable to other nearby atoms. This yielded an unusual Oη-Dη bond length 

of 1.3 Å that points towards the solvent channel (Figure 5.4b). Intriguingly, the Oη(Tyr34) atom 

participates in a strong 1.6 Å hydrogen bond with Dε22(Gln143) in the Mn2+SOD structure and is 

significantly different than the Mn3+SOD distance of 2.3 Å (Figure 5.4a-b). This SSHB may 

potentially be explained by the increased polarization of Gln143 in Mn2+SOD from deprotonation 

to the amide anion leading to a stronger hydrogen bond interaction with Tyr34. It is unclear 

whether this interaction contributes to Tyr34 differential protonation though it may stabilize the 

amide anion of Gln143. The experimental data, therefore, suggests Tyr34 is capable of differential 

protonation at physiological pH, has an unusual pKa, and participates in atypical hydrogen bonding. 

 Our experimental data for Tyr34 potentially makes light of the unexplained observations of 

previous studies investigating its role in catalysis [73,91,144]. Tyr34 has been speculated to be the 

proton donor to WAT1 for CPET during the Mn3+ → Mn2+ reaction though this conflicts with the 

pH independence of the reaction between values of 6 and 10 [62,73]. This was puzzling because 

CPET mechanisms are expected to have pH dependence as a result of the proton transfer part of 

their catalysis and Tyr34 is the closest titratable residue. Instead, the MnSOD neutron data suggest 

that the proton donor to WAT1 is internally sourced from Gln143 without the involvement of 

solvent and cannot be Tyr34 due to its observed deprotonation in the Mn3+ state.  

 An ionized tyrosine residue at physiological pH is unusual though has been visualized in 

studies of human carbonic anhydrase II (HCA II) that is a metalloenzyme with diffusion-limited 

catalytic efficiencies like MnSOD. For HCA II, joint neutron crystallography and NMR 

demonstrate a tyrosine residue with a pKa of 7.10 ± 0.10 at the active site [220]. The catalytic role 

of an ionizable Tyr34 for MnSOD is prominent during the Mn2+ → Mn3+ redox cycle and is 

supported by the inability of the Tyr34Phe mutant to catalyze this step of the reaction [221]. Since  
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Figure Error! No text of specified style in document..A Differential protonations and active site 

coordination of MnSOD 

 

Figure 5.4 Differential protonations and active site coordination of MnSOD. Light blue 2|Fo|-|Fc| 

nuclear density is displayed at 1.0σ. (a-b) Neutron structures of five-coordinate Mn3+SOD and Mn2+SOD. 

Green omit |Fo|-|Fc| difference nuclear density is at 3.0σ. (c) The six-coordinate Mn2+SOD active site of 

Chain A with green omit |Fo|-|Fc| difference density displayed at 2.0σ, 2.5σ, and 3.0σ for blue, green, and 

orange contours, respectively. |Fo|-|Fc| difference density is for individual D atoms except for the upper-

right corner that is for both atoms of OL. Numbers are distances in Å. 
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Figure Error! No text of specified style in document..B Residual density for the hydroxyl group of Tyr34 

in Mn2+SOD of chain B 

 

Figure 5.5 Residual density for the hydroxyl group of Tyr34 in Mn2+SOD of chain B. Light blue 

2|Fo|-|Fc| nuclear density displayed at 1.0 σ. Dark blue omit |Fo|-|Fc| difference density is displayed at 2.0 

σ. Number is distance in Å. 
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Tyr34 gains a proton during the Mn3+ → Mn2+ redox cycle and loses a proton during the Mn2+ → 

Mn3+ cycle, it is conceivable that Tyr34 serves as the source for one of the two protons involved in 

the protonation of the substrate to H2O2. Indeed, spectroscopic data of the Tyr34Phe mutant 

suggests a prolonged binding of a species to the metal but could also be a result of the inability of 

Gln143 to deprotonate without stabilization from the Tyr34 hydroxyl group [91]. Our 

crystallographic neutron data has shed new light on the perplexing role of the conserved Tyr34 

residue. 

5.3.3 Serendipitous ligand binding to Mn2+SOD helps explain catalysis 

 There are two subunits in the crystallographic asymmetric unit. One of the active sites of 

the Mn2+SOD neutron structure has density for a sixth-coordinate -OD ligand (designated OL for 

anionic oxygen ligand, Figure 5.4c). The 1.84 Å Mn-O distance of OL most closely supports a 

Mn2+ bound with –OD [208] and the B-factor of OL is comparable to other molecules of the active 

site. The different crystallographic active site coordination of Mn2+SOD may be a consequence of 

the crystallographic asymmetric subunits having different capacities of solvent accessibility (Figure 

5.6). Likewise, OL has been observed in two X-ray crystal structures of E. coli MnSOD by our 

group when -OH was added to the buffer system and it was also not found in every active site 

[99,108]. For the present study, the buffer system used for neutron data collection carefully did not 

include -OD, and only appropriate ratios of K2DPO4 and KD2PO4 were used to achieve a pD 

equivalent to physiologically pH. We think the ligand may have resulted serendipitously from a 

polarized water molecule that lost a proton. Nevertheless, the bound sixth-coordinate ligand to the 

active site of Mn2+SOD chain A has a unique combination of structural characteristics that helps 

explain catalysis. 

 OL may help facilitate Gln143 amide deprotonation. The six-coordinate active site has a 

Gln143 in the canonical amide form making very strong hydrogen bonds with WAT1 and Trp123 

that have bond distances of 1.4 and 1.5 Å, respectively (Figure 5.4c). These distances are  
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the asymmetric AB dimer for P6122 MnSOD 

 

Figure 5.6 Solvent accessibility differences between chains of the asymmetric AB dimer for P6122 

MnSOD. Magenta depicts the surfaces of the chain for the asymmetric unit and green depicts the 

surfaces leading to the active site of the chain. Grey depicts the surfaces of symmetry generated 

asymmetric AB dimers. 
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characteristic of SSHBs that may contribute to catalysis. Interestingly, the density of WAT1 is that 

of a hydroxide even though the Mn is stabily reduced but likely has partial H2O character given the 

shortness of the hydrogen bond with the nearby amide Dε21 proton. The Mn2+ protein-ligand bond 

lengths between the two active sites are not the same. In particular, the Mn-Oɛ2(D159) is stretched 

when OL is bound. The Dε21(Gln143) atom that bridges O(WAT1) and Nε2(Gln143) has a slightly 

higher B-factor of 21 Å2 when compared to the B factors of 17 Å2 for O(WAT1) and 18 Å2  

Nε2(Gln143) and may reflect movement between O(WAT1) and Nε2(Gln143). Tyr34 is not 

protonated but appears poised to be protonated by WAT2 as indicated by a (D)WAT2-Oη(Tyr34) 

bond distance of 1.7 Å. Binding by an anionic OL would lower the positive charge of Mn2+ and 

increasing the negative character of WAT1 to help initiate Gln143 amide deprotonation. In their 

investigation of active site pKas for MnSOD activity, the Miller group suggested sixth-coordinate 

binding of an –OH ligand to the Mn2+SOD active site at native conditions [158]. They note that an 

electronegative deprotonated Tyr34 and electropositive Mn could polarize a water molecule to 

have increased –OH character and lose a proton. Since Tyr34 is deprotonated in the six-coordinate 

structure, proton abstraction from a water molecule likely occurs elsewhere, perhaps by nearby 

His30. As inferred by the five-coordinate Mn2+SOD active site structure, subsequent catalytic steps 

involve OL leaving the active site, perhaps by protonation to water, and Tyr34 becoming 

protonated. 

5.3.4 His30 has unusual pKa that is tied to Tyr166 from across the dimer interface 

 Second sphere residue His30 is also differentially protonated. Like Tyr34, His30 is 

solvent-exposed and positioned at the active site solvent channel. WAT2 provides a hydrogen-bond 

bridge between Tyr34 and His30 (Figure 5.1a). Nuclear peaks of the neutron structures indicate 

differential protonation at the Nδ1 of His30 that faces the solvent channel for Mn3+SOD (Figure 

5.7a-b). The crystallographic asymmetric unit has one active site with Nδ1 protonated while the  
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Figure 5.7 Differential protonation states of His30 and Tyr166 for Mn3+SOD. Numbers are distances 

in Å. (a-b) All-atom structures for the different chains of Mn3+SOD. Light blue 2|Fo|-|Fc| nuclear density 

displayed at 1.0σ. Green and orange omit |Fo|-|Fc| difference density are displayed at contours denoted at 

the bottom right of the panel. (c) A suggested mechanism for differential protonation for Tyr166 and 

His30. 
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other is not protonated. This is not the case for Mn2+SOD, where both chains show nuclear density 

for Nδ1 protonation (Figure 5.8). The hydrogen bond between His30 and Tyr166 for the Mn3+SOD 

chain A active site (Figure 5.7a) appears to have strong and elongated omit |Fo|-|Fc| difference 

density for the D atom and this is the case for all active sites of Mn2+SOD. This may suggest 

presence of a SSHB with covalent but unequal sharing of the D atom between Oη(Tyr166) and 

Nε2(His30) and/or movement of the D atom between the two residues. Since Nε2(His30) is solvent 

inaccessible along with the entirety of Tyr166 from across the dimer interface, the hydrogen bond 

between the residues is within an enclosed environment and may behave atypically compared to 

canonical hydrogen bonds. 

 For the active site absent of a proton at Nδ1 for His30 (Figure 5.7b), the D atom between 

Oη(Tyr166) and Nε2(His30) has a lesser |Fo|-|Fc| difference density peak and appears covalent with 

Oη(Tyr166). His30 thus appears absent of protons at both of its nitrogens suggesting an imidazolate 

anion. We considered the presence of an imidazolate anion as chemically unlikely though 

deliberated over the possibility along with alternative explanations. The pKa of [imidazole 

↔imidazolate] is 14 and compares with the pKas of [HOH ↔ -OH] and [HO-Tyr ↔ -O-Tyr] that 

are 14 and 10, respectively [222]. Since the electrostatic surface area encompassing and 

surrounding the active site is positively charged (Figure 5.1a), it is conceivable that negatively-

charged species are promoted. While it is known that active site residues have significantly 

perturbed pKas due to such effects, we could not find literature suggesting an imidazolate histidine 

unless it is directly bound to a metal. Alternatively, His30 may shift between singly Nδ1- or Nε2-

protonated tautomers and density may be absent due to proton movement and/or differences in 

solvent accessibility between crystallographic active sites (Figure 5.6). This would be similar to the 

histidines found in catalytic triads of proteases, where differential protonation of one nitrogen 

could be tied to the protonation state of the other with the help of a SSHB interaction [223]. It 

should be noted in the Nδ1-protonated active site (Figure 5.7a) that the omit |Fo|-|Fc| difference  
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Figure 5.8 Protonation states of His30 and Tyr166 for Mn2+SOD. (a-b) Light blue 2|Fo|-|Fc| nuclear 

density displayed at 1.0 σ. Green omit |Fo|-|Fc| difference density is displayed at 3.0 σ. The inset of (a) 

shows the tetrameric assembly. Numbers are distances in Å. 
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density at 3.0σ for the Nδ1-bound proton is elongated and faces towards solvent. This may be 

interpreted as proton exchange with solvent. Investigating the literature for other enzymes utilizing 

a tyrosine-histidine pair in catalysis reveals the metalloenzyme Photosystem II (PSII) that utilizes 

CPETs [224]. The tyrosine-histidine pair of (PSII) appears to have a SSHB that needs to be 

maintained for catalysis with measured pKa values ranging between 7.3 and 8.0. For MnSOD, the 

Tyr166-His30 interaction is needed for catalysis though it is unclear whether the differential 

protonation observed at Nδ1(His30) is modulated with an imidazolate anion or tautomerization. 

 Previous mutagenesis studies suggest that the Tyr166 and His30 interaction is needed for 

catalysis and support the interpretation of proton transfers occurring between Nε2(His30) and 

Oη(Tyr166) that may coincide with differential protonation of Nδ1(His30) (Figure 5.7c). To judge 

whether protonation of histidine is significant for enzymatic activity, site-directed mutagenesis of 

His → Gln is often performed due to the similar side-chain structures [225]. His30Gln is the only 

His30 mutant that has been studied that maintains the hydrogen bonding at the active site and does 

not significantly affect the positions of other residues at the active site [70,71]. Kinetically, the 

His30Gln rate for k1 (Mn3+ → Mn2+) is 38% of the wildtype while k2 (Mn2+ → Mn3+) is 72% [63]. 

The rates indicate an important role for His30 k1 that may correspond with our observations of its 

differential protonation only in Mn3+SOD. It should be noted that previous studies refrain from 

attributing differential protonations to His30 due to the similar redox potentials between wildtype 

(393 ± 29 mV) and His30Gln (380 ± 30 mV) [70,71,105]. However, the investigations do not 

consider whether compensatory protonations or deprotonations occur at nearby residues as a result 

of the mutation giving the appearance of an inconsequential effect. Indeed, the Tyr34Phe mutant 

also has an insignificant change of redox potential (435 ± 30 mV) but has nearly identical rate for 

k1 (37% of wildtype) compared to His30Gln [63,70]. Drawing inference from the Tyr166Phe 

mutant is difficult because hydrogen bonding and side-chain conformations are significantly 

changed at the active site but has nearly identical measurements of redox potential (436 ± 10 mV) 
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compared to Tyr34Phe indicating a synonymous effect to the charge of the active site [63,70]. The 

neutron data for His30 and Tyr166 potentially explains past observations of MnSOD mutants that 

were difficult to explain and ties together changes of protonation state with kinetic and redox 

potential measurements. 

5.4 Conclusions 

 In total, the present work provides details for an unusual CPET mechanism for human 

MnSOD. Through neutron diffraction, direct evidence is observed for (1) an internal protonation 

mechanism via glutamine amide deprotonation supported by quantum calculations, (2) 

differentially protonated Tyr34, (3), alternate protonation states for His30 that may coincide with 

the protonation state of Tyr166 across the dimer interface, and (4) SSHBs at sites of differential 

protonation. As a result of obtaining neutron structures for both Mn3+ and Mn2+ states, we built a 

suggested mechanism that details the changes of protonation states as a result of the Mn gaining or 

losing an electron. 

 Starting from the resting state, five-coordinate Mn3+ acquires an electron (in reality from 

the substrate) that coincides with Nδ1(His30) acquiring a proton from the nearest solvent molecule 

(the crystallographic position of WAT2) and Tyr166 gaining a proton from Nε2(His30) (Figure 

5.9a). The Mn2+ active site then binds –OH to form a six-coordinate Mn2+ complex (Figure 5.9b). 

This may be the same solvent molecule that donated a proton to His30 and its binding is promoted 

by the electrostatics of the active site. The depression of Mn2+ positive charge through –OH binding 

causes negative polarization at WAT1 and triggers proton abstraction from Gln143. Consequently, 

the WAT1-Gln143 is more stabilizing and the electronegative polarity now localizes to OL. When 

substrate is present, the steps of Figure 5.9a-b describe the first CPET where proton and electron 

transfers are energetically coupled to an extent where they cannot be differentiated with kinetic 

measurements [62]. The increase of negative character for OL may cause it to act as a better proton 

acceptor and to be converted to H2O by protonation from Tyr34 as suggested by the Miller group 
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[158] (Figure 5.9c). Tyr34 is protonated by the solvent before its proton donation to OL. Once 

Tyr34 is protonated again, the second CPET may occur. The substrate would then acquire an 

electron from Mn2+ and gain two protons, one from His30 and one from Tyr34, to form the H2O2 

product (Figure 5.9d). The changes of charge due to proton and electron departure from the active 

site causes Gln143 to accept the same proton it previously donated to WAT1 and Nε2(His30) 

accepting the proton it previously donated to Tyr166 to regenerate five-coordinate Mn3+. 

 Altogether, the suggested mechanism utilizes two “internal” proton transfers where the 

protons move back-and-forth within the active site and two “external” proton transfers where the 

protons originate from solvent molecules to ultimately be consumed to form the product. The 

proton transfer between WAT1 and Gln143 is especially central to the mechanism as it permits the 

cyclic nature of catalysis. From this study, we have revealed, to our knowledge, the first direct 

coupling of electronic states to protonation states for an oxidoreductase. It is evident the CPET 

mechanism of MnSOD is not straightforward and is exemplified by an unusual proton donation 

mechanism via a glutamine deprotonation. Catalysis involves a role for nearly every active site 

residue. As this is one biologically relevant oxidoreductase in a sea of many, finding the 

protonation states at the active sites of other oxidoreductases may reveal further novel mechanisms 

for CPET. 
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Figure 5.9 A suggested mechanism for MnSOD-active site proton transfers that coincide with 

electron gain or loss at the Mn. Solvent and substrate enter the active site through His30 and Tyr34. 

SOL represents the closest free solvent molecule typically found at the crystallographic site of WAT2 

and is replenished from bulk solvent upon enzymatic use. (a) The thick orange arrow indicates the 

acquisition of an electron by Mn3+ which is coupled to both Nδ1(His30) proton gain from solvent and 

Nε2(His30) proton donation to buried Tyr166. The direction of proton transfer is indicated by small green 

arrows. (b) Driven by the new electrostatic environment, a –OH molecule binds sixth-coordinate to Mn2+ 

as indicated by short black arrows. This suppresses the positive charge of Mn2+ and polarizes WAT1 to 

become more negative (δ-) and instigate proton gain from Gln143 by its deprotonation. (c) The 

protonation at WAT1 causes electronegative polarity to instead be localized to the bound –OH ligand, 

OL. OL is subsequently protonated and departs from the active site. (d) Electron loss by substrate 

depicted by the orange arrow coincides with the loss of protons at His30 and Tyr34 that are presumed to 

be acquired by the substrate. Tyr166 and WAT1 donate protons to His30 and Gln143, respectively, as a 

consequence of the net charge changes to regenerate the state in (a). 
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Conclusions and Future Directions 

6.1 Conclusions 

 The presented work investigated the enzymatic mechanism of human MnSOD mainly 

through crystallographic approaches. With X-ray crystallography, Chapter 2 investigates the means 

to which superoxide may bind the active site by cryotrapping the azide substrate-analog into the 

active site. The sixth-coordinate binding of the azide molecule suggests binding of superoxide at 

the same position as suggested by Lah and colleagues [93]. However, two key caveats of the study 

should be noted. First, the azide molecule (N3
-) is three atoms in length while superoxide (O2

•-) is 

two atoms in length. The difference is critical due to the compact nature of the active site and may 

affect binding orientation and hydrogen bonding. Second, UV-vis spectroscopic studies suggest 

cryogenic temperatures may affect the coordination of the active site [101]. However, UV-vis may 

be perturbed by many factors for metalloenzymes and need to be used in combination with other 

methods [65,158]. Regardless of the nature of coordination, it is apparent that the negative charge 

of substrate is utilized for electrostatic guidance by the MnSOD tetramer. The electrostatic surface 

calculations performed in Chapter 2 demonstrate that the active sites of the tetramer are at the 

bottom of a positively charged pit while areas of the periphery are negatively charged. The enzyme 

appears to have strategic placement of charged residues for immediate guidance of substrate to the 

active site. This guidance has been thought to be regulated by post-transitional modifications and is 

of immense importance to scientists seeking to increase endogenous activity of the enzyme [141]. 

After publication of the work presented in Chapter 2, several studies sought to investigate the 

effects of acetylation at Lys65 in regards to electrostatics and activity [226,227]. While Lys65 is far 

from the active site, its acetylation neutralizes a positive charge and perturbs the net electrostatic 

vectors in such a way that O2
•- diffusion to the active site is less efficient. MnSOD has other sites of 

modification, including those of phosphorylation and methylation that both appear to increase 

activity [85]. However, it is unclear whether these are electrostatic effects or otherwise. Regardless, 



117 

 

it is apparent that surface charges of MnSOD are important for activity and serves as a means to 

modulate O2
•- consumption and H2O2 production. 

 The work of Chapter 3 sought to initiate a pipeline for neutron crystallography of human 

MnSOD. This constituted overcoming several challenges. First, the protein needed to be 

recombinantly expressed in fully deuterated media. Second, the protein was to be purified and 

crystallized using hydrogenated reagents but needed to be exchanged with deuterium prior to 

neutron data collection. Third, the crystal was to be grown to much larger size than that required 

for X-ray diffraction. Fourth, the unit cell dimensions of P6122 MnSOD crystals were much larger 

than what was normally used for neutron diffraction. The longest unit cell edge for the MnSOD 

crystals is 240 Å while previous neutron diffraction studies used crystal forms with unit cell edges 

of less than 100 Å. This means that MnSOD crystals have less unit cells per volume of crystal and 

consequentially weaker scattering. Of note is that a high-resolution neutron data set for a unit cell 

of this size has not been collected prior to the present work. Paramount to collecting the high-

resolution neutron data was the MaNDi instrument at ORNL. It utilizes time-of-flight Laue 

diffraction with a spherical detector setup to allow data collection from many scattering angles and 

wavelengths ranging from 2-4 Å. Such instrument parameters substantially increase the number of 

Bragg reflections that can be collected from a single frame of data. While the unit cell dimensions 

of the P6122 MnSOD crystals is disadvantageous, the high symmetry allows for ~99% data 

completeness from 6 frames. Since a single image frame takes between 24-48 hours, the symmetry 

of the crystal is especially advantageous for the interest of time and resources. The work of Chapter 

3 presents the technical endeavours that were overcome for P6122 MnSOD crystals and hopefully 

contributes to pushing the limitations of neutron crystallography. 

 Chapter 4 takes the work of the prior chapter a step forward by developing methods for 

redox manipulation of perdeuterated P6122 MnSOD crystals for neutron data collection. One of the 

advantages of neutron diffraction over X-ray diffraction is the lack of effect on the redox state of 
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the active site metal. Since X-rays are high-energy electromagnetic waves, they are capable of 

liberating electron from the atoms of a crystal, especially those of water [75]. The high redox 

potential of Mn3+SOD means the trivalent metal will have a strong attraction to any “loose” 

electrons during X-ray data collection and lead to a predominately Mn2+SOD for the individual 

protein units of the crystal [112].  Consequentially, the high-energy characteristics of X-rays make 

it difficult to study oxidoreductases in the oxidized state. Likewise, there was a lack of structural 

characterization for Mn3+SOD prior to the present work. The use of neutrons as a source provided 

the opportunity to study both redox states of the enzyme by chemically treating the crystals prior to 

data collection. This is especially important for studying not only MnSOD but for all 

oxidoreductases due to the CPET-dependent nature of the mechanisms. For studying 

oxidoreductase mechanisms, the protonation states need to be coupled to particular electronic states 

experimentally to define a mechanism. Redox manipulation of crystals for neutron diffraction 

provides an avenue to acquire such direct experimental data and the present work provides an 

avenue for others to study oxidoreductases in such manner. 

 While the previous two chapters dealt with presenting the developed methods for neutron 

crystallography of MnSOD, Chapter 5 exhibits the experimental data ultimately obtained from such 

methods. Two neutron data sets, Mn3+SOD and Mn2+SOD, were collected from the same crystal. 

Prior to each data collection, the crystal was treated with the appropriate chemical to achieve the 

desired redox state. The data sets revealed the hydrogen position for MnSOD for the first time and 

coupled the electronic states with the protonation states without the presence of substrate. What 

was especially pronounced from the data were the highly unusual hydrogen bonds being made 

along with non-canonical proton transfers. For example, deprotonation of the Gln143 amide upon 

the redox transition of Mn3+ → Mn2+ was not expected and there was a very limited number of 

studies (< 5) that suggested amide deprotonation for any enzyme. This is unsurprising since the pKa 

for free amide is 16~18 but Gln143 resides in a confined environment with significant charge that 
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greatly perturbs the apparent pKa. The effect of charge is exemplified by the observation that only 

an addition of an electron (Mn3+ → Mn2+) that triggers the amide deprotonation event. While this is 

supported by QM calculations, Gln143 deprotonation also explains the perplexing observations of 

past MnSOD mechanistic studies. Along with the SSHBs observed, the appearance of such unusual 

chemical workings in a very well-studied oxidoreductases brings into question whether other 

oxidoreductases utilize amide deprotonation for enzymatic activity.  

 The culmination of work of the present dissertation provides new mechanistic revelations 

to the well-studied enzyme of human MnSOD. Outside the technical developments demonstrated, 

the work provides revelations for the means of diffusion and binding of substrate to the active site, 

the precise protonation states of each redox state, non-canonical hydrogen bonds and proton 

transfers, and ultimately the CPET enzymatic mechanism. As this is the first study of MnSOD that 

directly detects hydrogen positions, there still exists much work in not only discerning the 

mechanism but the chemical drivers of why the mechanism occurs in the way it does. 

6.2 Future Directions 

 The electrostatic potential calculations of Chapter 2 lead to inquiries of the effect of post-

translational modification on O2
•- diffusion to the active site and MnSOD catalysis activity. As 

mentioned in the previous section, the work of the Gius group investigated the effect of acetylating 

Lys65 on electrostatic potential. However, this is a single lysine residue and many others may be 

acetylated [85]. Likewise, previous work demonstrate phosphorylation of Ser82, methylation of 

Lys44, and nitration of active site residue Tyr34. These modifications all have an effect on the 

charge of the residue by adding charge, neutralizing charge, or shielding charge (e.g. methylation). 

The electrostatic surface potentials of MnSOD appear to be a means of post-translational regulation 

and has much room to be investigated. 
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 Chapters 3-5 provide the basis for studying the catalytic mechanism of MnSOD with more 

detail. These chapters present the methods for obtaining neutron structures of the enzyme and 

permitted the experimental acquisition of hydrogen positions for wildtype Mn3+SOD and Mn2+SOD 

at resting state. This has led to the identification of specific residues that are differentially 

protonated for CPET though not the specific role of the residue for enzymatic activity. For 

example, does a labile proton at a residue serve to modulate the redox potential, protonate 

substrate, stabilize another residue, or transfer to another residue? Similarly, does a residue that 

does not demonstrate differential protonation have a role in activity? Such questions can be 

investigated by utilizing point mutants. Specifically, the residues of Tyr166, His30, Tyr34, Trp123, 

and Trp161 are of interest because mutations of these sites are deleterious for catalytic activity. It is 

of interest to identify the changes of protonation states at the activity site with mutation of each 

residue to infer the role in enzymatic activity.  Therefore, acquiring neutron structures of the point 

mutants in both redox forms will be instrumental in providing more details to our understanding of 

catalysis.  

 The application of cryogenic methods would further the understanding of the mechanism 

as well. Flash-freezing crystals after a ligand soak may cryotrap and retain a ligand-bound active 

site amenable to neutron structural determination. For example, soaking peroxide into a crystal 

with subsequent flash freezing may reveal the protonation states of the product-inhibited complex. 

Each ligand soak may be handled with a strategic MnSOD variant. Following the example of 

peroxide, the W161F mutant is known to kinetically retain the product-inhibited complex much 

longer than wildtype without compromising the hydrogen-bond network [63,65,71]. Cryotrapping 

ligands into large, perdeuterated crystals of MnSOD provide a means to explore the mechanism in 

regards to substrate and product. 
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 Many crystallographic experiments are possible to further delve into the details of the 

MnSOD mechanism. The present work has laid a foundation in which MnSOD variants and other 

active site states may be systematically investigated. 

  



122 

 

Appendix 1: Preliminary Refinement of the Cryo-trapped W161F MnSOD-Peroxide 

Complex 

Introduction 

 An interesting and unique feature of human MnSOD’s enzymatic mechanism is that 

product-inhibition limits the output of hydrogen peroxide. Wild-type MnSOD uses this alternative 

pathway 50% of the time during steady-state conditions and is thought to be characterized by a 

peroxide anion (O2
2-) bound at the active site (M3+–O2

2-). This occurs after the first half-reaction of 

the canonical pathway (note that a M2+ oxidation state precludes formation of M3+–O2
2-). To relieve 

inhibition at the active site, an alternative proton transfer relay is used to protonate peroxide anion 

to hydrogen peroxide [72,228]. The product-inhibited pathway is perhaps the least known attribute 

of the enzyme.  

 The Borgstahl group published the only cryotrapped X-ray structure of a  Escherichia coli 

MnSOD-peroxide complex [108]. This was a landmark study because previously it was not clear 

that cryotrapping would work on such a fast enzyme and side-on binding of a dioxygen ligand to 

Mn was revealed. The lack of information on hydrogens in those electron density maps made the 

precise interpretation of the ligands bound to the four unique active site structures in the crystal 

impossible. Of note, E. coli MnSOD has less product-inhibition than human MnSOD [64]. This 

means that the E. coli structure contains a mixture of ligands from both the canonical and product-

inhibited pathways. Also, hydrogen peroxide is known to force the backwards reaction of MnSOD 

[72]. A hydroperoxyl (HO2
-) intermediate is also thought to exist [64]. These issues made the 

mechanism hard to decipher from the E. coli structure because the double-oxygen species were 

difficult to differentiate from each other using only X-ray data.  

 For this study, cryogenic neutron diffraction of the W161F variant is used to analyze the 

MnSOD-peroxide complex. This way, the active site species may be discerned by protonation state 

in addition to visualizing the proton relay of the product-inhibited mechanism. The W161F 
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MnSOD variant was strategically chosen as catalysis is through the product-inhibited pathway 

exclusively and inhibition release is slow [219]. 

Materials and methods 

 Detailed methods for recombinant MnSOD deuterated expression at ORNL biodeuteration 

lab, purification, and crystallization have been described previously [163]. Of note, expression of 

the W161F variant was performed at 37 °C instead of the 30 °C in the citation, as this significantly 

increases Mn metal incorporation of MnSOD [187]. Prior to data collection, a large W161F crystal 

was soaked with increasing concentrations of deuterated potassium phosphate solution, pD 7.8, 

while maintaining 1% deuterated peroxide (D2O2). After 5 minutes, the crystal was flash frozen 

with a cryostream before data collection at MaNDi. Neutron data were collected to 2.30 Å 

resolution with 99% completeness (Table A-1.1). An identical protocol was utilized to collect 

cryogenic X-ray data using a Rigaku FR-E SuperBright home source. Neutron data were integrated 

using MANTID [189]. Integrated neutron data were scaled and wavelength-normalized using 

LAUENORM from the LAUGEN suite [171]. X-ray diffraction data were reduced using HKL-3000 

for indexing, integration, and scaling [124]. Preliminary refinement of both the X-ray and neutron 

models were performed with PHENIX.REFINE from the PHENIX suite [190].  
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Table A-1.1 Data collection statistics for W161F-MnSOD-Peroxide 

Table A-1.1 Data collection statistics  

W161F MnSOD-Peroxide 

 Neutron X-ray 

Diffraction 

Source 

MaNDi Rigaku FR-E+ SuperBright 

Temperature (K) 100 

Space group P6122 

a, b, c (Å) 77.8, 77.8, 236.8 78.4, 78.4, 236.97 

 α, β, γ (°) 90, 90, 120 

Wavelengths (Å) 2-4 1.5418 

No. of unique 

reflections 

19467 34472 

Resolution range 

(Å) 

14.82-2.30 (2.38-2.30) 50.0-1.87 (1.91-1.87) 

Multiplicity 9.72 (7.02) 6.5 (5.2) 

I/σ(I) 9.7 (5.6) 11.4 (2.0) 

Rmerge  0.279 (0.286) - 

Rmeas 0.294 (0.306) 0.12 (0.76) 

Data 

completeness (%) 

99.01 (98.04) 93.8 (89.3) 
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Results 

 X-ray data collection yielded electron density for a dioxygen species in two locations. 

Elongated density is seen between putative proton transfer residues His30 and Tyr34 (Figure A-

1.1a). This site has been speculated to bind substrate and/or product but has not been seen before 

[72,228]. The second location is within covalent bond distance of the Mn ion (Figure A-1.1b) and 

has been seen before but only at partial occupancies [108]. Here, the data refines a dioxygen 

species at full occupancy to temperature factors comparable to the rest of the active site. Neutron 

data was subsequently collected to 2.3 Å on cryocooled D2O2-soaked perdeuterated W161F 

crystals and yielded nuclear density similar to that of the X-ray counterpart (Figure A-1.2a-b). 

Preliminary refinement has begun to reveal unexpected protonation states demonstrated by a low-

barrier hydrogen bond seen between His30 and Tyr166 (Figure A-1.2c). 
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Figure A-1.1 X-ray data of cryo-trapped peroxide at the active site of the W161F MnSOD 

 
Figure A-1.1. X-ray data of cryo-trapped peroxide at the active site of the W161F MnSOD. (a) 

Peroxide (or a derivative double-oxygen species) found between putative proton transfer residues His30 

and Tyr34. (b) Peroxide within covalent bond distance of the Mn. A single oxygen-containing molecule 

thought to be involved in proton transfers is normally found here. Fo-Fc electron density maps are 

contoured at 3.0 σ. 
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Figure A-1.2 Neutron data of cryo-trapped peroxide at the active site of the W161F MnSOD 

 
Figure A-1.2. Neutron data of cryo-trapped peroxide at the active site of the W161F MnSOD. (a) 

Peroxide (or a derivative double-oxygen species) found between putative proton transfer residues His30 

and Tyr34. (b) Peroxide within covalent bond distance of the Mn. (c) A low barrier hydrogen bond 

indicated by an equidistant proton between His30 and Tyr166 from the adjacent subunit. Preliminary Fo-

Fc nuclear density maps are contoured at 2.0 σ and 2.5 σ in orange and green, respectively. Modeling and 

refinement of the protons are incomplete. 
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Appendix 2: Preliminary Refinement of Y34F MnSOD in Oxidized Form 

Introduction 

 The enzymatic mechanism harbors an alternative pathway that leads to product-inhibition 

by peroxide. This alternative pathway 50% of the time during steady-state conditions and is 

thought to be characterized by a peroxide anion (O2
2-) bound at the active site (M3+–O2

2-). To 

relieve inhibition at the active site, an alternative proton transfer relay is used to protonate peroxide 

anion to hydrogen peroxide [72,228]. Kinetic studies show that active site residue Tyr34 mediates 

access to product-inhibited reactions by comparing rates between the wildtype enzyme with the 

Y34F mutant [73]. The Y34F mutant uses the alternative product-inhibited pathway ~99% of the 

time and implicates a role for the hydroxyl group of Tyr34 in permitting canonical activity. Our 

previous wildtype oxidized and reduced neutron structures demonstrate that Tyr34 is differentially 

protonated. The residue is ionized in the Mn3+SOD state and protonated in the Mn2+SOD state. To 

better understand the role of Tyr34, neutron structures for the Y34F mutant in Mn3+ and Mn2+ 

states are desired. Here, preliminary refinement of Y34F Mn3+SOD neutron data is presented. 

Materials and methods 

 Detailed methods for recombinant MnSOD deuterated expression at ORNL biodeuteration 

lab, purification, and crystallization have been described previously [163]. Of note, expression was 

performed at 37 °C instead of the 30 °C in the citation, as this significantly increases Mn metal 

incorporation of MnSOD [187]. Purification and crystallization were performed with hydrogenated 

reagents. Deuterium exchange of crystals was performed by vapor diffusion in capillaries. Methods 

for manipulating the Mn metal of MnSOD to Mn3+ have been described previously [188]. In brief, 

a crystal in a quartz capillary was soaked in deuterated reservoir solutions containing either 6.4 

mM potassium permanganate (KMnO4) to achieve the Mn3+ state. After drying the crystal from 

soaking solutions, the crystal was flanked in the capillary by slugs of the deuterated reservoir 
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soaking solutions. Fortuitously, the decomposition products of the redox agent are unable to enter 

the active site of MnSOD [188]. Neutron data were collected to 2.30 Å resolution (Table A-2.1) 

and integrated using MANTID [189]. Integrated neutron data were scaled and wavelength-

normalized using LAUENORM from the LAUGEN suite [171]. Preliminary refinement of the 

neutron model was performed with PHENIX.REFINE from the PHENIX suite [190].  
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Table A-2.1 Data collection statistics for Y34F MnSOD 

Table A-2.1 Data collection statistics   

Y34F Mn3+SOD 

 Neutron 

Diffraction Source MaNDi 

Temperature (K) 296 

Space group P6122 

a, b, c (Å) 79.3, 79.3, 240.6 

 α, β, γ (°) 90, 90, 120 

Wavelengths (Å) 2-4 

No. of unique reflections 20703 

Resolution range (Å) 14.39-2.28 (2.36-2.28) 

Multiplicity 7.79 (6.15) 

I/σ(I) 7.4 (3.7) 

Rmerge  0.246 (0.323) 

Rmeas 0.263 (0.349) 

Data completeness (%) 97.78 (88.40) 
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Results 

 The preliminary structural refinement has yet to include exchangeable deuterium atoms at 

the active site though has notable features and omit Fo-Fc difference density. The phenylalanine at 

position 34 has caused a slight structural shift of the Gln143 residue. Specifically, the Oε1(Gln143)-

Dε1(Trp123) has lengthened from the 1.9 Å distance of wildtype to 2.1 Å (Figure A-2.1a). This is 

significant because this hydrogen bond is thought to stabilize the amide anion of Gln143 in the 

Mn2+ redox state and may explain why the Y34F mutant cannot perform the fast Mn2+ → Mn3+ 

redox reaction. Despite this structural shift, the WAT1-Gln143 SSHB is maintained from the 

wildtype structure and omit difference density suggests at least one deuterium for the WAT1 

monoxygen species. Significant omit difference density is also seen at the solvent channel between 

Phe34 and His30 along with density suggesting Nδ1(His30) protonation (Figure A-2.1b). The work 

of Chapter 2 and Appendix 1 has suggested that a dioxygen species related to catalysis binds at this 

position and relates to His30 protonation though more refinement needs to occur to explore this 

possibility. The preliminary refinement of neutron data obtained from a perdeuterated and oxidized 

Y34F MnSOD crystal already reveals interesting data related to catalysis. 
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Figure A-2.13 Preliminary structural refinement of neutron data obtained from a perdeuterated and 

oxidized Y34F MnSOD crystal 

 
Figure A-2.1. Preliminary structural refinement of neutron data obtained from a perdeuterated and 

oxidized Y34F MnSOD crystal. Preliminary Fo-Fc nuclear density maps are countered at 2.5 σ in green 

and deuteriums are not modelled. (a) Omit Fo-Fc difference density at WAT1 and Gln143 where 

differential protonation is known to occur in wildtype. The Oε1(Gln143)-Dε1(Trp123) has lengthened from 

the 1.9 Å distance of wildtype to 2.1 Å. (b) Significant difference density at the solvent channel of the 

active site and difference density for Nδ1(His30) protonation. 
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