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ABSTRACT 

HIV infection remains a significant contributor to disease burden, and with the success of 

antiretroviral therapies, the population of people with HIV is aging. A growing literature suggests 

a relationship between HIV-infection and a profile of age advancement, most notably in molecular 

studies of epigenetics. However, despite the widely-known high prevalence of HIV-related brain 

atrophy, functional deficits, and HIV-associated neurocognitive disorder (HAND), epigenetic age 

advancement has not been linked to HIV-related changes in neuroimaging metrics. We applied 

three neuroimaging methods, structural MRI, resting state functional MRI, and resting state MEG, 

to study the brain structure and function of 121 virally-suppressed participants with HIV infection 

and 133 uninfected controls age 22-72. All participants were assessed for cognitive impairment, 

and blood samples were collected from a subset of participants to estimate epigenetic age. We 

examined the group-level interactive effects of HIV and chronological age, and then used 

individual estimations of epigenetic age to understand the relationship between age 

advancement and brain structure. Finally, we studied the effects of HIV-associated neurocognitive 

disorder. In brain structure, HIV-infection was related to grey matter reductions, independent of 

age. Using epigenetic age as a biomarker for age advancement, individual HIV-related age 

advancement was associated with reductions in total grey matter. HIV-associated neurocognitive 

disorder was associated with decreases in thalamic and hippocampal grey matter. Examining 

functional resting state networks, HIV-infection and age were independently associated with 

broad increases in between-network connectivity. In contrast to the structural results however, 

changes in resting state functional connectivity were not significantly associated with epigenetic 

age advancement. With respect to HAND, increases in functional connectivity with the ventral 

attention network appeared to be driven by PWH with HAND. Finally, in resting state oscillatory 

activity, while independent age related changes were identified in delta power, beta power, and 
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alpha peak frequency, no effects of HIV were identified. Exploring these null results, post-hoc 

Bayesian analyses showed evidence that many oscillatory metrics were equivalent between PWH 

and uninfected controls. In conclusion, despite viral suppression, accentuated grey matter loss 

and resting state functional network reorganization is evident with HIV-infection, while resting 

oscillatory activity is largely preserved. Greater biological age advancement appears to specifically 

relate to grey matter loss. These findings are a critical step towards understanding and treating 

the aging brain of PWH.  
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CHAPTER 1: Background 

A Brief History of HIV 

The history of Human Immunodeficiency Virus (HIV) represents one of the most 

significant scientific struggles, and at the same time one of the most significant scientific 

successes, in modern history. While the virus still remains prevalent today, discrete and 

incremental scientific progress since the discovery of the virus has allowed treatment of HIV to 

become highly effective. Such treatment is also becoming readily available across the world,1 and 

we are now at a time where research (and dissertations) are beginning to focus on aging people 

with HIV (PWH), a point that might have been unimaginable decades ago. 

The first documented cases of HIV in the US occurred in 1981 with a Center for Disease 

Control and Prevention (CDC) report of a rare lung infection, pneumocystis carinii pneumonia. 

Reports of severe immunodeficiency then became more recognized, and the term AIDS (Acquired 

Immune Deficiency Syndrome) was adopted by the CDC in 1982. At the time, life expectancy 

following a diagnosis was approximately two years,2 essentially labeled as a terminal illness. Then, 

in 1983, Dr. Françoise Barré-Sinoussi and Dr. Luc Montagnier successfully identified the retrovirus 

that causes AIDS (HIV). Its identification allowed for the development of blood tests and further 

characterization of the virus. While the first antiretroviral therapy, zidovudine (a nucleoside 

reverse transcriptase inhibitor originally made for cancer therapy) was approved by the US Food 

and Drug Administration in 1987, the AIDS epidemic continued to grow, with AIDS becoming the 

leading cause of death for all Americans ages 25-44 in 1994. Scientific advances however 

continued to comprehend the biology of HIV, including contributions made by the director of the 

National Institute of Allergy and Infectious Diseases, Dr. Anthony Fauci.3 This ultimately allowed 

for the development of further targeted antiretrovirals, including the development of the first 
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protease inhibitor in 1995, and then the first non-nucleoside reverse transcriptase inhibitor in 

1996, ushering in an era of highly active antiretroviral therapy (HAART).4 HAART become the new 

standard of care for PWH, and soon after in 1997, the CDC reported the first substantial decline 

in AIDS related deaths in the United States.4 

Since then, over 30 different antiretrovirals have been developed as they have continued 

to be refined, targeting a diverse array of molecular targets. The combined use of multiple 

antiretrovirals (cART) has proven to be highly effective, allowing PWH to achieve and maintain 

viral suppression. Now today, these successes of cART have substantially increased life expectancy 

in PWH, and HIV infection has largely become a non-life threatening disease. 

Now that PWH can achieve a life expectancy similar to that of uninfected individuals in 

the resource-rich countries,5 HIV is often seen as a chronic disease. HIV eradication remains 

elusive, and PWH represent a significant portion of people with chronic illness. HIV infection 

continues to be a significant contributor to disease burden, being one of the leading causes of 

disability adjusted life years.6 Additionally, with aging and long-term chronic disease, age-related 

co-morbidities have become a key concern in PWH.7,8 Studies have noticed that there is an 

increased incidence of age-related comorbidities in PWH compared to uninfected individuals.9 

These comorbidities include cardiovascular disease,10 liver disease,11 renal disease,12 and 

neurologic diseases such as HIV-associated neurocognitive disorder (HAND).13 This profile of 

increased age related disease in PWH has led to theories of advanced aging related to HIV, 

whereby HIV infection propagates age-related changes in PWH.  

HIV and Advanced Aging 

There has been some debate in the literature on the manner in which HIV infection 

propagates pathologic aging. That is, multiple different terms have been utilized across studies to 
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describe this pathologic aging, including accelerated aging, premature aging, and accentuated 

aging.9,14 These terms all refer to a process by which HIV propagates biological aging mechanisms, 

but it has been proposed that accelerated aging should be used to describe a process of continual, 

progressive cellular senescence caused by HIV, while premature or accentuated aging refers to a 

more singular “hit” in biological aging.9 These definitions are not however universal, as other 

studies have distinguished between the phrases in terms of cross-sectional versus longitudinal 

interaction effects.15 Here we use the more neutral term, age advancement, as used in Gross et 

al., 2016,16 to encompass the multiple potential mechanisms by which HIV-related aging occurs. 

Beyond this debate, studies agree that a biomarker of HIV-related advanced aging is 

needed.9 One promising method that has been used to measure HIV-related age advancement is 

through the epigenetic clock. This method involves the quantification of specific CpG (cytosine 

phosphate guanines) sites from human cells.17,18 These pre-determined sites have been identified 

in genes associated with development and aging, and examining epigenetic methylation at these 

sites allows for modeling of an individual’s biological age. Age advancement can then be 

determined as the difference between an individual’s chronological and biological age. Notably, 

this metric has shown to be predictive of all-cause mortality in older age,19 and has been utilized 

in multiple fields. In the context of HIV specifically, advanced aging has been detected in both 

blood and brain tissue using the epigenetic clock,16,20 and such HIV-related epigenetic aging has 

been linked to HAND.21 Advanced epigenetic age has even been found in adolescents with 

perinatally acquired HIV infection.22 However, it remains unclear how such advanced epigenetic 

aging relates to the changes in brain structure and function seen in HIV. 

 

 



4 
 

HIV and Advanced Aging in the Brain 

When it comes to HIV’s effects on the brain, HIV-associated neurocognitive disorder 

(HAND) is the most prevalent neurological comorbidity related to HIV infection. While cART has 

sharply reduced the most severe forms of HAND (i.e., HIV-associated dementia), milder forms of 

HAND remain quite common with estimates ranging from 35-70% of all HIV-infected 

patients.13,23,24 These neurologic HIV-associated comorbidities are thought to be a result of viral 

invasion past the blood brain barrier into the CNS via infected monocytes, leading to widespread 

inflammation in the brain.25 Chronic inflammation may also play a role in weakening the blood 

brain barrier,26 and regardless the neuroinflammation is thought to be an important driving factor 

in neural injury and development of neurologic complications.27,28 Relating this back to aging, the 

hypothesis of “inflammaging” is a key explanation for understanding the aging process.  

Inflammaging refers to a low grade, chronic inflammation that characterizes aging.29,30 It 

is thought to be related to a wide array of mechanisms, including pro-inflammatory cytokine 

production, mitochondrial dysfunction, and cellular waste and senescence.31 Given that the brain 

acts as a viral reservoir for HIV, and that the presence of HIV leads to chronic neuroinflammation, 

inflammaging is an intuitive mechanism by which HIV may advance aging in the brain. Therefore, 

a biomarker of advanced aging could represent a discrete mechanistic measure to index how HIV 

affects the brain. Despite this, few studies have attempted to relate HIV-associated changes in 

brain structure and function to a biomarker of HIV-related age advancement, and even aging more 

broadly. 

Central Research Question 

To summarize, HIV infection remains highly prevalent, and the population of PWH is 

gradually aging. HIV may be related to even further advanced aging related to chronic 
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inflammatory processes, which are known to be present in the brain under HIV infection. 

However, relatively few studies have fully characterized the brain in the context of HIV infection, 

aging and advanced aging. Therefore, the central research question we aim to address is: how 

does HIV infection affect the brain in the context of aging, and how do such changes relate to 

advanced aging? To address this question, we aim to utilize multiple neuroimaging techniques 

and epigenetic age estimations to examine a large group of participants, with and without HIV, 

across the span of adulthood. 
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CHAPTER 2: Literature Review 

Noninvasive neuroimaging may be able to clarify the relationships between HIV infection 

and aging in the brain, as it allows differences in brain structure and function to be identified in 

PWH. Neuroimaging of HIV has led to the rapid advancement of markers associated with HIV 

infection, HAND, and aging.32,33 Here we will discuss these advances in three neuroimaging 

modalities: structural magnetic resonance imaging (sMRI), resting state functional MRI (fMRI), 

and magnetoencephalography (MEG). 

HIV and Aging’s Effects on Brain Structure 

The aberrations in brain structure seen with HIV infection is potentially the most 

established of the three modalities proposed here. HIV-related brain atrophy was well recognized 

in the 1990’s, often described as global brain atrophy related to clinical decline and 

neurocognitive deficits.34–36  Today however, despite viral suppression being readily achievable, 

multiple studies continue to indicate that such atrophy remains present even in those treated 

with cART for extended periods of time.37,38 Therefore, changes in the brain structure of PWH 

remain a persistent issue that cART has yet to fully address. Additionally, while such atrophy has 

been well-characterized, the relationship between aging, advanced aging, and HIV related atrophy 

remains relatively understudied. 

Some evidence has suggested that HIV-related advanced aging may be linked to gross 

changes in brain structure 32, which some studies suggest reflect those seen in normative aging 

although accentuated 39,40. Multiple studies have examined how these structural changes are 

differentially modulated by aging in HIV infection 41–46, but the overall findings in PWH have been 

inconsistent, with some studies showing that other health factors such as adipose tissue47 and 

hypertension48 may also be associated with the brain atrophy seen in PWH. Additionally, none of 
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these studies have included a biomarker of age advancement, which could help quantify age 

advancement at the individual level, beyond conventional gross measures like chronological age, 

and clarify the nature of these changes in local brain structure. 

Therefore, in the structural neuroimaging portion of the project, we aim to examine the 

relationship between aging and multiple measurements brain structure in the context of HIV 

infection. Given that the majority of diagnosed PWH in the United States are virally-suppressed,49 

we aimed to study virally-suppressed PWH. Briefly, we will apply advanced computational 

methods on high-resolution structural MRIs from a large group of PWH and uninfected controls, 

sampled evenly from 22 to 72 years old. Additionally, we will measure epigenetic age from 

peripheral blood to determine each participant’s age advancement, and then related such aging 

to our MRI-derived measures of brain structure. We hypothesized that structural MRI metrics 

would show evidence of advanced aging in PWH, and that these metrics would relate to our 

independent epigenetic age advancement estimations. Finally, we studied how these metrics 

differ in participants with HAND relative to cognitively-unimpaired participants, hypothesizing 

that those with HAND would show larger degrees of atrophy and age advancement. 

HIV and Aging in fMRI: Alterations in Brain Networks 

Beyond these structural studies, functional neuroimaging investigations, which can more 

directly probe the aberrant neural activity related to HIV infection, have been far less common. 

Functional MRI (fMRI) is one neuroimaging technique that has been used to study the functional 

brain changes related to a wide variety of neurologic and psychiatric diseases. This technique 

relies on the blood oxygen level dependent (BOLD) signal, which is an indirect measurement of 

neural activity (see chapter 3). Importantly however, despite the measurement relying on the 

hemodynamic response, the BOLD signal has been thoroughly studied and is closely tied to 
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underlying neural activity.50–52 Changes in the BOLD signal in certain regions of the brain have also 

been found to correlate with other regions of the brain.53 These correlations have been shown to 

be functionally relevant and has given rise to a rich field of functional connectivity literature, 

showing organized networks of activity across the brain.54,55 Using these techniques, research 

examining PWH have begun to identify changes in brain function related to HIV infection. 

Task based studies using fMRI have broadly identified hyperactivity related to HIV.56 

Specifically, a series of papers by Chang et al., utilized a tracking ball task identify attention related 

increases in prefrontal and cingulate activity.57–59 Similar increases in activity in the prefrontal 

cortex were also detected during working memory tasks.60,61 Separately, subcortical function has 

been shown to be altered with HIV infection, including a greater recruitment of the basal ganglia 

during a lexical retrieval task.62 Overall, aberrations of the frontal cortex and striatum appear to 

be the most consistent across studies, as shown in meta-analysis of task-based fMRI studies of 

HIV, which specifically pointed towards dysfunction of the fronto-striatal circuit.63  

While these task based studies have given significant insight into specific cognitive 

functions in PWH, resting state fMRI offers the opportunity to study the functional connectivity 

of multiple networks. A number of resting state fMRI studies of HIV have found altered functional 

connectivity in PWH. The most consistent findings in these studies have been alterations in 

connectivity with the frontal cortices, including the executive network.64–66 A pair of studies 

specifically identified altered cortico-striatal connectivity related to HIV infection.65,66 

Additionally, studies have also identified HIV related reduced functional connectivity within the 

default mode network (DMN).64,67 Functional connectivity between subcortical regions however 

do not appear to differ in PWH on long term cART compared to uninfected controls.68 
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Some of these studies have begun to examine the added impact of aging in addition to 

HIV on these functional networks. These studies have been somewhat inconsistent, with the 

majority failing to identify an HIV by age interaction.41,64,65,69,70 Other studies have identified 

specific age by HIV interactions including one study examining an attention task, and identified an 

HIV specific increase in activity with age related to cognitive reserve,59 and another noting a 

significant HIV by age interaction in the motor network.71 Overall however, the studies with the 

largest samples, including longitudinal studies,67 seem to indicate that age and HIV have 

independent effects on functional connectivity.  

In uninfected individuals, normative aging appears to be related to decreased brain 

modularity in functional networks.72 That is, with increasing age, within-network connectivity 

appears to decrease, while between-network connectivity increases.72–74 This pattern is also 

noted with measures of network efficiency, which show increasing network efficiency with 

development, and then subsequent decreases in efficiency and modularity with aging.75 Overall, 

this global pattern of decreasing network segregation with aging provides a concise framework to 

understand how functional connectivity changes with normative aging. 

With this framework, we can extend these network-level changes towards the study of 

HIV infection. That is, while the effect of HIV may be independent of age, the alterations seen with 

HIV can be examined through the lens of the aging phenotype. Indeed, a recent study identified 

decreases in network modularity related to HIV.76 Few studies however have examined how HIV 

related changes fit into this aging framework, and no studies have probed whether these changes 

relate to independent epigenetic measures of advanced aging.  

Therefore, in the fMRI portion of this project, we aim to examine the relationship 

between aging and resting state functional connectivity in the context of HIV infection. Briefly, we 



10 
 

will compute network-level estimates of functional connectivity in the same large group of PWH 

and uninfected controls, sampled evenly from 22 to 72 years old. Additionally, we will measure 

epigenetic age from peripheral blood to determine each participant’s age advancement, and then 

related such aging to our measures of functional connectivity. We hypothesized that PWH would 

show evidence of advanced aging in the form of increased between-network connectivity, and 

decreased within-network connectivity relative to uninfected controls. We also hypothesized that 

these metrics would relate to our independent epigenetic age advancement estimations. Finally, 

we studied how these metrics differ in participants with HAND relative to cognitively-unimpaired 

participants, hypothesizing that those with HAND would show larger functional aberrations and 

age advancement. 

Studies of HIV and Aging with MEG and Neurophysiology 

From a different functional perspective, magnetoencephalography (MEG) allows for the 

direct quantification of neural activity at a much more precise timescale. This allows for the 

examination of oscillatory activity, which broadly refers to population-level neural activity at 

distinct frequencies (see chapter 3). Oscillatory activity is known to be important in cognition,77 

and has been shown to be critical in a wide array of disorders.78–80 Investigations into how the 

brain’s oscillatory activity changes with HIV infection are far less common, which leaves a 

significant gap in the literature. 

Task based studies utilizing MEG to examine oscillatory activity and HIV infection have 

shown multiple functional deficits in both primary sensory activity as well as in higher order 

functioning.81 In somato-motor studies, MEG investigations have identified HIV-related increases 

in beta event-related desynchronizations at the motor cortex during finger tapping,82 differential 

alpha and theta processing,83 and decreased gamma responses during tactile stimulation.84 
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Examining visual processing, PWH have been shown to have altered alpha activity in dorsolateral 

prefrontal cortex,85 and decreased occipital theta responses during early visual processing.86 In 

visual attentional processing, one study also identified altered frontal theta activity specific to 

PWH with HAND.87  Finally, during working memory processing, PWH were shown to have 

aberrant alpha responses specifically during the memory maintenance portion of the task.88 

Interestingly among these task based studies, there have been multiple findings of altered 

oscillatory power during the baseline (non-task relevant) portion of the paradigms being used. 

These findings include increased visual gamma power related to HIV during the baseline of a 

visual-spatial processing task,89 and increased somatosensory gamma during the baseline of a 

somatosensory processing task.84 Increased alpha power during the baseline of both visual 

processing and attentional processing tasks was also shown to be specifically related to HAND.87,89 

On an attentional task, baseline theta power was also shown to be increased specifically in those 

with HAND.87 Overall, these studies seem to indicate a broad increase in spontaneous oscillatory 

activity related to HIV. 

Resting state studies of HIV using MEG are also relatively rare. One study reported an HIV-

related decrease in resting beta power.90 A smaller pilot resting state study identified reduced 

gamma power associated with HIV infection.91 Another small study found sensor-level 

connectivity differences in PWH,92 but did not investigate oscillatory power. Resting state EEG 

studies of HIV on the other hand have generally identified decreases in alpha power related to 

HIV infection.93–95 Therefore, resting oscillatory activity in PWH shows some evidence of HIV-

related aberrant activity, however the subject remains largely understudied.  

Adding in the effect of aging, even fewer studies have examined the impact of both aging 

and HIV. For reference, in normative aging, neural oscillatory activity shows distinct alterations in 
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specific frequency bands. In the lower frequency bands, some studies have shown decreases in 

delta and theta power with increasing age.96 The alpha rhythm is most studied of these changes, 

which consistently shows slowing (ie decrease in peak frequency) with age.97–100 Some studies 

have also reported that alpha power decreases with age as well,96,100–102 although these findings 

are somewhat less consistent and may be influenced by the changes seen in peak alpha 

frequency.103 Beta power is known to robustly increase with age,96,100,104,105 typically at the 

somato-motor cortices where beta activity is most prominent.104,105 Finally, gamma activity is least 

frequently reported in the resting state, with a select few studies reporting an increase in power 

with age.106 

The studies that have utilized MEG to study HIV and aging include a few task based studies 

that specifically examined for interactive effects of HIV by age. These findings include HIV by age 

interactions in theta, alpha and beta activity during attentional processing.107,108 Additionally, 

HAND-status by age interactions have been found in frontal gamma during somatosensory 

processing,109 and parieto-occipital gamma during visual processing,110 and frontal and parietal 

gamma during attentional processing.107 However, no MEG studies have examined HIV and aging 

during the resting state. 

Additionally, none of these studies have examined the relationship between HIV-

associated epigenetic advanced aging and neural oscillatory measures. One study of uninfected 

controls has successfully identified a relationship between anterior cingulate gamma activity 

during an attention task and epigenetic age estimations.111 Therefore, given PWH exhibit both 

altered oscillatory activity and advanced epigenetic age, epigenetic aging could index altered 

oscillatory activity seen in PWH. 
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To summarize, task based MEG studies show multiple oscillatory aberrations in PWH, 

while the resting state oscillatory activity of PWH is highly understudied and contains relatively 

inconsistent results. Spontaneous activity during task-based paradigms have shown an increase 

in power in gamma activity related to HIV infection and increased theta and alpha activity related 

to HAND. At the same time, resting state neurophysiological studies have shown decreased power 

in alpha, beta, and gamma frequencies. Broadly, aging is normally associated with a decrease in 

lower frequency power (delta, theta, alpha), and an increase in higher frequency power (beta, 

gamma), although the strongest effects appear to be the increase in beta power, and a slowing of 

alpha peak frequency.  

Therefore, in the MEG portion of this project, we aim to examine the relationship 

between aging and oscillatory activity in the context of HIV infection. Briefly, we will compute 

source-level estimates of oscillatory power in canonical frequency bands, as well as peak alpha 

and beta frequencies. As before, we will study the same large group of PWH and uninfected 

controls, sampled evenly from 22 to 72 years old, and then relate oscillatory measures to 

epigenetic advanced aging estimates. We hypothesized that PWH will have decreased resting low 

frequency power, increased beta power, and decreased peak alpha frequency relative to controls, 

in an additive fashion to the changes seen with aging. Additionally, as before, we hypothesized 

that these changes would be related to epigenetic advanced aging seen in PWH. Finally, we 

studied how these metrics differ in participants with HAND relative to cognitively-unimpaired 

participants, hypothesizing that those with HAND would show larger functional aberrations. 

Hypotheses 

In summary, given these previous studies, our central hypothesis is that HIV infection 

precipitates structural and functional brain damage in a manner similar to, and additive to, the 
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aging process. Such aberrations may also directly relate to epigenetic measures of advanced 

aging, which is a relationship that has yet to be studied. Specifically, we have hypothesized that, 

relative to controls: 1) PWH have accentuated grey matter loss, independent of aging, and related 

to advanced aging, 2) PWH have decreased network modularity in the form of decreased within-

network and increased between-network functional connectivity, independent of aging, and such 

changes will be related to advanced aging, and 3) PWH have decreased resting low frequency 

power, increased beta power, and decreased peak alpha frequency, also independent of aging, 

and associated with epigenetic advanced aging. 
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CHAPTER 3: Methodology 

Here we aim to use multimodal neuroimaging techniques to understand the combined 

impact of HIV and aging in the brain. Specifically, we will be examining structural MRI data, resting 

state functional MRI data, and resting state MEG data. This chapter will cover the background for 

these different neuroimaging techniques and how they are implemented, with a focus on the 

outcome measures utilized in this project. We will then lay out the specific analysis pipelines 

utilized in each method. Finally, we will cover the statistical modeling that will be used uniformly 

across all three studies. 

MRI Background  

Magnetic resonance imaging works based on the principles of nuclear magnetic 

resonance (NMR). That is, nuclear, referring to the nuclei of hydrogen atoms, magnetic, referring 

to the creation of a net magnetization in these atoms, and resonance, the alignment of the nuclear 

spins to manipulate and measure the net magnetization. In short, the nuclei of hydrogen atoms 

naturally give off a magnetic field, due to the rotation of the protons, or more accurately “spin”. 

When placed in a large magnetic field, many of these protons will align with (low energy) or 

against (high energy) the direction of the magnetic field, precessing at a rate of the Larmor 

frequency. Inside an MRI, the net magnetization is in the direction of the external field, termed 

the longitudinal magnetization. A radio frequency pulse can then be applied to align the magnetic 

moments, resulting in the loss of the longitudinal magnetization, and the generation of a 

transverse magnetization that can be measured by the coils.112  

Then, the radio frequency signal is removed, and the relaxation of the magnetic moments 

begins. Loss of the transverse magnetization is called the T2, or spin-spin relaxation, and 

restoration of the longitudinal magnetization is called the T1, or spin-lattice relaxation. Different 
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tissues have different T1 and T2 relaxation times, and manipulation of the timing of radio 

frequency pulses allows for the enhancement of these differences. Principally, the relaxation time 

of lipid molecules is highly different from that of free water molecules, ultimately allowing 

different tissues (ie grey matter, white matter, and cerebrospinal fluid) to be contrasted.   

To perform measurements throughout space, gradients in the magnetic field are utilized 

to alter the Larmor frequency of the atoms by space. Utilization of a phase encoding gradient and 

frequency encoding gradient allow for signal measurement at different spatial locations. In all, 

these techniques allow for a 3D picture of the brain to be generated, such that grey matter, white 

matter, and CSF have relatively contrasted values, ultimately resulting in a high resolution 

structural volume. 

 Analysis of this structural image can involve segmentation of the image into different 

tissue types. That is, the grey and white matter boundary can be delineated across the entire 

cortical ribbon. Knowing these boundaries, we can then obtain estimates of grey matter volume, 

white matter volume, and CSF volume. For a better spatial representation, the amount of grey 

matter per voxel in the brain can also be quantified. This is the metric used in voxel based 

morphometry (VBM) and is generally interpreted to be a measure of grey matter “content.”113 

Similarly, with the grey and white matter boundary defined, a cortical surface can be generated 

with estimates of cortical thickness at each region of the cortex. This is the result that is generated 

through a surface based morphometry (SBM) approach. All of these metrics are quantitative 

values that can be utilized to study the brain structure of different populations. 

 In functional MRI, the differences in magnetic signal of oxygenated blood versus 

deoxygenated blood are examined. Deoxyhemoglobin is paramagnetic, which acts as a suppressor 

of the MR signal, while oxyhemoglobin is diamagnetic, resulting in a higher MR signal. Contrasting 
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these two signals is called the blood oxygen level dependent (BOLD) contrast. This contrast is 

relevant to neural activity because increases in neural activity results in a hemodynamic response, 

causing an increase in oxygenated blood relative to deoxygenated blood. Ultimately, this allows 

us to generate an indirect measure of neural activity. Importantly however, although this 

measurement is indirect, studies have shown a correspondence between BOLD signal and 

neuronal activity.51,114 

 Unlike in a structural scan, where one volume is sufficient, fMRI requires the 

measurement of multiple volumes over time to allow for the study of brain function. In task based 

MRI, participants perform a cognitive task, which elicits BOLD changes in regions associated with 

processing of that task. In resting state fMRI however, the natural fluctuations in that signal are 

what is studied. That is, the signal in certain regions of the brain are known to fluctuate in a similar 

manner to other regions of the brain. This can be quantified via a correlation of signal between 

brain regions.  

The spatial patterns of these correlations have revealed organized brain networks called 

resting state networks, which are thought to reflect functional systems that support cognitive 

processes. The number of networks identified is relatively arbitrary, as networks can be 

continually subparcellated into smaller and smaller networks. That said, seven of the most 

consistent resting state networks in the brain include the visual, somato-motor, dorsal attention 

(DAN), ventral attention (VAN), limbic, executive control, and default mode (DMN) networks.115 

Ultimately, the degree of correlation, or functional connectivity, within, and also between, these 

networks can be quantified and contrasted between different populations. 
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MEG Background 

Compared to the physics of MRI, the concepts behind how MEG works is relatively 

straightforward. MEG utilizes highly sensitive magnetic sensors (magnetometers/gradiometers) 

to measure the magnetic fields that emanate from the brain. These fields originate from neural 

activity, which consists of electrical currents flowing down the cellular membranes of neural cells. 

Such currents inherently generate a magnetic field in a manner according to Ampere’s right hand 

grip rule, allowing the MEG sensors to give a direct measurement of neural activity. Importantly, 

the activity which generates a strong enough field to be measured by these external MEG sensors 

needs to be summative over a large population of neurons. Thus, the activity measured by MEG 

is not considered to be from neuronal action potentials, but rather dendritic potentials, which are 

slower and allow for a temporal summation in magnetic field.116 

Practically, MEG is a noninvasive and totally silent neuroimaging technique that has 

excellent temporal (i.e., milliseconds) and spatial precision (i.e., millimeters). The neuromagnetic 

fields generated by population level neural activity are ultra-minute (i.e., roughly one billion times 

smaller than the Earth’s steady-state field), thus MEG recordings are generally conducted in 

highly-shielded rooms using superconducting technology, unique sensors, and noise cancellation 

methods. The strength of these neuromagnetic fields is proportional to the amplitude of the 

underlying electrical currents. However, unlike electrical fields (as in EEG), magnetic fields are not 

distorted nor attenuated by the cerebrospinal fluid, skull, scalp, or other intervening tissues, 

which enables MEG to be much more spatially precise than electrically-based methods with 

comparable temporal resolution.116 

This high temporal resolution allows for the inquiry of frequency-specific activity (ie 

oscillatory activity), which can be quantified through analysis of the MEG data. In task based 
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designs, where there is an event of interest, data around the event of interest can be examined 

via a time domain, or time-frequency domain analysis. In resting state data however, there are no 

events of interest to examine. This limits analysis of these data to a pure frequency domain 

analysis, which can be done by calculating a power spectrum density (PSD; Figure 1). This plots 

the power seen across the data by frequency, notably eliminating the time domain. Naturally, 

without measured activity, power decreases with increasing frequency, which can still be seen in 

the PSD. After adding human brain neurophysiological activity, canonical frequency bands are 

thought to be relevant towards neural activity and cognitive function: delta (2–4 Hz), theta (4–8 

Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz). Additionally, distinct peaks are seen 

in the frequency spectrum in the alpha and beta bands (Figure 1).  

 

Figure 1: Example Power Spectrum Density of Resting Brain Activity. The average PSD across all sensors for 
a representative dataset is shown. The canonical frequency bands at which power was extracted are 
highlighted: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and gamma (30–80 Hz). 
Human resting state activity shows two distinct peaks of activity, one in the alpha band, and the other in 
the beta band. The frequency at which the maximum power is seen is defined to be the peak frequency. 
Note that the peak at 60 Hz represents noise from the line-in frequency.  
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Structural Processing Pipeline 

 Briefly, structural MRI data will undergo an automated tissue segmentation in order to 

quantify the amount of grey matter, white matter, and CSF. VBM and SBM analyses will also be 

utilized to generate spatially dependent measurements of brain structure, which will ultimately 

be utilized in our final statistical contrasts.  

MRI Acquisition 

Structural T1-weighted MRI images were acquired with a Philips Achieva 3T X-series 

scanner using an eight-channel head coil and a 3D fast field echo sequence with the following 

parameters: TR: 8.09 ms; TE: 3.7 ms; field of view: 24 cm; matrix: 256 × 256; slice thickness: 1 mm 

with no gap; in-plane resolution: 0.9375 ×  0.9375 mm; sense factor: 1.5.  

Voxel Based Morphometry 

To study the regional distribution of grey matter, participants’ high-resolution T1-

weighted MRI data were processed using the standard voxel-based morphometry (VBM) pipeline 

in the computational anatomy toolbox (CAT12 v12.6)117 within SPM12. Briefly, participants’ high-

resolution T1-weighted MRI data underwent noise reduction using a spatially-adaptive non-local 

means denoising filter 118 and a classical Markov Random Field approach.119 An affine registration 

and a local intensity transformation were then applied to the bias corrected images. Finally, 

preprocessed images were segmented based on an adaptive maximum a posterior technique120 

and a partial volume estimation (PVE) with a simplified mixed model of a maximum of two tissue 

types.121 Images were also normalized to MNI template space, and the resulting VBM images were 

smoothed using an 8mm FWHM Gaussian kernel. Total grey matter, white matter, and CSF 

volumes were extracted and normalized to total intracranial volume for further statistical analysis. 

VBM maps were also utilized in subsequent statistics. 
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Surface Based Morphometry 

To examine the cortical thickness, T1-weighted MRI data were processed using additional 

surface-based morphometry calculations in the computational anatomy toolbox (CAT12 v12.6)117 

at a resolution of 1 mm3. This method utilizes a projection-based thickness approach to estimate 

cortical thickness and reconstruct the central surface in one step.122 Briefly, following the previous 

tissue segmentation, the white matter (WM) distance is estimated, and the local maxima are 

projected onto other gray matter voxels using a neighboring relationship described by the WM 

distance. This method accounts for partial volume correction, sulcal blurring, and sulcal 

asymmetries. Topological defects are corrected based on spherical harmonics,123 and the cortical 

surface mesh was reparameterized into a common coordinate system via an algorithm that 

reduces area distortion.124 Finally, the resulting maps were resampled and smoothed using a 15 

mm FWHM Gaussian kernel. These maps of cortical thickness were ultimately utilized in 

subsequent statistical analysis. 

Functional MRI Processing Pipeline 

Functional MRI data will undergo standard preprocessing and denoising procedures, and 

then subsequent calculation of functional connectivity of previously established networks will be 

assessed. Ulitmately, estimates of within-network and between-network connectivity will be 

extracted for each participant to then undergo statistical analyses. 

Scanning Parameters 

 Whole-brain blood oxygen level dependent (BOLD) data were acquired with a 3T Philips 

Achieva X-series scanner using an eight-channel head coil.  A total of 480 functional volumes were 

taken with a T2* SENSE sequence (repetition time=2000 ms; echo time=35 ms; 78x78 matrix; 90o 

flip angle; 240 mm field of view).  Whole-brain coverage was obtained with 33 axial slices 
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(thickness, 3.5 mm). Participants were instructed to rest with their eyes closed and were 

monitored throughout the scan.  In the same session, a high-resolution T1-weighted anatomical 

scan was acquired to co-register with the SENSE dataset (parameters described in Structural 

Processing above). 

Resting-state fMRI Preprocessing 

The rs-fMRI data were preprocessed using SPM12 and the DPABI Toolbox.125 Participants with 

excess head motion, defined as greater than 0.8 in frame-wise displacement126 and/or greater 

than 2.5 mm of maximum motion, were excluded from the study. Preprocessing procedures 

included removal of the first 3 volumes, motion correction to the first volume with rigid-body 

alignment; co-registration between the functional scans and the anatomical T1-weighted scan; 

linear detrending; regression of motion parameters and their derivatives (24-parameter 

model),127 and the scrubbing parameters,126 as well as white matter (WM), cerebrospinal fluid 

(CSF) time series (using a component based noise reduction method, 5 principal components);128 

spatial normalization of the functional images into Montreal Neurological Institute (MNI) 

stereotaxic standard space; and spatial smoothing within the functional mask with a 6-mm at full-

width at half-maximum Gaussian kernel; wavelet despiking;129 Lastly, bandpass filtering was 

applied at [0.01-0.1] Hz.130 

Extraction of Functional Connectivity Measures 

We used the Yeo 7 network atlas,115 a previously established functional brain atlas based 

on 1000 resting state fMRI scans, to partition the functional connectome into 7 replicated resting-

state networks (RSNs)131: visual, somato-motor, dorsal attention (DAN), ventral attention (VAN), 

limbic, executive control, and default mode (DMN). In each participant, Fisher Z-transformed 

Pearson’s correlation coefficients were computed to calculate functional connectivity within- and 
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between- networks. Within-network functional connectivity was computed as the average 

correlation of each voxel’s BOLD signal time series with every other voxel within the network. 

Between-network functional connectivity was computed as the correlation between the average 

time-series of each pair of networks. One between-network functional connectivity metric was 

computed for each of the seven networks by averaging across all pairs that included the respective 

network. Each of the pairs was also later analyzed individually using functional connectivity matrix 

statistics. 

To confirm and extend results with this seven network parcellation, we also calculated 

within- and between network functional connectivity using an independent 13 network 

parcellation.132 This atlas notably contains a subcortical network, which is not included in the Yeo 

atlas. Thirteen network matrices underwent the same matrix statistics as the seven network 

matrices. 

Resting State MEG Processing Pipeline 

In brief, our MEG processing pipeline will involve data preprocessing, coregistration, and 

subsequent source analysis using dSPM. The frequency spectra of source-level data will then be 

analyzed via computation of power spectrum density, and extraction of power and peak 

frequency at canonical frequency bands (Figure 2). These metrics will be computed for whole-

brain cortical surface maps, which will then undergo our statistical analyses. Estimates across 

broad regions of interest will also be extracted from these maps for further visualization and 

statistical analyses. 
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Figure 2: MEG Data Analysis Pipeline. Resting state MEG data underwent standard preprocessing 
procedures, including coregistration to sMRI data, filtering, artifact correction, and rejection of noisy 
segments of data by dividing the data into 4 second epochs and evaluating the distribution of amplitude 
and gradient estimates. Source-space analysis was then performed using a dSPM algorithm. Spectral 
analyses were then performed on these whole cortex level data to extract power at canonical frequency 
bands, and peak alpha and beta frequencies. Pre-defined ROIs were also utilized to extract these metrics 
for visualization and statistical analyses. 
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MEG Data Acquisition 

All MEG recordings took place in a one-layer magnetically-shielded room with active 

shielding engaged for environmental noise compensation. A 306-sensor Elekta/MEGIN MEG 

system (Helsinki, Finland), equipped with 204 planar gradiometers and 102 magnetometers, was 

used to sample neuromagnetic responses continuously at 1 kHz with an acquisition bandwidth of 

0.1 – 330 Hz. The same instrument was used across all recordings. Participants were seated in a 

custom-made nonmagnetic chair within a magnetically shielded room, with their heads 

positioned within the sensor array. Participants were instructed to rest with their eyes closed for 

6 minutes, and were monitored by a real-time audio-video feed from inside the shielded room 

throughout MEG data acquisition. 

Structural MRI Acquisition, Processing, and MEG-MRI Coregistration 

Individual structural MRI data were obtained from a majority of participants. All T1-

weighted sMRI data were acquired and segmented with the computational anatomy toolbox 

(CAT12 v12.6) 117 as described above. The resulting segmented files were then imported into 

Brainstorm for coregistration and source imaging.  

Prior to MEG acquisition, four coils were attached to the participants’ heads and localized, 

together with the three fiducial points and scalp surface, using a 3-D digitizer (Fastrak 3SF0002, 

Polhemus Navigator Sciences, Colchester, VT, USA). Once the participant was positioned for MEG 

recording, an electrical current with a unique frequency label (e.g., 322 Hz) was fed to each of the 

coils. This induced a measurable magnetic field and allowed each coil to be localized in reference 

to the sensors throughout the recording session. Since coil locations were also known in head 

coordinates, all MEG measurements could be transformed into a common coordinate system. 

With this coordinate system (including the scalp surface points), each participant’s MEG data were 
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co-registered with the structural magnetic resonance images prior to source space analyses using 

Brainstorm supplemented with visual inspection. Notably, 11 participants did not have available 

T1 MRI data. For these participants, the MNI ICBM152 brain template 133 was utilized and warped 

to fit each participants’ digitized headpoints. 

MEG Data Pre-Processing 

Each MEG dataset was individually corrected for head motion and subjected to noise 

reduction using the signal space separation method with a temporal extension (MaxFilter v2.2; 

correlation limit: 0.950; correlation window duration: 6 seconds).134 MEG data processing then 

largely followed the same analysis pipeline outlined in Niso et al., 2019.135 Noise-reduced MEG 

data underwent standard data preprocessing procedures using the Brainstorm software. A high 

pass filter of 0.3 Hz and notch filters at 60 Hz and at its harmonics were applied. Cardiac artifacts 

were identified in the raw MEG data and removed using an adaptive signal-space projection 

approach, which was subsequently accounted for during source reconstruction.136,137 Data were 

then divided into four second epochs for detection and rejection of bad segments of data. 

Amplitude and gradient metrics for each epoch were computed, and epochs containing outlier 

values were rejected using an individualized fixed threshold method, supplemented with visual 

inspection. Briefly, in MEG, the raw signal amplitude is strongly affected by the distance between 

the brain and the MEG sensor array, as the magnetic field strength falls off sharply as the distance 

from the current source increases. To account for this source of variance across participants, as 

well as other sources of variance, we used an individually-determined threshold based on the 

signal distribution for both amplitude and gradient to reject artifacts.  

MEG Source Imaging and Frequency Power Maps 
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As in Niso et al., 2019,135 we computed minimum norm estimates normalized by a 

dynamic statistical parametric mapping (dSPM) algorithm for source imaging. To account for 

environmental noise, we utilized empty room data to compute a noise covariance matrix for 

source imaging 138. The forward model was computed using an overlapping spheres head model 

139 with 15000 cortical surface vertices. Finally, the imaging kernel of depth-weighted dSPM 

constrained to the individual cortical surface140 was computed. 

Using these source estimates, we then estimated the power of cortical activity in the 

canonical frequency bands: delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (15–30 Hz), and 

gamma (30–80 Hz). We used Welch’s method for estimating power spectrum densities (PSD) per 

four second epoch across each MEG recording, with 1 second sliding Hamming windows 

overlapping at 50%. We then standardized the PSD values at each frequency bin to the total power 

across the frequency spectrum. For each participant, we then averaged PSD maps across epochs 

to obtain one set of six PSD maps (one per frequency band) per participant. Finally, we projected 

these maps onto the MNI ICBM152 brain template133 and applied a 3mm full width half maximum 

(FWHM) smoothing kernel. Ultimately, it is these normalized source maps per frequency band 

that were used for further statistical analysis. Additionally, to further examine the data, broad 

ROIs were used to extract the average power in regions of the cortex typically associated with 

having the largest power in each frequency band (frontal delta, frontal theta, occipital alpha, 

central beta, and frontal gamma; Figure 2). 

Peak Alpha and Beta Frequency Maps 

Vertex-wise peak frequency maps were also computed for each participant. As before, 

Welch’s method was used on source-level data to estimate power spectrum densities per four 

second epoch across each MEG recording, with 1 second sliding Hamming windows overlapping 
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at 50%, and then PSDs were normalized to total power across the frequency spectrum. The peak 

alpha frequency between 7-13 Hz and peak beta frequency between 15-30 Hz was then extracted 

at each vertex, creating whole cortex maps of peak alpha and beta frequencies. These two maps 

were then used for further statistical analysis. As with the power maps, average peak frequency 

across selected ROIs was also extracted (occipital alpha, central beta; Figure 2).  

Epigenetic Age Advancement Processing 

Epigenetic age advancement will also be utilized as an independent variable to determine 

the relationship between structural and functional metrics and age advancement. Calculation of 

epigenetic age advancement involved analysis of blood samples, which were collected from a 

subset of the full sample. Whole-blood samples were collected as closely as possible to their MRI 

scan date, and this time difference was used as a covariate of no interest in all analyses involving 

the two different types of measures. All of the methylation metrics, including the Horvath and 

Hannum models of DNA methylation age, were computed on the entire data set. The DNA sample 

collection, methylation analysis, and epigenetic age estimation followed the pipeline established 

in earlier work.16 

Briefly, DNA was purified from whole-blood samples using BD Vacutainer EDTA collection 

tubes and DNeasy blood and tissue extraction kits (QIAGEN). Methylation analysis was performed 

using Infinium HumanMethylation450 BeadChip Kits (Illumina). Following hybridization, 

BeadChips were scanned using the Illumina HiScan System. All data were processed through the 

Minfi R processing pipeline.141 Methylome data were downloaded from Hannum 17 and EPIC (GEO: 

GSE40279 and GSE51032)142 and we processed these data together along with those from the 

current study. Beta values were extracted and quantile normalized using Minfi; cell counts were 

estimated using estimateCellComposition and resulting normalized beta values were adjusted for 
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cell types.16,143 All data were then normalized using a modified BMIQ procedure provided by 

Horvath.18 The gold standard was set to the median beta observed in the Hannum study.17 

To compute epigenetic age, the “consensus model” of methylation age was used, which 

combines both the Horvath18 and Hannum17 methods of prediction and has been previously found 

to provide more predictive capacity than either model in isolation.16 Upon calculating each 

participant’s epigenetic age, we then subtracted each participant’s consensus predicted biological 

age from their chronological age to obtain a measure of age disparity. This metric represents the 

participant-specific age advancement of biological age relative to chronological age.  

Neuropsychological Testing 

Participants completed a full neuropsychological battery to identify PWH who had HAND 

as described in Lew et al., 2018.87 Briefly, this battery assessed multiple functional domains, 

including executive functioning (verbal fluency, semantic fluency, Stroop interference, and Trail 

Making Part B), attention (Symbol Search, Stroop word), speed of processing (Trail Making Part A, 

digit symbol, Stroop color), fine motor (grooved pegboard), verbal learning and memory (Hopkins 

Verbal Learning Test–Revised), and language (Wide Range Achievement Test 4 reading). Using 

published normative data, each participant’s scores were converted to demographically-adjusted 

z scores, and composite scores for each domain were computed by averaging the z scores across 

the tests included in a specific domain. These composite scores were then used to identify 

participants with HAND according to the Frascati criteria.144 

Outcome Variables 

 To summarize, processing of sMRI, fMRI, and MEG data will each result in discrete 

variables which will be utilized as dependent variables for subsequent statistical comparisons. 

From the structural analysis we will obtain total grey matter, white matter, and CSF volumes. We 
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will also have whole brain VBM and whole cortex SBM maps, which will also undergo statistical 

testing. From the resting state functional MRI analysis we will obtain average within network 

connectivity and average between network connectivity values for each of the atlas-defined 

resting state networks. Each between network connectivity pair will also be examined by 

performing statistics on functional connectivity matrices. Finally, from the resting state MEG 

analysis, we will have power estimations for each of the canonical frequency bands, as well as 

peak alpha and beta frequencies, at specific ROIs of the brain. Statistical testing will also be 

performed on whole cortex maps of frequency power at each band, and whole cortex maps of 

peak alpha and beta frequency. These neuroimaging metrics will be utilized as dependent 

variables in subsequent statistical analyses. Independent variables will include HIV serostatus and 

participant chronological age, and then separately, epigenetic age advancement, and HAND 

status. 

Statistical Comparisons 

 Our aim is to understand the effects of HIV and aging on structural and functional 

neuroimaging metrics. With this in mind, we utilized multiple ANCOVA models to examine the 

independent and interactive effects of HIV and aging. The same statistical design was utilized 

across all three methods, giving a unified approach to our research question. Each neuroimaging 

metric was used as a dependent variable, while HIV status was used as a categorical independent 

variable, and participant age was used as a continuous independent variable. An additional model 

was then created by adding in the HIV by age interaction, focusing on the added significance of 

the interaction. For the fMRI connectivity matrices, Bonferroni correction was used to correct for 

multiple comparisons.  

Whole brain and whole cortex statistical comparisons using SPM.  
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To determine the spatially-specific independent and interactive effects of HIV and aging, 

we ran ANCOVA models on the whole brain and whole cortex metrics. These statistical models 

were estimated using SPM12 and the CAT12 toolbox. HIV status was entered as a categorical 

factor, and chronological age was used as a covariate of interest, along with the interaction 

between HIV-status and age. In the VBM model, total intracranial volume was also used as a 

nuisance covariate, and an absolute threshold mask of 0.1 was used.  

For structural data, correction for multiple comparisons involved a voxel-level FDR 

threshold of .05 and k threshold of 200 were used in both models. For MEG functional data, 

correction for multiple comparisons involved a vertex-level cutoff of p<.001 and cluster-level FWE 

correction at .05. Correction for multiple comparisons differed between the two due to the 

assumptions of each modality. Specifically, voxel data from sMRI data are sampled with a higher 

degree of independence from one another, therefore a voxel-level correction for multiple 

comparisons (allowing for voxel-level inference) may be appropriate to determine precisely which 

regions are displaying significant levels of atrophy. Source-level functional data from MEG on the 

other hand shows a high degree of non-independence from one spatial location to another. 

Therefore, a cluster-level correction (allowing for cluster-level inference) is a more appropriate 

method.145,146 

Relationships Between Brain Structure and Biologically-Determined Age Advancement 

To relate our neuroimaging metrics to molecularly-derived age, we utilized HIV infection, 

relative age advancement, and their interaction as independent variables in ANCOVAs to examine 

their effect on each metric. This analysis only used data from participants that had both complete 

methylation data and data for each neuroimaging modality. Specifiaclly, we ran ANCOVAs with 

each neuroimaging metric as dependent variables, examining the main effects of HIV and relative 



32 
 

age advancement, and the interaction between the two. We then examined whether there were 

region-specific effects of relative age advancement on brain structure by using the same ANCOVA 

model on our VBM and cortical thickness maps. We again probed for the main effects of HIV, 

relative age advancement, and their interaction, and as before, an FDR threshold of .05 and k 

threshold of 200 were used to correct for multiple comparisons. 

Analysis of HIV-Associated Neurocognitive Disorder 

To determine the impact of HAND, we performed post-hoc analyses repeating our 

statistical comparisons after splitting the PWH group by HAND. Specifically, we performed 

pairwise comparisons between uninfected controls, unimpaired PWH, and participants with 

HAND.  
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CHAPTER 4: Results & Discussion 1: Brain Structure 

sMRI Results 

Participants  

Out of the 121 PWH and 133 uninfected controls recruited for this study, 110 PWH (nage 

22-39=32, nage 40-59=62, nage 60-72=16) and 122 controls (nage 22-39=53, nage 40-59=45, nage 60-72=24) 

successfully completed the MRI protocol (Table 1) and had structural T1 MRI data that could be 

used for processing. All PWH were virally suppressed with a median current CD4 of 702 cells/μl 

(range: 102-2617) and a median CD4 nadir of 237 cells/μl (range: 3-586). Participant’s body mass 

index (BMI) did not significantly differ between our HIV (MBMI=28.62) and control (MBMI=29.27) 

groups (p=.478) nor did BMI significantly correlate with age (p=.756). 

Ninety-seven PWH and 87 controls completed a blood draw for epigenetic age estimation. 

Missing data were due to participants quitting the study, being lost to follow-up, or related issues. 

Notably, 12 participants who completed the blood draw did not successfully complete the MRI 

protocol, and three blood samples were inadequate for epigenetic age estimation. Ultimately this 

yielded a final sample of 86 PWH and 83 controls who had reliable data from both epigenetic age 

estimations and structural T1 MRI data. Subsequent MRI analyses included all 232 participants 

that completed MRI, and analyses examining only epigenetic data included all 181 participants 

that had completed methylation data. Analyses relating MRI to epigenetics only utilized 

participants that had data from both methods (n=169).  
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Independent Effects of HIV and Aging in Grey Matter Volume  

To determine the best model fit we first ran hierarchical regressions of MRI volume on 

age, iteratively adding polynomial terms and assessing the significance of the change in R square. 

All volume data were normalized to each participant’s total intracranial volume. The linear 

regression of grey matter volume on age was significant (F(1,230)=240.02; p<.001), and adding 

the age squared quadratic term did not show a significant improvement in model fit 

(F(1,229)=0.04; p=.849). The regression of white matter volume on age showed a significant linear 

effect (F(1,230)=25.73; p<.001), as well as a significant improvement with the addition of the 

quadratic term (F(1,229)=32.44; p<.001). Adding age cubed did not significantly improve the 

model (F(1,228)=0.72; p=.397). Similarly, the regression of CSF volume on age showed a significant 

linear effect (F(1,230)=152.95; p<.001),  a significant improvement with the age squared term 

(F(1,229)=11.98; p<.001), and no significant improvement with the cubed term (F(1,228)=1.70; 

p=.193). Therefore, grey matter volume showed a linear trend with age, and white matter and 

CSF volumes showed a quadratic trend with age (Figure 3). 

Uninfected Controls 

(n=122)
PWH (n=110)

Uninfected Controls 

(n=83)
PWH (n=86)

Chronological Age (years; mean/SD) 44.56 (15.33) 47.11 (12.29) 43.69 (14.68) 47.11 (12.15)

Sex (M/F; n/%) 65/57 (53.3/46.7%) 64/46 (58.2/41.8%) 43/40 (51.8/48.2%) 55/31 (64.0/36.0%)

Race (Caucasian/African 

American/Asian/Other: n/%)

82/33/5/2 

(67.2/27.0/4.1/1.6%)

71/34/2/3 

(64.5/30.9/1.8/2.7%)

57/21/4/1 

(68.7/25.3/4.8/1.2%)

58/26/1/1 

(67.4/30.2/1.2/1.2%)

Average Composite Neuropsychological 

Z-Score (mean/SD)
-0.12 (0.60) -0.41 (0.64) 0.02 (0.50) -0.43 (0.61)

HAND (n/%) - 40 (36.4%) - 34 (39.5%)

Time Since HIV Diagnosis (years; 

mean/stdv)
- 11.1 (7.32) - 11.7 (7.43)

CD4 Nadir (median/range) - 237 (3-586) - 237 (3-585)

Current CD4 (median/range) - 702 (102-2617) - 743.5 (106-2617)

Note: HAND: HIV-Associated Neurocognitive Disorder

Sample with MRI Data Subsample with MRI and Epigenetic Data

Table 1: Participant Demographics



35 
 

Next, using each tissue’s respective model from the previous analysis, we assessed the 

main effect of HIV. This showed a main effect of HIV in grey matter volume (F(1,229)=10.31; 

p=.002) and CSF (F(1,228)=8.13; p=.005), with no significant effect in white matter volume 

(F(1,228)=2.14; p=.145). Finally, we added the interactive term(s) of group by age (and group by 

age squared for white matter and CSF) in one block and examined the significance in R squared 

change. There was no significant interactive effect for grey matter volume (F(1,228)=0.11; 

p=.737), nor CSF (F(2,226)=2.08; p=.127), however there was a trending interactive effect for 

white matter volume (F(2,226)=2.71; p=.069). These statistics are summarized in Table 2. 

 

Figure 3: Tissue volumes by HIV status and age. Total grey matter (A), white matter (B) and CSF (C) volumes 
were calculated from T1 MRIs and normalized to total intracranial volume. Hierarchical regressions with 
chronological age were used to determine the relationships between each tissue volume and age, and then 
the main effect of HIV, and interaction effect of HIV by age were tested. PWH specifically displayed 
significantly less grey matter volume relative to uninfected controls, independent of age. No interaction 
effects of HIV by age were found. TIV=Total intracranial volume. 

 

In summary, only total grey matter showed a main effect of HIV, and the trajectory of 

the linear decrease in grey matter volume with age did not significantly differ from controls. 

Independent Effects of HIV and Aging in Cortical Thickness 

Cortical thickness surface maps were used to test the independent effects of HIV and 

aging, as well as the HIV by age interaction. After multiple comparisons correction, significant 

widespread reductions in cortical thickness were found to be associated with HIV infection, 
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independent of age (Figure 4A). The main effect of age showed an expected reduction in cortical 

thickness with increasing age across the cortical mantle (Figure 4B). No significant clusters 

displaying an HIV by age interaction survived multiple comparisons correction.  

 

Figure 4: Statistical parametric maps of cortical thickness on HIV and Aging. Surface based morphometry 
was used to estimate cortical thickness from T1 MRIs and the independent and interactive effects of HIV and 
age were estimated. PWH displayed widespread reduced cortical thickness in comparison to controls, 
independent of age (A). The model also showed an expected pattern of reduction in cortical thickness with 
age (22-72 years; B). No HIV by age interaction was found. Color bars display p-values scaled by -log(p), and 
corrected with a .05 FDR and k=200 threshold. 

 

Independent Effects of HIV and Aging in VBM 

 Voxel based morphometry maps were used to test for the independent effects of HIV and 

age, as well as the interaction between the two. As expected, the independent effect of age 

showed widespread cortical and subcortical reductions in grey matter with increasing age (Figure 

5A). The independent effect of HIV showed a collection of subcortical and cortical significant 

clusters that survived multiple comparisons correction (Figure 5B). 
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Figure 5: Statistical parametric maps of VBM on HIV and aging. Voxel based morphometry was computed 
from T1 MRIs and the independent and interactive effects of HIV and age were tested. (A) VBM maps showed 
widespread reductions in grey matter with increasing age. (B) PWH displayed significant reductions in grey 
matter in comparison to controls across a collection of brain regions, including the cingulate cortex, bilateral 
thalamus, and hippocampus independent of age. No HIV by age interaction was found. Color bars display p-
values scaled by -log(p), and corrected with a .05 FDR and k=200 threshold. 

 

HIV-Specific Relationship between Grey Matter Volume and Advanced Aging 

Epigenetic age was calculated per participant, and each participant’s relative age 

advancement was determined by subtracting consensus predicted epigenetic age from their age 

at blood draw. Examining group differences in epigenetic age advancement alone, we conducted 

an independent samples Mann-Whitney U test, due to the presence of several outliers (>3 

standard deviations from the group mean). A two tailed Mann-Whitney U test showed a non-

significant, but trending, difference between uninfected controls and PWH (U = 4757; p = .056; 

effect size r = .142). This comparison utilized all participants that had epigenetic data, irrespective 

of whether they had MRI data. 

ANCOVA examining the relationship between normalized total grey matter volume and 

relative age advancement by HIV status revealed significant main effects of HIV and age 
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advancement on total grey matter volume such that both greater molecular age advancement 

(F(1,165)=7.59; p=.007, ƞ2=.044) and HIV infection (F(1,165)=11.47; p=.001, ƞ2=.065) were 

independently related to reductions in total grey matter volume. Additionally, there was a 

significant HIV by age advancement interaction such that PWH showed a stronger relationship 

between reduced grey matter and relative age advancement when compared to controls 

(F(1,165)=4.18; p=.043, ƞ2=.025). This effect remained significant after covarying for BMI 

(F(1,164)=4.25; p=.041). To probe this interaction, we then performed simple effects testing on 

controls and PWH separately. This showed that the relationship between age advancement and 

total grey matter volume was significant in PWH (r(84)= -.346; p=.001), and non-significant in 

controls (r(81)= -.057; p=.611). Ultimately, this shows that specifically for PWH, the greater 

biological age advancement a participant displayed, the smaller their total grey matter volume 

(Figure 6).  

ANCOVAs examining the relationship between white matter and CSF volumes with 

relative age advancement by HIV status both failed to show a significant main effect of relative 

age advancement, and failed to show an interactive HIV by relative age advancement effect. As in 

earlier models examining chronological age, the main effect of HIV on CSF volume did remain 

significant (F(1,165)=10.04; p=.002, ƞ2=.057) and the main effect of HIV on white matter volume 

remained non-significant. These results are summarized in Table 2.  
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Table 2: Total Tissue Volume Statistics   

Hierarchical Regression    
Age HIV HIV x Age 

Grey 
Matter 

linear: F(1,230)=240.02; p <.001 F(1,229)=10.31; p = .002 F(1,228)=0.11; p = .737 

White 
Matter 

quadratic: F(1,229)=32.44; p<.001 F(1,228)=2.14; p = .145 F(2,226)=2.71; p = .069 

CSF quadratic: F(1,229)=11.98; p =.001 F(1,228)=8.13; p = .005 F(2,226)=2.08; p = .127 

ANCOVA     
Age Advancement HIV HIV x Age Advancement 

Grey 
Matter 

F(1,165)=7.59; p = .007 F(1,165)=11.47; p = .001 F(1,165)=4.18; p = .043 

White 
Matter 

F(1,165)=0.05; p = .831 F(1,165)=2.79; p = .097 F(1,165)<0.01; p = .961 

CSF F(1,165)=3.84; p = .052 F(1,165)=10.04; p = .002 F(1,165)=1.63; p = .204 

 

 

Figure 6: HIV-related age advancement is related to reduced grey matter volume. When comparing 
chronological age to epigenetic age, PWH showed a greater relative age advancement compared to 
uninfected controls (A). When examining the relationship between participants’ relative age advancement 
and total grey matter volume, a significant HIV by age advancement interaction was found such that the 
greater advanced age seen in PWH was related to reduced total grey matter volume, while controls showed 
no relationship (B). GM/TIV = Total grey matter volume/ total intracranial volume.  
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In regard to local effects, statistical parametric mapping of both VBM and cortical 

thickness maps examining HIV, relative age advancement, and their interaction failed to display 

any region-specific main effect of relative age advancement, nor an interactive effect of HIV by 

relative age advancement after correcting for multiple comparisons. The main effects of HIV still 

remained and had similar topographies to previous models using chronological age (Figures 2 & 

3). 

In summary, only total grey matter volume showed a relationship with epigenetic age 

advancement, such that greater age advancement was associated with smaller grey matter 

volume, specifically in PWH. Whole brain statistics indicated that this pattern did not appear to 

be localized to a specific region. 

Pairwise Comparisons by HAND Status 

 Post-hoc analyses were executed to identify whether effects were driven by participants 

with HAND. Total brain volume split by HAND showed that both participants with HAND, and 

unimpaired PWH had significantly less total grey matter volume in comparison to controls (HAND: 

F(1,159)=9.57; p=.002; Unimpaired PWH: F(1,189)=6.84; p=.010). Similarly, both participants with 

HAND and unimpaired PWH also had significantly greater total CSF volume in comparison to 

controls (HAND: F(1,158)=9.54; p=.002; Unimpaired PWH: F(1,188)=5.50; p=.020). However, 

neither HIV group showed significant differences from controls in total white matter volume 

(HAND: F(1,158)=3.35; p=.069; Unimpaired PWH: F(1,188)=1.10; p=.296). When comparing 

participants with HAND to unimpaired PWH, no significant differences were found in total grey 

matter (F(1,107)=0.61; p=.436), white matter (F(1,106)=0.81; p=.369), or CSF volume 

(F(1,106)=0.93; p=.336). Finally, the age-by-group interactive term remained non-significant for 

all group comparisons in all tissue types (all p > .05). 
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After splitting the PWH by HAND status, whole-brain cortical thickness ANCOVAs also 

showed no significant differences between unimpaired PWH and participants with HAND. 

Comparing controls to the two PWH groups separately (controls vs unimpaired HIV, and controls 

vs HAND) showed similar significant differences to the original model (Figure 7A and 7B). Notably, 

the control versus HAND comparison showed less significant clusters, which may be a reflection 

of decreased power due to the smaller number of HAND participants. To further investigate this, 

we calculated the effect size r for each of these comparisons (Figure 7C and 7D). This showed that 

the effect sizes of both comparisons were of similar pattern and magnitude, confirming that the 

differences in significance were likely due to differences in statistical power.  

 

Figure 7: Pairwise comparisons by HAND status on cortical thickness. (A) When comparing only unimpaired 
PWH to uninfected controls, widespread areas showed reductions of cortical thickness related to HIV above 
and beyond age. (B) When comparing participants with HAND to uninfected controls, fewer regions showed 
significant reductions in cortical thickness after correction, potentially due to a reduction in statistical power. 
(C&D) To circumvent power concerns, we computed the effect sizes of each comparison, which revealed a 
relatively similar pattern and magnitude for the control vs unimpaired PWH (C) and control vs HAND (D) 
comparisons. No significant clusters were found comparing unimpaired HIV participants to participants with 
HAND. Color bars display p-values scaled by -log(p), and corrected with a .05 FDR and k=200 threshold. Color 
bars for the bottom panel display effect size (r-values). 
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Whole-brain VBM ANCOVAs also showed no significant differences between unimpaired 

PWH and participants with HAND. However, when comparing controls to the two PWH groups 

separately, the controls vs HAND comparison had predominantly more regions displaying 

significantly reduced grey matter compared to the controls vs unimpaired HIV comparison, 

particularly in the bilateral thalamus and bilateral hippocampus (Figure 8A and 8B). Unlike the 

cortical thickness pairwise comparisons, this is despite the decreased power in the HAND vs 

control contrast relative to the unimpaired HIV vs control contrast. Further investigating the effect 

sizes of these comparisons shows that the control vs HAND comparison had relatively large effect 

sizes in the bilateral thalamus and bilateral hippocampus, while the control vs unimpaired PWH 

comparison had relatively small effect sizes in these regions.   

 When examining relative age advancement split by HAND, there were no significant 

pairwise effects (p’s>.05). Examining the interaction between HIV status and relative age 

advancement on grey matter volume broken up by group revealed a significant HIV by relative 

age advancement interaction when using the unimpaired HIV group only (F(1,131)=5.42; p=.021). 

However when using the HAND group only, there is no significant interaction (F(1,113)=1.19; 

p=.277). Thus, the interaction in our main model does not appear to be by participants with HAND. 

 In summary, participants with HAND appeared to drive grey matter differences in the 

thalamus and hippocampus, but did not appear to drive the broad relationship between HIV and 

reduced total grey matter, nor the relationship between age advancement and reduced grey 

matter. 
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Figure 8: Pairwise comparisons by HAND status on VBM maps. (A) The control versus unimpaired HIV 
comparison had relatively few clusters showing significant group differences above and beyond the effect 
of age. (B) By comparison, the control versus HAND comparison revealed many significant clusters 
independent of age, most notably in the bilateral thalamus, and bilateral hippocampus, despite the reduced 
power of this contrast. (C&D) Examining the effect sizes of each pairwise comparison revealed that these 
regions had a relatively large effect size in the control vs HAND comparison (D), and a small effect size in the 
control vs unimpaired PWH comparison (C).  No significant clusters survived multiple comparisons correction 
when comparing unimpaired HIV participants to participants with HAND. Color bars for the top panel display 
p-values scaled by -log(p), and corrected with a .05 FDR and k=200 threshold. Color bars for the bottom 
panel display effect size (r-values). 
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sMRI Discussion 

This study used morphometric analyses of structural MRIs and epigenetic biomarkers of 

advanced aging to study the differential impact of aging on brain structure in a large sample of 

PWH. We found independent effects of HIV and aging on total grey matter volume, and 

widespread reductions in cortical thickness, and local grey matter content as identified by voxel 

based morphometry. Further, when using the epigenetic clock to calculate relative age 

advancement, we found that reduced total grey matter volume is related to increased age 

advancement. This relationship was specific to the HIV group, suggesting that HIV infection is the 

process that underlies this relationship. Finally, when taking cognitive status into account, we 

identified HAND-related grey matter reductions in the thalamus and hippocampus, and find that 

our earlier relationships with epigenetic age did not appear to be driven by those with HAND.  

When examining total tissue volumes, grey matter decreased linearly throughout 

adulthood, white matter volume appeared to peak at middle age, and CSF volume sharply 

increased in older adulthood. These relationships have been established in previous literature 

40,147, which provides an important foundation for our subsequent comparisons. We then found 

that PWH had reduced total grey matter volume irrespective of age. This finding is consistent with 

a long list of studies 67,148,149, including a recent meta-analysis 150, and may be reflective of neuronal 

loss due to HIV 151, although other health factors may also be at play 44,47,48. Our study adds to this 

literature, specifically with a virally-suppressed sample spanning almost the full extent of 

adulthood, and extends previous findings by relating such grey matter loss to epigenetic aging. 

Interestingly, the grey matter loss identified in our sample did not appear to be driven by 

participants with HAND. We suspect this may be due to the small number of HAND participants, 

particularly the predominant number of HAND participants with asymptomatic neurocognitive 

impairment (the mildest form). Indeed, recent studies have suggested that HAND prevalence may 
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be overestimated,152,153 and our lack of findings with HAND may be reflective of this. On the other 

hand, these data clearly show that grey matter reductions are present in PWH, even without clear 

signs of cognitive impairment. Such atrophy may be directly related to HIV infection, or may also 

be associated with health factors not controlled for in this study. 

Our surface based morphometry results showed a widespread main effect of HIV in 

cortical thickness above and beyond age. Given the amount of cortex displaying this reduction in 

cortical thickness, our data suggest HIV-related reductions in cortical thickness do not follow a 

specific regional pattern, but rather affect the cortical mantle relatively globally. In comparison, 

our main effect of age also showed a global reduction in cortical thickness, but also displayed an 

especially strong effect in the frontal cortex, which has been shown in previous studies of 

normative aging 154. Examining the effect of HAND showed similar effect sizes for the control 

versus unimpaired and control versus HAND comparisons, suggesting that our HIV-related 

reductions in cortical thickness were also not driven by participants with HAND. Therefore, 

expanding upon our total grey matter findings, this may indicate that cortical thinning can occur 

without HIV-related cognitive impairment.  

Similarly, our voxel based morphometry results also showed a collection of regions with 

reduced grey matter related to HIV infection above and beyond age. Notably however, there was 

a particularly strong difference in the cingulate cortex, bilateral thalamus, and bilateral 

hippocampus. Upon probing the effect of HAND, significant differences in the thalamus and 

hippocampus were not present and had low effect sizes in the control versus unimpaired HIV 

comparison, but were present with relatively large effect sizes in the control versus HAND 

comparison, despite reduced power in the HAND comparison. Therefore, we believe these HIV-

related reductions in grey matter are driven by those with cognitive impairment. This is a 

particularly interesting finding given other studies examining the relationship between cognitive 
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status and brain structure in PWH 155–157. Specifically, a recent longitudinal study found that 

thalamus volume is decreased in PWH specifically during the period of time before patients begin 

cART therapy 158. Therefore, thalamic volume may be affected during primary HIV infection, and 

the degree to which may be an indicator of future cognitive impairment. Further, the specificity 

of both thalamus and hippocampal volume decreases relating to cognitive impairment has been 

seen in a previous study examining PWH and alcohol use disorder 159. Relating brain regions from 

a whole brain parcellation to neuropsychological performance, they found that volumes of both 

the thalamus and the hippocampus were each unique independent predictors of explicit memory 

scores. Our findings therefore replicate and extend this finding in a sample of cognitively impaired 

PWH without alcohol use disorder. 

In all of these measures (total grey matter volume, cortical thickness, and VBM), we did 

not find any HIV by age interactions. This may relate to the debate on whether HIV infection leads 

to premature/accentuated versus accelerated aging, which largely focuses on whether HIV 

related aging occurs as a single “hit” at the time of infection (premature/accentuated), or whether 

continued HIV pathology accumulates over time and progressively advances pathological aging 

(accelerated) 9,67. Our lack of a significant HIV by age interaction may imply that, while HIV-related 

reductions in grey matter reflect age-related changes, the trajectory of these changes with 

increasing age does not differ in PWH. In other words, given these group-level data, grey matter 

changes do not appear to be progressively worsening with age in PWH with viral suppression, but 

rather an accentuated aging mechanism (as indicated by the main effect of HIV) may be at play. 

This is in agreement with recent longitudinal studies showing decreased grey matter volume in 

PWH at baseline in comparison to uninfected controls, but with a relatively normal trajectory of 

change in brain structure over the two year follow-up, ultimately suggesting a lack of evidence for 

accelerated aging 67,160. However, to definitively make such a distinction between accentuated 
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and accelerated aging, data derived from a longitudinal study would be needed. In this study, we 

use the term advancement to encompass both terms. 

When combining the epigenetic data with measures of brain structure, we identified an 

HIV by age advancement interaction, such that, specifically for PWH, the greater biological age 

advancement a participant displayed, the smaller their total grey matter volume. The lack of such 

an association between relative age advancement and grey matter volume in uninfected 

participants further points towards HIV infection being the underlying link between age 

advancement and grey matter reductions. We therefore propose that grey matter changes 

related to HIV are indeed associated with age advancement at a molecular level. This is important 

because epigenetic aging is a peripheral biomarker used to quantify individual-specific levels of 

age advancement, beyond their chronological age. Importantly, DNA methylation age of brain 

tissue has been shown to be highly concordant with that of peripheral blood 18,161. Brain-related 

age advancement had largely been studied using only chronological age, and biological age 

advancement has been showed to be associated with age-related mortality 19. Therefore, our 

study not only illuminates the nature of HIV-related brain atrophy, but also further validates 

epigenetic advanced aging as a relevant biomarker in HIV. Mechanistically, this relationship may 

also suggest that epigenetic change could be a primary pathway by which grey matter atrophy 

occurs and/or persists in PWH. That is, viral reservoirs in the CNS and throughout the body may 

lead to inflammation, cellular damage, and ultimately epigenetic change that reflects advanced 

aging, and this may drive brain atrophy related to HIV. However, further study is needed to 

examine such causality. With regard to HAND, this relationship persisted even in those without 

HAND. Impairment may therefore be more closely related to atrophy in specific regions, or may 

be more tied to neural function rather than structure more broadly. 
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While these findings replicate previous grey matter and epigenetic changes that occur 

with HIV infection, the link between these two metrics is highly novel and needs to be replicated 

in other large-cohort studies of HIV. Further, this study’s limitations include the fact that PWH 

were specifically recruited because they had well-managed HIV-infection. That is, all PWH were 

receiving effective combination antiretroviral medications, had undetectable plasma levels of HIV, 

and had no other substantial neurologic/psychiatric comorbidities including substance use 

disorders. Therefore, these data may not generalize well to a broader population of PWH that 

may have a variety of other complications. On the other hand, we did not examine common health 

comorbidities such as obesity, hypertension, or diabetes, nor did this study assess the effects of 

socioeconomic factors or health habits. Further study is needed to examine the impact of these 

common other health factors on our findings.  

In conclusion, our study found broad decreases in grey matter volumes and cortical 

thickness, independently related to HIV and aging. Biomarkers of epigenetic age advancement 

revealed that PWH with increased age advancement had an associated decrease in grey matter 

volume, and this relationship was not seen in uninfected controls. We also identified age-

independent HAND-related reductions in grey matter, specifically in the thalamus and 

hippocampus. These findings ultimately link molecular epigenetic age advancement to large scale 

aberrations in brain structure in PWH, which provides additional evidence supporting the 

epigenetic clock as a relevant biomarker for HIV-related age advancement, and may also begin to 

reveal the underlying mechanisms of advanced aging in the HIV-infected brain. 
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CHAPTER 5: Results & Discussion 2: Functional Networks 

fMRI Results 

Participants 

Out of the 121 PWH and 133 uninfected controls recruited for this study, 105 PWH and 

116 controls successfully completed the sMRI and fMRI protocols. After exclusions for excess head 

motion, 86 PWH and 99 uninfected controls had both structural and functional MRI data that 

could be used for further processing (Table 3). All PWH were virally suppressed with a median 

current CD4 of 701.5 cells/μl (range: 102-2617) and a median CD4 nadir of 234 cells/μl (range: 3-

586).  

Table 3: fMRI Participant Demographics 

  Sample with MRI Data Subsample with MRI and Epigenetic Data 

  
Uninfected Controls 
(n=99) 

PWH (n=86) 
Uninfected Controls 
(n=67) 

PWH (n=70) 

Chronological Age 
(years; mean/SD) 

45.02 (15.41) 48.09 (12.77) 43.83 (14.66) 47.66 (12.45) 

Sex (M/F; n/%) 55/44 (55.5/44.4%) 53/33 (61.6/38.4%) 36/31 (53.7/46.3%) 47/23 (67.1/32.9%) 

Race (Caucasian, 
African American, 
Asian, Other: n/%) 

70/22/5/2 
(70.1/22.2/5.1/1.0%) 

55/26/2/3 
(64.0/30.2/2.3/3.4%) 

49/13/4/1 
(73.1/19.4/6.0/1.5%) 

47/21/1/1 
(67.1/30.0/1.4/1.4%) 

Average Composite 
Neuropsychological 
Z-Score (mean/SD) 

-0.08 (0.61) -0.41 (0.57) 0.06 (0.50) -0.43 (0.54) 

HAND (n/%) - 31 (36.0%) - 27 (38.6%) 

Time Since HIV 
Diagnosis (years; 
mean/SD) 

- 11.29 (7.34) - 11.33 (7.47) 

CD4 Nadir 
(median/range) 

- 234 (3-586) - 234 (3-585) 

Current CD4 
(median/range) 

- 701.5 (102-2617) - 726.5 (106-2617) 

Note; HAND: HIV-Associated Neurocognitive Disorder 

 

Ninety-seven PWH and 87 controls completed a blood draw for epigenetic age estimation. 

Missing data were due to participants quitting the study, being lost to follow-up, or related issues. 

Notably, 12 participants who completed the blood draw did not successfully complete the MRI 
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protocol, and three blood samples were inadequate for epigenetic age estimation. Ultimately this 

yielded a final sample of 70 PWH and 67 controls who had reliable data from both epigenetic age 

estimations and MRI data. Subsequent fMRI analyses included all 185 participants that completed 

MRI, and analyses relating fMRI to epigenetics only utilized participants that had data from both 

methods (n=137). 

HIV by Age Effect in Ventral Attention Network Within-Network Connectivity 

 Within-network connectivity was estimated for seven established functional networks, 

and ANCOVAs were used to examine for the main effects of age and HIV. Across all seven 

networks, only the visual network showed a significant main effect of age (F(1,182)=9.25; p=.003, 

ƞ2=.047). None of the other six networks showed a significant main effect of age. Additionally, no 

main effects of HIV were identified in any of the seven within-network functional connectivity 

metrics (all p>.05; Figure 9). 

However, adding in the HIV by age interaction to the models showed  that within-network 

connectivity of the ventral attention network had a significant HIV by age interaction such that 

PWH showed a greater decrease in connectivity with age relative to controls (F(1,181)=4.70, 

p=.031, ƞ2=.025). None of the other within-network models displayed a significant HIV by age 

interaction (all p>.05; Table 4). 
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Figure 9: Within-Network Functional Connectivity by Age and HIV. The average correlation within each 
network was calculated and z transformed. ANCOVAs testing the independent effects of HIV and age showed 
no significant main effects of HIV, and a significant main effect of age only in the visual network. Scatter 
plots display z values of each within-network functional connectivity metric by age, with uninfected controls 
in blue and PWH in red. HAND status is differentiated by shape for display purposes. Linear fits for each 
group are displayed with 95% confidence intervals. Boxplots displaying group differences are added to the 
right of each plot, and visual representations of each network are inset.   

 

Widespread Independent Effects of Aging and HIV in Between-Network Connectivity  

The functional connectivity between each of the seven networks was estimated and the 

average pairwise correlation was computed and z transformed for each network. This resulted in 

seven between network functional connectivity metrics (one for each network). Significant main 

effects of age were identified in all seven between-network functional connectivity metrics 

(visual: F(1,182)=15.84, p<.001, ƞ2=.079; somato-motor: F(1,182)=23.63, p<.001, ƞ2=.111; dorsal 
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attention (DAN): F(1,182)=16.51, p<.001, ƞ2=.080; ventral attention (VAN): F(1,182)=18.18, 

p<.001, ƞ2=.087; limbic: F(1,182)=16.18, p<.001, ƞ2=.077; executive control F(1,182)=17.57, 

p<.001, ƞ2=.050; and default mode: F(1,182)=20.79, p<.001, ƞ2=.097; Table 2). All of these effects 

showed consistent increases in between-network functional connectivity with increasing age. 

With regard to HIV, many of the between-network functional connectivity metrics also 

showed a significant independent main effect of HIV status. Specifically, the limbic (F(1,182)=8.50, 

p=.004, ƞ2=.054), executive control (F(1,182)=7.70, p=.006, ƞ2=.084), and default mode 

(F(1,182)=8.36, p=.004, ƞ2=.054) networks all showed significant effects of HIV at p<.01 such that 

PWH had increased between-network functional connectivity compared to controls, above and 

beyond the effect of age. Additionally, the ventral attention (F(1,182)=5.40, p=.021, ƞ2=.038), 

dorsal attention (F(1,182)=4.52, p=.035, ƞ2=.032), and somato-motor (F(1,182)=4.14, p=.043, 

ƞ2=.031) networks showed significant main effects of HIV at p<.05 (Figure 10). All of these effects 

showed an increase in between-network functional connectivity in PWH relative to controls, 

above and beyond the effect of age. Adding in the HIV by age interaction to the models showed 

no interaction effects in any of the between-network connectivity metrics. Importantly, we also 

performed a quality assurance check to ensure our results were not due to residual motion 

artifacts in the data by adding in mean framewise displacement as a covariate. Effects of group 

remained significant for the limbic, executive control, and DMN between network functional 

connectivity metrics (all p<.05). 
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Figure 10: Between-Network Functional Connectivity by Age and HIV. The correlation between each network 
was calculated, z transformed, and then averaged for each network. ANCOVAs testing the independent 
effects of HIV and age showed significant main effects of age in every network. Significant main effects of 
HIV were identified in all networks except in functional connectivity with the visual network. Scatter plots 
display z values of each between-network functional connectivity metric by age, with uninfected controls in 
blue and PWH in red. HAND status is differentiated by shape for display purposes. Linear fits for each group 
are displayed with 95% confidence intervals. Boxplots displaying group differences are added to the right of 
each plot, and visual representations of each network are inset. * p<.05, **p<.01. 
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Table 4: Average Network Statistics   

Within-Network Functional Connectivity 
   

Age HIV HIV x Age 

 F (1,182) p ƞ2 F 
(1,182) 

p ƞ2 F (1,181) p ƞ2 

Visual 9.25 .003* .047 2.38 .125 .018 0.00 .972 .000 

Somato-motor 0.63 .429 .003 0.01 .906 .000 3.43 .066 .019 

DAN 1.68 .197 .009 1.42 .234 .010 0.25 .620 .001 

VAN 2.18 .141 .012 0.05 .831 .000 4.70 .031* .025 

Limbic 0.27 .606 .001 1.37 .243 .007 0.01 .926 .000 

Executive  0.51 .478 .003 0.00 .978 .000 1.35 .248 .007 

DMN 0.32 .575 .002 0.03 .852 .000 1.20 .276 .007 

Between-Network Functional Connectivity 
 

 
 

 
 

Age  HIV HIV x Age  

 F (1,182) p ƞ2 F 
(1,182) 

p ƞ2 F (1,181) p ƞ2 

Visual 15.84 <.001* .079 0.70 .405 .008 0.78 .380 .004 

Somato-motor 23.63 <.001* .111 4.14 .043* .031 1.18 .279 .006 

DAN 16.51 <.001* .080 4.52 .035* .032 0.72 .397 .004 

VAN 18.18 <.001* .087 5.40 .021* .038 1.11 .293 .005 

Limbic 16.18 <.001* .077 8.50 .004* .054 1.46 .228 .007 

Executive  17.57 <.001* .050 7.70 .006* .084 1.01 .316 .005 

DMN 20.79 <.001* .097 8.36 .004* .054 0.51 .475 .002 

Note: DAN: Dorsal Attention Network; VAN: Ventral Attention Network; DMN: Default Mode Network; * 
p<.05; note that the HIV and Age columns represent the significance of the main effects without the 
interaction term, and the HIV x Age significance is derived in from an additional model after adding in the 
interaction. 

 

Increased Functional Connectivity with Ventral Attention Network Driven by HAND 

 To examine whether our effects of HIV were driven by participants with HAND, we split 

the HIV group by HAND status and performed comparisons between controls, unimpaired PWH, 

and PWH with HAND. Ultimately, no significant differences were identified between unimpaired 
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PWH and those with HAND. Significant differences between controls and unimpaired PWH 

remained in limbic, executive, and DMN between-network functional connectivity metrics (all 

p<.05), above and beyond the effects of age. Similarly, significant differences between controls 

and PWH with HAND were present in VAN, limbic, executive, and DMN between-network 

functional connectivity metrics (all p<.05), above and beyond the effects of age (Figure 11). 

 

Figure 11: Between-Network Functional Connectivity Split by HAND. The correlation between each network 
was calculated, z transformed, and then averaged for each network. ANCOVAs testing the independent 
effects of HIV and age showed significant main effects of age in every network. Significant main effects of 
HIV were identified in limbic, default mode, and executive control networks. Scatter plots display z values of 
each between-network functional connectivity metric by age, with uninfected controls in blue and PWH in 
red. HAND status is differentiated by shape for display purposes. Linear fits for each group are displayed 
with 95% confidence intervals. Boxplots displaying group differences are added to the right of each plot, and 
visual representations of each network are inset. * p<.05. 
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No Interactions of HIV with Epigenetic Age Advancement 

 To examine whether these between-network functional connectivity metrics related to 

epigenetic age advancement, we performed ANCOVAs aiming to identify HIV by Age 

Advancement interactions. Ultimately, none of the seven between-network metrics displayed a 

significant HIV by Age Advancement interaction (Appendix A). 

Pairwise Examination of Between-Network Functional Connectivity 

 To further probe the effects of HIV and age in between-network connectivity, we 

performed additional statistics on the connectivity matrices. Group averaged connectivity 

matrices show that PWH have broadly larger between-network connectivity values than in 

comparison to controls (Figure 12). Subtracting the two matrices highlights that such was the case 

for nearly every pair of networks, and similarly, performing a correlation with age on these 

networks shows that every pair of networks showed a positive correlation with age (Figure 13).  

 
Figure 12: Group Averaged Pairwise Functional Connectivity. Between- and within- (diagonal) network 
connectivity matrices. Matrices are symmetric with labels on the left, and visual representations of each 
network displayed on the bottom. Color bar to the right applies to both matrices and represents Z values, 
with warm colors representing positive functional connectivity and cool colors representing negative 
functional connectivity.  
 

 We then tested for the main effects of HIV and age on these connectivity matrices. After 

bonferroni correction for multiple comparisons, the main effect of HIV was significant in VAN-
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Limbic, VAN-DMN, Limbic-Executive, and Executive-DMN pairs. Therefore, PWH broadly showed 

the largest increases in between-network connectivity between the VAN, Limbic, Executive, and 

DMN networks. The main effect of age on the other hand showed widespread significant effects, 

suggesting that the increase in between-network connectivity with age is not driven by a 

particular set of networks (Figure 13). 

 

Figure 13: Pairwise Functional Connectivity Statistics: Effects of Age and HIV. Matrix statistics performed on 
between- and within- (diagonal) network connectivity matrices allowed pairwise between-network 
connectivity to be examined. Top left: Subtraction matrix with hot colors representing controls>PWH and 
cool colors representing controls<PWH. Top right: Simple age correlation matrix with hot colors representing 
increasing connectivity with age and cool colors representing decreasing connectivity with age. Middle: 
Significance matrices for the main effects of HIV (left) and age (right) displaying p values on a log scale and 
thresholded using a bonferroni correction. Bottom: Effect size matrices for the main effects of HIV (left) and 
age (right) displaying ƞp

2  values. Matrices are symmetric with labels on the left, and visual representations 
of each network displayed on the bottom. 
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Replication and Extension of HIV and Age Effects Using a 13 Network Parcellation 

 We then aimed to replicate and extend these effects in between-network connectivity by 

using a 13 network parcellation. Notably, this atlas includes a subcortical network, which was not 

present in the seven network atlas, and includes subdivisions of the seven networks. Statistics on 

these matrices showed the same patterns of increased between-network functional connectivity 

with age, and with HIV infection, displayed by the subtraction and age correlation matrices (Figure 

6). One notable difference however, was a single pair (Anterior DMN-Posterior DMN) which 

showed a large decrease in between-network functional connectivity with age. 

Testing for the main effects of HIV and age on these connectivity matrices showed a 

similar numerous amount of pairs displaying an age effect. The effect of HIV however displayed 

more sparse significance due to a larger Bonferroni correction for multiple comparisons. 

Interestingly however, the pairs that did survive correction were an increase in Subcortical-Medial 

Temporal and Subcortical-Anterior DMN connectivity in PWH relative to controls, and a decrease 

in Anterior DMN-Posterior DMN in PWH relative to controls (Figure 14). Comparing partial eta 

squared effect size matrices display the larger effect size of aging compared to the effect of group, 

as well as the similar effect sizes between the seven and 13 network parcellations. 
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Figure 14: Pairwise Functional Connectivity Statistics: 13 Network Atlas. Matrix statistics performed on 
between- and within- (diagonal) network connectivity for the Doucet 13-network atlas. Top left: 
Subtraction matrix with hot colors representing controls>PWH and cool colors representing controls<PWH. 
Top right: Simple age correlation matrix with hot colors representing increasing connectivity with age and 
cool colors representing decreasing connectivity with age. Middle: Significance matrices for the main 
effects of HIV (left) and age (right) displaying p values on a log scale and thresholded using a bonferroni 
correction. Effects for controls>PWH are labeled with green borders. Bottom: Effect size matrices for the 
main effects of HIV (left) and age (right) displaying ƞp

2  values.  
 

fMRI Discussion 

Our study examined a large sample of PWH and uninfected controls spanning age 22-72 

and identified independent effects of age and HIV in between-network connectivity. Age related 

increases in between network connectivity were widespread, while PWH displayed further 

increases above and beyond aging, specifically between default mode, executive control, and 

limbic networks. Utilization of a further parcellated atlas which also included subcortical regions 
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allowed us to identify robust HIV-related increases in functional connectivity between subcortical-

medial temporal regions, and subcortical-anterior DMN areas. Additionally, PWH displayed a 

specific and strong decrease in anterior DMN-posterior DMN connectivity compared to controls. 

These findings broadly support the framework that HIV infection leads to alterations in functional 

connectivity that are highly similar to the aging phenotype. Below we discuss these findings in the 

context of previous literature. 

One of our main findings was that HIV infection was related to widespread increases in 

between-network functional connectivity. At first this may seem contradictory to previous studies 

such as Thomas et al.64, who showed decreased magnitude of between-network connectivity in 

multiple pairs of networks in PWH compared to controls. However, we believe our results are 

consistent with their findings, and the discrepancy is simply due to differences in processing and 

presentation of results. That is, they indeed found more positive between-network connectivity 

in PWH, which was presented as a reduction in magnitude due to these networks being anti-

correlated. These more negative correlations are simply due to their utilization of global signal 

regression, which creates more negative correlations in the data.162,163 Therefore, our findings are 

indeed consistent with previous network level investigations of HIV. Importantly, our results 

expand upon these by integrating with an aging framework. Increased between-network 

connectivity was also seen with increasing age, which a well-established pattern of aging,73 and 

overall suggests that PWH display a connectivity profile that resembles an advancement in age.  

Our post-hoc analyses of HAND status showed that altered functional connectivity with 

the ventral attention network was seen more prominently in PWH with HAND. This may indicate 

that this network is particularly sensitive to cognitive impairment. Supporting this, previous 

studies have also found HAND related differences in the salience network,164 and therefore this 

network may be a promising indicator of HAND. Broadly however, many of the deficits in 
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functional connectivity were largely present in both PWH with and without cognitive impairment. 

Previous studies have also identified the presence of functional deficits related to HIV in the 

absence of HAND, with one study specifically noting no difference in resting state functional 

connectivity by HAND status. 165 This ultimately suggests that a reorganization of brain networks 

occurs irrespective of neuropsychological changes. At the same time, our sample of PWH with 

HAND may not represent a severe enough sample to detect further exacerbations of functional 

connectivity. That is, the majority of our participants with HAND were of the mildest category 

(asymptomatic neurocognitive impairment). This could have led our HAND group to be similar to 

the unimpaired group. Further study is needed to examine the more severe presentations of 

HAND. 

Upon utilizing a more subdivided 13 network atlas, we further identified robust increases 

in subcortical-medial temporal and subcortical-anterior DMN connectivity in PWH relative to 

controls, and a decrease in anterior DMN-posterior DMN in PWH relative to controls. These more 

regionally specific effects could not have been identified with the seven network atlas, and are 

highly consistent with previous fMRI studies of HIV. Alterations in cortico-striatal connectivity 

have been consistently linked to HIV in both task based and resting state fMRI studies.63,65,66 

Similarly, decreases in DMN functional connectivity have been reported in multiple resting-state 

studies of PWH.64,67 Here we replicate and expand upon these studies by showing that these 

changes are present independent of aging. Taken together with our previous results, this suggests 

a decrease in modularity related to HIV infection, where PWH have decreased connectivity in the 

DMN, and increased connectivity between DMN and other networks. Indeed previous studies 

have shown this decrease in modularity related to HIV,76 and our data further work should utilize 

such graph metrics in the study of HIV. 
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In this dataset, we did not identify significant decreases in within-network functional 

connectivity with age. While previous lifespan studies have shown decreasing within-network 

functional connectivity with aging, this may simply be due to the age range of our participants. 

That is, the steepest decline in within-network functional connectivity appears to occur after age 

60+. Our sample ranged in age up to age 72, and studies identifying decreasing within-network 

functional connectivity show the largest effects in those approaching 80 years old.72,166  In 

contrast, between network functional connectivity appears to display a sharper increase 

beginning at a younger age,72 which is consistent with our findings. Therefore, within-network 

changes with age may be specific to older age, and further studies may need to include older 

adults to study how such trends change with HIV infection. Notably, we did identify a significant 

HIV by age interaction in the ventral attention network such that PWH showed a greater decrease 

in functional connectivity compared to controls. Therefore, the age-related pattern of decreased 

within network connectivity may have been seen in our PWH, albeit specific to one network. 

Interestingly, this is the same network that showed HAND specific changes in between-network 

connectivity. Therefore the ventral attention network may be altered more readily with HIV 

infection, and further studies might examine this network more specifically. 

In regards to the between-network connectivity metrics, we did not identify any 

significant HIV by age interaction. This is in agreement with multiple studies showing that the 

effects of age and HIV on brain function are independent.66,69,70 Importantly however, this does 

not mean that the changes seen with HIV do not fit into an aging framework. A significant HIV by 

age interaction would show that the trajectory of aging is differing with HIV infection. Instead, our 

data show that the trajectory remains the same, but there is an added insult related to HIV 

infection that is in the same direction as age related degradation. Thus, HIV-related alterations in 

functional connectivity may be seen as an advancement in aging. This model is consistent with 
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multiple studies suggesting HIV infection causes a “hit” to biological systems, advancing the aging 

process.9 

However, we did not find a specific association of functional connectivity to HIV-related 

epigenetic advanced aging. This suggests a disconnect between epigenetic markers of age 

advancement from functional reorganization of the brain. Reorganization of functional networks 

is certainly a more dynamic process, and has been shown to be independent of age related 

structural changes.167 Therefore, while our structural results indicate a relation in grey matter loss 

to HIV related epigenetic aging, our functional network results may be more independent of these 

metrics due to the more indirect nature of functional organization. Further study is therefore 

needed to examine the complexities that may lie between functional connectivity and peripheral 

epigenetic markers of aging. 

The study has a number of limitations that must be considered. Firstly, as mentioned 

previously, our sample of PWH had very well-managed HIV-infection in the form of effective 

combination antiretroviral medications and undetectable viral loads. Further study is needed to 

examine the impact of common other health factors on our findings. Additionally, as stated 

before, future studies should examine older adults (beyond age 72) and PWH with more severe 

diagnoses of HAND. This study also focused on the between and within network functional 

connectivity of pre-defined networks, and future studies should examine graph theory metrics 

given our interpretation of decreased modularity in PWH. 

In conclusion, HIV infection may be related to a reorganization of functional connectivity 

in a manner similar to aging. Specifically, both HIV infection and aging are associated with 

independent increases in between-network functional connectivity. The effect of HIV was driven 

by increases in connectivity between default mode, executive control, and limbic networks. 
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Additionally, VAN may be related to cognitive dysfunction in HIV, as the functional connectivity 

with the VAN was found to be altered specifically in PWH with HAND. Effects of other networks 

were present in PWH with and without HAND, suggesting such reorganization occurs despite lack 

of cognitive impairment. Finally, PWH also showed increases in subcortical-DMN functional 

connectivity, and decreases in anterior DMN-posterior DMN.  
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CHAPTER 5 – Results & Discussion 3: Resting Oscillatory Activity 

MEG Results 

Participants 

Out of the 121 PWH and 133 uninfected controls recruited for this study, 115 PWH and 

126 controls successfully completed the MEG protocol (Table 5). All of these participants 

completed a structural T1 scan except for 11 participants, for whom warped template brains were 

used. All PWH were virally suppressed with a median current CD4 of 702 cells/μl (range: 102-

2617) and a median CD4 nadir of 237 cells/μl (range: 3-586).  

Table 5: MEG Participant Demographics 

  Sample with MEG Data Subsample with MEG and Epigenetic Data 

  

Uninfected Controls 
(n=126) 

PWH (n=115) 
Uninfected Controls 
(n=85) 

PWH (n=90) 

Chronological Age 
(years; mean/SD) 

45.23 (15.37) 47.63 (12.22) 43.80 (14.60) 47.60 (12.14) 

Sex (M/F; n/%) 71/55 (56.3/43.7%) 66/49 (57.4/42.6%) 45/40 (52.9/47.1%) 57/33 

Race (Caucasian, 
African American, 
Asian, Other: n/%) 

86/32/5/3 
(68.2/25.3/4.0/2.3%) 

72/38/2/3 
(62.6/33.0/1.7/2.6%) 

58/21/4/2 
(68.2/24.7/4.7/2.4%) 

59/29/1/1 
(65.6/32.2/1.1/1.1%) 

Average Composite 
Neuropsychological 
Z-Score (mean/SD) 

-0.11 (0.61) -0.39 (0.65) 0.01 (0.52) -0.42 (0.62) 

HAND (n/%) - 41 (35.6%) - 35 38.9% 

Time Since HIV 
Diagnosis (years; 
mean/SD) 

- 11.25 (7.25) - 11.33 (7.47) 

CD4 Nadir 
(median/range) 

- 237 (3-586) - 234 (3-585) 

Current CD4 
(median/range) 

- 702 (102-2617) - 726.5 (106-2617) 

Note; HAND: HIV-Associated Neurocognitive Disorder 

 

Ninety-seven PWH and 87 controls completed a blood draw for epigenetic age estimation. 

Missing data were due to participants quitting the study, being lost to follow-up, or related issues. 

Notably, 6 participants who completed the blood draw did not successfully complete the MEG 
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protocol, and three blood samples were inadequate for epigenetic age estimation. Ultimately this 

yielded a final sample of 90 PWH and 85 controls who had reliable data from both epigenetic age 

estimations and MEG data. Subsequent MEG analyses included all 241 participants that 

completed MRI, and analyses relating fMRI to epigenetics only utilized participants that had data 

from both methods (n=175). 

Significant Age Effects in Delta and Beta Power 

Statistical parametric mapping identified significant main effects of age in the delta and 

beta bands (Figure 15). After correction for multiple comparisons, delta power was shown to 

significantly decrease with age in the left posterior temporal cortex. Beta power on the other hand 

showed a significant increase in power with increasing age in the somato-motor cortices. Both of 

these effects represent the effect of age after statistically controlling for the effect of HIV. Analysis 

of predefined regions of interest identified similar effects to the whole brain statistics. That is, 

average somato-motor (central) beta activity showed a robust significant main effect of age 

(F(1,238)=41.78; p<.001; ƞ2 =.149), and average frontal delta showed a significant main effect of 

age (F(1,238)=4.41; p=.037; ƞ2 =.018). 

No significant clusters were identified after multiple comparison correction in the theta, 

alpha, or gamma bands. Similarly, no significant main effects of age were identified using frontal 

theta, occipital alpha, or frontal gamma regions of interest (all p>.05; Table 6).  
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Figure 15: Age Effects in Frequency Power. Statistical parametric maps displaying the main effect of age in 
delta (top) and beta (bottom) bands. After correction for multiple comparisons, a cluster in the posterior left 
temporal cortex showed a significant decrease in delta power with age. Maps of beta power showed a 
significant cluster encompassing the somato-motor cortices, showing a significant increase in power with 
age. Color bars show uncorrected p values, thresholded by p<.001 and FWE .05 cluster correction. These 
effects are shown in scatter plots to the left, displaying power values at the temporal cortices for delta (top), 
and somato-motor cortices for beta (bottom), by age, with uninfected controls in blue and PWH in red. HAND 
status is differentiated by shape for display purposes. Linear fits for each group are displayed with 95% 
confidence intervals. Boxplots displaying group differences are added to the right of each plot. 
 

No Effects of HIV in Resting State Oscillatory Power 

 For estimates of oscillatory power, all whole brain statistical parametric maps showed no 

clusters displaying significant effects of HIV. Group averaged maps showed qualitatively similar 

magnitude and topography of power in all frequency bands (Figures 16 and 17). Similarly, average 

values from predetermined regions of interest also showed no significant effects of HIV for all 

frequency bands (all p>.05; Table 6).   

 Interestingly, there was a significant HIV by age interaction in frontal gamma 

(F(1,237)=4.29; p=.039; ƞ2 =.018). However, no significant HIV by age interaction was identified in 
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the gamma whole cortical SPM contrasts. This was also the case for all other frequency bands, as 

no other HIV by age interaction was found to be significant. 

 

 

Table 6: Oscillatory Activity Statistics   

Power 
   

Age HIV HIV x Age 

 F 
(1,238) 

p ƞ2 BF F 
(1,238) 

p ƞ2 BF F 
(1,237) 

p ƞ2 BF 

Frontal 
Delta 

4.41 .037* .018 1.39 3.00 .084 .015 0.69 3.25 .073 .013 0.87 

Frontal 
Theta 

0.10 .751 .000 0.14 2.99 .085 .012 0.56 0.85 .358 .004 0.32 

Occipital 
Alpha 

0.26 .612 .001 0.16 0.01 .935 .000 0.14 0.02 .873 .000 0.20 

Central 
Beta 

41.78 <.001* .149 1e7 1.08 .301 .001 0.23 2.28 .133 .008 0.45 

Frontal 
Gamma 

0.52 .471 .002 0.18 0.01 .937 .000 0.14 4.29 .039* .018 1.62 

Peak Frequency 
 

 
 

 
 

Age  HIV HIV x Age  

 F 
(1,238) 

p ƞ2 BF F 
(1,238) 

p ƞ2 BF F 
(1,237) 

p ƞ2 BF 

Occipital 
Alpha 

8.98 .003* .036 11.37 0.75 .387 .005 0.20 0.09 .755 .000 0.20 

Central 
Beta 

1.36 .244 .006 0.26 0.43 .511 .001 0.17 1.24 .266 .005 0.36 

Note: BF: Inclusion Bayes Factor. *p<.05; note that the HIV and Age columns represent the significance of 
the main effects without the interaction term, and the HIV x Age significance is derived in from an 
additional model after adding in the interaction. 
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Figure 16: Delta, Theta, and Alpha Oscillatory Power by Age and HIV Status. Average power maps for 
uninfected controls are displayed above average maps for PWH. Color bars show relative power values, 
scaled for each band. Delta (top), theta (middle), and alpha (bottom) bands showed no significant 
differences between uninfected controls and PWH. Extracted power across pre-defined regions of interest 
are shown in scatter plots to the left, displaying power values at the frontal delta (top), frontal theta 
(middle), and occipital alpha (bottom) by age, with uninfected controls in blue and PWH in red. HAND status 
is differentiated by shape for display purposes. Linear fits for each group are displayed with 95% confidence 
intervals. Boxplots displaying group differences are added to the right of each plot, ultimately displaying a 
lack of group differences. 
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Figure 17: Beta and Gamma Oscillatory Power by Age and HIV Status. Average power maps for uninfected 
controls are displayed above average maps for PWH. Color bars show relative power values, scaled for each 
band. Beta (top), and gamma (bottom) bands showed no significant differences between uninfected controls 
and PWH. Extracted power across pre-defined regions of interest are shown in scatter plots to the left, 
displaying power values at the somato-motor beta (top), and frontal gamma (bottom) by age, with 
uninfected controls in blue and PWH in red. HAND status is differentiated by shape for display purposes. 
Linear fits for each group are displayed with 95% confidence intervals. Boxplots displaying group differences 
are added to the right of each plot, ultimately displaying a lack of group differences. 
 

Decreasing Occipital Peak Alpha Frequency with Age 

Examining peak frequency, statistical parametric mapping identified significant main 

effects of age in alpha peak frequency (Figure 18). After correction for multiple comparisons, a 

cluster in the posterior occipital lobe showed a significant decrease in peak alpha frequency with 

age. Analysis of average occipital peak alpha frequency identified a similar effect (F(1,238)=8.98.; 

p=.003; ƞ2 =.036).  
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No significant clusters were identified for beta peak frequency. Similarly, average somato-

motor beta peak frequency did not show a main effect of age (Table 6).  

No Effects of HIV in Peak Alpha and Beta Frequency 

Similar to the power maps, whole brain statistical parametric maps on peak frequency 

also showed no clusters displaying significant effects of HIV. Group averaged maps showed 

qualitatively similar magnitude and topography of power in all frequency bands (Figure 18). 

Average values from predetermined regions of interest also showed no significant effects of HIV 

for occipital alpha peak frequency, nor somato-motor beta peak frequency (all p>.05; Table 6). No 

significant HIV by age interactions were identified in both whole cortex and region of interest peak 

frequency analyses. 
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Figure 18: Alpha and Beta Peak Frequency by Age and HIV. Top: Statistical parametric maps displaying the 
main effect of age in alpha peak frequency. After correction for multiple comparisons, a cluster in the 
posterior occipital cortex showed a significant decrease in alpha peak frequency with age. Color bars show 
uncorrected p values, thresholded by p<.001 and FWE .05 cluster correction. Bottom panel: Average peak 
frequency maps for uninfected controls are displayed above average maps for PWH. Color bars show relative 
power values, scaled for each band. alpha (top), and beta (bottom) bands showed no significant differences 
between uninfected controls and PWH. Extracted power across pre-defined regions of interest are shown in 
scatter plots to the left, displaying peak frequency values at occipital alpha (top), and somato-motor beta 
(bottom) by age, with uninfected controls in blue and PWH in red. HAND status is differentiated by shape 
for display purposes. Linear fits for each group are displayed with 95% confidence intervals. Boxplots 
displaying group differences are added to the right of each plot, ultimately displaying a lack of group 
differences. 
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Post-Hoc Bayesian Analysis 

To further explore our null findings, we calculated post-hoc inclusion Bayes factors for the 

age and HIV terms.  Inclusion Bayes factors can be interpreted as the evidence for (or against) 

including a predictor in a model, thereby quantifying support for or against a null hypothesis.168 

Inclusion Bayes factors were computed by comparing only matched models (ie, excluding models 

with higher order interaction terms).  

Examining age effects, frontal theta power, occipital alpha power, frontal gamma power, 

and somato-motor beta peak frequency all showed substantial (BF: 0.1 - 0.3)169 support against 

inclusion of age in the model, suggesting evidence that age is not related to these metrics. 

Conversely, somato-motor beta power showed decisive (BF: >100) evidence, occipital alpha peak 

frequency showed strong (BF: 10-30) evidence, and frontal delta showed anecdotal evidence (BF: 

1 - 3) for inclusion of age in the model. 

For the effect of HIV, many metrics showed substantial (BF: 0.1 - 0.3) support against 

inclusion of HIV status in the model, including occipital alpha power and peak frequency, somato-

motor beta power and peak frequency, and frontal gamma power, suggesting evidence that these 

metrics do not differ between uninfected controls and PWH. Frontal delta power and frontal theta 

power only showed anecdotal (BF: 0.3 - 1) evidence against inclusion of HIV status. 

Finally, examining the HIV by age interaction term, only occipital alpha power, and 

occipital alpha peak frequency showed substantial (BF: 0.1 - 0.3) support against inclusion in the 

model. Frontal gamma showed anecdotal (BF: 1 - 3) evidence for inclusion of the interaction in 

the model. All other metrics showed anecdotal (BF: 0.3 - 1) evidence against inclusion of the 

interaction term (Table 2). 
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No Effects of HAND and Epigenetic Age Advancement 

 No significant effects of HAND on oscillatory power were identified after splitting the PWH 

group by HAND status (Appendix B). Additionally, when examining epigenetic age advancement, 

no significant HIV by age advancement interactions were found (Appendix C). Such was also the 

case for alpha and beta peak frequency (Appendix D). 

MEG Discussion 

The current study examined the effects of age and HIV on resting state oscillatory power 

and peak frequencies. We identify increasing beta power with age in the somato-motor cortices, 

and decreasing delta power with age in the left posterior temporal cortex. We also found a 

decrease in peak alpha frequency with increasing age. For the effect of HIV however, we did not 

identify any significant differences between our samples of uninfected controls and virologically 

suppressed PWH. Post-hoc Bayes factor calculations supported no differences between groups in 

occipital alpha power, somato-motor beta power, and frontal gamma power. Additionally, peak 

frequency in both alpha and beta bands also showed evidence suggesting no effect of HIV status. 

Overall, our findings suggest a preservation of oscillatory function in adequately treated PWH, 

even in metrics that normally show changes with age. 

The one HIV-related finding we did identify is an HIV by age interaction in frontal gamma 

power utilizing the region of interest analysis. This may fit in with HAND-status by age interactions 

identified in three task-based MEG studies.107,109,110 However, notable differences led us to not 

focus on this specific finding. Firstly, this interaction did not appear to be driven by participants 

with HAND, and instead was driven by unimpaired PWH. This makes our interaction inconsistent 

with the previous task-based MEG studies which specifically found age interactions using PWH 

with HAND as a separate group. Secondly, resting state frontal gamma power has been shown to 
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have poor reliability in a longitudinal analysis of healthy control participants. This may be due to 

the low power and high degree of variability in resting state gamma activity.170 Finally, within this 

study itself we found that our HIV by age effect was small in magnitude (anecdotal evidence on 

Bayesian analysis), and we did not identify any interactive effects on the whole brain analysis. 

Given these reasons, we believe further study is needed to validate this effect.  

Our null results appear to be contradictory to previous studies that have identified 

differences in resting state oscillatory power in PWH. Notably, a series of three papers by Babiloni 

et al utilized EEG and consistently identified a reduction in alpha power in PWH.93–95,171 This may 

be due to the relative health of the PWH included in this study. That is, two of the three studies 

showing reduced alpha power were performed in treatment naïve PWH,94,95 and their third study 

showed that such reductions were mitigated in those with cART, and then further mitigated in 

those with cART and a CD4 count greater than 500 cells/μl.93 Given our sample of PWH had a 

median current CD4 of 702, were all taking cART, and all had undetectable levels of HIV, we 

suspect that the reduced alpha power seen in treatment naïve PWH was not seen in this 

immunologically healthier sample. In fact, our data showed substantial evidence that HIV 

serostatus in our sample was not related to occipital alpha power, nor occipital alpha peak 

frequency. We therefore conclude that alpha oscillations are preserved with HIV infection, so long 

as adequate antiretroviral therapy is utilized. Further study is however needed to replicate these 

findings given differences with previous literature.  

It is also worth discussing the potential differences between resting state oscillatory 

power, and spontaneous oscillatory power seen in the baseline of task based designs. Multiple 

studies have found increased spontaneous oscillatory power related to HIV and HAND during the 

baseline period of tasks.84,86,87 These changes did not appear in our resting state data, and we 

suggest this may be due to a difference between the baseline of tasks, and a prolonged resting 
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state. That is, during cognitive processing, participants are primed and continually attentive to the 

task they are performing. Activity in regions and frequencies related to such cognitive processes 

may be elevated/depressed throughout the paradigm, such that it is different from resting state, 

but also not at the level of a full blown response in relation to a stimulus/response. In some sense, 

this is the principal of blocked task designs, where activity is averaged across the entire block 

under the assumption that activity related to the process of interest is elevated throughout the 

entire period of cognitive processing. This is not to say the baseline period utilized in these tasks 

is not “quiet,” but rather is at a different stable baseline than that seen in eyes closed rest. In the 

context of HIV and HAND, this new task active baseline may be more relevant towards the 

cognitive dysfunction seen in some PWH and therefore show alterations not seen here. Of course 

further study is needed to examine these subtleties.   

Our aging findings are however highly consistent with previous literature. Decreasing 

peak alpha frequency with age is now generally thought to be well established. Functionally, peak 

alpha frequency has been related to decreased working memory across the lifespan.172 Increasing 

beta power in somato-motor cortices with age has previously been identified using MEG.104 This 

increased resting beta has been speculated to be related to increased GABA activity in older 

adults, as previous studies have linked increased GABA concentration to increased somato-motor 

beta power.173 Finally, our results of decreasing delta power with age is consistent with a number 

of studies identifying decreasing low frequency power with age. Delta activity has been broadly 

linked to multiple cognitive functions,174 and decreases have been related to decreases in 

cognitive performance in older adults.175 Our results expand upon these previous findings by 

showing the spatially specific distributions of these changes with age, as well as showing that 

these patterns are also present in PWH.  
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With respect to our finding of reduced alpha peak frequency with age, but not reduced 

alpha power, this may be due to the age range of our sample. A large study of resting EEG activity 

analyzed the alpha activity of 4651 patients across the full lifespan. They found that peak alpha 

frequency sharply increases until approximately age 20, remains stable until about age 45, and 

then gradually declines throughout older adulthood. Alpha power on the other hand decreased 

from infancy to approximately age 35, and then remained stable until about age 75 where 

amplitude increased slightly.98 Our sample ranged in age from 22 to 72, which may have allowed 

us to detect the decrease in peak alpha frequency, but also largely placed us in the age range 

where alpha amplitude is stable. 

The study has a number of limitations that must be considered. Firstly, as mentioned 

previously, our sample may not generalize well to a broader population of PWH that may have a 

variety of other complications and further study is needed to determine whether resting 

oscillatory activity may in fact be an indicator of more severe immunosuppression or other 

comorbidities. Additionally, as stated before, future studies should examine older adults (beyond 

age 72) and PWH with more severe diagnoses of HAND. Our study is also limited in its focus on 

resting state oscillatory power and peak frequency, and does not make any conclusions on 

potential changes in oscillatory functional connectivity. Similarly, oscillatory responses during 

cognitive processing may show differences that could not be detected in the resting state. Our 

study also only utilized eyes closed resting data, and may not directly translate to eyes open 

resting data, which would inherently show different spectral properties. 

In conclusion, despite identified age related decreases in delta power, and alpha peak 

frequency, and increases in beta power, PWH did not show additional aberrations in these 

metrics, nor other oscillatory activity estimates. An HIV by age interaction was identified in frontal 

gamma power, however further study is needed given the small size of this effect.  
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CHAPTER 6 – Conclusions 

 We studied the structural and functional neural changes that occur with aging and HIV 

infection. Structural MRI showed broad decreases in grey matter volume and cortical thickness 

with age and HIV independently. Additionally, decreased grey matter volume related to increasing 

epigenetic age advancement specifically in PWH, showing that atrophy relates to molecular 

measurements of HIV related age advancement. Functional MRI examining resting state networks 

also showed independent effects of age and HIV in between network functional connectivity. 

These effects were in the same direction, suggesting that HIV-related increases in between-

network functional connectivity may reflect a deficit that is similar to the aging process. These 

changes however did not relate to measurements of epigenetic age advancement, showing a 

separation of functional network changes from indices of molecular age advancement. Finally, 

resting state MEG measurements of oscillatory power and peak frequency showed no significant 

effects of HIV, with some measures showing explicit support for the null. This suggests a 

preservation of resting state oscillatory function in well-treated HIV infection, despite the changes 

seen in structure and network functional connectivity. 

 While we hypothesized that each neuroimaging metric would show alterations related to 

HIV, and that these alterations would each scale with age advancement, our results instead show 

an interesting independence and specificity of HIV-related aberrations. That is, only grey matter 

volume showed results that were fully in agreement with our hypotheses. Functional resting state 

networks on the other hand showed partial agreement, in that PWH showed an independent 

increase in between-network connectivity compared to uninfected controls, but this increase was 

not significantly associated with epigenetic age advancement. We speculate this difference is due 

to the more direct relationship between molecular aging and brain structure, compared to the 

more indirect relationship between molecular aging and network level brain function. Molecular 
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aging is inherently related to the cellular biological clock, and it therefore makes sense that 

inflammatory processes due to HIV lead to a poorer cellular aging profile, which manifests in more 

neuronal loss and/or synaptic pruning. Network level function on the other hand is a much more 

systems-level measure, one that can be influenced by aspects such as cognitive reserve, which 

may relate to compensatory activity that is not necessarily detrimental. Therefore, the 

mechanistic relationship between a molecular measurement of aging and functional network 

level activity is far more blurred, and may explain why we did not identify a relationship between 

HIV related increases in between-network functional connectivity and epigenetic age 

advancement. 

 Another aspect of specificity is the difference between the fMRI and MEG results. 

Although both are measures of brain function, oscillatory power and peak frequency are 

somewhat independent from fMRI measured resting state networks, not only in that they are 

measured in very different ways, but also that they are on different scales. That is, resting state 

networks are on the network level, where the relationships between distant brain regions are 

quantified, while our oscillatory metrics are observations at particular brain regions, examined 

without relating activity at such regions to others. We may therefore speculate that 

communication between brain regions is more affected by HIV infection, while raw oscillatory 

activity throughout the brain remains largely intact.  

 With these results we can look forward towards how this study could inform future 

studies and even treatments. Firstly, our results indicate that grey matter atrophy may be a useful 

marker of HIV-related age advancement. Brain aging is highly important to keep track of in a 

population that is affected by pathologic age advancement, and treatment of such pathologic 

aging may be just around the corner.  In fact, an exciting new study in Nature successfully reversed 

cognitive aging in mice by blocking PGE2 signaling (pro-inflammatory signaling) in microglia.176 This 
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is the same kind of inflammaging that is thought to be related to HIV associated epigenetic 

advanced aging. Our results indicate that such a treatment may be useful to prevent brain 

atrophy, and thereby prevent or treat HIV-associated neurocognitive disorder. On the other hand, 

resting state oscillatory function may not be a useful indicator of HIV infection, and more specific 

task based paradigms may be necessary to probe the oscillatory differences that may be seen in 

PWH.   

 When examining the effect of HAND status, we identified a subset of effects that were 

specific to participants with HAND. We found that decreases in hippocampal and thalamic grey 

matter content, and increases in between-network functional connectivity with the ventral 

attention network were driven by participants with HAND. Thalamus and hippocampal atrophy 

would have clear implications in memory and cognitive function broadly, while connectivity with 

ventral attention network (sometimes called the salience network)177 is critical in integrating 

sensory stimuli and switching between the default mode and executive networks.178  These 

specific aspects of brain structure and function may be particularly sensitive to cognitive 

impairment, and ultimately we believe these alterations may have the ability to act as specific 

markers of cognitive impairment related to HIV infection. Future study should focus in on these 

aberrations given their more direct clinical relevance. 

Many of our other HIV-related effects however were present both in PWH without 

cognitive impairment, and in those with HAND. As mentioned previously, this is still highly 

relevant as it shows alterations even in the absence of outright cognitive impairment. At the same 

time, further effects of HAND may not have been found due to the relatively broad definition of 

HAND. That is, a number of recent studies have called into question whether the prevalence of 

HAND has been overestimated.152,153,179 Rather than the largely utilized Frascati criteria, these 

studies utilized a multivariate normative comparison, ultimately finding the prevalence of HAND 
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to be much smaller and less inclusive than reported by previous research criteria. A promising 

future direction might therefore be to examine neuropsychological function on a more 

continuous scale, or in specific cognitive domains. Such an approach may avoid the mixing of mild 

and severe neuropsychological impairment into one singular HAND group, which may have 

mitigated effects. 

Numerous other future directions can be considered following our results. Firstly, while 

this study is multimodal in the sense that we examined the same research question with three 

separate modalities, we did not make an attempt to combine these data into one analysis. This 

was done because the metrics we computed (structure, network connectivity, and oscillatory 

activity) were relatively independent of one another. However, previous literature has 

successfully combined resting state fMRI functional connectivity with resting state MEG functional 

connectivity.180 Methods to compute resting state MEG functional connectivity typically involve 

the computation of an othogonalized amplitude envelope correlation between source estimated 

signals.181 While this additional analysis was outside of the scope of this study, future studies may 

be able to examine whether the HIV related aberrations we identified in between-network 

connectivity are also identifiable in neurophysiological data using these analyses. Alternatively, 

the data from the three methods could also be used to generate a more complex statistical model 

that incorporates all metrics. Such modeling could be used to examine potential mediations or 

moderations between structural and functional deficits related to HIV. Our work performed here 

with separate models is an important first step towards informing these more complex models, 

and future studies should continue to build upon this multimodal neuroimaging approach. 

 Additionally, we did not examine the potential effects of cART. It is therefore a possibility 

that the medications themselves may have contributed to some of the HIV-related alterations we 

have identified. Generally however, previous literature indicates that cART largely helps preserve 



82 
 

neural function by reducing viral load. The vast majority of antiretrovirals are not considered to 

be neurotoxic either. A notable exception to this however is efavirenz, which is relatively common 

given the use of Atripla (a cART pill that includes efavirenz, emtricitabine, and tenofovir disoproxil 

fumarate). Multiple studies have suggested that efavirenz can be neurotoxic182,183 and may also 

affect functional neural activity.108 We do not believe our results would have been solely due to 

efavirenz however, as only a portion of our large sample would have had it as a part of their 

current regimen. Efavirenz based regimens are being utilized less and less often, as INSTI based 

therapies are the current first line recommendations due to higher barriers to resistance and 

fewer serious side effects. Nevertheless, it may have been a contributing factor and future studies 

should examine this highly relevant question. 

 In conclusion, HIV infection is related to decreases in grey matter volume and increases 

in between-network functional connectivity, in a similar manner to, but independent of aging. 

Oscillatory activity on the other hand is largely preserved. HIV-associated reductions in grey 

matter volume also related to increases in epigenetic age advancement, while increases in 

between-network functional connectivity did not. This suggests that the HIV-related age 

advancement seen at the molecular level is tied to loss of grey matter, and that HIV-associated 

reorganization of resting state networks may be further removed from this measurement of the 

biological clock. These findings are a critical step towards characterizing the aging brain of PWH, 

which is crucial in understanding how to prevent and treat HIV-related neural deficits in an aging 

population.   
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APPENDICES 

 

 

Appendix A: Between-Network Functional Connectivity and Epigenetic Age Advancement. No HIV by age 

advancement effects were identified. Scatter plots display z values of each between-network functional 

connectivity metric by age, with uninfected controls in blue and PWH in red. HAND status is differentiated 

by shape for display purposes. Linear fits for each group are displayed with 95% confidence intervals. 

Boxplots displaying group differences are added to the right of each plot, and visual representations of each 

network are inset. * p<.05 



84 
 

 

Appendix B: Oscillatory Power by Age and HAND Status. No effects of HAND were identified (all p>.05).  

Extracted power across pre-defined regions of interest are shown in scatter plots, displaying relative power 

values by age, with uninfected controls in blue, unimpaired PWH in orange, and PWH with HAND in red. 

Linear fits for each group are displayed with 95% confidence intervals. Boxplots displaying group differences 

are added to the right of each plot, ultimately displaying a lack of group differences. 

 



85 
 

 

Appendix C: Oscillatory Power by HIV and Epigenetic Age Advancement. No HIV by age advancement effects 

were identified.  Extracted power across pre-defined regions of interest are shown in scatter plots, displaying 

relative power values by age, with uninfected controls in blue and PWH in red. HAND status is differentiated 

by shape for display purposes. Linear fits for each group are displayed with 95% confidence intervals. 

Boxplots displaying group differences are added to the right of each plot, ultimately displaying a lack of 

group differences. 



86 
 

 

 

Appendix D: Alpha and Beta Peak Frequency with Age by HAND, and with Age Advancement.  No effects of 

HAND or HIV by age advancement effects were identified.  Extracted peak alpha (top) and beta (bottom) 

frequency across pre-defined regions of interest are shown in scatter plots, displaying peak frequency values 

by age (left), and by epigenetic age advancement (right). Linear fits for each group are displayed with 95% 

confidence intervals. Boxplots displaying group differences are added to the right of each plot, ultimately 

displaying a lack of group differences. 
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