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Gastro-intestinal (GI) malignancies, including gastric, colorectal, and pancreatic 

cancers, have maintained their high overall mortality due to a lack of prognostic 

and diagnostic biomarkers and potential therapeutic modalities. While efforts have 

been made to improve both early detection and therapeutic interventions in these 

cancers, failure of conventional approaches have proven to be a big challenge, 

and alternate approaches are needed. Computational biology approaches owing 

to lesser time and more per target success rate offer a unique solution here. The 

current study explored the use of computational biology techniques to study the 

various aspects relating to GI malignancies. First, we sought to understand the role 

of mucins in colorectal cancer, which helped establish the role of MUC16 and its 

associated signaling in a subset of patients in colorectal cancer (CRC) as a 

potential therapeutic target. Interestingly, the role of MUC16 in CRC had remained 

unexplored up until this point. Further, we carried out a comprehensive study of all 

mucins in gastric cancer (GC). This study helped us identify and establish a 5-

mucin prognostic panel for GC, proving to be highly beneficial in this high-mortality 

malignancy. Further, our study, for the first time, explored the presence of 
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intrinsically disordered regions (IDRs) in mucins. Interestingly, IDRs have known 

to have significant functional relevance and hence the high percentage IDRs found 

within various mucins have the potential to be extremely relevant therapeutic 

targets. Furthermore, our in-silico identification and pre-clinical assessment of the 

novel therapeutic ISOX showed extremely high efficacy of ISOX in pancreatic 

cancer, which can help improve the overall survival of this highly lethal cancer. 

Overall, this dissertation successfully applies computational tools in highly lethal 

GI cancers establishing various novel biomarker panels and therapeutic 

interventions.  
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Chapter 1A: Gastrointestinal Malignancies  

 

1A.1 Overview of gastrointestinal malignancies with a focus on colorectal, 

gastric, and pancreatic cancers.  

The term gastrointestinal (GI) malignancies encompass all the malignancies 

related to the gastro-intestinal tract and further in the related organs, mainly 

esophageal, gastric, colorectal, pancreatic, and liver cancers. Considering the 

pivotal role of these organs in normal human functioning, these cancers have an 

unfortunate level of mortality. Amongst the various reasons for this high mortality 

are late diagnosis, a lack of potent therapeutic options, and an overall lack of 

understanding of the complex biology of the disease(s). Considering this, the goals 

of this dissertation are to apply computational tools for biomarker prediction, 

understanding the tumor biology, and therapeutic interventions in GI malignancies. 

The subsequent sections discuss the specific aspects of colorectal, gastric, and 

pancreatic cancers that the dissertation covers.  

   

1A.1.1 Colorectal Cancer   

Colorectal cancer (CRC), often also referred to as either colon or rectal cancers, 

is a disease group encompassing the malignancies relating to the large intestine 

(1). Over the past many years, CRC has maintained its high mortality, wherein 

currently it is the third leading cause of cancer-related deaths in the United States 

(Cancer Statistics, 2021). Further, in addition to this high mortality, CRC is also the 

third most common cancer hence increasing the public health relevance of 

studying the disease (2). Amongst the various risk factors, genetic predisposition 
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mixed with lifestyle factors like diet, alcohol use, and smoking has been 

established to be of most significance.  While lifestyle and diet-based changes in 

conjunction with progress in diagnostic and screening methods have brought about 

some improvement, the overall survival for CRC patients remains dismal. 

Furthermore, personalized therapeutic approaches based on gene expression or 

other biological parameters have further helped in increasing overall survival (3). 

Although improvements have been made in survival, the heterogeneity of the 

disease makes it extremely hard to effectively target a wide population, and hence 

the overall survival continues to be appalling, signifying the need for a better 

understanding of the disease.  

1A.1.1.1 Colorectal Cancer Development.  

Pivotal to this understanding of the disease is the processes and pathways 

involved in the early development and progression. In general terms, CRC can 

develop through two major pathways- the convention pathway consisting of a 

transition from polyps to adenomas to carcinoma or the sessile serrate pathway, 

which develops from hyperplastic polyps to sessile serrated adenomas/polyps 

(SSA/Ps) to carcinomas (4). Interestingly, each of these pathways has unique 

clinicopathological and molecular features and hence leads to phenotypically 

unique disease types (5). Some of these key differences are highlighted in each of 

the sections below.    
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1A.1.1.1.1 Precursor Lesions of Colorectal Cancer   

A. Tubular Adenomas/Adenomatous Polyps.  

Tubular Adenomas (TAs) or adenomatous polyps are irregular growths or 

protrusions formed on the inside of the intestinal canal. While many of these polyps 

are non-cancerous, a combination of chromosomal instability (CIN) and 

accumulation of APC, KRAS, TP53, SMAD4 PIK3CA, and other mutations lead to 

the progression of these polyps to adenomas and eventually to invasive carcinoma 

(6). Various studies have established TAs to be the most common colonic polyp, 

with these tube-like polyps comprising 80% of all polyps detected. Furthermore, 

while these are not most likely to become cancers, ironically, 80-90% of CRC 

tumors arise from these precursor lesions. Considering the historical importance 

of these lesions, the most widely used CRC tumor models are designed to mimic 

these pathways. Additionally, adenocarcinomas arising from these conventional 

CIN pathways are more likely to have microsatellite stability (MSS), whereas those 

from the alternative serrated pathways are more likely to have microsatellite 

instability (MSI).  

B. Hyperplastic polyps   

Another type of colonic polyps known as the hyperplastic polyps (HPs) is often 

regarded as harmless since these are essentially non-malignant. However, 

morphologic similarities with other lesion types make it almost impossible for these 

to be classified through colonoscopy. Furthermore, recent advances have 

identified an extremely small subset of HPs, which are believed to be neo-plastic 
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and give rise to tumors. This, however, warrants further studies considering the 

morphological similarities between HPs and other neoplastic precursor lesions and 

the lack of lesion-specific biomarker panels  (7). 

 

C.  Sessile Serrated Adenomas/Polyps   

Furthermore, a subset of CRC (~10-20%) develops through a non-traditional 

serrated pathway which is characterized by the presence of sessile serrate 

adenomas/polyps (SSA/Ps).  Unlike the flattened tube-like TAs, SSA/Ps are 

characterized by a jagged or serrated morphology. Further, the carcinomas that 

arise through this pathway are characterized by genetic alterations in BRAF and a 

CpG island methylator phenotype (CIMP). Additionally, this subset of carcinomas 

is more likely to have high-level microsatellite instability (MSI-H).  

 

The distinct morphological and molecular differences between these precursor 

lesions and the carcinomas that develop through them bring about pertinent 

questions concerning the gaps in our understanding of CRC, and further studies 

are warranted.  

 

1A.2 Gastric Cancer    

Gastric Cancer (GC), a cancer of the gastric track or mainly stomach is a major 

global health concern considering its high morality and the high total number of 

cases wherein currently it is the fifth most common cancer worldwide and the third 

leading cause of cancer-related deaths (8). Additionally, risk factors like 
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Helicobactor pylori and Epstein-Barr virus infections in conjunction with diet and 

alcohol consumption make controlling the disease extremely difficult. While 

improvements have been made in the past few years, survival remains abysmal 

mainly due to late diagnosis, early metastasis, and lack of potent therapeutic 

options for advanced GC. Furthermore, the clinical presentation of GC and the 

similarities between early symptoms of the tumors and other gastric problems 

complicated diagnosis even further. Various predictive and diagnostic biomarkers 

like CEA, CA19-9, MUC2, CD10, CD31, etc., have been explored and have also 

been successful in certain cohorts; a consensus in both diagnostic and predictive 

biomarkers is missing (9). A better understanding of the disease biology would 

lead to the identification of better biomarker panels and therapeutic interventions.  

 

1A.3 Pancreatic Cancer   

1A.3.1 Survival and therapy  

Over the past many years, Pancreatic Cancer (PC) has remained one of the major 

causes of cancer-related deaths, mainly due to a lack of therapeutic options. The 

Pancreatic Cancer Action Network (PanCAN) blames the lack of a promising 

therapeutic modality as the major cause for our inability to reach a significant 

improvement in median overall survival (MOS) in PC patients. Over the past 

decade, gemcitabine (GEM) based chemotherapy has been established as one of 

the most promising therapeutic modalities for PC patients. However, major 

limitations to GEM mediated chemo-regimen are toxicity, lack of specificity towards 

molecules specifically altered in PC, ineffectiveness in a subgroup of patients, and 
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poor penetration over hypo-vascularized dense PC stroma (10). Through the 

years, hundreds of clinical trials have been conducted using GEM and non-GEM 

(Paclitaxel or 5-FU) based chemo-radiotherapy, but a minor improvement has 

been observed in the median overall survival (MOS) of PC patients (4.2-11.1 

months). Over the past two decades, attempts had been made by combining the 

cytotoxic agent Gemcitabine (GEM) with molecular targeted agents as an 

alternative strategy in PC, but all these attempts have been in vain, though the 

initial response of FOLFIRINOX (oxaliplatin, irinotecan, leucovorin, and 5FU) 

compared to GEM alone was dramatic it showed a significant rate of grade 3/4 

toxicity in PC patients (11). The initial response of US-FDA approved combination 

therapy of GEM with erlotinib (EGFR specific) is appreciable, the majority of PC 

patients are not responsive due to the existence of a KRAS mutation and 

compensatory pathway activation of other HER family proteins (11). Of note, the 

majority of USFDA approved therapeutic modalities fail to render their required 

clinical outcomes due to toxicity, off-target effects, and therapy resistance; hence 

there is a compelling need for the identification of new potent therapeutics. 
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Chapter 1B: Mucins in Gastrointestinal Malignancies  

 

1B.1 Overview of Mucins  

The protective mucus layers that cover various body cavities, including the 

gastrointestinal cavity, are made up of epithelial cells, which then home many 

members of the mucin family of glycoproteins. These glycoproteins are affected 

the pathological transformations and are known to play important roles in cancer 

initiation and progression. Further, this 22-member family is mainly divided into two 

major groups, namely transmembrane and secretory mucins.  These two groups 

are distinct in their molecular functions as well structural variations wherein each 

of the groups is classified by its own set of domains. These domains are known to 

have specific functions in various malignancies. Specifically, in gastro-intestinal 

malignancies, mucins have been studied for therapeutic potential and as 

biomarkers and play significant roles in tumor progression.  

1B.2 Overview of Mucins in Colorectal Cancer   

Specifically, in colorectal malignancies, overexpression of MUC1, MUC5AC, and 

MUC17 has been reported. Loss of MUC4 and MUC2 has been reported as we 

move from the polyp to adenoma to carcinoma stages. Furthermore, the serrated 

pathway has been reported to have a different expression pattern wherein 

MUC5AC is lost as we move from sessile serrated polyps to adenomas.  While 

these studies relating to specific mucins provide some insight, this varied evidence 

warrants the need for more in-depth studies. A comprehensive assessment of 

mucins in colorectal cancer has not been carried out to date and can be extremely 
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helpful in a better understanding of the disease biology and can have application 

in therapeutic interventions and biomarker activity.  

1B.3 Overview of Mucins in Gastric Cancer  

Further, in GC- MUC1 has been associated with Helicobacter pylori infection which 

is a known risk factor for GC.  Additionally, a study assessing the prognostic 

relevance of MUC1, MUC2, and MUC5AC found downregulation of MUC1, 

aberrant expression of MUC5AC, and de-novo expression of MUC2 in GC 

patients. Additionally, various studies have found overexpression of MUC13 in 

various subtypes of GC. Furthermore, a recent study has correlated the mutational 

load of MUC16 with tumor mutation load and survival of GC patients. Considering 

this varied evidence and the lack of in-depth studies, a comprehensive study of 

mucins in GC will prove to be extremely beneficial.  

  

 

 

 

 

 

 

 

 

 

 



10 
 

Chapter 1C: Intrinsically disordered proteins   

 

1C.1 Overview of intrinsically disordered regions/proteins  

While human proteins are believed to be highly structured and ordered, within the 

human proteome is a subset of proteins that function without the need to require a 

unique structure. This subset of proteins that functions in a structure-independent 

way has been classified as intrinsically disordered proteins (IDPs), and the regions 

within these proteins that cause this disorder are referred to as intrinsically 

disordered regions (IDRs). This disorder, in turn, affects various downstream 

biological functions, including the protein-protein interactions, often turning these 

IDPs into protein hubs. Further, various studies have suggested that the 

prevalence of IDRs increases with an increase in complexity of an organism 

suggesting that that the human proteome is most susceptible to the presence of 

these IDRs.  

 

1C.2 Intrinsically disorders proteins in disease biology with a focus on 

cancer   

This said prevalence then translates into specific functional differences such as 

translation, alternate splicing, signaling, etc., making IDPs specifically important in 

biological diseases. Various studies have implicated the role of IDPs in disease 

biology, more specifically in diseases like cancer (12, 13), diabetes (14), 

cardiovascular defects (15), and neurogenerative disorders (16, 17). Specifically, 

in cancer, IDPs are of great importance considering the importance of these 

proteins in cellular processes like translation, transcription (18), and cell cycle 
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regulation (19). Further, IDPs play a very important role in regulating cellular 

machinery like ribosomes, chromatin organization, and various processes related 

to microfilaments and microtubules. These processes, in turn, have been 

established to have extremely important roles in disease pathology, specifically in 

cancer biology. IDPs roles in various cellular processes, in conjunction with 

specific tumor suppressors and other tumor-relevant proteins, have a high 

propensity of being intrinsically disordered, which warrants the need to study IDPs 

in cancer biology.   

 

1C.3 Methods to assess intrinsically disordered regions  

Various in-vivo and in-vitro methods can be applied to identify IDRs in any given 

protein, specifically NMR spectrometry and X-Ray crystallography-based 

techniques. These however, are limited due to high cost and lack of 3-D structures. 

Considering this, recently, computational methods have gained popularity and are 

now being more readily utilized for IDR prediction. There are currently over 25 

prediction tools that are available as stand-alone tools, web-based tools, or python 

scripts. In this regard, the database for disordered proteins (D2P2) is a compilation 

of 9 such prediction tools and hence offers a deeper understanding and a higher 

significance level.   
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Chapter 1D: Connectivity mapping in therapy   

 

Understanding drug-disease interaction remains one of the most challenging 

aspects of effective cancer therapeutics. Over the past few decades’ large-scale 

genomic sequencing and global gene expression profiling, which in turn has led to 

the development of big data-driven resources like the connectivity map (CMAP), 

has become common play. CMAP a source perturbation database by the Broad 

institute, can potentially help biologists understand and build the said drug-disease 

relationship. The review’s focus is to assess what has already been done 

concerning CMAP and what can be done further to understand these complex 

interactions better to make effective and well-informed clinical decisions.  

  

1D.1 Introduction 

Conventional methods of drug development involve the assessment of one drug 

target at a time, making it extremely difficult to target a complex disease like 

cancer. In recent times, computational assessment to identify potential drug 

targets has become common (20-22)  However, up until this point, there has not 

been a clear understanding of what resources are available and what can be done 

to make these assessments. One of the biggest of such resources is the 

Connectivity Map (CMAP), a large-scale dataset of gene expression profiling from 

over 2800 drugs on various cancer cell lines. This humongous data collected by 

the broad institute is now available for us to query and connect with various user-

defined gene signatures. This resource can be beneficial for chemists, and 
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biologists alike wherein chemists can leverage from this in the process of drug 

designing and biologists can identify mechanisms by existing and new drugs act.  

The advent of large-scale genomic sequencing and global gene expression 

profiling has led to the discovery of large-scale perturbation databases, like the 

Connectivity Map (CMAP). CMAP was a portal developed by the broad institute 

with the sole aim of bridging the gap between physicians, chemists, and biologists 

to make better-informed decisions about patient care. The major question that 

Justin Lamb et. al. answered if the use of big data analytics can help the scientific 

community make better decisions to aid in pre-clinical studies that eventually can 

lead to better clinical decisions and effective therapy. A major issue that they 

identified was a lack of knowledge of the connection between diseases and drugs. 

Considering this, the aim of their study was two-way, first to find this information 

and second to make it easily accessible without the need for specialized 

computational skills.  Thus, CMAP was put together containing gene-expression 

data obtained from genetic variations of genes and treating human cell lines with 

chemicals and reagents, which they refer to as perturbagens.  

The next question at hand was, even if the connections were made, how it would 

lead to the identification of new drugs. This called for a proper scoring scheme to 

quantify these said connections. CMAP works on a simple scoring method wherein 

a user-defined gene signature (up-regulated and down-regulated genes from a 

disease condition) is connected to the drugs’ gene signature (upregulated and 

downregulated genes observed when the human cell lines are treated with the said 

perturbagens) and a positive, negative and neutral score with values ranging from 



14 
 

–1 to +1 which directly reflect the strength of this connection are obtained. The 

initial set of perturbagens contained 164 drugs which were selected over a broad 

spectrum of activities. There were multiple drugs with the same target (the most 

common example being histone deacetylase inhibitors) and efforts were made to 

determine the similarities and differences between the mode of action of these 

inhibitors. This information will be extremely helpful to biologists since the subtle 

differences in the mode of action of inhibitors targeting the same family of proteins 

could answer that we have been searching for so long.  

The initial set of 164 was just the beginning, and as of the last update, CMAP 

contains data from over 27000 perturbagens ranging from various small molecule 

compounds to gene knockout signatures. The method and the subsequent 

updates have all followed the simple underlying principle that gene expression is 

the “universal language” of drug perturbations. Over the years, CMAP has 

continued to make great heaps and jumps over these many years. The most 

important came up just last year wherein a new age CMAP was launched with 

almost a 1000-fold scale up from the existing data. This collaborative effort of the 

Broad Institute with the National Institutes of Health’s (NIH) library of integrated 

network-based cellular signature (LINCS) was developed to help make clinical 

decisions mainly on side effects of exciting drugs to aid in clinical trials.  

In complex diseases including cancer, the understanding between the relationship 

of a drug and the disease could very well be the key to effective targeting. This 

review aims to compile all the applications of CMAP in various disease models as 
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well other modifications to assess the applicability of this great resource for 

biologists and pharmacists (19, 20)  

 

1D.2 How Was the Connectivity Map Developed?  

As J. Lamb and colleagues rightly mention, for a very long-time, gene expression 

profiling has been applied specifically to the pathway-driven analysis of disease 

conditions or, more recently, the determination of “gene signatures” for various 

subtypes of cancers. The vision that the authors had was to move beyond this 

historical role and make the most use of these profiles that are becoming more 

and more readily available. The idea was to find a better way to harvest and assess 

this big data so that we can learn from the past in moving towards the future. While 

considering all this, they came across a landmark study (23) wherein, in a yeast 

model, it was established that gene expression data can be directly correlated to 

functional responses to small molecules and genes. However, if this would 

translate to mammalian cultures was something they still had to test and hence 

came about their hypothesis that gene expression data can be used to make 

assessments of drug responses in various disease settings (23).  

1D.3 Modifications of CMAP 

Over the years, CMAP has been modified outside its initial framework to be applied 

in various other forms, many of which have extremely important roles.  

1.D.3.1 Evaluation of RNA interference and CRISPR through CMAP.  

While CMAP started as a perturbation dataset, the addition of genetic 

perturbations opened avenues for other applications.  One such application is the 
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evaluation of RNA interference and CRISPR using this data. Both RNAi and 

CRISPR have been extremely helpful in assessing the loss of function of a wide 

range of targets.  However, the question that Ian Smith and colleagues (24) 

wondered about was the off-target effects of these technologies. Even though it is 

known that both these techniques have off-target effects, a comprehensive study 

had not been conducted to compile these effects.  

As a part of the “new” CMAP, the gene consequences of over 13,000 shRNAs can 

be studied in the same 9 cell lines as used for initial perturbagens based studies. 

Smith et al utilized this information to develop a consensus gene signature (CGS) 

which is a compilation of all off-target and targeted effects of the said shRNAs. 

Furthermore, to better understand the targeting of each shRNA, the authors 

established a consensus seed signature (CSS) which was also analyzed across 

cell lines to identify cell line-specific activity of particular shRNAs. This resource 

can now be utilized for designing experiments pertaining to the use of these 

technologies. Further on, they performed a projection analysis to assess a gene 

expression analysis with a combination of on-target activity, off-target effects, and 

assay noise. This data is now available for further assessment.  

1.D.3.2 Drug-Induced Apoptosis Subnetwork From CMAP Data.  

Another such ingenious application of this data came about in 2015. Considering 

the importance of tumor-selective cell death for effective cancer therapy Jiyang Yu 

and colleagues (25) used the breast cancer-specific MCF7 data from CMAP to 

model a subnetwork specifically for apoptosis. They applied Gaussian Bayesian 

network approach to this meta-data from all the drugs and identified apoptosis as 
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a major drug-induced cellular pathway. They then identified the major genes 

causing these effects and came up with 13 apoptotic genes that showed differential 

expression across all drug-perturbed samples. These 13 genes were used to make 

what they decided to call the apoptosis subnetwork. The identification has potential 

applicability in the drug designing process wherein an effective apoptosis therapy 

should target the newly identified 13-gene signature. This analysis can also be 

carried out for other cancer-specific pathways to make discoveries.  

1. D.3.3 Functional Module Connectivity Map.  

Another application of the CMAP data which falls into the realm of drug 

repurposing and drug development is the functional module connectivity map 

(FMCM). As the authors rightly discuss, drug discovery is an expensive and long 

process often due to a lack of understanding of the underlying mechanism in a 

disease model and hence potential. Gaining this understanding becomes even 

more difficult in a complex disease like cancer which has various complex 

biological processes associated with its initiation and progression. Based on these 

issues and the availability of the large CMAP dataset, Chung et al in 2014 set out 

to assess if they could establish a computational drug screening procedure that 

addresses these complex issues and hence came out the FMCM. The authors 

taking colorectal adenocarcinoma as an example, used the CMAP data and 

combined it with a functional assessment to come up with a functionality-based 

application of CMAP. The study assesses gene-gene interaction-based functional 

networks developed in adenoma and normal cases and the use thereof to identify 

drugs specific to these varied functional modalities. The authors went on to 
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compare the individual gene query to this functional module-based assessment 

and propose that the functional module renders a better assessment of potential 

therapeutics (26). 

1. D.3.4 Reversal of CMAP-Identification of Genes.   

The original idea behind CMAP was simply to have a better understanding 

between drugs, genes, and diseases however, it has been applied to direct 

identification of small molecules rather than identification of the underlying genes 

associated with the disease condition and this is what Liu et al set out to explore 

in this 2017 study. The overall premise of this was to identify specific gene targets 

which are perturbed by drugs.  

To answer this, they assessed genes significantly affected in the CMAP project 

and denoted it with differential expression number (DEN), and compared the genes 

with high DENs with the others. They further carried out a network topology-based 

analysis and explored the subcellular localization of these genes to decipher the 

potential connection with disease conditions (27). 

 

1. D.3.5 Compound Carcinogenicity  

The toxicity of compounds has been an age-old question that researchers have 

struggled with in drug discovery. In an interesting application, Caiment et. al. use 

the CMAP and hepatocellular carcinoma (HCC) data to develop a model to use 

the CMAP data in toxicity analysis. The first step of this process was to develop a 

gene signature for liver toxicity which was done with the help of gene expression 

data from various datasets containing normal liver samples (28). This gene 
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signature was then used in comparison to the gene signature from toxico-

genomics datasets from various tumor samples to identify carcinogenicity of 

various samples.   

1. D.3.6 Proteomic Connectivity Map 

The original study was further extended to include “a library of phospho-proteomic 

and chromatin signatures for characterizing cellular responses to drug 

perturbations” or a proteomic connectivity map. The proteomics connectivity hub 

is an effort that the authors define as being complementary to the original CMAP 

study in adding the liquid chromatography-mass spectrometry (LCMS) data to 

measure the phospho-signaling and chromatin state both of which can add to the 

information surrounding the mechanism of action (MoA) of any drug perturbant. 

The question that the authors were faced with was while gene expression profiling 

had been becoming more and more relevant to drug perturbation studies, are 

these profiles the “universal language” of the readout of these drugs or other 

perturbagens. Based on this information and the basic “connectivity” framework, 

they profiled 90 drugs in 6 cell lines to study the global chromatin profile (GCP) 

and a reduced representation proteomic assay (P100). This data now can be used 

to study the overall state of the cell with respect to any said perturbations. The 

resource is open access and can be used through the CMAP portal to assess the 

“proteomic signatures” (29).  
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1. D.3.7 Epigenetics Connectivity Map.  

Within the same realm as the proteomics study, CMAP is another such application, 

the epigenetics connectivity map. Epigenetic marks or chemical modifications to 

DNA and histone proteins play a central role in gene regulation, but many gene 

expression compilation studies have been presented similar studies are missing 

for these epigenetic marks. The study uses a SILAC mix which is an equal 

combination of Hela, 293T, and K562 for histone modification studies (30).  

 

1. D.4 CMAP Based Studies in Gastro-Intestinal Cancers  

1. D.4.1 Pancreatic Cancer  

Pancreatic cancer (PC) and its most deadly subtype, pancreatic ductal 

adenocarcinoma (PDAC), is currently one of the deadliest cancers. In 2020 alone, 

over 47,050 people were projected to die from this disease. Unfortunately, the 

disease is extremely hard to target by therapeutics mainly due to the inherent drug 

resistance of these tumors (31). Over the years, clinical trials and laboratory-based 

studies have explored potential therapeutics; however, significant improvements 

have not been seen in the overall survival of these patients. Considering this, a 

tool like CMAP can be extremely useful in identifying potential new therapeutics. 

CMAP has been applied indirectly to various PC studies as summarized here.   

1. D.4.1.1 Identification of New Therapeutics for Dasatinib Resistant Cell 

Lines  

Dasatinib, an FDA-approved tyrosine kinase inhibitor, has shown great potential in 

PC (32). However, as common for many other drugs PC cells have the potential 
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to gain resistance to this drug. To identify drugs with a potential synergistic effect 

with dasatinib, Chien et. al., used RNA expression from 3 dasatinib-resistant and 

3 dasatinib-sensitive and the CMAP data to identify FDA-approved thioridazine. 

Thioridazine was found to cause apoptosis, affect the cell cycle and multiple kinase 

activities. Additionally, it was identified as a protein phosphatase 2 (PP2A) 

inhibitor, which led to the identification of PP2A and its subunit as being potential 

targets for effective PC targeting (33). 

1. D.4.1.2 Identification of Inhibitors Synergizing With Gemcitabine  

On a similar note, Jian Lin Er et. al. in 2018 (34) presented a similar study for 

gemcitabine-resistant cells. The study aimed to specifically look at the squamous 

subtype and identify potential therapeutic agents using CMAP in concordance with 

the International Cancer Genome Consortium (ICGC) and the Cancer Cell Line 

Encyclopedia (CCLE). The aim of this study was mainly two-fold: one to identify 

drugs specific to the squamous subtype of PDAC and the second for this identified 

therapeutic to be synergistic with gemcitabine. Differential gene expression from 

the squamous specific samples was subjected to a CMAP analysis to identify 26 

candidate drugs that were tested in squamous type cell lines. These cell lines were 

further subjected to combination treatment with gemcitabine to identify the most 

synergistic drugs leading to the identification of SRC or MEK inhibitors as potential 

synergistic drugs.  
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1. D.4.1.3 Metabolic Networks In Response To Perturbations In Pancreatic 

Cancer. 

To add further to this quest of using CMAP to treat this horrific malignancy, 

Biancur et al (35) assessed the CMAP data to identify drugs for the synergistic 

effect with glutamine inhibitor CB839. Metabolic reprogramming has been shown 

to be an integral part of pancreatic cancer initiation and progression.  The 

premise of the study is that specifically in PDAC the conversion of glutamine to 

glutamate catalyzed by the enzyme glutaminase (GLS) leads to an increased 

reducing potential in the form of NADPH and glutathione (GSH). The question 

that leads to is whether GLSi is a therapeutic strategy worth pursuing and if it is 

then can a CMAP analysis help identify drugs with a synergy with GLSi therapy. 

They utilize proteomics data to identify significantly synergistic target drugs which 

can further be utilized for combinatorial therapeutic approaches.   

1. D.4.2 Colorectal Cancer  

Colorectal adenocarcinoma is currently the third leading cause of cancer-related 

deaths in the United States. The cancer genome atlas (TCGA) contains within itself 

has the RNA-seq data from 437 colorectal cancer tumors and 39 control samples 

(COAD) which can be utilized for big data studies. W.D. XI et al (36), used the 

COAD data to assess first the differential gene expression and then further to 

assess the CMAP to identify small molecule drugs, which are potential 

therapeutics for colorectal cancer. Out of the drugs identified, the histone 

deacetylase (HDAC) inhibitor; scriptaid is observed to have chemo-sensitization 

on human colorectal cancer cells. In a similar study, Qing Wen et al used five 
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microarray datasets from colon cancer and used them to identify a query gene 

signature for the identification of potential therapeutics. Interestingly, the CMAP 

identification from this gene signature helped the authors identify 10 potential 

drugs, including current chemotherapies validating the method. The combination 

of both these studies is suggestive of the potential use of HDAC inhibitors in 

colorectal adenocarcinoma, but further studies are needed to establish these as 

potential therapeutics. A further application of CMAP in colorectal cancer came 

about more recently in 2014 by Wen Q and co-authors. The article is one of the 

quintessential applications of CMAP   to identify wherein they combine 5 colorectal 

cancer (CRC) microarray datasets with normal and tumor samples. They further 

go on to rank the various differentially expressed genes in each of these datasets 

to establish a combined gene signature which they go on to test for potential drug 

matches through CMAP. Interestingly, many of the negatively connected drugs 

were current chemotherapies in use (37). 

 

1. D.4.3 Gastric Cancer  

To add to these wonderful studies, CMAP found another of its application in gastric 

cancer (GC) wherein Li Zhang et al used a weighted gene co-expression network 

analysis to identify HDAC2 inhibition using lovastatin as a potential therapeutic 

modality for GC. This comes as a breakthrough for GC since the long-standing 

treatment option has been surgery. They used gene expression data from GC to 

first construct a gene expression network of differentially associated genes and 

then subsequently use a combination of the network and functional analysis to 
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identify valproic acid and lovastatin as potentially therapeutic for GC. Interestingly, 

HDAC2 was identified as a target for both drugs suggesting it as a potential target 

ineffective GC targeting. (38) A further study was carried out  (39) in GC by Zu-

Xuan Chen and colleagues wherein TCGA tumor data was compared to normal 

data from genotype-tissue expression (GTEx) to identify differentially expressed 

genes in between tumor and normal samples. The DEGs were then used for a 

CMAP analysis to identify potential therapeutics for GC, establishing another 

successful use of the CMAP data.  

 

1. D.4.3 Esophageal Carcinoma  

An application of the CMAP data was also seen in the esophageal carcinoma 

(ESCA) wherein Yu-Ting Chen and colleagues first used the TCGA and GTEx data 

to identify differentially expressed genes followed by a functional analysis of the 

identified genes then the excavation of hub genes from this data followed by a 

prediction of drugs associated with these identified genes. They went on to do a 

detailed analysis of the identified drugs and the corresponding gene networks, a 

functional analysis as well as a docking analysis to study the potential interactions 

of the identified drugs with key molecules relating to ESCA hence establishing a 

comprehensive method that will find its application beyond the current study (40). 

1. D.4.4 Liver Cancer  

Another application of the CMAP data was carried out by Li-Min Liu and colleagues 

for the horrid disease of liver cancer. While exploring the use of nitidine chloride 

(NC) for this horrid disease, the authors set out to independently elucidate the 
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potential regulatory mechanism of this alkaloid. They used differentially expressed 

genes from a microarray study for NC treatment to connect to the various drug 

signatures within CMAP to identify pathways that can be affected by NC treatment, 

hence establishing a unique application of the CMAP data. They found that this 

analysis could successfully identify pathways like cell growth and hence 

supplement the gene set enrichment and in-vitro data (41). 

 

1. D.4.5 Hepatoblastoma 

Hepatoblastoma (HB) is the most common hepatic tumor in infants and children, 

claims for half of all liver tumors in children. The best treatment option is surgery 

followed by liver transplantation. However, the increase in liver-based illness and 

hence the subsequent increase in patients needing a transplant warrant for other 

treatment options. Specifically, for rare diseases like hepatoblastoma, drug 

discovery through CMAP can be extremely helpful since its extremely affordable 

(42) . In this backdrop, Beck et al in 2016 (43) applied the CMAP data to identify 

13 potential drugs for high-risk HB, including 2 PI3K/AKT inhibitors which already 

have a known application in HB. Furthermore, the data helped them identify 2 

HDAC inhibitors that have a potential application in HB since HDACs are known 

to be overexpressed in HB and hence the potential application of HDACi in HB. 

They further studied the potential of the HDACi SAHA to sensitize HB to cisplatin 

and doxorubicin, which showed a synergistic effect of SAHA and cisplatin. Through 

a combination of in-vivo and in-vitro studies, the authors successfully identified a 
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combination of HDACi and cisplatin as a potential therapeutic strategy for high-risk 

HB.  

 

1. D.4.6 Kidney and Renal Cancer 

Primary renal cancer is one of the few cancers which is curable at early stages, 

but metastatic renal cell cancer shows a poor overall survival. The identification for 

a potential therapeutic using CMAP is a promising application in this cancer partly 

due to well-established gene expression profiling, which supports the fact that it 

remains one of the only cancers wherein more than one application of CMAP has 

been seen. The first of which came in 2013 from Zhong Y et. al. (44) wherein they 

queried the 1300 drugs in CMAP for gene expression profile of mice with HIV-

associated nephropathy a condition that often leads to renal cancer. What they 

were looking for was a potent combination of drugs that could help in reducing this 

condition. They identified that a combination of angiotensin-converting enzyme 

(ACE) inhibitor and a histone deacetylase inhibitor potentially the best combination 

for this condition. They went on to test this combination in the same mice and 

observed that the combination could help in reducing the condition significantly. 

The second application was specifically with respect to renal cell carcinoma (RCC), 

wherein Zerbini LF et al (44, 45) used their previously established signature 

together with a gene set enrichment analysis to identify potential FDA-approved 

drugs for clear cell renal cell carcinoma. They established a workflow, 

Individualized Bioinformatics Analysis (IBA), which first establishes a differential 

gene expression in healthy vs. the disease tissues and further uses these for a 
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CMAP analysis. They successfully identified various current chemotherapies as 

well as potential new therapeutics. Interestingly, these high-scoring drugs induced 

a high level of apoptosis in RCC cell lines. The further assessment led to the 

identification of pentamidine as a potential therapeutic for RCC with high efficacy 

in RCC mice models and affecting major cancer-specific pathways (46). 

 

1. D.5 CMAP Based Studies in Other Cancers  

1. D.5.1 Medulloblastoma 

A cerebellar primitive neuroectodermal tumor (PNET) or medulloblastoma is the 

tumor that starts in the base of the skull, or the posterior fossa is cancer commonly 

found amongst children. Medulloblastoma has been divided into clinical subtypes 

wherein Group 3 has the worst prognosis of all (47). One of the first applications 

of CMAP based drug identification was within this subgroup. Fara CC et. al. in 

2015, applying a subtype-specific CMAP analysis, successfully identified 

alsterapullone as a novel small molecule inhibitor to target group 3 

medulloblastoma. They went on to assess the efficacy of alsterapullone in-vitro 

and in-vivo showing a very high efficacy, specifically targeting cell cycle genes in 

group 3 medulloblastoma showing potential applicability (48). 

 

1. D.5.2 Acute Myeloid Leukemia   

Acute myeloid leukemia (AML) is the cancer of the bone marrow that makes 

abnormal myeloblasts, red blood cells, or platelets. While a lot has been studied 

about AML therapy, the disease still takes the lives of over 11,000 people within a 
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single year with a 23-25% overall survival. Previous studies in the field have shown 

an inactivation of C/EBPα in AML cells, a transcription factor that is known to be 

mutated in over 10% of AML patients. However, the therapeutic targeting of the 

gene has not been successful. With this background, Manzotti et al (49) decided 

to use the CMAP data to specifically look for small molecule inhibitors, which would 

specifically target C/EBPα. They first identified the C/EBPα signature, which 

consisted of genes regulated by the transcription factor followed by the 

identification of small molecule inhibitors that mimic the effect of the biological 

effect of the transcription factor C/EBPα. They identified eight drugs as potential 

therapeutics in AML. They found ATRA a drug commonly used in AML as one of 

the potential drugs, and tried various combinations of the other (diperodon and 

amantadine) identified drugs with ATRA. GSEA assessment revealed similarities 

between the C/EBPα affected genes and the downstream effects of treatment with 

the small molecule drug amantadine. Diperodon however, failed to achieve a 

profound difference in the effector gene expressions supporting the use of 

amantadine over it. The identification of both these inhibitors in combination with 

ATRA is a promising strategy that can be used in AML.  

1. D.5.3 Acute Lymphoblastic Leukemia (All)  

Acute Lymphoblastic Leukemia (ALL), like its counter AML, is a blood and bone 

marrow cancer but, unlike AML, affects the white blood cells. ALL is the most 

commonly occurring childhood cancer which was slated to claim 24% of the lives 

in 2020 (50). A subset of ALL, mixed-lineage leukemia (MLL)-rearranged infant 

ALL is specifically even more aggressive than the other subtypes. It is 
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characterized by its unique gene-expression profile which can then be targeted 

using specific inhibitors. Considering this Stumpel et. al. applied the CMAP 

identification in this specific subset of patients led to the identification of the HDAC 

inhibitors as a potential treatment for this horrid disease. Before conducting this 

analysis, the authors had previously recognized characteristic promoter 

hypermethylation in these MLL rearranged infant ALL through this study; however, 

they establish a specific subset of genes which were hypomethylated and 

overexpressed in these patients. This gene set was then used for CMAP analysis, 

which led to the identification of various HDAC inhibitors. The authors went on to 

validate these assessments establishing the potential of epigenetic therapies in 

this specific ALL. Off note, this study, for the first time, successfully established 

that CMAP analysis can also be applied to DNA methylation patterns and hence 

establishing another potential application of DNA methylation data in drug 

discovery studies (51). 

1. D.5.4 Breast Cancer  

Over the years, Breast cancer (BC) has remained one of the most common causes 

of death in women in the United States. While a lot has been studied the authors, 

Fang E et al (52), observed gaps in the knowledgebase for the molecular 

mechanism of BC. They hypothesized that identification of hub genes and the 

corresponding pathways would, in turn, lead to the identification of the molecular 

mechanism of the disease, followed by identification of potential therapeutics using 

CMAP. They obtained the differential gene expression and the subsequent 

functional implications in BC. Furthermore, they identified genes with a prognostic 
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significance in BC since those would be the targets to be assessed as potential 

therapeutic targets. This helped them identify the small molecule agent “emetine” 

which might have potential application in BC. Similar to this study was a meta-

analysis carried out by Thillaiyampalam et al in 2017 wherein public data 

repositories were used to analyze over 7000 BC samples led to the identification 

of 26 potential therapeutics for BC. Interestingly, 14 out of these were known, anti-

cancer agents. The methodology established in this study offered a framework of 

combining various datasets while accounting for batch effects and which in turn 

can be applied to various other disease states utilizing the abundant gene 

expression data. In another study in BC, Busby et al combined epidemiological 

evidence with the CMAP approach to assessing existing medications that alter BC 

risk. The CMAP correlations led them to identify a total of 10 drugs with 6 cancer-

causing and 4 cancer-preventing drugs. Unfortunately, further analysis of the 

overall survival associated with these drugs did not lead to any conclusive results. 

However, this study opens the door to another application that can be explored 

much more in the future. A further application in BC was carried out by Tong Liu 

and colleagues in 2017 wherein the CMAP data was connected to a signature 

associated with the knockdown signature of FSIP1 specifically in a HER2+ setting. 

Interestingly, the identified compounds showed very high efficacy in BC and hence 

establishing another branched application of CMAP (53-55). 

1. D.5.5 Prostate Cancer  

Similar to their BC study, Fang et al carried out a hub gene and CMAP study in 

Prostate cancer (PCa), considering that it is the second leading cause of cancer-
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related deaths among men in the US. Like BC the molecular mechanism of PCa 

is not yet fully established. To do this, they identified the differentially expressed 

genes between prostate cancer and normal cells, used this for a functional 

assessment using gene ontology (GO) and KEGG, and additionally to identify a 

potential drug for PCa (56). This analysis helped them establish the importance of 

cell adhesion molecules (CAMs) and TGF-beta signaling in PCa and identify the 

small molecule therapeutic: phenoxybenzamine as a potential drug for PCa. A 

similar study was carried out by Jian Li et al in 2013 to identify networks of 

differentially expressed genes and the associated small molecules which led to the 

identification of various pathways similar to the aforementioned study (57).  

Furthermore, another application of the CMAP was seen in the study by McArt et 

al wherein they use a combination of RNA-seq and microarray data from various 

PCa patients to identify the nicotine derivative cotinine as a potential therapeutic. 

Interestingly, through independent experiments, they further established its effect 

in reducing proliferation through an androgen-dependent mechanism (57, 58). 

 

1. D.5.6 Lung Cancer  

Another such different application was carried out by Youchum et al where they 

looked specifically at the gene knockdown signature of TWIST1 to identify potential 

TWIST1 targeting compounds. This led to identifying 6100 potential TWIST1 

inhibitors that the authors scaled down to 8 using a combination of score 

assessment and a literature review. Further assessment with various non-small 
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cell lung models successfully established harmine as a TWIST1 inhibitor as well 

as a potential therapeutic for lung cancer (59). 

Further, another study in lung cancer was carried out using gene expression data 

tyrosine kinase inhibitor (TKI) sensitive lung adenocarcinoma and TKI-sensitive 

clones from the same cell line and used the differentially expressed genes to 

identify HDAC inhibitor-valproic acid (VPA) as a potential therapeutic for lung 

adenocarcinoma. The study of VPA in lung adenocarcinoma could establish its 

effects in various cell line models hence establishing it as a potential therapeutic 

(60). 

1. D.5.7 Ovarian Cancer  

Epithelial ovarian cancer or EOC is one of the most lethal cancers accounting for 

over 5% of the cancer-related details. While therapeutic options are available, they 

are unfortunately not extremely effective, with most patients coming back with a 

relapse soon after treatment. Considering this, Rama Raghavan et al, used the 

CMAP data to connect gene expression data from tumor vs normal samples to 

identify 11 drugs, five out of which were independently validated and were shown 

to have a cytotoxic effect on ovarian cancer cell lines (61). 

1. D.5.8 Bladder Cancer  

Further, in bladder cancer, a bioinformatics-driven study was carried out to assess 

the role of DAPK1 as a prognostic marker and used the CMAP data to identify 

specific drugs against the DAPK1 signature. Interestingly, out of the top 10 small 

molecules identified, many were Braf/MEK/ERK pathway inhibitors with previously 

known potency in other cancers like melanoma. Further, they could successfully 



33 
 

validate the effect of one of the identified drugs, vemurafenib, both on DAPK1 and 

subsequently on bladder cancer (62).  

 

1. D.6 CMAP Based Studies in Other Diseases  

While cancer is the most common application, CMAP data has been applied to 

other diseases as well. Some of these studies are summarized in the subsequent 

sections.  

1. D.6.1 Candidate Agents for Diabetes  

Diabetes, a disease essentially characterized by a high blood sugar level, is mainly 

divided into type 1 and type 2 diabetes. Specifically, type 2 diabetes (T2D) results 

from an impaired insulin secretion and the effect it has on various target tissues. 

Recent studies have shown the underlying importance of metabolic syndrome (63) 

as a predictor of T2D, but the metabolic signature or the genes associated with 

causing these effects have not been very well studied. The authors, Wang et al,  

(64) decided to use a computational approach to gather more information about 

the underlying genetic mechanism behind the disease and then eventually assess 

the therapeutic targets for it. In order to do this, they extracted microarray gene 

expression data of human pancreatic islets with or without T2D, carried out 

differential gene expression, followed by a pathway analysis to identify 

dysfunctional pathways, regulatory gene networks, and finally, identification of 

candidate small molecule inhibitors. This systematic process led to the 

identification of potential therapies: sanguinarine and DL-thiorphan, which can act 

as successful therapies for T2D. In a similar study, Zhang et al  (65) combined 
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gene-wide association studies (GWAS) with proteomics and metabolomics studies 

first to reveal specific proteins with underlying importance in diabetes and further 

to identify druggable targets and the corresponding drugs. The identified targets 

combined with a study of the associated pathogenesis led to the identification of 9 

potential drugs which can be repurposed for diabetes treatment. 

 

1. D.6.2 Sex Linkage Of Therapies In Cancers  

In 2016, Ma J et al (66)  identified a unique application of CMAP. Cancer 

researchers and epidemiologists have often alluded to a sex linkage of various 

cancer forms wherein the progression of the disease varies greatly with gender, 

but the question at hand at this point was if therapies should be gender-specific.  

A systematic analysis was then carried out utilizing CMAP to differentiate between 

genetic make-up of these diseases in men vs women. They utilized the RNA-seq 

from 17 cancers reported within the cancer genome atlas (TCGA) in order to 

identify genes, which had gender specific impact. They also assessed the 

differences in these tumors with respect to the corresponding normal samples. 

Interestingly, they found the sex-linkage in these tumors goes up to as high as 

76.47% in melanoma. They were further went on to carry out a functional 

assessment of tumor vs normal samples which had been pre-stratified by sex. 

They found various pathways across different types of cancers which were 

significant in one or the other genders supporting the initial hypothesis of functional 

differences across these cancers. Furthermore, this was followed up by a CMAP 



35 
 

analysis in the sex-stratified patients which led to alarmingly different results in 

both the genders establishing a sex-linkage in cancer therapies.  

1. D.6.3 Mutations and CMAP  

Researchers over the years have established the importance of mutations in 

therapy response and therein lies the premise behind targeting significantly 

mutated genes (SMGs) found in the cancer genomes and this is what Cheng F. et 

al (67) set out to establish with this 2016 study. They utilized the TCGA data to 

identify these SMGs and established how these or their neighbors could be 

potential druggable targets.  They successfully identified 693 SMGs across these 

various cancer types. Interestingly, many of these SMGs are currently targeted 

using various inhibitors. Further on, they curated a list of drug-gene signatures and 

compared it to the SMGs and the corresponding networks to establish a global 

drug-target interaction network. This led to the systematic identification of 121 

druggable proteins encoded by the SMGs and FDA-approved drugs which can 

successfully target these hence establishing an effective drug repurposing strategy 

for mutations in cancer.  

1. D.7 Limitations and Future Prospects  

While the connectivity mapping approach has its merits, this ingenious method is 

not without its limitations. One of the major limitations is the points of differences 

between cell lines and tissues in general. Gene expression data from cell lines 

grown on tissue culture flasks and treated with the perturbagens are used to 

connect to tissue samples from patients to assess and identify potential 

therapeutics for various diseases; however, there are way too many differences 
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between these cells that grow in artificial conditions and live tissues, hence adding 

higher variability. There might be changes that the original expression techniques 

might have missed out on and hence remain masked. Further, handling differences 

and batch-to-batch variation in drugs being used can add to the variability, which 

can be mistaken for differences in responses. While these are notable issues, the 

CMAP team works continuously to ensure that these issues are met, and hence 

the data is getting updated time and again.  

 

Considering this background information, the overarching aims of this dissertation 

were to make use of big data resources to address these many problems 

surrounding GI malignancies.  These overall objectives study aims are elaborated 

further in the next chapter.  
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2.1 HYPOTHESIS AND OVERALL OBJECTIVES 

Gastro-intestinal (GI) malignancies or more specifically colorectal and gastric and 

pancreatic cancers have maintained an extremely high molarity mainly due to the 

gaps in our understanding which in turn leads to poor therapeutic targeting and 

lack of potent biomarkers. Over the years, many attempts have been made to gain 

a better understanding of these malignancies in order to identify better biomarker 

panels and therapeutic targets but most of these attempts have, unfortunately, had 

limited success. Furthermore, considering the importance of mucosal barriers in 

these malignancies, the mucin family of proteins has remained central to the 

understanding of these cancers. While mucin based biomarkers and therapeutic 

targeting has shown promise, a better understanding of these proteins can prove 

to be beneficial.  In this regard, recent advances in computational techniques 

leveraging the abundant patient data can prove helpful considering the reduction 

in time taken and better per target success rate. Considering this, this dissertation 

proposes to utilize big-data resources to assess mucin and non-mucin based 

biomarkers and therapeutic targets. The central hypothesis surrounding this study 

is “a big data driven approaches taking advantage of the large-scale datasets will 

lead to a better understanding, better biomarker prediction and better therapeutic 

targeting in high molarity GI cancers.”  More specifically, the following studies were 

considered:  

Aim 1: Global in-silico analysis of mucins in Colorectal Cancer.  

The mucin family of glycoproteins is known to play a significant role in colorectal 

cancer (CRC). Over the years, studies have elucidated the role of MUC2, MU4, 
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MUC5AC, MUC16 and MUC17 but an overall consensus for the role of all 22-

family members has not been carried out till date. Further, various datasets have 

become available both from early precursor lesions and CRC tumor samples. 

These datasets can now prove to be beneficial in order to study the role of mucins 

in CRC initiation and progression. Considering this, the central question to be 

answered from this part of the study is to establish the overall role of mucins in 

CRC using various computational resources.  

Aim 2: Global in-silico analysis of mucins in Gastric Cancer.   

Similar to CRC, mucins have been established to play significant roles in the 

initiation, progression, and metastasis of gastric adenocarcinoma. Specifically, 

MUC1, MUC2, MUC5AC and MUC13 have known to be of great importance with 

potential as both prognostic and diagnostic biomarkers and as therapeutic targets. 

However, a comprehensive analysis of the understanding of mucins in gastric 

cancer (GC) is missing. Considering this, this sub-aim of the study proposes to 

carry out a comprehensive expression, mutation and survival analysis of mucins 

in GC.    

 

Aim 3: Presence and structure-activity relationship of intrinsically 

disordered regions across mucins.  

Further, to explore the therapeutic potential of mucins and gain a deeper 

understanding, this sub-aim proposes to study the presence of intrinsically 

disordered regions (IDRs) across all mucins. IDRs have been established to play 

a significant role in downstream signaling of various proteins, however, no such 

study has been carried out in mucins. Considering the importance of mucins in 
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various malignancies it is extremely relevant to study IDRs in mucins. Considering 

this, this sub-aim proposes to carry out a detailed study of IDRs in mucins.  

 

Aim 4: Connectivity Mapping-based identification and evaluation of ISOX: A 

novel therapeutic strategy for Pancreatic Cancer.  

The final aim of this dissertation is to carry out an in-silico identification and 

validation of novel therapeutic for Pancreatic Cancer (PC). Considering the high 

molarity of PC, the lack of potential therapeutic options and the failure of the one 

target at a time approach, a systems biology approach targeting the global gene 

expression of PC can prove to be highly beneficial. Considering this, the sub-aim 

proposed to use the big data repository connectivity map to identify a specific and 

potent therapeutic for PC. 
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3.1 SYNOPSIS 

 

The mucin family of glycoproteins has been established to play a highly significant 

role in gastrointestinal (GI) malignancies. Specifically, in colorectal cancer (CRC) 

multiple studies have elucidated the role of MUC2, MUC4, MUC5AC, MUC16, and 

MUC17, however, a comprehensive in-depth study has not been carried out yet. 

In this regard, the availability of microarray and RNA-seq datasets and the 

improvement in our ability to harness this data can prove to be extremely useful. 

Considering this, the current study uses microarray data from early precursor 

lesions of CRC and TCGA-RNA-seq dataset to study the expression, mutation, 

and survival differences rendered by the 22-member mucin family. Our in-silico 

analysis reiterated the importance of MUC2, MUC4, MUC5AC, and MUC17 in 

CRC and additionally helped in the identification of the important role of MUC16 in 

CRC. Further, our analysis helped in the identification of higher expression of 

MUC16 in a subset of MSI-H patients and a very high overall mutation in MUC16 

which established the imperative role of MUC16 in CRC.  

 

3.2 BACKGROUND AND RATIONALE 

Colorectal cancer (CRC) has remained one of the deadliest cancers in the United 

States for the past few years, with over a hundred thousand new cases expected 

in 2021 alone (Cancer Statistics, 2021). Furthermore, the 5-year survival in 

patients with late-stage CRC stands at a meager 14%. Amongst major reasons for 

this poor survival are the gaps in our understanding of the initiation and 
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progression of this disease. What makes it even harder is the inherent 

heterogeneity of this disease and the subsequent varied response to therapy. The 

majority (~70%-80%) of the CRC patient follow a convention pathway of initiation 

from polyp-adenoma to carcinoma (68, 69). This pathway is characterized by 

mutations in common tumor-associated genes (KRAS, TP53) and a very high 

percentage mutation in the adenomatous polyposis coli (APC) gene. Furthermore, 

a smaller subset of CRC patients develops tumors through what is known as the 

serrated pathway considering the development from hyperplastic polyps to 

serrated polyps to carcinoma which is characterized by a mutation in BRAF and a 

CpG island methylator phenotype (70, 71). Additionally, tumors developing from 

these two pathways also show differences in propensity to show microsatellite 

instability (MSI-H) wherein tumors emerging from the serrated pathway are more 

likely to be MSI-H as opposed to those from the traditional pathway. These major 

differences warrant more in-depth studies into the understanding of molecular 

dissimilarities in patients with CRC.  

Colonic mucus which is made up predominately of highly glycosylated mucin 

proteins plays a central role in normal colonic function. However, mutations in 

conjunction with various environmental stimuli lead to changes in the composition 

of the mucus which eventually play a significant role in CRC development (72). 

Considering this, an integral part of CRC initiation and progression is the aberrant 

glycosylation and expression of various members of the 22-member mucin family. 

Over the past many years, various studies have elucidated the role of specific 

mucins in CRC (73-75). More specifically, studies have established a differential 
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expression of MUC2, secretory mucin inherently expressed in normal colon which 

is found to be downregulation or lost in CRC. Subsequently, this loss leads to faster 

tumor progression, resistance to apoptosis, etc. Further, mice lacking in Muc2 

show increased proliferation and migration of cells, and a significantly lower level 

of apoptosis, and further a higher propensity to develop CRC (76, 77).  Additionally, 

various studies have associated MUC2 silencing with CRC metastasis through 

various important signaling pathways like IL6 signaling (78, 79). In addition to 

MUC2, various studies have also elucidated the role of the MUC1, (80-82), MUC4 

(83, 84), MUC5AC (75, 85), and MUC16 (86, 87). While these studies provide 

insight into the role of mucins in CRC initiation and progression, a comprehensive, 

patient cohort driven study has not been carried out to date.  

Considering this, the current study uses a bioinformatics-driven approach 

harnessing the Cancer Genome Atlas (TCGA) and microarray datasets to carry 

out an in-depth analysis of mucin alteration in early precursor lesions and tumor 

samples. To investigate how mucins are expressed in the various precursor 

lesions for CRC, we first assessed microarray data from tubular adenomas (TA), 

sessile serrated adenomas/polyps (SSA/Ps), and normal samples to delineate 

expressional alteration across mucin family. Expression differences in mucins in 

CRC tumor samples were evaluated using the expression data from the 

adenocarcinoma dataset (COAD) from The Cancer Genome Atlas (TCGA). 

Additionally, to further study the relevance of mucins in CRC, we explored the 

TCGA data to study the survival differences in CRC patients with respect to the 

expression of various mucins. A deeper understanding of the role of mucins was 
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investigated using the web-tool from CBioPortal (https://www.cbioportal.org/) by 

assessing the mutational profile of mucins in the TCGA-COAD dataset. To fully 

understand the role of MUC16-which was found to be upregulated and highly 

mutated in a subset of patients, we combined the clinical information from within 

the TCGA dataset to the expression profile to identify specific subsets of patients 

with expression of specific mucins. Overall, we carried out an in-depth in-silico 

analysis to study and establish the role of mucins in CRC.  

 

3.3 MATERIALS AND METHODS  

3.3.1 Microarray data processing and analysis.  

Raw microarray data files (.CEL) files were downloaded for both the GEO 

datasets-GSE43841 and GSE45720 and processed using RMA normalization 

using the “affy” package in R-Bioconductor. Furthermore, all mucins were 

extracted using gene symbols and boxplots plotted using MedCalc.  

3.3.2 TCGA RNA-seq data processing.  

Processed RNA-seq data (FPKM) was downloaded from the UCSC-Xena 

webserver (https://xena.ucsc.edu/). Clinical information was also downloaded from 

UCSC-Xena and matched in a sample-specific way using R-Bioconductor.  

3.3.3 Survival analysis of mucins in CRC patient cohort.   

Survival data were extracted from the clinical files from UCSC-Xena and matched 

to the expression data in a sample-specific manner using R-Bioconductor. Survival 

analysis was then carried out in JMP (v.14) defining median as the differentiating 

variable.  

https://www.cbioportal.org/
https://xena.ucsc.edu/
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3.3.4 Mutational analysis of CRC in TCGA-COAD patient cohort.  

Mutational analysis of all mucins was carried out using the web tool cBioPortal 

(https://www.cbioportal.org/). The point mutation data for MUC16 mutations was 

also downloaded using the webtool.  

3.3.5 Domain mapping for MUC16  

MUC16 sequence (ENST00000397910.8) was downloaded from Ensembl and 

domain analysis was using various online tools and servers including NCBI-CDD 

(https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml), Pfam 

(http://pfam.xfam.org/) and prosite (https://prosite.expasy.org/). The dissection of 

motifs in the sequence was done using prosite and HMMER (http://hmmer.org/) 

tools. The regions for each motif and domain are represented in the figure.  

3.4 RESULTS  

 

3.4.1 Study cohort demographics.  

To study the expression differences in early precursor lesions from CRC, GEO 

datasets (https://www.ncbi.nlm.nih.gov/gds) was evaluated for datasets containing 

data from tubular adenomas (TAs), hyperplastic polyps (HPs), and sessile serrated 

adenomas/polyps (SSA/Ps) which led to the identification of two datasets- 

GSE43841 and GSE45720 (Fig. 3.1B).  The Cancer Genome Atlas (TCGA) 

repository was studied for analyzing the alteration in the expression, mutation, and 

survival data from the colorectal adenocarcinoma (COAD) dataset.  A total of 380 

tumor samples were studied with representation from various subtypes (Fig. 3.2A, 

different microsatellite stability status (Fig. 3.2B), across race (Fig. 3.2C), and 

gender (Fig. 3.2D).   

https://www.cbioportal.org/
http://m.ensembl.org/Homo_sapiens/Transcript/Summary?db=core;g=ENSG00000181143;r=19:8848844-8981342;t=ENST00000397910
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml
http://pfam.xfam.org/
https://prosite.expasy.org/
http://hmmer.org/
https://www.ncbi.nlm.nih.gov/gds
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Figure 3.1 Overall study design. 

Microarray data from GEO datasets was used in conjunction with the TCGA RNA-

seq data to carry out comprehensive expression, mutation, and survival analyses 

in normal, early precursor lesion and tumor samples from colorectal cancer (CRC). 

A.  Schematic representation of the overall methodology for assessing the 

expression, mutation, and survival status of mucins in CRC. TCGA RNA-Seq 

expression data from 380 tumors and 51 normal samples was downloaded using 

UCSC Xena and the expression of mucins was compared across tumor and 

normal samples. Survival information was also downloaded from UCSC Xena. 

TCGA mutation profile was assessed using the online tool; CBioPortal.  B. 

Schematic representation of early precursor lesion datasets. Early precursor 

lesions data was assessed using microarray datasets from GEO datasets. Two 

separate microarray datasets (GSE43841 and GSE45720) were used to compare 

normal samples with tubular adenomas (TAs) and sessile serrated 

adenomas/polyps (SSA/Ps).  
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Figure 3.1  
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Figure 3.2 Overall study population  

A. Pie chart representation of various subtypes of CRC represented within the 

TCGA-RNA seq data. B. Pie chart representation of the microsatellite instability 

status of the TCGA samples represented as high microsatellite instability (MSI-H), 

low microsatellite instability (MSI-L), and microsatellite stable (MSS). The same 

codes have been used all throughout the study. C. Pie chart representation of race 

distribution across the TCGA RNA seq samples used for the current study. D. Pie 

chart representation of gender distribution across the TCGA RNA seq samples 

used for the current study. 
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Figure 3.2 
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3.4.2 Lesion-specific analysis of mucin expression reveals aberrant 

expression of various mucins across specific lesion types. 

Comparison of normalized expression data from normal, TA, and SSA/P samples 

highlighted a statistically significant difference in expression of various mucins. 

Specifically, MUC1, MUC4, MUC6, MUC15, MUC16, and MUC19 were found to 

be upregulated in SSA/Ps when compared to normal samples and further in TAs 

when compared to SSA/Ps (Fig.3.3A). Further, interestingly MUC5AC, MUC13, 

and MUC17 were found to be significantly higher specifically in the SSA/P sample 

set when compared to both normal and the TAs samples. (Fig. 3.3B) 

3.4.3 Expression analysis of TCGA CRC tumor samples reveals aberrant 

expression of mucins.  

To assess the role of mucins in CRC tumor samples, normal and tumor data from 

the TCGA COAD cohort was assessed for expression alterations of mucins in 

CRC. This analysis led us to identify the upregulation of specific mucins like MUC6 

and MUC15 (Fig. 3.4A and Fig. 3.4B). Furthermore, MUC2 and MUC4 were found 

to be significantly downregulated (Fig 3.4C). Interestingly, a specific subset of 

patients showed an upregulation of MUC16 (Fig. 3.4D).  

3.4.5 MUC16 found to be upregulated in MSI-H patients.  

Considering the specific elevation of MUC16 in a specific subset of patients, we 

correlated each of these MUC16 high (~34% of the total population, Fig. 3.4E) 

samples to the corresponding clinical variables. Comparison of MUC16 expression 

with respect to MSI status led to the identification that a higher percentage of MSI-

H patients having an elevated expression of MUC16. Furthermore, no such 
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differences were observed in the MSS and MSI-L subpopulations (Fig. 3.4F). An 

independent immuno-histochemistry based validation showed a high-level MUC16 

expression in tissue samples from human CRC patients (Fig. 3.4G). Further, gene 

set enrichment analysis of MUC16-HIGH and MUC16-LOW patient population 

showed important cancer-related pathways like KRAS-signaling, JAK-STAT 

signaling, and epithelial-mesenchymal transition highly enriched in the MUC16-

HIGH population (Fig. 3.4H).  
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Figure 3.3 Differential expression analysis of mucins across early 

precursor lesions of CRC.    

Microarray data from two microarray datasets (GSE43841 and GSE45720) was 

downloaded and processed using R-Bioconductor. The figure is a boxplot 

representation of mucins compared across normal, sessile serrated 

adenomas/polyps (SSA/Ps), and tubular adenomas (TAs). Statistical significance 

was assessed by carrying out a pairwise assessment comparing normal samples 

with sessile serrated adenomas and tubular adenomas.  

*** p.value < 0.01 

** p. value < 0.05 
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Figure 3.3 
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Figure 3.4 Differential gene expression of 22-member mucin family in tumor 

and normal samples.  

A. Heatmap representation of expression differences between tumor (red) and 

normal (purple) samples. Overall assessment of expression differences in 

between normal and tumor samples showed overexpression of various mucins like 

MUC1, MU5AC, MUC15, and MUC16 with a loss of others like MUC2 and MUC4. 

B.  Representative boxplots showing overexpression of mucins MUC6 and 

MUC15. C. Representative boxplots showing downregulation of MUC2 and MUC4.  
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Figure 3.4   

A. B. 

C. 
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Figure 3.4 Differential gene expression of 22-member mucin family in tumor 

and normal samples.  

D. A subset of patients were found to have an upregulation of MUC16 (marked by 

the red box). E. Pie chart representation of the distribution of MUC16 expression 

shows 34% of total samples show an extremely high expression of MUC16. F. 

Closer assessment of high MUC16 expressing patients showed an association of 

MSI status with MUC16 expression with a high percentage of MSI-H patients 

showing an overexpression of MUC16. G. Representative figure of IHC expression 

studies of MUC16 expression in CRC patient tissue samples. Independent IHC 

validation of MUC16 expression in CRC samples showed high MUC16 expression 

in a subset of all tested samples, hence validating the initial finding. H. Gene set 

enrichment analysis graphs comparison MUC16 high and MUC16 low samples.    
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Figure 3.4 
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3.4.5 Mucin expression differences found to be associated with survival.  

Further, to study the prognostic relevance of mucins in CRC, survival statistic from 

TCGA was studied for each of the mucins after dividing the whole patient cohort 

into high and low expressing patient cohorts based on the median expression of 

each of the mucin. Interestingly, various mucins were found to affect the survival 

of CRC patients. Most interestingly, MUC6 was found to be statistically significantly 

correlated with survival wherein patients showing high expression were found to 

have a worse prognosis than patients showing low expression (Fig. 3.5).  

3.4.6 High percentage mutations observed in various mucins.  

Further, in the quest to study the role of mucins in CRC, we analyzed the 

percentage mutation of all mucins in the TCGA-COAD cohort. Interestingly, many 

mucins like MUC16, MUC5B, and MUC17 were found to be highly mutated. 

Moreover, MUC16 was found to be mutated in 28% of the TCGA-COAD cohort 

which when taken in conjunction with the overexpression of MUC16 in a subset of 

the population was an extremely interesting observation (Fig. 3.6A). Of note, 

various previous studies across different types have correlated MUC16 mutations 

with overall survival, tumor mutation load, and immune response but such a 

comprehensive study is missing for CRC.  This finding was also independently 

validated in other CRC datasets, which consistently showed a high percentage 

mutation in CRC (Fig. 3.6B).  Next, we evaluated the correlations between MUC16 

mutations and the other commonly mutated genes in CRC (TP53, APC, KRAS, 

PIK3CA, SMAD4, BRAF, etc.). Interestingly, MUC16 mutations were found to be 
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highly correlated to these various other types of mutations with a tendency of co-

occurrence amongst these mutations (Fig. 3.6C). 

3.4.7 MUC16 mutations.  

Considering this, we further carried out an in-depth analysis of mutations of 

MUC16 in CRC. We first assessed the type of mutations present in MUC16 in 

terms of variant classification, single nucleotide variation, and variant type. 

Interestingly, we observed that most of the mutations in MUC16 were missense 

mutations (Fig. 3.6D), with predominately T/G-G/T and T/C-C/T single nucleotide 

variations (Fig. 3.6E), and the majority of the patients showing a single nucleotide 

polymorphism (Fig. 3.6F). Furthermore, we overlapped independently mapped 

domains in MUC16 and the location of mutations and found that most MUC16 

mutations were found in the SEA domain of MUC16 (Fig. 3.6G). Interestingly, 

various studies have elucidated the role of the SEA domain present within mucins 

in therapeutic interventions, and the overall progression of tumors.  
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Figure 3.5 Survival analysis of CRC patients 

Survival analysis was carried out using SAS-JMP (v14) using the median 

expression of each mucin as the differentiating variable.  
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Figure 3.5 
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Figure 3.6 Mutational analysis of mucins in TCGA CRC samples identifies 

high mutation percentage of MUC16 mutated patients 

A. CBioPortal web portal was used to assess the mutations of all members of the 

mucin family in TCGA CRC patients. Interestingly, MUC16 was mutated in 28% of 

the CRC patients.  
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Figure 3.6 
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Figure 3.6.  B. Assessment of MUC16 mutations in other datasets. C. Comparison 

of MUC16 mutations to other commonly mutated genes in CRC showed high 

tendency of co-occurrence of MUC16 and other genes like BRAF, MSH6, PIK3CA 

amongst others  
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Figure 3.6 
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Figure 3.6. D. Closer assessment of MUC16 mutations assessing variant 

classification. E. Assessment of MUC16 mutations for single nucleotide variation 

classes. F. Assessment of MUC16 mutations for variant types.  G. Further, we 

assessed the specific mutations across MUC16 domains and compared mutations 

across cancers. Interestingly, various mutations were found to be common to other 

cancers (red). Most of these mutations were found within the SEA domain of 

MUC16.  
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Figure 3.6 
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3.5 DISCUSSION  

While various studies have elucidated the role of specific mucins in the initiation 

and progression of CRC, a detailed analysis of all members of the mucin family 

has not been carried out to date. Considering this, the current study uses various 

bioinformatics tools to assess the role of mucins in CRC. First, mucin expression 

patterns were studied in microarray data from early precursor lesions of CRC. 

Further, to gain insight into differences between tumor and normal samples, data 

from the TCGA-COAD cohort were studied.  Furthermore, mutation, survival, and 

clinical information from the TCGA cohort were used to assess the role of mucins 

in CRC.   

The analysis of the microarray sample set from precursor lesions of CRC led to 

the identification of MUC5AC, MUC13, and MUC17 to be specifically 

overexpressed in SSA/Ps. Interestingly, multiple previous studies have explored 

the biomarker potential of MUC5AC and MUC17 in SSA/P (88-90). MUC13, 

however, remains unexplored. Considering this, further studies combining 

MUC5AC-MUC13-MUC17 can prove to be beneficial in CRC early detection. 

Furthermore, analysis of tumor samples from the TCGA-COAD patient cohort 

showed significant downregulation of MUC2 and MUC4 in the tumor samples in 

comparison to the normal samples. Multiple studies have established the 

functional significance of the loss of MUC2 and MUC4 in CRC. We observed an 

upregulation in the expression of MUC6 and MUC15. Upregulation observed in the 

MUC16 was restricted to a subset of patients which were predominately MSI-H. 

Interestingly, previous studies have correlated MUC2 and MUC5AC expression 
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with MSI status suggesting that the expression of these mucins can be a predictor 

of MSI status (91) but no such study has been carried out in MUC16. Considering 

this, MUC16 expression can have direct clinical implications which should be 

further explored through more studies.  Additionally, MUC16 was also found to be 

highly mutated in the TCGA-COAD cohort further supporting the important role of 

MUC16 in CRC. Interestingly, studies across cancer types have elucidated the 

importance of MUC16 mutations in cancer progression. MUC16 mutations were 

found to be correlated with prognosis in endometrial cancers (92), gastric cancer 

(93) cutaneous melanoma (94), and with response to immune checkpoint inhibitors 

overall in solid tumors (95).  These observations and the high percentage of 

mutations seen in MUC16 in our patient cohort suggest a potential clinical 

relevance of MUC16 and warrant further studies regarding these mutations.  
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4.1 SYNOPSIS 

 

Gastric adenocarcinoma is an immensely deadly disease with a 5-year survival 

rate of 6% in advanced tumors and over 1 million annual cases worldwide. The 

mucin family of glycoproteins has been established to be of great importance in 

the initiation, progression, and metastasis of various gastrointestinal (GI) 

malignancies. This role of mucins is in turn responsible for significant applications 

as biomarkers and therapeutic interventions. In GC, multiple studies have reported 

the importance of these mucins, specifically MUC1, MUC2, MUC5AC, and 

MUC13. However, to date, global studies for assessing the combined expression 

and functional implications of mucin family are lacking. In this regard, large-scale 

datasets analyses such as The Cancer Genome Atlas (TCGA), along with 

comprehensive information on the expression, survival, and mutational 

information, can provide a holistic picture of the mucin family in gastric cancer 

pathobiology. Considering this, the present study uses the stomach 

adenocarcinoma (STAD) TCGA. It assesses mucin expression patterns, 

mutational patterns, survival statistics and pathobiological significance of mucin-

associated signature. Furthermore, the study also uses the large-scale normal 

dataset (genotype-tissue expression-GTEx) to measure the differences between 

the normal and tumor samples. Overall, our study reiterates the importance of 

MUC1, MUC5AC, MUC6, MUC13, and MUC16, and establishes the significance 

of MUC2 and MUC9. Further, it provides the MUC2-MUC12-MUC13-

OVGP1/MUC9-MUC4-MUC20 as a prognostically relevant cluster of mucins in 

GC.  
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4.2 BACKGROUND AND RATIONALE 
 

Over the years, gastric cancer (GC) has maintained its high mortality rate, wherein 

currently it is the third most common cause of cancer deaths globally (8). 

Additionally, what makes it even worse is the high number of cases, with over one 

million cases detected annually (96). One of the major reasons for this high 

mortality is a lack of understanding of the complexity and the heterogeneity within 

the disease. Researchers believe that a better understanding of the disease 

biology would lead to efficient biomarker discovery and better therapeutic 

interventions resulting in improved survival rates (97). In this regard, a better 

understanding of the role of the 22-member mucin family of glycoproteins might 

prove beneficial considering their importance in cancer initiation and progression. 

Specifically, in gastro-intestinal malignancies, mucins have been studied for 

therapeutic potential (98-100) as biomarkers (73, 101) and to play significant roles 

in tumor progression (75, 102). Further, MUC1 has been associated with 

Helicobacter pylori infection which is a known risk factor for GC (103). Additionally, 

a study assessing the prognostic relevance of MUC1, MUC2, and MUC5AC found 

downregulation of MUC1, aberrant expression of MUC5AC, and de-novo 

expression of MUC2 in GC patients (104). Additionally, various studies have found 

overexpression of MUC13 in various GC subtypes (105, 106). Furthermore, a 

recent study has correlated the mutational load of MUC16 with tumor mutation load 

and survival of GC patients (107). While all these studies report about one or a 

combination of a few mucins, in-depth knowledge of mucin expression and its 

correlation with GC is urgently needed.  In this regard, the recent boom in 
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sequencing technology and the patient data that has become available since then 

offers unique insights into expression, mutation, and survival patterns. Hence, it 

can prove extremely useful in answering questions pertaining to understanding the 

complexity of various proteins and protein families across various malignancies.  

Considering this, the present study uses open-source data and various web tools 

to carry out an in-depth analysis of mucins in gastric cancer. We first assessed the 

stomach adenocarcinoma (STAD) dataset from the cancer genome atlas (TCGA) 

for expression differences between tumor and normal samples. Further, to carry 

out a more specific analysis, we compared the STAD-TCGA dataset to the normal 

samples from the genotype-tissue expression (https://www.gtexportal.org/home/; 

GTEx,  (108) portal using the web-based tool GEPIA (http://gepia.cancer-pku.cn/) 

(109). Furthermore, an independent validation study was carried out using the 

immuno-histochemistry data from the pathology atlas within the human protein 

atlas (https://www.proteinatlas.org/, (110)). Further, to identify mucins closely 

associated with each other and forming functionally relevant clusters, we first 

carried out a protein network analysis using the STRING (https://string-

db.org/;(111)) database.  Additionally, for a GC-specific co-expression analysis, 

Spearman correlation values for all mucins within the TCGA-STAD dataset were 

assessed using GEPIA, which led to the identification of the highly correlated 

MUC2-MUC3A-MUC12-MUC13-MUC17-OVGP1/MUC9-MUC4-MUC20 cluster. 

Further, to understand this cluster’s prognostic relevance, a cox-proportional 

survival analysis was carried out in the TCGA-STAD dataset using the webtool 

SurvExpress  (112) using the maximization algorithm on risk groups. Interestingly, 

https://www.gtexportal.org/home/
http://gepia.cancer-pku.cn/
https://www.proteinatlas.org/
https://string-db.org/
https://string-db.org/
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GC’s prognostic stratification based on the MUC2-MUC12-MUC13-

OVGP1/MUC9-MUC4-MUC20 cluster was extremely significant with a log-rank p-

value of 0.00017. Furthermore, to study these mucins more closely, we went on to 

assess the mutations present within these glycoproteins. Interestingly, many of the 

mucins showed a high percentage of mutations, including MUC16 (35%), MUC17 

(17%), MUC5B (14%), MUC4 (13%), and MUC6 (13%), and further studies 

exploring these mucins in GC would be extremely interesting.   

 

4.3 MATERIALS AND METHODS  

4.3.1 Expression data extraction and processing. Expression data from the 

TCGA-STAD dataset was assessed in two ways. USSC-Xena was used to 

download the log normalized FPKM expression data which was then processed 

using “Complex Heatmaps” from R-Bioconductor. Furthermore, the webtool 

GEPIA (http://gepia.cancer-pku.cn/) was assessed for comparison analysis 

between TCGA-STAD tumor expression and normal organ expression from GTEx.  

 

4.3.2 Correlation analysis. Spearman correlation values were calculated for each 

of the mucins with each other using the web-interface of the tool GEPIA 

(http://gepia.cancer-pku.cn/). Further, the “corplots” package within R-

Bioconductor was used to plot the correlation plot using hierarchical clustering as 

the order variable.  

 

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
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4.3.3 Network analysis. Functional protein network analysis was carried out using 

the webtool string (https://string-db.org/). Mucins were clustered into distinct 

groups using the k-means algorithm.  

 

4.3.4 Survival-analysis. The webtool SurvExpress 

(http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp) was analyzed for 

the correlation cluster (MUC2, MUC3A, MUC12, MUC13, OVGP1/MUC9, MUC4, 

and MUC20) and each of the genes within the cluster individually. “Survival days” 

was used as the censoring variable with maximization of the risk groups.  

4.3.5 Mutational analysis. Mutational analysis was carried out using the webtool 

cBioPortal (https://www.cbioportal.org/). CBioPortal was assessed for all mucins 

in the TCGA-stomach adenocarcinoma pan-cancer atlas (N=440) cohort. Further, 

independent validation studies were carried out in other stomach adenocarcinoma 

datasets (Pfizer; N=100, TCGA-Firehose Legacy; N=478, Nature 2014; N=295, 

Nature Genetics 2014; N=30, and Nature Genetics 2011; N=22).  

4.3.6. IHC analysis using protein atlas. Protein atlas was analyzed for 

immunohistochemistry (IHC) assessment of all mucins, and quantitative results 

from specific antibodies (MUC1-CAB000036, MUC2-CAB016275, MUC3A-

HPA010871, MUC4-HPA005895, MUC5AC-CAB002774, MUC6-CAB002165, 

MUC7-HPA006411, MUC9/OVGP1-HPA062205, MUC12-HPA023835, MUC13-

HPA045163, MUC14-HPA005928, MUC15-HPA026110, MUC16-CAB055172, 

MUC17-HPA031634, MUC18-CAB002147) analyzed for quantitative staining  

Representative figures from each of these specific mucins were downloaded.  

https://string-db.org/
http://bioinformatica.mty.itesm.mx:8080/Biomatec/SurvivaX.jsp
https://www.cbioportal.org/
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4.4 RESULTS 

4.4.1 Study population details and characteristics. The national cancer institute 

(NCI) repository, the Cancer Genome Atlas (TCGA), contains gene expression, 

mutation, and survival data from various malignancies. To explore the role of 

mucins in GC, the stomach adenocarcinoma (STAD) dataset from within TCGA 

was assessed for expression, survival, and mutation data. The key characteristic 

distribution, including gender (Fig.4.1A), race (Fig. 4.1B), ethnicity (Fig. 4.1C), 

vital status (Fig. 4.1D), stage (Fig. 4.1E), and treatment received (Fig. 1F), has 

been compiled shows a diverse patient population.  

4.4.2 Aberrant expression of multiple mucins observed in GC. Expression 

differences between normal and tumor samples were explored in two ways. First, 

processed expression (fragments per kilobase per million; FPKM) data from GC 

tumor and adjacent normal samples were downloaded from the UCSC Xena 

webserver (http://xena.ucsc.edu/). A heatmap-based visualization (Fig. 4.2A) of 

the data helped in identifying expression differences in certain mucins wherein 

mucins like MUC13 and MUC1 were found to be upregulated in tumor cases when 

compared to normal and were also found be clustering together.  While this gave 

some insight, to further understand the complexities of the expression differences, 

the tumor expression data (N=408) was compared to the normal samples (N=211) 

from the GTEx portal using the web-based tool GEPIA.   Interestingly, a statistically 

significant (p-value < 0.05) increase was observed in MUC2, MUC3A, MUC4, 

MUC5B, MUC12, MUC13, MUC17, and a significant decrease was seen in the 

http://xena.ucsc.edu/
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case of MUC5AC and MUC6 when tumor samples were compared to normal 

samples (Fig. 4.2B).  Stage-specific expression differences identified an increase 

in MUC13 expression with stages (not-significant) and a uniform distribution across 

other mucins (Fig. 4.2C). 
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Figure 4. 1 Demographics of the patient population. 

The various demographics of the TCGA-STAD cohort were assessed to reveal the 

patient population’s distribution in terms of A. gender, B. race, C. ethnicity, D. vital 

status, E. stage, and F. treatment type.   
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Figure 4.1 
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Figure 4. 2 Expression patterns for Mucins in TCGA-STAD. 

The TCGA-STAD dataset was studied for expression patterns of all 22-members 

of the mucin family of glycoproteins. A. A heatmap representation of processed 

(FPKM) RNA-sequencing data downloaded from UCSC-XENA webserver. Mucins 

have been clustered using the hierarchical clustering within “Complex-Heatmaps”.   
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A. 

Figure 4.2 
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Figure 4.2. B. Boxplot representations of significantly differentially expressed 

mucins in between normal and tumor samples. 
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Figure 4.2. C. Boxplot representations of all other mucins in between normal and 

tumor samples. 
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Figure 4.3 Expression patterns for Mucins in TCGA-STAD across stage. 

Boxplot representations of differentially expressed mucins across stages.  
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4.4.3 Independent validation of expression mucins. Further, to independently 

validate the expression of these mucins in GC, immunohistochemistry (IHC) 

images from the Human Protein Atlas were assessed for expression. 

Quantification (Fig. 4.4A) of expression in GC patient tissue samples revealed an 

extremely high expression of MUC1.   Furthermore, MUC2 MUC3, MUC4, 

MUC5AC, MUC13, MUC14, MUC17, and MUC18 were found to be upregulated in 

a high number of cases suggesting a potential role of these mucins in GC, which 

needed to be explored further. Representative IHC images from high or medium 

expression cases were downloaded from the Human Protein Atlas (Fig. 4.4B) 

4.4.4 Correlation analysis identifies specific clusters of mucins. Next, to study 

the relationship of mucins with each other, protein network analysis was first 

carried out to compare and identify closely associated mucins. Interestingly, k-

means clustering of the network showed a close association between MUC3A-

MUC12-MUC13-MUC15-MUC20-MUC21-MUC22 and also in between MUC4-

MUC5AC-MUC5B-MUC6-MUC7-EMCN-MUC16 (Fig 4.5A). Additionally, to 

assess the co-expression between mucins specifically in GC, a spearman 

correlation analysis was carried out using GEPIA and plotted using the “corrplot” 

library from R-Bioconductor with hierarchical clustering as the ordering parameter. 

Interestingly, MUC2-MUC3A-MUC4-MUC12-MUC17-OVGP1-MUC20 was found 

to be a highly correlated cluster. (Fig. 4.5B) 

4.4.5 Survival analysis identifies prognostic biomarker signature. Next, to 

assess the prognostic relevance of these mucins’ survival analysis was carried out 

in the TCGA-STAD dataset using the risk maximization algorithm within 



90 
 

SurvExpress. Interestingly, from the aforementioned cluster, MUC4, MUC12, 

MUC13, and MUC20 were found to be independently prognostically relevant (Fig. 

4.6A). Furthermore, interesting was the fact that the aforementioned correlation 

cluster of MUC2-MUC12-MUC13-MUC4-OVGP1-MUC20 was found to be highly 

prognostically relevant (Log Rank-p-value 0.0001778), establishing the prognostic 

relevance of these mucins in GC (Fig. 4.6B). 

4.4.6 Mutational patterns identify a high percentage of mutations in various 

mucins. Next, to supplement the understanding of mucins in GC, a mutational 

analysis was carried in the TCGA-STAD dataset using the webtool CBioPortal. 

Intriguingly, MUC16 was found to be one of the most highly mutated genes in the 

TCGA-STAD cohort, with over 35% showing at least some mutation in MUC16 

(Fig. 4.7A). Additionally, MUC17, MUC5B, MUC4, and MUC6 were also found to 

be highly mutated in the studied cohort. MUC16 was also found to be highly 

mutated in other GC datasets (Fig. 4.7B), further establishing the important role of 

MUC16 in GC.  
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Figure 4.4 Immunohistochemistry analysis of Mucins in GC. 

The Human Protein Atlas was studied for immunohistochemistry expression of all 

mucins in GC. A. Bar graph representation of percentage high (red), medium 

(green), low (yellow), and no-expression (black) across all mucins.  B. 

Representative IHC images of all mucins revealed high expression of MUC1.  
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Figure 4.4 
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Figure 4.5 Correlation of Mucins in GC. 

Correlation and co-expression study mucins was studied using the STRING 

database and “corrplot” package in R-Bioconductor   A. Protein-protein interaction 

network of all mucins with k-means (N=4) based clustering. Each color represents 

a specific cluster. B. Correlation plot of mucins from TCGA-STAD expression with 

highly positively correlated cluster marked.  
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Figure 4.5 
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Figure 4. 6 Survival analysis of Mucins. 

Survival differences were studied for individual and previously identified clusters 

of Mucins together. A. Individual survival plots for MU4, MUC12, MUC13, and 

MUC20. B. Survival differences of highly correlated cluster MUC2-MUC12-

MUC13-OVGP1-MUC4-MUC20.  
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Figure 4.6 
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Figure 4. 7 Mutational analysis of Mucins. 

Mutational analysis was carried out in the TCGA-STAD cohort using the web-tool 

cBioPortal. A. Oncoprint is depicting the percentage mutations in all mucins in GC. 

B. Positional mutations in MUC16 are based on increasing length.  
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Figure 4.7 
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4.5 DISCUSSION  

Gastrointestinal (GI) cancers, including pancreatic, colorectal, and gastric cancers, 

have an aberrant expression and an extremely significant role of the mucin family 

in their initiation and progression. Considering this important role, mucins have in 

turn been established as the pertinent biomarkers (90, 101) and in therapeutics 

(75, 113, 114). Specifically, in GC, various mucins like MUC1, MUC2, MUC5AC 

MUC6, and MUC13 have been studied for their important roles as the therapeutic 

targets or prognostic and predictive biomarkers. (115-120). While studies have 

helped us make some progress in understanding the role of mucins in GC, various 

gaps remain. The current study, with the help of various bioinformatics tools, 

sought to assess the current status of various members of the mucin family in GC.  

The high-throughput expression analysis of the FPKM data from the TCGA-STAD 

dataset led to the identification of specific clusters of mucins within the GC TCGA 

dataset. Specifically, MUC1 and MUC13 were found to be strongly associated with 

each other, which is intriguing since studies have been conducted to study the 

collective role of these two transmembrane mucins (121).  However, this analysis 

was limited by the imbalance in the normal and tumor samples. Considering this, 

an in-depth analysis was carried out using the web tool GEPIA by comparing the 

TCGA (only tumor samples, N=408) dataset to the normal data from the genotype-

tissue expression (GTEx) portal. This comparison led to the identification of various 

significantly differentially expressed genes. Significant downregulation of MUC6 

and MUC5AC was observed from normal to cancer cases. Interestingly, MUC6 
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and MUC5AC are resident mucins of the gastric canal and various studies have 

previously reported a downregulation or loss of these mucins in patient cohorts 

(120, 122-125). Further, the expression analysis led to the identification of various 

upregulated mucins like MUC2, MUC3A, MUC4, MUC5B, MUC12, MUC13, and 

MUC17. Interestingly, both MUC13, and MUC17 are known to be upregulated and 

have specific roles in GC (105, 126) and various efforts are currently underway to 

target and study these two mucins further in GC. Furthermore, an independent 

assessment of expression differences in immunohistochemistry data from the 

Human Protein Atlas reiterated the high expression of MUC3A, MUC4, MUC13, 

and MUC17. Furthermore, a very high expression of MUC1 has observed in these 

tissue sections in contrast to the TCGA dataset since the expression differences 

in TCGA vs GTEx normal cases were not found to be significant. This observation 

further goes back to the initial observation of MUC1 and MUC13 forming an 

extremely strong cluster with each other. Furthermore, to identify the relationship 

of these mucins with each other and their interdependence in functionality, a two-

way correlation and co-expression analysis were carried out. Interestingly, through 

a k-means clustering of the STRING-based protein-protein interaction analysis, 

two major clusters namely MUC3A-MUC12-MUC13-MUC15-MUC17-MUC20-

MUC22 and MUC1-MUC4-MUC5AC-MUC5B-MUC6-MUC7-MUC16 were 

observed. Further, a spearman correlation analysis in the TCGA-STAD cohort 

identified a strongly positively correlated cluster containing MUC2-MUC3A-

MUC12-MUC13-MUC17-OVGP1/MUC9-MUC4-MUC20. This observation opened 

the doors for further questions, one of which was if the hence identified cluster 
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possesses a prognostic role in GC. To answer this, we went on to assess the 

survival differences in the TCGA-STAD concerning the expression of these 

mucins. Interestingly, MUC4, MUC12, MUC13, and MUC20 were found to have an 

independent prognostic relevance in the TCGA-STAD cohort when analyzed with 

a risk-maximization algorithm and survival days as the censoring variable. Further, 

more intriguing was the fact that when analyzed together, the cluster of MUC2-

MUC12-MUC13-MUC9/OVGP1-MUC20 was found to significant (Log-Rank-p-

value=0.0001778) associated with survival hence identifying a prognostic 

biomarker panel. Further, mutational analysis of all mucins in GC revealed a very 

high percentage mutation in MUC16, MUC17, MUC5B, MUC4, and MUC6. 

Interestingly, MUC16 mutations have been known to have prognostic and 

functional implications in GC and various other cancers, opening up various 

avenues for further research and potential applications in GC. 
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Chapter 5 Presence and structure-

activity relationship of intrinsically 

disordered regions across mucins 

 

 

 

Portions of the content covered in this chapter are the subject of a published article 

in FASEB (Carmicheal J, Atri P, Sharma S, Kumar S, Chirravuri Venkata R, 

Kulkarni P, Salgia R, Ghersi D, Kaur S, Batra SK. Presence and structure-activity 

relationship of intrinsically disordered regions across mucins FASEB J. 2020 02; 

34(2):1939-1957).   
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5.1 SYNPOSIS 

 

Many of the 20-member mucin family are evolutionarily conserved proteins that 

are often aberrantly expressed and glycosylated in various benign and malignant 

pathologies including oncogenic signaling leading to tumor invasion, metastasis, 

and immune evasion. Large size and extensive glycosylation present challenges 

to study mucin structure using traditional methods, including crystallography. We 

offer the hypothesis that the functional versatility of mucins may be attributed to 

the presence of intrinsically disordered regions (IDRs), which provide dynamism 

and flexibility; further, that these sites offer potential therapeutic targets. Herein, 

we examined the links between mucin structure and function based on IDRs, post-

translational modifications (PTMs), and potential impact on their interactome. 

Using sequence-based bioinformatics tools, we observed that mucins are 

predicted to be moderately (20-40%) to highly (>40%) disordered and many 

conserved mucin domains could be disordered. Phosphorylation sites overlap with 

IDRs throughout the mucin sequences. Additionally, the majority of predicted O- 

and N- glycosylation sites in the tandem repeat regions occur within IDRs, and 

these IDRs contain a large number of functional motifs, i.e. molecular recognition 

features (MoRFs), which directly influence PPIs. This investigation provides a 

novel perspective and offers an insight into the complexity and dynamic nature of 

mucins. 
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5.2 BACKGROUND AND RATIONALE 

 

5.2.1 Mucin Protein Family 

Mucins (MUCs) are heavyweight (over 106 Dalton) glycoproteins that are 

expressed by epithelial cells in many organs throughout the body  (127). In 

humans, the mucin protein family contains over twenty members and is 

subdivided, based on structural differences, into transmembrane and secretory 

mucins. The primary distinction between these two groups is the presence or 

absence of a transmembrane domain (TM), which anchors them to the cell 

membrane. Mucins contain a characteristic large polymorphic variable number of 

tandem repeat domain (VNTR) that is rich in proline, threonine and serine residues 

(PTS). The VNTR is susceptible to enzymatic modification by O-linked and N-

linked oligosaccharides (128). All mucins harbor one or more domains with high 

sequence similarity to a known functional domain present in other proteins. These 

include the EGF-like domain (EGF), sea-urchin sperm protein, enterokinase and 

agrin (SEA) domain, von Willebrand factor D domain (vWD), nidogen-like domain 

(NIDO), the adhesion-associated domain in MUC4 and other proteins (AMOP), 

and the D-domain (129). These domains have been implicated in several biological 

processes such as cell-to-cell interaction (130), cell-to-ECM interaction (131), 

apoptosis inhibition   (132), and cell signaling complexes (133).  

Aberrant expression, splicing, and glycosylation in various members of the mucin 

family is a characteristic feature of several malignancies including pancreatic 

ductal adenocarcinoma (101, 127, 134), colorectal (73, 135), lung (136, 137) and 

ovarian cancer (138). Further, tumor cells exploit mucin differential localization, 
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alternative splicing, cellular adhesive/anti-adhesive properties, and alterations in 

glycosylation profile, to metastasize to distant locales and survive in hostile 

environments (127, 139).  

 

5.2.2 Intrinsically Disordered Proteins 

Until recently, it was generally held that the three-dimensional structure of a protein 

defined its function  (140). However, it is now well established that intrinsically 

disordered proteins (IDPs) and regions (IDRs), are complete proteins (or segments 

of proteins) that lack a traditional globular secondary or tertiary structure yet are 

fully functional (141-146). Disordered regions generally are sequences of low 

complexity with a low proportion of hydrophobic residues and a high number of 

repeating residues with a preponderance of polar and charged residues (147, 148). 

This lack of bulky hydrophobic amino acids prevents the formation of an ordered 

core that comprises a traditional structured domain (149). Disorder is ubiquitous 

throughout the human proteome. A study estimated that 30% of all proteins harbor 

some degree of disorder with a majority of these proteins containing disorder 

ranging between 20-40% of their total sequence (149-151)  

IDPs/IDRs have wide-ranging implications in various physiological and 

biological processes such as transcription, splicing, translation, and signaling (144, 

152-155), scaffolding (156, 157), cell cycle regulation (19, 158, 159), protein-

protein interactions (PPIs) (143, 160-164),  chaperoning (141), and phenotypic 

plasticity (165, 166) (that is the ability to switch phenotypes). Further, IDP/IDR-

mediated modulations are implicated in the pathogenesis of various diseases such 
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as cancer, diabetes, cardiovascular defects, amyloidosis, and neurodegeneration 

(167). More specifically, many cancer-associated proteins have been shown to 

have a higher percentage of IDRs relative to the rest of the human proteome (13, 

167-169).  

This functional versatility of IDPs/IDRs encourages us to investigate their presence 

in known cancer-associated proteins like mucins. Molecular events such as 

mutations that increase protein hydrophilicity, or alter protein splicing, can lead to 

changes in IDR length and affect protein-protein interactions, leading to 

pathological properties. This often affects protein solubility and aggregation, 

leading to nonproductive or over-productive complexes that disturb regulatory 

(149, 170).  

Considering the significant role of mucins in normal physiology as well as 

pathological conditions, hub protein characteristics, and their simple abundance 

and aberrant expression tendency in a variety of cancers, IDR/IDP presence within 

mucins could have important clinical implications. Mucins are also prime targets 

for IDP/IDR analyses because conventional methods of structural delineation are 

limited by large size, the high number of PTMs, and the presence of multiple splice 

variants.  

 

For many proteins implicated in cancer, structural biology information has proven 

invaluable for understanding their functional implications as well as discovering 

novel therapeutic modalities (171-174). Unfortunately, it is difficult to study mucins 

structurally by traditional methods. Crystallographic methods falter because of the 
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sheer size of mucins (up to 14,000 kDa), extensive variation in the number of 

tandem repeats within the VNTR (up to 120), sequence variation, and inability to 

clone, express, and purify fully folded and glycosylated forms. While specific 

domains have been cloned, purified, and studied (i.e. SEA (175)), domain 

homology between mucins and other proteins varies. What structural analyses 

have been accomplished (via x-ray crystallography) were conducted domain-by-

domain and not as a part of the complete protein (176). In addition, improper 

refolding of solitary domains is a constraint on these experiments. This dearth of 

advanced structural knowledge constrains the investigation of mucins as possible 

therapeutic targets. 

Based on the earlier studies, we hypothesized that the functional versatility 

of mucins may be attributed to the presence of intrinsically disordered regions 

(IDRs); further, that these sites offer potential therapeutic targets. 

To support this hypothesis, we analyzed the protein sequences of mucins 

using the Database of Disordered Protein Predictions (D2P2) to predict disorder 

based on a ≥75% consensus between the nine disorder prediction models 

incorporated within the tool itself  (177). The presence of IDRs was determined 

within conserved mucin domains, inter-domain sequences, C-terminal, and 

transmembrane domains. Next, we assessed the relationships of IDRs with 

curated phosphorylation sites and predicted N- and O-glycosylation sites, to 

discern whether posttranslational modifications occurred preferentially in IDRs 

within the mucin sequences. Finally, we also assessed the effect of conformational 

disorder on the mucin family interactome. 
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5.3 MATERIALS AND METHODS 

5.3.1 Mucin disorder prediction with D2P2 

Mucin sequences were searched for predicted disorder using the text search 

option provided on the web-based D2P2 (version v0.3-689) (177) portal 

(http://d2p2.pro/). D2P2 comprises nine different disorder prediction tools involving 

a variety of prediction methods (Espritz-D, Espritz-X, Espritz-N, IUPred-L, IUPred-

S, PV2, PrDOS, VSL2b, VLXT). Due to variable length and high sequence 

ambiguity for tandem repeat domains of mucins, the longest available human 

mucin transcripts that were present in D2P2 were used for our analysis. Disorder 

was predicted based upon 75% consensus of all nine predictors, and high 

confidence disorder regions were then obtained. The percentage disorder was 

computed by dividing the total length of disordered regions by the protein 

sequence length. For our study, mucins with < 20% disorder will be considered to 

have low levels of disorder, those with >20% and <40% will be defined as 

moderately disordered, and those with >40% will be considered as highly 

disordered.  

5.3.2 Mucin disorder prediction with FoldIndex 

An algorithm originally developed by Uversky and colleagues  (178) was 

implemented using an in-house python script that predicts if a region in a protein 

sequence would assume a folded or intrinsically unfolded state. This algorithm 

works on two properties of an amino acid: net charge and hydrophobicity of 

amino acids.  The net charge represents the difference between the positive and 

http://d2p2.pro/


111 
 

negative amino groups at a physiological pH = 7.0, and the mean hydrophobicity 

is the sum of the individual hydrophobicity of each residue divided by the total 

number of residues. The Kyte-Doolittle scale was used to determine the 

hydrophobic propensities of amino acids in the protein sequence, and the 

following equation was used to calculate the disorder score (I): 

𝑰 = 𝟐. 𝟕𝟖𝟓 × 〈𝑯〉 − |〈𝑹〉| − 𝟏. 𝟏𝟓𝟏 

In the above equation, <H> represents the mean hydrophobicity, i.e. the sum of 

hydrophobicity of all residues, and |<R>| is the absolute difference between 

positively and negatively charged residues. The protein sequences were inputted 

to the python script, which calculates the score for each residue in the sequence. 

It is noteworthy to mention that this algorithm assumes that different regions of a 

protein vary in their folding properties, so a sliding window scores specific 

regions of proteins rather than the whole protein. Note, the length of the sliding 

window was 51 aa, as used in the original study.  

 

5.3.3 Domain-wise disorder prediction of mucins  

Protein domains were predicted on mucin sequences using the open-access Pfam  

(version 32.0 produced at the European Bioinformatics Institute, September 2018) 

(https://pfam.xfam.org/) and CD-Search  (179) 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) interfaces.  Only those with 

significant E-values (a parameter denoting significance of the actual number of 

sequences aligned compared to the number expected by chance) were utilized. 

Domain coordinates for each mucin were compared with predicted disordered 

https://pfam.xfam.org/
http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi


112 
 

regions (D2P2). Figure 1c represents the presence or absence of these domains 

across mucins (x-axis) and their corresponding disorder (represented by *) across 

mucins (y-axis).  

 

5.3.4 Disorder prediction in the cytoplasmic tail and transmembrane 

domains of mucins 

Literature searches provided the starting point for the cytoplasmic tail (CT) 

sequences of mucins (129). Furthermore, the transmembrane (TM) sequences 

were obtained from Mucin database 2.0, 2015 (180) 

(http://www.medkem.gu.se/mucinbiology/databases/). Disorder predicted by D2P2 

was compared within the transmembrane and cytoplasmic region to determine the 

specific residues disordered in these regions.  

5.3.5 MoRFs prediction  

The D2P2 database also identifies molecular recognition features (MoRFs) across 

proteins by using ANCHOR  (181). This web server predicts disordered binding 

regions using protein sequences. The total number of MoRFs in each mucin was 

divided by its length. For instance, MUC12 has 145 predicted MoRFs and a length 

of 5478 aa, yielding a representative value of ~0.026. This assessment helped us 

identify the relative MoRFs per base pair in each of the mucins, enabling a relative 

assessment across mucins.  

5.3.6 PhosphoSitePlus® curated phosphorylation site 

 PhosphoSitePlus® is a database of mammalian post-translational modification 

sites curated from the scientific literature. Over 95% of the presented PTM sites 

http://www.medkem.gu.se/mucinbiology/databases/
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have been elucidated by tandem mass spectrometry experimentation requiring a 

P <.05 for each site assignment (http://www.phosphosite.org/)  (182). 

Phosphorylation sites curated by PhosphoSitePlus® were presented as a part of 

D2P2 analyses. These were subsequently aligned with the predicted IDRs and 

MoRFs for each mucin individually, and the proportion found within IDRs. 

 

5.3.7 Predicted O- and N-linked Glycosylation sites  

N- and O-linked glycosylation sites were predicted for all mucin sequences using 

NetNGlyc 1.0  (183) server and NetOGlyc 4.0  (184) server, respectively. The 

NetNGlyc 1.0 server is an artificial neural network-based program that examines 

the Asn-Xaa-Ser/Thr sequons, AA sequence at which an N glycosylation can occur 

and predicts if a residue can act as a potential N glycosylation site with an accuracy 

of 77%. The NetOGlyc 4.0 server was derived by a ‘bottom-up’ ETD-based mass 

spectrometric analysis of 12 human cancer cell lines to develop a training set of 

the human O-glycoproteome. Mucin sequences from D2P2 were queried into these 

tools and potential N- and O-glycosylation sites were predicted. These predicted 

sites were then compared with the pre-computed disordered regions across 

mucins. We performed these predictions for two transmembrane mucins: MUC1 

and MUC4 and two secretory mucins: MUC2 and MUC6. A threshold of 0.5 was 

used to predict a potential N- and O-glycosylation site within the tandem repeat 

domains of these mucins and individually analyzed the ability of these domains to 

serve as potential sites for N- and O-glycosylation post-translational modifications. 

http://www.phosphosite.org/
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5.3.7 PONDR-VSL2  

To further analyze the disorder regions in mucins and assess their inter-species 

pattern, the PONDR  (185) based tool VSL2 was used. Mucin sequences from 

D2P2 were loaded into the online tool and the graphical representation was 

analyzed. With this method, an amino acid residue with a score close to 0 is 

considered to be ordered whereas the score approaching 1 is considered as 

disordered with a defined cutoff of ordered vs. disordered at a value of 0.5. 

5.3.8 Mucin interactome and functional annotation of mucin interaction 

partners  

All mucins that were assessed for intrinsic disorder (MUC1, MUC2, MUC3, MUC4, 

MUC5B, MUC6, MUC7, MUC9, MUC12, MUC13, MUC14, MUC15, MUC16, 

MUC17, MUC18, MUC19, MUC20, MUC21, MUC22) were included for the 

Reactome functional analysis. We obtained 25 major mucin pathways and retained 

the pathway names along with the adjusted p-value. The protein-protein interaction 

information was extracted using the Biological General Repository for Interaction 

Datasets (BioGRID) Homo sapiens database (186). Duplicate edges emerging 

due to different validation methods were removed from the network to prevent 

redundancy. A total of 144 unique interactions between mucins and other proteins 

were obtained. BioGRID interactions are either peer-reviewed or experimentally 

validated by empirical protein-protein interaction methods. Further, we performed 

GO (187) analysis for mucins to illustrate the functional versatility and the 

implications in cancer-associated pathways. To further elucidate the pathways to 

which mucins contribute, we next used the FunSet webserver (188) to cluster and 
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visualize the enriched GO pathway terms. This technique detects semantic 

similarity between terms and spectrally clusters them into neighborhoods in a 

bubble chart format. 

 

 

5.4 RESULTS 

5.4.1 Intrinsic disorder analysis across Mucins 

A substantial portion of mucin sequences lacks meaningful structural annotation. 

In order to analyze the degree of disorder and their location across mucins, the 

percentage of disorder was calculated with 75% prediction consensus by nine 

disorder predictors present in D2P2 database (i.e., 7 out of 9 tools in agreement). 

Therefore, these meta-prediction tools provide more reliable predictions than a 

single disorder prediction tool (177).  

The longest available protein sequence of mucins present within D2P2 was used in 

this analysis. The mucins analyzed included MUC1, MUC2, MUC4, MUC5B, 

MUC6, MUC7, MUC9, MUC12, MUC13, MUC14, MUC15, MUC16, MUC17, 

MUC20, and MUC21. Due to the unavailability of the sequences within D2P2, some 

mucins such as MUC3, MUC18, MUC19, and MUC22, were not included in the 

analysis. Also, MUC5AC (with an extremely short transcript available within the 

database), MUC8 (which is not a mucin protein although called MUC8 (180), 

MUC10 (which is found only in mice) and MUC11 (which is part of MUC12 (180)) 

were all excluded from the analysis.  
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The disorder prediction analysis of mucin sequences showed that all mucins were 

moderately (20% - 40%) to highly (40%-90%) disordered. MUC12 (90%), MUC17 

(87%), and MUC21 (83%) were the most disordered transmembrane mucins (Fig. 

5.1A). Of the other transmembrane members, MUC20 (79%) and MUC4 (77%) 

were more disordered compared to MUC1 (60%) and MUC16 (63%). All 

transmembrane mucins were considered highly disordered with the exception of 

MUC13 (34%) and MUC15 (25%) which were moderately disordered. For secreted 

mucins, MUC7 (80%), MUC5B (48%), and MUC6 (44%) were highly disordered, 

whereas MUC9 (25%) and MUC2 (23%) were moderately disordered (Fig. 5.1B). 

We observed that disorder occurs more in transmembrane mucins compared to 

secreted mucins with the exception of MUC7 (Fig. 5.1A).  

Next, we determined the domains for all mucins using Pfam (189) and the 

Conserved Domain Database (CDD) (190). These sequences were subsequently 

analyzed for the presence of IDRs. Domains determined using two databases 

allowed higher confidence predictions with a significant E-value (E). We observed 

that the SEA domain was correctly predicted across transmembrane mucins 

including MUC1, MUC12, MUC13, MUC16 and MUC17 as confirmed by the Mucin 

Biology Database (Fig. 5.1C). Similarly, vWD was predicted to be present in 

MUC2, MUC4, MUC5B, and MUC6 (Fig. 5.1C)  

Combined analyses of the mucin domain sequence and disorder prediction 

identified the vWD domain of MUC4 to be disordered. In addition to the vWD 

domain, MUC4 also contains AMOP and NIDO domains (Fig. 1c), but the disorder 

predicted by D2P2 did not reach the 75% consensus pre-set cut-off. Three of the 
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nine tools predicted sections of these domains to be disordered. The 

Mucin2_WxxW (a.k.a. CysD) domain known to contain a conserved repeat 

sequence motif (WxxW) of at least six conserved cysteine residues, also displayed 

a high level (>40%) of disorder; CysD was also predicted to be present in MUC2 

and MUC5B. The Endomucin domain in MUC14, a highly O-glycosylated region 

that affects cell adhesion, was predicted to be disordered as well (Fig. 1c). MUC21 

contained repeating motifs, represented by epiglycan TR and epiglycan C, which 

were also found to contain disorder (Fig. 5.1C).  

 

5.4.2 Intrinsic disorder in trans-membrane and intracellular c-terminal 

domains of Mucins 

Next, we used D2P2 to predict disorder in the transmembrane and C-terminal 

domains of mucins. The cytoplasmic tail protein sequences of MUC1, MUC4, 

MUC12, MUC13, MUC15, MUC16, MUC17 and MUC20 (Fig. 5.2A) were obtained 

from earlier published findings (129). Though the majority of the cytoplasmic tail 

sequences of MUC4 and MUC16 did not reach the pre-set 75% disorder 

consensus cutoff, a high level of agreement between tools, 6 out of 9, found them 

to be disordered (66%) (Fig. 5.2B).  

Similarly, we obtained transmembrane domain sequences from the Mucin Biology 

Database (Human) and assessed if those transmembrane sequences were 

disordered in the global disorder prediction of mucins by D2P2. No disorder was 

observed within the transmembrane domains of mucins (Fig. 5.2C). It is 

established that disorder prediction consensus approaches are generally more 
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accurate (191), however, to verify our observation, we analyzed the 

transmembrane sequences with DisEMBL for further confirmation of our 

predictions. Similar to D2P2, no disorder was observed for the transmembrane 

domain of mucins with DisEMBL. Representative figures for MUC4 and MUC12 

show low disorder probability within the transmembrane domains (Fig. 5.2D). This 

is in line with the fact that transmembrane regions are largely hydrophobic static 

regions and are not involved in dynamic protein-protein interactions, thus 

decreasing the probability of disorder.  
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Figure 5. 1 Intrinsic disorder across mucins determined using the Database 

of Disordered Protein Predictions (D2P2). 

D2P2 is a database of pre-computed disorder predictions on a large library of 

proteins from completely sequenced genomes. A. Bar graph displaying the 

percentage of intrinsic disorder across transmembrane (grey) and secreted (black) 

mucins. All mucins analyzed were either highly disordered (defined as >40% 

disorder) or moderately disordered (>20% and <40% disorder). The disorder was 

calculated by dividing the total number of 75% consensus disordered residues, by 

the total mucin length to obtain a percentage disorder for each mucin. B. Pictorial 

representation of intrinsic disorder observed in MUC1 (length=550 amino acids) 

with a truncated tandem repeat region, as available within D2P2. The portion of the 

protein sequence with a high degree of consensus between tools (at least 6 of 9) 

is demarcated by green coloring. The regions with a lower degree of consensus 

(3-5 of 9 tools) but still predicted as disordered, are demarcated by shades of blue 

(darker blue denotes higher consensus). Both the N-terminus and C-terminus 

contain disordered sequences, as does much of the extracellular domain. c. 

Intrinsic disorder observed within different mucin domains as predicted by Pfam 

and CD-search databases. The presence of intrinsic disorder is denoted by (*). 

D2P2 data analyses suggested that disorder is present within the vWD domain of 

MUC4, WxxW domain of MUC2 and MUC5B, endomucin domain of MUC14, and 

the Epiglycan TR and C domains of MUC21  

  



120 
 

Figure 5.1  
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Figure 5. 2 Assessment of intrinsic disorder in cytoplasmic and 

transmembrane domains of membrane-tethered mucins. 

Considering the differential sequence attributes for transmembrane (hydrophobic 

and lacking protein-protein interacting sites) and cytoplasmic domains (sites for 

purported signaling functions of mucins), we assessed intrinsic disorder regions 

across these domains. A. Intrinsically disordered residues (red color) observed 

within cytoplasmic tails of MUC1, MUC12, MUC13, MUC15, and MUC20 with a 

75% consensus of D2P2. B. Of note, the entirety of the MUC16 and MUC4 CT 

domains are predicted to be disordered by 6 of 9 tools reaching 66% consensus. 

Pictorial representation from the D2P2 disorder predicted in the cytoplasmic tails of 

MUC4 and MUC16. C. Assessment of IDR in transmembrane regions of mucins. 

No intrinsic disorder was observed within the transmembrane domains. D. 

Representative figure of MUC4 and MUC12 transmembrane domain displaying 

extremely low disorder probability as determined by DisEMBL. Disorder probability 

increases as values approach 1 and decreases as it approaches 0. The greenish-

yellow curve is the disorder prediction for missing residues (those lacking crystal 

structure), the red curve indicates residues predicted as hot loops, and the blue 

curve indicates those predicted as coils. Of note, loops and coils are considered 

necessary but not sufficient for disorder and the lack of these features as predicted 

by DisEMBL is indicative of a low level of disorder  
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Figure 5.2 
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5.4.3 Assessment of molecular recognition features (MoRFs) in mucin IDRs 

Disorder-to-order transition of IDRs is facilitated by stretches of amino acids known 

as MoRFs, which facilitate molecular recognition and signal transduction (192). 

MoRFs undergo a conformational change to a lower energy state when interacting 

with an appropriate binding partner and are thus one of the keys to the executioner 

function of IDRs  (192).  

The presence of MoRFs was determined via ANCHOR, as a component of D2P2 

that determines sequence motifs within an IDR that have a decrease in free energy 

upon binding with another protein (193). Interestingly, mucins contain a large 

number of predicted MoRFs within their IDRs (Fig. 5.3). Transmembrane mucins, 

particularly MUC12 and MUC16, were predicted to contain greater numbers of 

MoRFs within their IDRs compared to other mucins (145 and 413, respectively, 

Fig. 5.3). Further analysis showed that mucins implicated in multiple human 

cancers particularly MUC4, MUC17, and MUC16 contain a large number of MoRFs 

>30 residues (38, 46, and 46, respectively, Fig. 5.3).  When the number of MoRFs 

are normalized to mucin protein length by dividing with the total number of residues 

in each mucin, MUC12 and MUC4 have the greatest number of MoRFs, at a ratio 

of 0.026 and 0.022, respectively. Within secreted mucin members, MUC5B has 

the highest total number of MoRFs with 72, as well as the highest normalized 

quantity at 0.013. 

5.4.4 Delineating the association of mucin IDRs & PTMs 

 Many post-translational modifications (PTMs) that modulate protein actions and 

interactions are predicted within disordered regions of mucins and, more 
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specifically, some reside within IDRs that harbor MoRFs (Fig. 5.4A, yellow and 

black bars are predicted as MoRFs). The predicted presence of smaller MoRFs 

within IDRs provides structural insight into the function of each mucin. Further 

investigation in this regard would help to associate the presence of disorder and 

MoRFs with domain and inter-domain functionality. 

IDRs within structured protein domains are preferred and accessible sites for a 

variety of PTMs, including glycosylation and phosphorylation (194). With this in 

mind, we compared the phosphorylation sites to the regions of disorder for each 

mucin. For this, we utilized curated phosphorylation sites provided by 

PhosphoSitePlus® as a part of D2P2 as well as direct inquiry via PhosphoSitePlus® 

and subsequent sequence alignment. We found that the majority of 

phosphorylation sites were found within the predicted disordered regions when 

assessing entire mucin sequences (Fig. 5.4B). The proportion of phosphorylation 

sites found within IDRs for each mucin are as follows: MUC15 – 1.0, MUC4 – 1.0, 

MUC14 – 1.0, MUC20 – 1.0, MUC12 – 0.97, MUC17 – 0.91, MUC6 – 0.89, MUC16 

– 0.86, MUC5B - 0.76, MUC13 - 0.75, MUC21 - 0.71, MUC9 - 0.5, MUC9 – 0.5, 

MUC2 - 0.44, and MUC1 - 0.36 (Fig. 5.4B). MUC7 did not have any curated 

phosphorylation sites presented within D2P2 nor with direct inquiry via 

PhosphoSitePlus®. The proportions for phosphorylation sites found to reside in 

MoRFs within IDRs are as follows: MUC15 – 0.0, MUC4 – 1.0, MUC14 – 0.2, 

MUC20 - 0.57, MUC12 – 0.42, MUC17 – 0.59, MUC6 – 0.38, MUC16 – 0.49, 

MUC5B - 0.14, MUC13 – 0.0, MUC21 – 0.0, MUC9 – 0.0, MUC2 – 0.0, and MUC1 

– 0.0 (Fig. 5.4B).  
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 We then specifically analyzed the tandem repeat regions of mucins to correlate 

N- and O- glycosylation, and high level of disorder predicted by D2P2. The 

predicted N- and O- glycosylation sites reside almost exclusively in IDRs 

compared to the ordered regions within tandem repeat regions (representative 

transmembrane mucins, MUC1 & MUC4, representative secreted mucin, 

MUC6, Fig. 5.4C and D). No prediction was made for MUC2 tandem repeat 

sequence by the NetNGlyc tool due to the absence of asparagine residues in the 

input sequence, as indicated by (*) in Fig. 5.4C.  
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Figure 5. 3 Prediction of Molecular Recognition Features (MoRFs) within 

Intrinsically Disordered Regions (IDRs) in mucins. 

MoRFs are disorder-to-order (order upon binding) recognition motifs that influence 

and participate in protein-protein interactions (PPIs). Considering this determining 

the prevalence and location of such motifs would improve our understanding of 

mucin function and interaction.  We found mucins contain many large-sized MoRFs 

that have a greater propensity to affect PPIs. Bar graph of the number of MoRFs 

normalized to mucin length by divided MoRFs with the number of residues for each 

mucin (available lengths in D2P2). Interestingly, MUC4 and MUC16, two 

transmembrane mucins that are differentially expressed in multiple malignancies, 

have a high MoRF/length ratio 
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Figure 5.3  
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Figure 5. 4 Association of Post Translational Modifications, namely 

phosphorylation, and glycosylation, with IDRs and MoRFs in mucins. 

Disordered regions are shown to be amenable to various forms of post-

translational modification such as phosphorylation and glycosylation. A. Pictorial 

representation of phosphorylation sites found in D2P2 along with the IDR and MoRF 

predictions. MoRFs observed in transmembrane mucin MUC4 and MUC16 

determined using ANCHOR as a part of D2P2. The yellow and black bar represents 

IDR-associated MoRFs predicted by ANCHOR (a tool that determines sequence 

motifs within an IDR that have a decrease in free energy upon binding with another 

protein). Curated phosphorylation sites (PhosphoSitePlus®) are displayed by red 

dots with “P” inside. B. Bar graph showing the proportion of curated 

phosphorylation sites found in D2P2 that are inside regions of predicted disorder 

(grey bars) as well as in regions predicted as MoRFs (black bars). C. Heatmap 

representing percentage occurrence of predicted N-glycosylation sites within IDR 

and Non-IDR across the VNTR domain of representative transmembrane mucins, 

MUC1 and MUC4, and representative secreted mucins, MUC2 and MUC6. The 

analysis was conducted by NetNGlyc 1.0 server. N-glycosylation occurs almost 

exclusively in IDRs as compared to non-IDR regions within the tandem repeat 

domain for MUC1, MUC4, and MUC6. D. Heatmap representing percentage 

occurrence of O-glycosylation sites within IDR and Non-IDR across tandem repeat 

domain. Representative transmembrane mucins, MUC1 and MUC4, 

representative secreted mucin, MUC2 and MUC6 were analyzed using NetOGlyc 

4.0 server. O-glycosylation occurs almost exclusively in IDRs compared to Non-

IDR regions within the tandem repeat domains of mucins. 
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Figure 5.4 
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5.4.5 Assessment of IDR Conservation across Mucins  

To evaluate the potential functional significance of IDRs in mucins, we examined 

the evolutionarily conserved regions between mouse and human. Interestingly, 

MUC4 and MUC16, each with important implications in oncogenic development, 

were found to have similar patterns of disorder across human and mouse (Fig. 5.5A 

and B). N-terminal residues in the protein sequences of MUC4 and MUC16, in both 

human and mouse, have a consistently high degree of disorder, while the C-

terminal residues fluctuated between order and disorder.  

 

5.4.6 Mucin interactomes  

Disorder allows for rapid on/off binding kinetics with other proteins because of high 

specificity yet low affinity for their partners, frequently observed in hub and 

signaling proteins (144, 152-155). Considering this attribute of IDRs, we asked if 

mucins with high predicted disorder can interact with multiple partners or occupy 

hub positions. Using BioGRID, interacting partners of MUC1, MUC2, MUC3A, 

MUC5B, MUC7, MUC9 (OVGP1), MUC12, MUC13, MUC14, MUC15, MUC16, and 

MUC20 were retrieved. No interaction partners were found for MUC3B, MUC4, 

MUC6, MUC8, MUC10, MUC17, MUC19, MUC21 and MUC22. Interaction 

partners for MUC4 and MUC17 were identified from a literature search.  
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Figure 5. 5 Intrinsic disorder patterns in human and mouse MUC4 and 

MUC16. 

Evolutionary conservation of protein structure/sequence highlights the 

preservation of necessary biological functions. Though the actual interspecies 

sequence homology for both of these proteins is minimal, we speculated that the 

pattern of disorder may be conserved. We analyzed the IDR homology between 

mouse and human MUC4 and MUC16. Predictors of Natural Disordered Regions 

(PONDR) is an online compilation of five artificial intelligence tools that utilize 

previously defined structures for predicting intrinsic disorder. Due to the lack of 

mice full-length sequences in D2P2, PONDR was chosen for an inter-species 

comparison of disorder. Mice and human sequences (longest transcripts) were 

assessed with VSL2, a tool within PONDR, which makes a length-dependent 

prediction of protein intrinsic disorder to facilitate inter-species comparisons. A. 

Disorder prediction in human MUC4 and mouse MUC4 by PONDR VSL2 (a tool 

that predicts disorder and addresses protein length bias). B. PONDR VSL2 

disorder prediction across human MUC16 and mouse MUC16. Residue values 

above 0.5 are predicted to be disordered. Both mucins displayed a significantly 

high degree of interspecies IDR pattern conservation 
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Figure 5.5 
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We next associated the number of interacting partners of mucins with the 

percentage of disorder present within the mucins. We observed that most 

transmembrane mucins including MUC1, MUC16, MUC13, and MUC20, which 

tend to have more IDRs and the longest MoRFs, had a higher number of interacting 

partners (Fig. 5.6A and Fig.5.7). MUC20, which is highly disordered at 79%, has 

interactions with 24 other proteins involved in various pathways. Similarly, MUC16 

(63% disorder) has 10 interacting partners (Fig. 5.6A and Fig.5.7) and 46 MoRFs. 

However, transmembrane mucin MUC12, the most disordered protein in our 

analysis at 89%, has only two interacting partners. This is likely due to few studies 

on MUC12, and a dearth of knowledge regarding its interactome. 

For secreted mucins, the most disordered family members, MUC7 (80%) and 

MUC5B (48%), had a greater number of interactions when compared to the other 

secreted mucins with lower levels of predicted disorder, MUC9 (25%) and MUC2 

(23%). Unfortunately, in the case of other membrane-bound mucins, due to lack of 

information on their interactome, it was difficult to discern an accurate overall 

representation.  

 

5.4.7 Functional Diversity of Mucins and Their Interactome  

We next explored the functional significance of the mucin interactome. Reactome 

pathway analysis of the entire mucin family revealed significant involvement in a 

variety of important mechanisms including immune function, protein metabolism 

and signal transduction (Fig. 5.9A). Additionally, the mucin interacting partners 

generated from the BioGRID database were subsequently analyzed for their 



134 
 

contribution to functional pathways. These interactome members are involved in a 

variety of functions associated with cancer including response to antineoplastic 

agents, cell migration, ERBB2 signaling, cell adhesion, and protein glycosylation 

(Fig. 7b). These pathways are directly involved in many aspects of oncogenesis, 

invasion, metastasis, and response to treatment. As mentioned, mucins have been 

shown to impact these cancer-associated pathways, further corroborating our 

findings.  
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Figure 5. 6 Transmembrane mucin MUC1 and secretory mucin MUC7 

interacting partners determined using the BioGRID database 

To assess if the quantity and prevalence of intrinsic disorder affect mucin 

interactomes, we utilized BioGrid, an online repository of protein chemical and 

genetic interactions. Physical interactions of all mucins were assessed using 

BioGrid to identify the interactions and the functional implications thereof. A. The 

network of the physical interactions of representative transmembrane mucin 

MUC1. B. The network of the physical interactions of representative secreted 

mucin, MUC7. Each Mucin is in the center of each interactome. The edge 

thickness connecting the mucin with its partners is linked to the number of times 

the interaction has been experimentally verified. Interactions with proteins not 

observed in humans, but in other organisms, are indicated by a yellow nodes.  
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Figure 5.6 
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Figure 5. 7 Interacting partners of other mucins. 

Mucins and their interacting partners determined using the BioGRID database. 

BioGrid an online repository of protein, chemical and genetic interactions.  Physical 

interactions of all mucins were assessed using BioGrid to identify the interactions 

and the functional implications thereof. . The network of the physical interactions 

of transmembrane mucins, MUC12, MUC13, MUC14, MUC15, MUC16, and 

MUC20.  
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Figure 5.7 
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Figure 5.8 Interacting partners for MUC2, MUC5B, and MUC9 

The network of the physical interactions of secreted mucins, MUC2, MUC5B, and 

MUC9. Mucins are in the center of each interactome. The edge thickness 

connecting the mucin with its partners is linked to the number of times the 

interaction has been experimentally verified. Interactions with proteins not 

observed in humans, but in other organisms, are indicated by a yellow node 
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Figure 5.8 
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5.5 DISCUSSION 

The hypothesis was supported by the predicted prevalence of intrinsic disorder 

across the entire mucin family. The presence of IDRs within the functional 

domains, between domains, extracellular, and cytoplasmic tail regions were 

analyzed. We observed that all mucins were predicted to have high (>40%) to 

moderate levels (>20% and <40%) of disorder. Indeed, 11 out of 15 of the mucins 

assessed were >40% disordered. Transmembrane mucins were more disordered 

compared to secreted mucins with the exception of MUC7. The average predicted 

disorder across all assessed mucins (58%) far exceeds the average of what is 

present throughout the human (30%) and eukaryotic (32%) proteomes (149-151, 

195). In fact, this would place the mucin family in the top 10-15% most disordered 

proteins found in the human Ensemble database analyzed by D2P2  (149) with the 

majority of individual mucins harboring a far greater amount of disorder. 

Apart from the nine predictors included in D2P2, we assessed mucin disorder with 

FoldIndex and PONDR CH plots, which are tools based on the dual assumption 

that IDPs/IDRs are generally enriched in polar and charged residues and depleted 

in the hydrophobic regions of proteins (141, 178). The mucin sequences used for 

the disorder analysis in D2P2 were used for FoldIndex disorder. This method 

predicted mucins to be far more ordered as compared to the D2P2 consensus 

results (Fig.5.10A). Confirmation with PONDR CH plots corroborates the 

FoldIndex findings and predicts native folding considering sequence charge and 

net hydrophobicity (Fig. 5.10B).   
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Though these findings seem incongruous with the other prediction methods, we 

postulate that charge hydropathy is not the best method to predict disorder in 

mucins for two reasons. First, FoldIndex has been shown to be the least accurate 

predictor of transmembrane protein disorder  (196), and secondly, high number, 

variability, and degeneration of the tandem repeat sequences present in mucins 

are not accurately characterized leading to falsely low disorder prediction.  

Correlations between the organization and evolution of chromosomes and 

chromosomal gene congregation with the extent of disorder have previously been 

evaluated. A study by Rajagopalan et al. found that cancer/testis antigens, a family 

of proteins often aberrantly expressed in cancer, are highly disordered (168). 

Further, they found that CTAs located on the X-chromosome (CT-Xs) displayed 

the largest extent of disorder compared to the family members located on other 

chromosomes (168). To help bolster the disorder prediction for mucins, we 

assessed if any correlation existed between their degree of disorder and 

chromosomal location. Interestingly, MUC4 and MUC20 with a similar percentage 

of disorder are located at the same 3q29 locus. Also, MUC12 and MUC17, which 

are predicted as the most disordered transmembrane mucins, cluster at 7q22 

locus. Among secreted mucins, MUC5B and MUC6 predicted as almost equally 

disordered, are located at 11p15.5 locus.  
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Figure 5. 9 Functional annotation of mucins and their interacting partners. 

To further assess the functional implications of the previously identified interacting 

partners a gene ontology (GO) based functional enrichment analysis was carried 

out. GO enrichment analyses are used to assess the functional implications of a 

gene or set of genes. The mucins and the interacting partners were compared to 

the GO database to assess the enriched terms and the enriched pathways 

assessed more closely. A. Graphical representation of GO Reactome pathway 

analysis of the mucin family (false discovery rate (FDR) < 0.05). The bar length is 

indicative of -log10 p-value. B. A bubble plot depicting the functions of the mucin 

interacting partners grouped into 15 neighborhoods. Each circle represents a GO 

pathway term to which mucin interacting partners contribute. The size of each 

circle is representative of the enrichment score of each pathway. Each numbered 

circle cluster (0-14) is demarcated into neighborhoods by color. Within each 

neighborhood is a circle highlighted in red, labeled with a pathway term. This 

shows mucin partners are involved in a variety of functions associated with cancer 

including response to antineoplastic agents, cell migration, ERBB2 signaling, cell 

adhesion, and protein glycosylation  
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Figure 5.9 
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Figure 5. 10 FoldIndex based assessment of mucin disorder 

Percentage of intrinsic disorder across all mucins determined using FoldIndex. The 

percentage of intrinsic disorder is determined relative to the total length of the 

protein. Among transmembrane and secreted mucins, the highest percentage of 

disorder was observed in MUC21 and MUC12, respectively. A. Bar graph 

displaying the percentage of intrinsic disorder across transmembrane (green) and 

secreted (red) mucins. B. Charge hydropathy chart showing verification of the in-

house FoldIndex tool for MUC4. FoldIndex scores are based on sequence charge 

and net hydrophobicity, which predicts MUC4 to harbor little disorder  
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Figure 5.10  
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Conserved regions of disorder contribute to myriad biological activities (197). 

These activities have been categorized into six functional classes by Tompa et al 

(198) and highlighted in comprehensive review articles on disordered proteins by 

the Uversky and Babu groups (141, 149). Entropic chain classifiers (does not 

acquire ordered confirmation for their functioning) is the first class where IDRs can 

act as flexible inter-domain linkers and spacers necessary for appropriate 

functional-domain activity effectors, where IDR act to modulate (inhibit or activate) 

interaction partner activity. A third class is assembler functioning when IDRs 

facilitate and provide scaffolding for large multi-protein complexes including 

signaling complexes. They can also have scavenger functions, where IDPs/IDRs 

interact with small ligands and capture, neutralize, or store them for later release. 

Chaperone class disordered proteins facilitate the folding of various molecules into 

their functional conformation. Finally, IDRs also harbor display site functions, 

where they provide conformational flexibility allowing PTM enzymes access to the 

protein backbone, thus facilitating their action including phosphorylation and 

glycosylation. Based on our data, we speculate that many of these functional 

classifications of IDRs will hold true for IDR present within mucins. 

Many of these attributed IDR functions overlap with mucin activities. For example, 

MUC15 is moderately disordered (25%). MUC15/EGFR interaction is shown to 

diminish the aggressiveness of hepatocellular carcinoma by preventing EGFR 

dimerization (199). EGFR dimerization promotes the loss of intrinsic disorder in its 

kinase domain (disorder-to-order transition) leading to an increase in kinase 

signaling activity and the presence of an L834R mutation facilitates this 
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dimerization by suppression of disorder within the kinase domain (170). 

MUC15/EGFR interaction and subsequent inhibition of EGFR dimerization may be 

facilitated by an effector function of these disordered sequences present in both 

proteins or even MUC15 prevention of EGFR kinase domain loss of disorder. 

Another mucin with effector type functioning is MUC4. It has been shown that 

MUC4 interacts and stabilizes the receptor tyrosine kinase HER2 in the setting of 

pancreatic cancer, thus promoting cell proliferation (200). Interestingly, our 

analysis showed that MUC4 is over 76% disordered. Given the impact EGFR and 

HER2 signaling have in many cancers, the precise mechanism of these 

interactions, their effect on disorder, and the respective inhibition or activation of 

kinase capability warrants further study.   

Other functional contributions of mucin IDRs could exist. For example, salivary 

proline-rich glycoproteins (much like mucins) contain high levels of IDRs and have 

been shown to have scavenger functions and bind small ligands such as ions and 

organic compounds either for disposal, sequestration, or later release (201) 

Congruently, our results show salivary MUC7 contains the highest percentage of 

disorder among all secreted mucins, at 80% predicted disorder. With this, many 

IDPs, or ordered proteins rich in IDRs, can form proteinaceous membrane‐less 

organelles (PMLOs) via a liquid-liquid phase separation (202). Given the 

prevalence of intrinsic disorder in mucins, it is conceivable that mucins could 

contribute to PMLO formation and scavenger functioning within the local tumor 

milieu trapping nutrients, growth factors, and various other cytokines, thus forming 

a synergistic oncogenic environment. Another possible function of mucin IDRs 
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arises in light of the observation that viruses with a greater number of IDRs in their 

coat proteins are able to evade memory T-cells (203-205). Mucin polymerization 

and bulky glycosylation could also form an immunomodulating “glycoblanket” that 

shields cancer cells from detection and killing by leukocytes, thereby facilitating 

the unchecked growth of the disease. Along with this, our results show that IDRs 

are present in the cytoplasmic tail of transmembrane mucins as well as the 

extracellular region. Many oncogenic molecules involved in signaling are enriched 

in IDRs in their cytoplasmic tail (206, 207), thus, their existence in mucin CTs could 

impact mucin activity.  

Due to the inherent ability to engage in promiscuous interactions, and the ability of 

rapid on/off binding, IDP/IDR ensembles are associated with dosage sensitivity. 

The higher the protein concentration, the larger the interaction pool. This, in turn, 

can lead to a dose-dependent non-specific response (208, 209). In conjunction, 

proteins with the most disorder are associated with hub positions in cancer-

associated protein-protein interaction networks (143, 168). The combination of 

these two IDR aspects may explain why mucins can bind with and activate a great 

number of surface receptors (210), signaling molecules (129), and transcription 

factors (211, 212).  

It is known that protein-protein interactions involving IDPs are influenced by 

molecular recognition features (MoRFs)(189). We found mucins contain higher 

numbers and many large-sized MoRFs, suggesting that they may participate in a 

variety of mucin interactions including the aforementioned effector activities of 

MUC15 and MUC4. The presence of MoRFs and their ability to undergo rapid 
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binding events further insinuates mucins in a myriad of cellular functions including 

cell signaling as well as rheostat (on/off) functioning. For example, MUC16 has the 

highest number of MoRFs that are >30 residues in length (413 and 46, 

respectively). Consistently, MUC16 has multiple interaction partners (213-216). 

MUC1 has the highest number of interaction partners as it is the best characterized 

of all mucins and the most studied. While MUC1 does not contain a large number 

of MoRFs, it contains the largest found in all mucins, at 214 residues in length.  

MUC12 was predicted to have a large number of MoRFs with 145 but has only two 

interacting partners. This could be due to the fact that few studies have 

characterized MUC12 interactions. However, both of the MUC12 interaction 

partners (MAPK14 and CDC42) are involved in MAPK signaling and cell division, 

indicating that MUC12 harbors certain motifs/IDRs that contribute to oncogenic 

signaling and may impact cancer progression. 

Though IDRs have been implicated in PTMs for years, a concept of an IDR-PTM-

AS (alternative splicing) toolkit has recently been proposed (217). This toolkit 

allows for a single protein-coding gene to produce multiple disparate functional 

units, predicated in tissue or cell-specific manner. This also correlates with 

observed site-specific and context-dependent signaling of mucins under normal 

physiological as well as pathological conditions (e.g.  MUC5AC deleterious effects 

in pancreatic cancer (218) and its protective role in the lung epithelium (219). 

Specific tissues or cell types are able to rewire/remodel protein pathways and gene 

expression patterns (via transcription factors) through changes in PTMs and 

alternative splicing, which are impacted by the presence, prevalence, and size of 
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IDRs (217). Mucins exhibit a high level of alternative splicing thus warranting 

further investigation into the effect of disorder on splicing events and impact on 

PTMs.  

In addition to splice events, numerous structural modifications of mucins drive 

protein-protein interactions which serve as a key to their oncogenic role in cancer 

progression (220). The flexibility of IDRs facilitates access to enzymes involved in 

PTM (143) and the ability of an IDR to interact with target proteins is dramatically 

altered by the presence of these PTMs (217). Our findings show a high degree of 

overlap between the PhosphoSitePlus® curated phosphorylation sites found in 

D2P2 and IDRs, throughout the mucin protein family. The proportions of 

phosphorylation sites residing in IDRs are extremely high (ranging from 1.0 to .86) 

for each mucin with the lone exception of MUC9 (.5). This finding corroborates the 

amenability of mucin IDRs to PTM and further underscores the importance of these 

regions in signaling and interaction dynamics due to phosphorylation events.  

Another PTM assessed in conjunction with disorder was glycosylation, specifically 

within the VNTR region. We found that predicted mucin glycosylation sites within 

the VNTR, overlap markedly with IDRs. A specific signaling motif (e.g., Proline-

Threonine-Serine PTS sequence) could be working in combination with disorder, 

to facilitate glycosylation of this region. Disordered regions lying outside of the 

tandem repeats may not harbor this signaling motif allowing a variety of other PPIs, 

thus conferring the aforementioned hub protein characteristics of mucins. 

Alteration in the amount of disorder present within the VNTR including expression, 

mutations, and repeat expansion, could augment susceptibility to enzymatic 
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modification and dramatically affect the glycome, thus altering mucin interactomes.  

As aberrant glycosylation has long been a hallmark of cancer (134), understanding 

the amount and variety of disorder present within the system is incredibly 

important.  

There is also overwhelming evidence that glycosylation is associated with protein 

stability (221). Contrarily, the presence and length of IDRs are negatively 

correlated with protein half-life, due to facile interaction with ubiquitin ligases (222). 

Thus, the balance between the presence of IDRs and their glycosylation status 

may act as a homeostatic mechanism to modulate mucin turnover and associated 

signaling pathways. Aberrant glycosylation of mucins, like what is observed in 

cancer, could alter their half-life and thus facilitate dose-dependent promiscuous 

binding and subsequent increases in pro-growth cellular signaling. Altogether, 

these observations indicate that IDRs may influence mucin protein-protein 

interactions as well as half-life. Future studies characterizing the complete mucin 

interactome and the mucin functional life-spans could enhance the associations 

reported here and further elucidate the relationship between IDRs, MoRFs, and 

PTMs. 

 Our assessments also show that IDR patterns are conserved between human and 

mouse, even though the number and order of tandem repeats within the PTS 

domain of mucins vary between species. We speculate that this IDR pattern 

conservation between human and mouse mucins is evidence that these regions 

preserve an important biological function despite underlying genetic variations and 

limited sequence homology. Additionally, IDRs may also explain the expansion of 
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the repeat sequence in human mucins compared to mice. Their lack of structural 

rigidity and the conferred decrease in evolutionary constraint can allow for 

replication slippage. If mucin function is predicated not only on their structure but 

also their ability to undergo plastic and dynamic structural changes, understanding 

of mucin IDRs becomes incredibly valuable for the assessment of their biological 

functioning and oncogenic implications.  

 IDRs are excellent cancer therapeutic targets for a variety of unique reasons. 

Disordered proteins can be sensitive to modulation through various methods and 

mechanisms of action. IDRs can be targeted directly via small molecules which 

can affect the affinity of the parent protein for binding partners, thus altering 

specific protein-protein interactions. Along with this, small molecule binding to 

IDRs can act through a variety of mechanisms including steric and/or allosteric 

hindrance, induced order upon binding, dimerization prevention, and conformation 

“locking” which decreases the dynamism of the protein. A specific unique 

advantage associated with IDRs is that since dynamism is key to their interactions, 

a small molecule that is able to diminish this dynamism, could have dramatic 

effects on the function throughout the entire region, regardless of where the 

binding occurs (i.e. not necessarily at the site of parent-partner interaction). 

Converse to this but equally as effective, small molecules or peptides can be used 

to target the IDR interactor proteins in (referred to as a “clamp”) and prevent the 

undesired PPI. Along with this, binding regions within IDRs can be predicted by 

utilizing MoRFs and computer-aided drug design to identify binding partners and 
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subsequently substituted for small molecules allowing for a facile and high-

throughput method of discovery  (223).  

 IDR therapeutic relevance is corroborated by the fact that many oncogenic 

molecules involved in signaling are enriched in IDRs. Importantly, IDRs have been 

confirmed in many cancer-associated proteins including p53, BRACA1, PAGE4, 

and PTEN (204, 224-227) and successful attempts have been made to target 

these regions. For example, a small molecule inhibitor was used to lock the 

normally dynamic IDR in the MYC protein in a static conformation that was unable 

to bind MAX, thereby preventing its oncogenic signaling (228). In another study, 

an alpha-helix-stapled peptide was engineered to interact with an IDR in P53, 

preventing its activation and subsequent anti-apoptotic effects (229). 

Mucins, like the aforementioned proteins, are cancer-associated molecules that 

have eluded traditional therapeutic modalities. The development of compounds to 

target mucins is still in its infancy partly because detailed structures of this family 

are unavailable. We hypothesize that IDRs could serve as novel drug target sites 

for mucins, but this requires a detailed elucidation of their location and functional 

contributions. For instance, MUC16 cleavage and shedding of the EC domain is a 

major barrier to efficient MUC16 targeting in cancers (230). Where antibody 

therapy has failed, the IDRs present within the remaining membrane-bound 

MUC16 could be utilized as a means of targeting cancer cells. Alternatively, 

MUC16 has a cleavage site within the cytoplasmic tail region (99), and the 

sequence distal to the cleavage is predicted as completely disordered (6 out of 9 

tools (66% consensus) in D2P2). When the intracellular cleaved portion of MUC16 
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is released, it increases cell proliferation, prevents apoptosis and influences the 

transcription of oncogenic genes (99). A cleaved MUC16 IDP would present a 

valuable therapeutic target for disruption of these functions and further 

investigation is warranted.  

Another mucin that holds therapeutic relevance is MUC1. Monoclonal antibody 

(Mab) intervention attempts have been of limited success for MUC1 (206). In one 

study, Raina et al. were unsuccessful in attempts to crystalized the MUC1 CT and 

subsequent structural analysis with  ROBETTA (231) and IGB-SSPro  (232) 

revealed no identifiable secondary structure. Given these results, they determined 

that the MUC1 CT has features characteristic of an IDP. Notably, despite a lack of 

structure, IDPs are emerging as attractive drug targets (233-238). Further 

investigation into these MUC1 disordered regions is warranted which could provide 

insight into their relevance to its oncogenic signaling. In turn, this opens up a new 

possibility for therapeutic intervention by providing new targets for small molecule 

inhibitors or stapled peptides that can bind to MUC1 IDRs and inhibit its oncogenic 

function. 

As mentioned prior, many studies are warranted to validate these in-silico findings 

as well as accurate attribution of IDR functions in mucins. Experimental 

characterization methods including (but not limited to) nuclear magnetic resonance 

(NMR) spectroscopy (including in-cell NMR), small-angle X-ray scattering (SAXS), 

20S proteasomal degradation, and single-molecule fluorescence resonance energy 

transfer (smFRET) are necessary to determine the accuracy of the D2P2 disorder 

prediction. These techniques will help to elucidate the overall degree of disorder, 
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mucin structure and dynamics, and conformation changes upon partner interaction. 

In addition, experimental strategies to investigate the role of IDRs on mucin function 

are required as well. For example, selective mutations to residues that alter overall 

order in CT regions of MUC1 and MUC16 could be utilized to assess the effects of 

disorder on dimerization, proliferation, and/or oncogene transcription. Phage 

displays could also be utilized for the CT region of these mucins to determine what 

peptides bind and could be used as a therapeutic strategy. Another strategy to 

determine disorder effect on PPIs would be to use various isoforms of MUC4 (i.e. 

MUC4X, MiniMUC4, MUC4β, and WT MUC4) with different lengths of the tandem 

repeat regions (found to be highly disordered in our analysis) in pulldown assays or 

SPR based studies. Furthermore, disordered links between mucin domains could 

be deleted to determine if these have entropic chain characteristics and are 

required for adequate domain functioning.  

The prevalence of IDRs within mucins could have vast clinical potential. Though 

we have utilized multiple prediction tools to determine the level of disorder, these 

computational findings must be validated experimentally.  These studies would 

provide validation of the predictions and hypotheses presented herein, and justify 

a new and alternative perspective when assessing mucin structure.  
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6.1 SYNOPSIS 

Pancreatic Cancer (PC) remains one of the most lethal malignancies due to high 

resistance to present-day chemotherapies. The expensive and burdensome 

process of drug discovery makes targeting this horrid disease highly challenging 

and novel ways for therapeutic targeting are urgently needed. Considering this, the 

present study utilizes a genomic-data-driven drug repurposing strategy based on 

Connectivity Mapping (CMAP). CMAP data was first mapped to gene expression 

from 106 PC patients identifying nine negatively connected drugs which were 

further narrowed down using a similar analysis for PC patient-derived-xenografts, 

human cell lines, and human tumoroids identifying ISOX as the most potential 

agent to target PC. Further, validation studies showed that ISOX exhibited strong 

anti-proliferative activity as well as anti-apoptotic activity (~48%) with a G0/G1 

arrest in PC cell-lines. Notably, ISOX synergistically improved the efficacy of 5FU 

and Gemcitabine. At 500 nM ISOX, 60% loss in the viability of pancreatic 

tumoroids was observed. In orthotopic mouse studies, a 10-fold reduction in tumor 

weight was observed with ISOX alone (p-value=0.014) and ISOX-5FU combination 

(p-value=0.02) with significant survival difference (log-rank-p-value<0.05) and no 

metastasis in the combination drug treatment group. Further, RNA-sequencing 

and pathway analysis of the ISOX-LINCS signature, led to the identification of the 

MYC-MAX-MAD complex as an ISOX target which could also be corroborated in 

two independent transcription-factor analyses from the RNA-sequencing data. 

Finally, mechanistic studies established the acetylation-dependent regulation of 
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MYC action, suggesting HDAC dependent mechanism of action.  Taken together, 

our data establish a novel approach of using CMAP for cancer therapy discovery 

and the potency of ISOX as a potential therapeutic.    

6.2 BACKGROUND AND RATIONALE 

Pancreatic Cancer (PC) maintains its unglorified third rank amongst all 

malignancy-related deaths in the United States and is projected to escalate to the 

second position by 2030 (50). Late diagnosis, early metastasis, and resistance to 

first-line therapies contribute to the poor prognosis of this horrid disease, with a 

dismal five-year survival rate of 10%. Furthermore, the Pancreatic Cancer Action 

Network (PanCAN) explicitly declares the lack of promising therapeutic modalities 

as a major confounder for this appalling survival. Sadly, therapeutic interventions 

in PC have been challenging for researchers and physicians alike. The current 

options, which include surgery, radiation therapy, chemotherapy, targeted therapy, 

and immunotherapy, have major limitations. While surgery is one curative option, 

only 20% of patients are rendered suitable for surgical interventions (239). Further, 

Gemcitabine (GEM) based chemotherapy regimens have been established as one 

of the most promising therapeutic modalities for PC patients’ major limitations like 

toxicity, lack of specificity towards molecules specifically altered in PC, 

ineffectiveness in a subgroup of patients, and poor penetration due to hypo-

vascularized dense PC stroma limit its use (240, 241) 

While various combination chemotherapies have been tried, only a minor 

improvement has been observed in the median overall survival (MOS) of 4 to 11 

months in PC patients (242). Though the initial response of FOLFIRINOX 
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(oxaliplatin, irinotecan, leucovorin, and 5FU) compared to GEM alone was 

dramatic with a 21.6 month MOS it was limited by the high toxicity in these patients 

(243). Across studies, FOLFIRINOX and Abraxane (ABX) in combination with 

GEM have only marginally improved the survival rates, 11 months and 9 months, 

respectively, (244-246) keeping lethality of PC at its top. Further, considering only 

25% of patients respond to GEM and the high degree of toxicities associated with 

FOLFIRINOX, there is a compelling need for the identification of new potent 

therapeutics (11). While currently, there are 18 monotherapies and 4 combination 

therapies that the USFDA has approved for use in PC these approved therapeutic 

modalities fail to render their required clinical outcomes due to toxicity, off-target 

effects, and therapy resistance. Furthermore, this aggressive malignancy has an 

intrinsic resistance to chemotherapy (247), and better chemotherapeutic agents 

are highly needed.  

The failure of the conventional one target at a time approach has created a need 

to assess and develop robust methods for the identification of novel drug targets. 

Following the sequencing of the human genome, genomic-driven approaches 

have gained importance in recent years (248-250) and can provide a great 

advantage in dissecting new targets. Various computational methods have been 

established to identify new therapeutics, including the BROAD institute tool, CMAP 

(https://www.broadinstitute.org/ cmap/).CMAP is a big repository of gene 

expression data compiled from the effects rendered or the transcription readout of 

treatment by various FDA-approved as well as preclinical small molecule inhibitors. 

Altered gene expression data is utilized to connect to a user-defined gene 

https://www.broadinstitute.org/%20cmap/
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signature to render positive, neutral, and negative connections. Effectively, a 

positive connection between the disease signature and the gene expression from 

a drug would mean that the similar signature got affected, i.e., upregulated and 

downregulated across drug and disease, a neutral connection simply means no 

connection, but most importantly, a negative connection would mean a reversal of 

the user defined gene expression by the drug. These negative connections would 

then be useful to researchers seeking to identify promising therapeutics which will 

reverse the gene expression from the biological disease of interest (251, 252). 

The present study establishes the use of CMAP for drug identification in PC and 

validates its utility through in-vitro and in-vivo assessment of the identified small 

molecule, ISOX (N-[4-[3-[[[7-(hydroxyamino)-7-oxoheptyl] amino] carbonyl]-5-

isoxazolyl] phenyl]-1, 1-dimethylethyl ester, carbamic acid) (Fig.1A). To do this, 

we first used four PC microarray datasets to establish “gene-signatures” for PC 

and, in turn, used these signatures to identify drugs that were commonly negatively 

connected across (score -30 or higher) all four datasets. The therapeutic effect of 

ISOX was tested across a spectrum of PC cell lines, including MiaPaCa2, 

CD18/HPAF, AsPC1, and BxPC3 using various functional assays such as MTT-

based proliferation assay, cell cycle and apoptosis, invasion using a matrigel 

assisted Boyden-chamber, and migration analyses. Various doses of ISOX were 

further assessed in combination with established PC therapeutics, Gemcitabine 

and 5’FU. Furthermore, in order to mimic the tumor biology more closely, ISOX 

was tested in 3D tumoroids developed from KPC (KRASG12D; p53R172H; Pdx-1-Cre) 

mice and human PDAC patient samples followed by a drug-efficacy assessment 
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in pancreatic orthotopic mice model. In order to decipher the drug mechanism of 

action, RNA-sequencing analysis was carried out using ISOX treated and 

untreated PC cells, followed by a comprehensive pathway analysis using ingenuity 

pathway analysis (IPA), a two-way transcription factor enrichment analysis using 

TFactS (http://www.tfacts.org/) and ENCODE. A combination of literature review 

and RNA-seq and western blot studies led to the identification of the HDAC 

inhibition-dependent inhibition of cMYC and its related pathways.  

 

6.3 MATERIALS AND METHODS  

6.3.1 Identification of datasets. Gene expression omnibus (GEO) datasets was 

queried for datasets containing PC and normal samples. The first step filter used 

were the keywords “tissue” and “homo sapiens” which led to the identification of 

over 245 datasets. Further, these datasets were filtered on a multifold criterion-the 

normal and tumor sample within the same dataset, no pre-treatment, and no 

inherent bias in sample selection which helped us identify four datasets GSE32676 

(25 tumor 7 normal), GSE15471 (6 tumor 16 normal), GSE16515 (36 tumor 16 

normal) and GSE18670 (6 tumor 6 normal). Further, GEO was queried to identify 

datasets with PC cell lines (GSE45757), tumor xenografts (GSE46385), and 

human patient-derived tumoroids (GSE107610) (253-259).  

 

6.3.2 Identification of differentially regulated genes. The CEL files (Affymetrix 

raw data files) from each of the identified datasets was downloaded and processed 

using the “affy” (46) package from R Bioconductor (version 3.6). The expression 

http://www.tfacts.org/
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was assessed using a robust multi-array average (RMA) from the “affy” package. 

The array probes were converted to gene names using the hgu133plus2.db library. 

A linear model was fit (using limma) across individual datasets to identify the most 

differentially expressed genes in tumors in comparison to normal ones. The genes 

were then arranged according to log2 fold changes and the top 150 upregulated 

and downregulated genes were assessed for the CMAP analysis.  

 

6.3.3 Determination of perturbagens targeting PDAC tissues. Top 150 

upregulated and top 150 downregulated genes from individual datasets were 

queried into the connectivity map tool (https://clue.io/). Negatively connected drugs 

(connectivity score -30 and higher) were compared across datasets to identify the 

most common drugs across datasets. To evaluate the specificity of PC’s identified 

drug spectrum of PC, differentially expressed gene signature from GEO of human 

PC cell lines, PC patient derived xenografts, and PC tumoroids was queried for 

CMAP. The 9 commonly negatively connected drugs from the previous analysis 

were then compared to negatively connected drugs to each of these studies, and 

ISOX was identified as the single common drug and hence was chosen for further 

analysis.  

 

6.3.4 Cell culture and reagents. Human pancreatic cell lines (AsPC1, MiaPaCa2, 

CD18/HPAF, and BxPC3) were obtained from ATCC and confirmed using short 

tandem repeat (STR) profiling routinely during the experiments. The cells were 

cultured in 10% FBS supplemented DMEM or RPMI medium supplemented with 

https://clue.io/
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glutamine and penicillin as suggested and maintained in a cell culture incubator at 

5% CO2 and 37ºC. For drug studies, ISOX (CAY10603) was obtained from Cayman 

Chemicals (CAS number 1045792-66-2), while tubastatin A (CAS number 

1252003-15-8) and riclinostat (ACY1215) were purchased from 

MedChemExpress.  

 

6.3.5 Cell viability studies. Cell viability studies were carried out using MTT-

assay. Previously cultured cells (AsPC1, MiaPaCa 2, CD18/HPAF, BxPC3) were 

plated at 5000 cells per well in 96 well plates. After overnight incubation, PC cells 

were cultured with varied doses of ISOX (10 nM, 100 nM, 1 mM, 10 mM, and 100 

mM) to assess its impact on cellular viability. Treatments were carried out for 24, 

48, and 72 hours following which the 100mL of 5 mg/mL MTT reagent was added 

to each of the wells and cells were incubated for 3 hours. At the end of the 

incubation period the cells were lysed using 100 mL/well DMSO (10 minutes) and 

read at 570 and 640 nm. A similar analysis was also carried out for other HDAC6 

inhibitors; Riclinostat and Tubastatin A. Similarly, drug combination studies were 

carried out with fixed doses of Gemcitabine (2 µM) and 5-flurouracil (5 µM)  in 

addition to varied doses of ISOX (0.156 µM, 0.3125 µM, 0.625 µM, 1.25 µM, 2.5 

µM, 5 µM, and 10 µM) and the proliferation rates were calculated with respect to 

the untreated samples. Apoptosis analysis. Cells were plated in triplicates for 

both untreated and treated groups. Followed by a 12-hour incubation, treatment 

group cells were treated with 1 µM of ISOX. Following a 48-hour treatment cells 

were trypsinzed, collected and centrifuged and the pellet re-suspended in the 
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annexin V binding buffer. The cells were then stained with annexin V and PI and 

assessed using flow cytometry.  

 

6.3.6 Cell cycle analysis. Cell cycle analysis was carried out using propidium 

iodide staining. Various PC cell lines (AsPC1, MiaPaca2, CD18/HPAF, and 

BxPC3) were first seeded in triplicates. To ensure a uniform assessment cell 

cycles, cell were synchronized using a 12-hour thymidine block followed by a 9-

hour deoxycytidine treatment and a final 12-hour thymidine block. Following the 

synchronization, cells in the treatment group were treated with 1 mM ISOX for 48 

hours. At the end of the treatment the cells were fixed in 70% ethanol, followed by 

a propidium iodide (with telford reagent) staining and flow cytometry assessment.  

 

6.3.7 Migration analysis. Cells were seeded in triplicates for treated and 

untreated groups at 1x106 per well in the top chamber of matrigel coated plates 

(Corning BioCoat Matrigel Invasion chambers) for 12 hours. Following the initial 

incubation, cells were treated with 1mM ISOX for 48 hours, and the bottom half of 

the chamber filled with serum-containing media for chemoattractant purposes. At 

the end of the 48-hour treatment, the migrated cells were stained using a quick-

diff staining kit and compared in between groups.   

 

6.3.8 Efficacy assessment in KPC and human tumoroids. Tumor tumoroids 

were established using tumors from KPC autochthonous mouse and human donor 

tissues by firstly enzymatically digesting with 0.012% (w/v) collagenase XI (Sigma) 
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and 0.012% (w/v) dispase (GIBCO) in DMEM media containing 1% FBS (GIBCO) 

and then embedding in growth factor reduced Matrigel (BD Biosciences). These 

tumoroids were maintained and cultured in complete DMEM/F12 medium 

supplemented with HEPES [Invitrogen], Glutamax [Invitrogen], 

penicillin/streptomycin [Invitrogen], B27 , Primocin [1 mg/ml, InvivoGen], N-acetyl-

L-cysteine [1 mM, Sigma Aldrich], mouse recombinant Wnt3a [100ng/ml, EMD 

Milipore], human recombinant RSpondin1 [1μg/ml, PeproTech], Noggin[0.1 

mg/ml, PeproTech], epidermal growth factor [EGF, 50 ng/ml, PeproTech], Gastrin 

[10 nM, Sigma], fibroblast growth factor 10 [FGF10, 100 ng/ml, PreproTech], 

Nicotinamide [10 mM, Sigma], and A83- 01 (0.5 mM, Tocris Biosciences). 

 

6.3.9 Orthotopic mice model studies. All animal experiments were approved by 

the UNMC Institutional Animal Care and Use Committee.  Luciferase labelled 

CD18/HPAF (viability >95%) were orthotopically implanted into the pancreas of 

athymic nude mice (male and female) at 2.5X105 cells in 50 µL tissue culture grade 

PBS. The mice were then imaged using the small imaging IVIS system to monitor 

tumor formation. At the end of 2 weeks following implantation and confirmation of 

tumor formation, the mice were randomly distributed into four groups- control 

(PBS), ISOX (50 mg/mL), 5FU (50 mg/mL), and combination (ISOX and 5FU 

together). The treatment was carried out for 15 days (3 cycles of 5 days continuous 

followed by 2 days break) with imaging at day 10 and day 15. Half of the mice from 

every group were sacrificed, and the other half followed for survival. The tumor 

weight was then assessed for each mouse and compared using a Mann-Whitney 



167 
 

U test across groups. For the survival analysis, day of death was measured either 

as the natural death or the veterinarian suggested euthanasia. Survival across 

groups was compared using a log-rank test. The experiment was repeated twice.  

 

6.3.10 RNA-sequencing analysis. RNA from treated (1 µM ISOX, 48 hours) and 

untreated CD18/HPAF were assessed using Illimuna TrueSeq (mid-output 75 

paired-end) RNA sequencing (RNA seq). The raw reads were mapped to Hg38 

human genome from iGenomes using TopHat (version v2.1.0), quantified using 

CuffLinks (version v2.2.1), and differential expression across the untreated and 

treated samples calculated using CuffDiff. The differentially expressed genes were 

subjected to a pathway assessment using ingenuity pathway analysis (IPA v01-

12) and gene set enrichment analysis (GSEA). Furthermore, the RNA-seq data 

was used for a transcription factor analysis using the online tool TFactS 

(http://www.tfacts.org/) and a more detailed analysis using the ENCODE 

transcription factor tool within the web tool iLincs (http://www.ilincs.org/ilincs/)  

 

6.3.11 Immunoblotting. Protein isolation and western blot analysis was carried 

out to compare untreated and ISOX treated (24, 42, 72 hours) cells to assess the 

difference in protein expression of targets identified through the in-silico screen. 

Proteins were isolated using 

radio-immunoprecipitation assay (RIPA) buffer for lysing the cells, followed by 

removing the cell debris by centrifuging at 13,000 rpm at 4oC. Protein 

http://www.tfacts.org/
http://www.ilincs.org/ilincs/


168 
 

concentrations were measured DC Bio-Rad protein assay kit. Equal 

concentrations of protein were loaded for the untreated and treated samples.  

 

6.3.12 Immunohistochemistry analysis. Slides from untreated and treated 

animal tissue sections were baked overnight at 56ºC followed by deparaffinization 

using 2 xylene washes, followed by rehydration using varied concentrations of 

ethanol. Endogenous peroxidases were blocked using 3% H2O2 for 1 hour, 

followed by antigen retrieval in citrate buffer (pH 6) for 15 mins. The slides were 

then blocked using normal horse serum (Vector Laboratories) and incubated 

overnight with the various primary antibodies. Universal secondary antibodies 

(Vector Laboratories) were used for 1 hour, and the slides were developed using 

DAB substrate kit (Vector Laboratories). Hematoxylin was used for nuclear 

counterstain.  Similarly, human patient tissues were stained for HDAC3, HDAC6, 

and HDAC10. Tissues were dehydrated and mounted using permount.  
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6.4 RESULTS 

6.4.1 Connectivity mapping analysis identifies ISOX as a potential 

therapeutic for PC.  

CMAP, a big data repository from the BROAD Institute, is a collection of gene 

expression data from cell lines treated with a huge variety of inhibitors. We used 

the CMAP database and queried it for the differential gene signatures from four 

(GSE16515, GSE15471, GSE18670, and GSE32676) PC datasets (Fig. 6.1B, 

Fig. 6.1C). We then assessed the drugs negatively connected to each of these PC 

signatures due to their propensity to reverse the disease state’s gene signature. 

Nine common drugs with a significant negative score (-30 or above), including 

ISOX, Trichostatin A, Vorinostat, Apicidin, Panobinostat, Hydrocortiosone, 

Dacinostat, FR-180204, and Clobetasol were identified (Fig. 6.1D). Interestingly, 

ISOX was the top negative scoring drug across all datasets (Fig. 6.1E). However, 

the scoring showed a slight variability across the datasets, with drugs like 

panobinostat showing a high score in two of the datasets (-94.11 and -93.6) but 

lower in the other two. Considering this and to identify a highly specific for PC, we 

next carried out a CMAP analysis in datasets from PC cell lines (GSE45757), 

human tumoroids (GSE107610), and patient-derived xenografts (GSE46385, 

PDX). The negatively connected drugs across these datasets were compared to 

the nine commonly identified drugs (Fig. 6.1F). Among various drugs, ISOX 

(CAY10603, tert-butyl N-[4-[3-[[7-(hydroxylamino)-7-oxoheptyl] carbamoyl]-1, 2-

oxazol-5-yl] phenyl] carbamate) was identified as the most potential therapeutic for 

PC (Fig. 6.1G)   
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Figure 6. 1 In-silico identification of highly specific therapeutic for 

pancreatic cancer. 

Connectivity mapping was used to identify negatively connected drugs specific to 

four PC datasets. A. Schematic representation of overall study design followed to 

identify and validate specific therapeutic for PC. B. Sample cohort- Bar graph 

representation of a number of tumors and normal samples within the four 

microarray datasets GSE18670 (24 samples), GSE32676 (32 samples), 

GSE15471 (78 samples), GSE16515 (52 samples). A differential gene expression 

was carried out using limma package from R bioconductor to identify top 

differentially expressed genes between normal and tumor samples. C. 

Representative heatmap from differential gene expression in GSE15471. The top 

150 up-regulated and down-regulated genes from the differential gene expression 

was put into connectivity map to identify negatively connected drugs for each of 

the datasets separately. D. Venn diagram representing negatively connected 

drugs across the four datasets. Nine common drugs were identified as being 

common between all the datasets. E. Heat map representing the connectivity 

scores of all the 9 commonly negatively connected drugs. F. Highly specific drug 

for PC across cell lines, human tumoroids, human tissue, and patient-derived 

xenografts (PDX). In order to delineate a highly specific drug connectivity mapping 

was run again for human tumoroids, cell lines, and PDX models. The negatively 

connected drugs were compared to the nine drugs identified from the human tissue 

samples. ISOX was identified as the only drug common between all these four 

models. G. ISOX structure as obtained for CMAP showing a clear HDACi moiety.   
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Figure 6.1 
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6.4.2 ISOX inhibits the proliferation of PC cell lines at low concentrations.   

To validate our in-silico findings, ISOX’s impact on tumor cell proliferation, 

migration, and apoptosis was evaluated in a panel of PC cell lines, including 

AsPC1, MiaPaCa, BxPC3, and CD18/HPAF. The cell lines were chosen based on 

the varied genetic background, differentiation status (covering well to poor) and 

tumor source (primary tumor, metastatic site and ascitic fluid). The impact of ISOX 

as a monotherapy was first evaluated on cellular proliferation via MTT method as 

described in our earlier publications (260). ISOX was found to be extremely potent 

in reducing the growth of all the cell lines with an IC50 value ranging 2.4 nM-1.4 µM 

(Fig. 6.2A). Interestingly, the varied response of ISOX was observed across the 

PC cell line panel, further suggesting the inherent heterogeneity and varied therapy 

response of the disease. Further, to determine the toxicity level of ISOX on normal 

pancreatic cells, MTT was carried out on normal human pancreatic immortalized 

cell line HPNE (261). ISOX had minimal effect on HPNE cells, wherein even at 

higher concentrations, the proportional viability was at 80% as opposed to a much 

higher toxicity of 5FU (Fig. 6.2B).  

 

6.4.3 ISOX affects the cell cycle by inducing G0/S arrest of PC cells.   

Next, to gain a better understanding of the mechanism of action for ISOX on cell 

cycle abrogation, we treated PC cells with ISOX and examined its effect on the 

various phases of the cell cycle. An initial synchronization followed by propidium 

iodide (PI) based FACS analysis was performed to assess the effect of ISOX on 

cell cycle arrest in PC cells. We observed that across our cell line panel and at 
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various time-points, ISOX induced a G0/S phase arrest. This change was most 

prominently observed at 48 hours after the treatment with a significant reduction in 

cells in S phase and a statistically (Mann-Whitney U p-value< 0.05) significant 

increase in the GO/S phase (Fig. 6.2C). Interestingly, MiaPaCa2 showed a G2/M 

arrest suggesting heterogeneity within the cell lines.  

6.4.4 ISOX induces apoptosis in PC cells.  

To further evaluate whether ISOX impacts tumor cell resistance to apoptosis, we 

performed apoptosis studies using Annexin V and PI via flow cytometry analysis. 

ISOX treated group showed a high percentage of both early apoptotic cells 

(annexin V positive and PI negative) and late apoptosis (annexin V and PI positive) 

across the cell line panel.  Significant apoptosis induction was observed in all the 

PC cells examined. Notably, up to 40% apoptosis was observed in both BxPC3 

and MiaPaCa2 cells (Fig. 6.2D). 

6.4.5 ISOX reduces the invasion and migration abilities of PC cell.  

Considering that invasion and migration are established hallmark features of 

cancer cell aggressiveness and that chemotherapeutic agents often fail to inhibit 

these processes effectively, we next carried out a matrigel assisted invasion assay 

using various concentrations of ISOX (100 nM, 1 µM, and 5 µM) with AsPC-1 and 

MiaPaCa2 cell lines. ISOX successfully reduced the invasion of both the cell lines 

in a dose-dependent manner (Fig. 6.2E). Excitingly, even at 100 nM, ISOX could 

successfully reduce the percentage of migratory cells by over 83% compared with 

untreated control. Furthermore, a wound healing assay was carried out at the 

same concentrations compared to the untreated cells, ISOX treatment at various 
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concentrations significantly reduced the wound closure examined at multiple time-

points (Fig. 6.3). 
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Figure 6. 2 Evaluation of ISOX therapeutic efficacy across pancreatic 

cancer cell lines. 

To validate our in-silico identification of ISOX as a potential therapeutic, PC cell-

line-based assessment of ISOX was carried out across various PC cell lines. A. 

MTT assay. The effect of ISOX on proliferation was tested using across four 

commonly used PC cell lines (MiaPaCa2, CD18/HPAF, AsPC1, and BxPC3). An 

IC50 of as low as 7nM-2.3uM was observed across various cell lines.  B. Effect 

on normal (HPNE) cells. To identify the toxicity on normal PC cell lines, an MTT 

based analysis of varied ISOX doses was carried out on HPNE cell lines using 

5FU as the control. The comparison showed minimal toxicity of ISOX even at 

higher concentrations (80% viability at 100µM). C. Cell cycle analysis. In order to 

identify where in the cell cycle ISOX acting was, a FACS based cell cycle analysis 

was carried out through PI-based staining of synchronized MiaPaca2, 

CD18/HPAF, and AsPC1 cells. The representative FACS figures with the 

associated bar graph representation establish a GO/S arrest with a significant 

reduction in S phase and a significant increase in the GO/S phase with ISOX 

treatment.   D. Apoptosis analysis. The cell cycle analysis was followed up by an 

apoptosis analysis to compare apoptosis between treated and untreated samples 

using a FACS based comparison of annexin 5 and PI staining in the same cell 

lines. E. Invasion assay. Invasion is one of the most important properties of 

cancer cells. To assess how ISOX affects the invasion, a dose-dependent analysis 

matrigel assisted invasion was carried out. A dose-dependent significant decrease 

was observed in both MiaPaca2 and AsPC1 cell lines.    
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Figure 6.2 
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6.4.6 ISOX inhibits the proliferation of PC cells in combination with 5FU and 

Gemcitabine.  

FOLFIRINOX has recently gained popularity as a first-line therapy for patients with 

advanced pancreatic cancer (262, 263). However, toxicity associated with 

FOLFIRINOX limits its applicability. Notably, 5FU serves as the key component of 

FOLFIRINOX. Resistance to 5FU due to deficient drug uptake, alterations of 

targets, activation of DNA repair pathways, apoptosis resistance is considered as 

a serious challenge for both PC and other malignancies (colon, lung, and stomach)  

(264).  Additionally, Gemcitabine serves as a candidate first-line therapy for PC. 

Considering this and to further our effort into studying ISOX as a potential 

therapeutic for PC, we next evaluated the impact of ISOX in combination with 5FU 

and Gemcitabine. MTT analysis was carried out with 5FU (5µM, Fig. 6.AA) and 

Gemcitabine (2 µM, Fig. 6.4B) alone and in combination with increasing doses of 

ISOX (0.156 µM, 0.3125 µM, 0.625 µM, 1.25 µM, 2.5 µM, 5 µM, and 10 µM). The 

combination of ISOX with 5FU and Gemcitabine significantly reduced the 

percentage viability across PC cell lines (Fig. 6.4A and B). Of note, the 

combinations reduced the viability of MiaPaCa2 and CD18/HPAF in a dose-

dependent manner both at 48 and 72 hours. AsPC1 showed slightly more 

variability wherein certain lower (1.25 µM ISOX with both drugs) combinations 

were better than the subsequent higher concentrations (Fig. 6.4A and B). 
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Figure 6.3 Wound healing assay in response to ISOX treatment.  

Wound healing assay was carried out comparing the wound healing capabilities of 

untreated and ISOX treated (100nM, 1μM, and 5μM) AsPC1 and MIaPaca2 cell 

lines. In conjunction with our earlier studies, as compared to the untreated 

samples, wounds closure was significantly slower in ISOX treated samples when 

compared to untreated.  
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Figure 6.3  
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Figure 6.4 ISOX therapeutic efficacy in combination with two of the most 

commonly used PC therapeutics; 5-flurouracil (5FU) and Gemcitabine 

(GEM). 

A. Combination with 5FU. To further assess the potential of ISOX in PC, a 

combination study with 5 µM of 5FU was carried out in the same PC cell lines 

(MiaPaCa, CD18/HPAF, AsPC1)). In support of our earlier data, ISOX showed 

very high potential in this combination. The IC50 for the combination was further 

lowered than the initial values to as low as 0.6 nM. B. Combination with GEM. 

The same PC cell lines (MiaPaCa, CD18/HPAF, AsPC1) were assessed for 

combination studies for GEM and ISOX. Based on previous studies, 2µM of GEM 

was used in combination with increasing doses of ISOX.  
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Figure 6.4 
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ISOX is highly efficacious in inducing growth inhibition in mice and human-

derived tumoroids.  

The anti-cancer effects of cancer therapeutics observed in preclinical models often 

cannot be mirrored in clinical models mainly due to the discordance between the 

biology of these monolayer cultures and the complex tumor microenvironment of 

most cancers and specifically complex diseases like PC. In this regard, the 3D 

cancer tumoroids offer a near-native structure and provide great promise and 

applicability in drug efficacy studies. Considering this, the efficacy of ISOX was 

next evaluated in tumoroids-derived from the most common mouse model of PC; 

KrasG12D; p53R172H; Pdx- Cre (KPC) mouse and human PC patient-derived 

tumoroids (Fig. 6.5A). The KPC tumoroids were treated with 500 nM of ISOX and 

followed for 7 days through imaging. A significant reduction in the viability with 

morphological changes in the tumoroids with a significant reduction in size and 

visible darkening of the structures (Fig. 6.5B) were observed across drug-treated 

groups. Proportional viability of tumoroids was assessed where the total number 

of live tumoroids at day 0 was considered to be the baseline. Interestingly, the 

proportional viability reduced significantly within 3 days of 500nM of ISOX 

treatment (Fig. 6.5C). A similar assessment was carried out in a set of human 

patient-derived tumoroids using a range of ISOX concentrations (100nM, 1 µM, 

and 5µM) and a combination with 5µM of 5FU and 2µM of Gemcitabine (Fig. 6.5D). 

Next, a 3D cyber-glow assay was performed to assess the ATP production in these 

tumoroids. Dose-dependent reduction of ATP production was observed upon 

ISOX treatment, thus, suggesting a higher efficacy of ISOX in killing human 
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tumoroids and inhibiting the viability PC (Fig. 6.5E). Interestingly, tumoroids 

exposed with gemcitabine and ISOX alone or in combination up to 48 hours 

showed minimal ATP production. Similar effects were observed in an additional 

group of tumoroids derived from a second PC patient. These second sets of 

treated human tumoroids were sectioned at the end of the 48-hour treatment. H&E 

staining of these sections supported the initial loss of viability, wherein a loss of 

structure could be observed with an increase in concentrations. A tunnel assay 

and caspase 3 staining also supported this observation with the maximum 

expression observed in the 5 µM ISOX and 5FU drug combination groups (Fig.6. 
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Figure 6.5 ISOX is highly effective in inhibiting the growth of mice and 

human-derived tumoroids. 

To assess if this high potency observed in cell lines can also be translated to 3D 

models, the efficacy of ISOX was observed in KPC mice and human tumor-derived 

tumoroids.  A. Schematic representation of protocol used for establishing 

tumoroids from mice and human tumors. Tumors resected from KRASG12D; 

p53R172H (KPC) mice and human patient donors were digested using a specific 

digestive mixture and embedded in matrigel. These tumoroids were then used to 

assess the efficacy of ISOX.  B. Representative figure of untreated and ISOX 

treated KPC mouse derived tumoroids. KPC tumoroids were treated with 

500nM of ISOX and followed for 7 days. Untreated tumoroids went on to increase 

in size and remained healthy the ISOX treated tumoroids showed a significant 

decrease in size and loss of viability observed through blackening of the tumoroids. 

C. Bar graph representation of proportional viability of tumoroids. The 

proportional viability of tumoroids in each of the group were observed across the 

5 days. The bar graph shows a significant reduction in the viability of tumoroids in 

the treated group when compared to the untreated group, which remained 

unaffected.  D. Human tumoroids. To further establish ISOX as a potential 

therapeutic, a dose-dependent effect of ISOX alone and in combination with GEM 

and 5FU was assessed in patient tumor-derived tumoroids.  E. Bar graph 

representation of diameter of normalized ATP production. The efficacy of the 

treated samples was measured using a CellTiter-Glo 3D cell viability assay. The 

normalized ATP production reduced significantly with an increase in the dose of 

ISOX and was found to be the least in the combination groups.  
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Figure 6.5  
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6.4.7 ISOX alone and in combination reduces the growth of PC orthotropic 

tumors.  

Further, after observing the significant potential of ISOX in cell line and tumoroid 

models, studies were focused on assessing the effect of ISOX under in-vivo 

conditions.  Luciferase labeled CD18/HPAF cells were orthotopically implanted 

into the pancreas of athymic nude mice. The tumors were allowed to grow for two 

weeks, and animals were randomized into four treatment groups by comparing the 

size of tumors and animals were equally distributed into four groups based on the 

positive luciferase images.  The control group was given intraperitoneal (i/p) 

injections of PBS, while the treatment groups included 50 mg/kg 5FU, 50 mg/kg 

ISOX alone, and a combination of both drugs. All treatments were carried out for 

5 days followed by a 2-day interval, and this routine was followed for 2 cycles. The 

mice were subjected to IVIS imaging on day 0, day 10, and day 15. Interestingly, 

treatment with ISOX alone or in combination with 5FU led to a significant reduction 

in the size of tumors observed at the end of day 10, with minimal IVIS signal across 

multiple mice in the treatment group (Fig. 6.7A). Comparison of tumor weight 

between untreated and treated mice showed a statistically significant reduction in 

both the ISOX alone and combination groups in comparison to the untreated group 

(Fig. 6.7B). Furthermore, these mice were assessed for specific metastatic spots 

in various organs (peritoneal, mesenteric lymph nodes, intestinal, and kidney). 

Intriguingly, no distant metastasis was observed in the drug combination group 

(Fig. 6.7C). Similar to the sectioned tumoroids, the sectioned tissues were 
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subjected to tunnel staining, which showed high level of apoptosis in the ISOX 

alone and the 5FU groups. This could be corroborated with a caspase 3 staining. 

Of note is a similar caspase 3 levels in cell lines post-treatment with ISOX alone 

and in combination with 5FU. While imaging these mice across the treatment cycle 

(day 10), a few of the mice were imaged using the 3D-BLIT settings within the IVIS 

system. A representative figure (Fig. 6.7D) shows that while the control and 5FU 

treated mice showed distant metastasis, no metastasis was observed in the ISOX 

alone and its combination with 5-FU groups. The rest of the mice, when assessed 

for survival (day of death defined as a natural death or if suggested by the 

veterinarian) showed that the combination mice survived significantly longer. Fig. 

6.7E).  

 

6.4.8 Mechanism of ISOX action on PC cells.  

While the aforementioned pre-clinical studies helped us to determine the efficacy 

of ISOX in PC cells, the question of the mechanism of action was entirely 

unexplored up until this point. A literature review identified ISOX as a potent HDAC 

inhibitor with the highest inhibitory potential towards HDAC6 (IC50 0.002nM), and 

significant efficacy towards HDACs 3 (IC50 0.42nM), and 10 (IC50 90.7 nM) (Fig 

6.8A) (265). Based on this, we next explored the status of these HDACs in PC cell 

lines and tissues. First, we analyzed this expression in PC cell lines (MiaPaca2, 

CD18/HPAF, AsPC1, CFPAC1, SW1990, Colo357 and T3M4) by immunoblotting 

with HDAC antibodies and compared their expression relative to normal 

immortalized pancreas (HPNE and HPDE) cell lines. All these HDACs were found 
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to be upregulated in the PC cell lines when compared to the normal cell lines (Fig. 

6.8B). Further, an independent assessment of TCGA pancreatic (tumor) tissue 

samples with GTex pancreatic (normal) samples showed a higher expression for 

HDAC3, HDAC6 and HDAC10 in the tumor cells. An IHC analysis for the 

aforementioned HDACs in human PC tissue sections showed an upregulation of 

all the three HDACs in both early (PanINs) and PC tumor lesions when compared 

to normal specimens (Fig. 6.8C). All these results together suggested the 

important role of these specific HDACs in PC initiation and progression. Still, it 

remained unclear how ISOX mediates its impact in pancreatic tumor cases 

6.4.9 ISOX shows an acetylation-dependent effect on c-MYC.  

Furthermore, western blot analyses of ISOX treated cells showed a significant 

increase in the acetylated tubulin level suggesting effective HDAC inhibition. 

Moreover, ISOX treatment increased the acetylation of cMYC and hence reduced 

cMYC by itself and the key downstream target p21 and CDK6. (Fig. 6.8D) 

.  
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Figure 6. 6  H&E Tunnel and caspase 3 staining in tumoroids treated with 

ISOX.  

Tumoroids treated with ISOX were sectioned and stained using H&E, caspase 3 

and subjected to a tunnel staining. In conjunction with our earlier results, a high 

level of apoptosis was observed in ISOX and combination treated tumoroids.  
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Figure 6.6 
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Figure 6. 7 ISOX is highly effective in reducing the tumor load and 

increasing the survival of PC orthotopic mice models. 

Luciferase labeled CD18/HPAF cells were orthotopically implanted into the 

pancreas of athymic nude mice. The mice were randomly divided into four groups: 

control mice (received PBS), 5FU alone (50 mg/kg 5FU), ISOX alone (50 mg/kg 

ISOX), and combination Mice were treated for 15 days (3 cycles of 5 days 

treatment with 2 days break) and imaged at the beginning, middle (day 10), and 

end of the treatment (day 15). At end of day 15, half the mice were sacrificed for 

tumor weight calculations, and the other half were followed for survival analysis. 

A. IVIS images of two representative mice from each of the groups at the start and 

middle of the treatment. ISOX alone and combination mice showed a huge 

reduction in tumor size with the gross tumors gone within 10 days. B. Box plot 

representation of tumor weight from each of the groups show a statistically 

significant reduction in tumor weight in both ISOX alone and combination groups. 

C. Bar graph representation of a number of metastatic spots. Metastasis was 

significantly reduced in ISOX treated mice, and there was no metastasis in the 

combination group. D. Representative BLIT images of untreated mice. BLIT 

images with 3-D reconstructions showed a reduction a high amount of metastasis 

in the control and 5FU mice but no metastasis in the ISOX treated and combination 

group mice. E. Survival plot for the untreated and treated mice. Survival 

assessment using a JMP pro (version 14) shows a statistically significant increase 

in survival in the combination group. The days to death were days post orthotopic 

implantation where either the mouse died on its own or sacrificing the mouse was 

suggested by the veterinarian.  



192 
 

Figure 6.7 
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6.4.10 Global analyses of ISOX affected pathways. 

Further, to get a more in-depth idea of the global effects of ISOX, library of 

integrated network-based cellular signatures (LINCS) was queried for the ISOX 

signature using the iLINCS (http://www.ilincs.org/ilincs/) webtool. Specifically, the 

cancer therapeutics response signature from ISOX/CAY10603 was studied for 

downstream effectors and similarity with other drug signatures (Fig. 6.8E). 

Interestingly, while exploring this signature, we observed that all members of the 

MYC-MAX-MAD as key transcription factors affecting the various genes in the 

ISOX signature (Fig. 6.8E). It is also noteworthy to mention that various studies 

have elucidated the regulation of cMyc through an acetylation-dependent 

mechanism.  

Moreover, to study the global impact of ISOX treatment on PC cells, RNA-

sequencing analysis of untreated (CD18/HPAF) and treated cells (CD18/HPAF; 

1µM; 48 hours) was carried out, followed by a differential expression analysis (Fig. 

6.8F). The RNA-sequencing data was further analyzed using TFacts and ENCODE 

transcription factor analysis tool to assess the transcription factors, whose 

functions were modulated by ISOX treatment. Intriguingly, both transcription factor 

analyses showed MYC as a regulator of the differentially expressed genes (Fig. 

6.8F & 6.8G). Furthermore, pathway analysis of the RNA-seq data showed a high 

enrichment of sirtuin signaling, epithelial-mesenchymal transition, ERK/MAPK, 

PI3K-mTOR-AKT, and sonic hedgehog pathway in the treatment group in 

comparison to the untreated samples (Fig. 6.8H). Interestingly, all the 

aforementioned pathways have been shown to be associated with MYC.  

http://www.ilincs.org/ilincs/
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6.4.11 ISOX fares better than other HDAC inhibitors Tubastatin A and 

Ricolinostat.  

To identify the HDAC dependency of ISOX in its mechanism of action, a head-to-

head comparison was carried out between ISOX, tubastatin A, and riclinostat. 

Reassuringly, ISOX performed better in reducing the proliferation of all PC cell 

lines while tubastatin A and ricolinostat were unable to induce reduction even at 1-

10 µM concentrations supporting the efficacy of the method and the unique 

potential of ISOX as a PC therapeutic. (Fig. 6.8J)  
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Figure 6. 8 Mechanistic studies of ISOX action. 

Mechanistic studies were carried out using a combination of in-vitro and in-silico 

assessments, including RNA-seq, western blotting assessment and reverse 

engineering study. A. Schematic representation of IC50 values of HDAC inhibition 

by ISOX. Literature review helped us identify the IC50 values of ISOX for inhibiting 

the activity of various HDACs (265). Noteworthy to mention is the fact that ISOX is 

highly efficacious towards HDACs 3, 6, and 10 (blue color). B. Independent 

assessment of the aforementioned HDACs in PC cell lines by immunoblotting. PC 

cell lines (MiaPaca2, CD18/HPAF, AsPC1, CFPAC1, SW1990, Colo357 and 

T3M4) with normal pancreas (HPNE and HPDE) cell lines were assessed for the 

expression levels of HDACs 3, 6, and 10. Interestingly, there was an upregulation 

of all these 3 HDACs in PC cell lines when compared to normal cell lines. C. 

Immunohistochemistry (IHC) analysis of normal and tumor tissue from patient 

samples. IHC successfully corroborated the earlier assessment of overexpression 

of HDACs 3, 6, and 10 in the tumor samples when compared to the normal 

samples. D. Western blot analysis of ISOX treated samples 
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Figure 6.8 
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 E. Heat map representation of ISOX gene signature in conjunction with the other 

related therapeutics. Marked in red are the genes related directly or indirectly to 

MYC. F. Volcano plot representing RNA-seq analysis of ISOX treated CD18/HPAF 

cells. CD18/HPAF cells were treated with 1 µM of ISOX (for 48 hours) and 

subjected to RNA-seq analysis. The word cloud within the volcano plot represents 

transcription factors regulating the genes differentially expressed between 

untreated and treated samples. G. Bar graph representation of z-scores from 

encoding transcription factor analysis of the genes downregulated between 

untreated and treated samples. Genes downregulated by the treatment were 

subjected a transcription factor analysis using the iLincs server. Noteworthy to 

mention is that various important transcription factors, including HDAC2, GATA2, 

and cMYC, were significantly affected by this treatment. H. Bar graph 

representation of pathways affected by ISOX as observed through an ingenuity 

pathway analysis (IPA) 
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Figure 6.8 
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J. Head-to-head comparison of ISOX with other HDAC inhibitors. Bar graph 

representation of percentage viability of various PC cell lines with increasing doses 

of ISOX, two other HDAC inhibitors tubastatin A and riclinostat. Interestingly, ISOX 

(red) was far better in reducing the viability of PC cell lines when compared to its 

counterparts.  
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Figure 6.8 
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6.5 DISCUSSION 

Targeting PC has been a challenge to both researchers and clinicians. While 

various drugs and combinations thereof have been assessed in clinical trials, we 

have not been able to either achieve promising survival or improve the quality of 

life of these patients. The failure of these therapies can be attributed to the failure 

of the one target at a time approach, and better methods with a multiple gene 

targeting approaches can prove beneficial. Recent advances in molecular profiling 

of tumors led to the identification of distinct molecular signatures amongst patients, 

which has led to efforts directed towards establishing targeted therapies or 

devising precision medicine strategies.  Efforts have been made to develop tailored 

treatments for a subset of the patients with one or multiple actionable mutations 

the response, however, remains minuscule. Considering this, the current study 

uses an in-silico approach to target the whole gene expression profile of PC.  

 

Our global in-silico assessment led to identifying a highly specific and novel 

therapeutic for PC; ISOX. Through our in-depth analysis using PC cell lines, 

tumoroid and orthotopic mice models, we could successfully establish the potential 

of ISOX as a potential therapeutic for PC. The thorough literature review helped 

us to identify ISOX as a histone deacetylase (HDAC) inhibitor with the highest 

efficacy towards HDAC6, with a potent effect on HDAC3 and HDAC10. (265, 266) 

Interestingly, an independent assessment of comparison of normal pancreas and 

PC cell lines and the cancer genome atlas (TCGA) based comparison of normal 

and tumor tissue samples showed an upregulation of HDACs 3, 6, and 10 in both 
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PC cell line and the tissue samples. Interestingly, the HDAC family of proteins has 

been established to play essential roles in the initiation, promotion, and cancer 

progression due to their direct effect on various histone and non-histone substrates 

(267, 268). Notably, prominent genes like tubulin, PI3K-AKT, p53, HSP90, NF-KB, 

ERK have been established to be direct targets of the HDAC family (269). 

Interestingly, these substrates are known to play a crucial function in cancer 

biology by playing a direct role in cell cycle regulation, apoptosis, DNA-damage 

response, autophagy, and other such vital pathways (270). Furthermore, 

epigenetic deregulation has been established as a hallmark of cancer, and 

effectively targeting these deregulations can prove to be extremely effective. 

Various HDAC inhibitors such as vorinostat (SAHA), panobinostat, valopric acid, 

abexinostat, etc. have been studied through multiple in-vitro and in-vivo models in 

the laboratory, and many more have fared well in clinical trials suggesting the 

potential of HDACi as a cancer therapeutic strategy.  

 

However, studies have reported that pan-HDAC or class independent HDAC 

inhibitors (HDACi) often have a variety of adverse effects. To solve this problem, 

medicinal chemist Hyun-Jung Kim and colleagues (271) suggest the development 

of isoform-specific inhibitors either targeting one of the specific classes or, more 

specifically, one of the HDACs. As mentioned, ISOX shows the highest efficacy 

towards HDAC6; a structurally unique HDAC owing to the presence of two catalase 

domains has been established as a promising target (272). Recent studies have 

demonstrated the role of HDAC6 as a central target in cancer therapy, because of 



203 
 

its role in oncogenic cell transformation. But owing to the structural complexity, it 

is extremely challenging to target HDAC6 (273). 

Additionally, ARID1A (a SWI/SNF -complex chromatin-component gene), is 

commonly mutated in several cancers, has been established to have an HDAC6 

dependence in their action (274). Interestingly, ARID1A is one of the most mutated 

genes in the TCGA PC dataset and highly mutated in various other PC datasets, 

suggesting the importance of targeting HDAC6 for effective therapeutic 

intervention in PC. Interestingly, ISOX has been shown to have a very high 

specificity towards HDAC6. Further, our comparison studies between ISOX and 

other HDAC6 inhibitors, trichostatin A and riclinostat showed that ISOX fairs better 

than both the other inhibitors in inhibiting the proliferation of PC cell lines 

supporting using ISOX in a PC setting. This can possibly be explained by that 

besides HDAC6, ISOX also shows an excellent efficacy towards HDAC3 and 

HDAC10, both of which are also critical targets in cancer biology and in PC. 

HDAC3 has been known to have roles in lung, ovarian, and colorectal cancers due 

to its central role in mitosis regulation (275, 276). HDAC10, on the other hand, has 

been established to play an important role in the regulation of stem-like cell 

properties of KRAS-driven lung adenocarcinoma, which supports its use in other 

KRAS-driven cancers like PC  (277). Interestingly, the other HDACi(s) do not have 

the same kind of specificity (to HDACs 3, 6, and 10) as ISOX does, further 

supporting it as a potential therapeutic.  
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While this background was strong enough to support the exploration of ISOX as a 

potential therapeutic, our RNA-sequencing analysis helped us to gain insight into 

the differences that make ISOX more efficacious than the other HDAC inhibitors. 

In conjunction with a two-way enrichment study for the regulating transcription 

factors and pathway analysis, the RNA-sequencing analysis helped establish 

various important pathways like PTEN signaling, ERK signaling, PI3K/AKT/mTOR 

signaling, etc., as targets for ISOX. Furthermore, a combination of studying the 

ISOX signature from LINCS and our RNA-seq data paved the path to the 

identification of MYC and related pathways as the direct downstream effectors of 

ISOX action. MYC and its related signaling pathways like EGFR, PI3K-AKT-MTOR 

signaling have been established to have extremely important roles in PC. 

Interestingly, studies have established MYC to be regulated by HDAC dependent 

acetylation suggesting a direct downstream effect of the HDAC family proteins 

(278, 279); however, further in-depth studies need to be carried out to understand 

that these cMYC and related pathways are getting affected through HDAC 

inhibition or independently.  

 

While the study has been extremely successful in establishing ISOX as a potential 

therapeutic, there are various limitations that need to be addressed as we move 

forward. Firstly, the study is limited by CMAP since it only queries against the drugs 

tested within the database. There could be a potential drug targeting the exact 

signature for PC, which is yet to be included in the CMAP dataset. Furthermore, 
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the variability between the responses observed in various cell lines needs to be 

studied for specific mechanism differences.  

 

Overall, this study successfully establishes ISOX as a new therapeutic for PC. 

ISOX proved to be highly efficacious in PC cell lines, tumoroids, and mice models. 

More interestingly, through an HDAC driven mechanism, ISOX effectively targets 

multiple pathways, which are known to be important in PC. While years of research 

have identified drugs affecting single targets, this approach has not been 

successful in PC due to its late diagnosis, high complexity, early metastasis, and 

dense stroma. We have successfully demonstrated the impact of ISOX on master 

regulators through our study targeting multiple pathways, including HDAC6, 3, and 

10 and MYC, and hence multiple pertinent downstream pathways. Owing to the 

low dose of ISOX action, low toxicity in normal cell lines, and multiple pathways 

targeting establishes it as a unique and highly potent therapy for PC. This 

comprehensive preclinical assessment has led to the identification of ISOX as a 

potential therapeutic for PC. We believe that this pipeline and ISOX in itself will 

prove beneficial for PC patients. Further assessment in PC progression models 

and clinical trials will help us establish the use of ISOX in the clinics and eventually 

have direct implications on better patient care. 
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7.1 OVERALL CONCLUSIONS 

 

Advances in computational power, along with our ability to collect and investigate 

large datasets, have had overwhelming implications in disease diagnosis, 

detection, and therapeutic interventions. The advanced present-day algorithms 

combined with Moore’s law increase in computational power has given us the 

capability of uncovering otherwise undetectable patterns. This, combined with our 

ability to validate these identified patterns in the laboratory, has thus led to a shift 

in the way we approach biological questions and seek solutions. Considering this, 

the overarching aim of this Ph.D. dissertation was the development of in-silico 

pipelines for the identification and characterization of biomarker panels and 

therapeutic interventions in high mortality gastrointestinal cancers. This chapter 

provides a summary and future directions of the different aspects covered in this 

dissertation.  

 

7.1.1 Global in-silico analysis of mucins in Colorectal Cancer identifies 

specific MUC16 signaling.  

The 22-member mucin family consists of high molecular weight glycoproteins with 

imperative roles in the initiation and progression of various cancers. These roles, 

in turn, lead to specific applications both in the early discovery of malignancies (as 

biomarkers) and using targeting mucins for therapeutic interventions. Specifically, 

in colorectal malignancies, differential expression and glycosylation profile of these 

mucins have been associated with benign and malignant pathologies. While 

studies relating to specific mucins provide some insight, a comprehensive 
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assessment has not been carried out to date. Furthermore, there is varied 

evidence of aberrant expression and mutation profiles which makes the 

applicability extremely challenging. Considering this lack of consensus, this study 

carried out a bioinformatics-driven assessment of mucins in colorectal cancer to 

identify expression and mutation patterns considering early precursor lesions and 

tumor samples. 

The expression, survival, and mutational data from the cancer genome atlas 

(TCGA) for tumor (N=380) and normal samples (N= 51) were used in conjunction 

with microarray data for precursor lesions, namely tubular adenomas (TA) and 

sessile serrated adenomas/polyps (SSA/Ps) from GEO datasets. For TCGA, the 

pre-processed expression data was downloaded from the UCSC-Xena web server 

and further processed using R-Bioconductor and SAS-JMP (v15). The expression 

data were then matched in a sample-specific way to the survival information from 

the TCGA server and processed further using SAS-JMP. Furthermore, mutational 

data from the TCGA sample set was assessed using the cBioPortal webtool and 

further in R-Bioconductor. The microarray data were pre-processed and assessed 

for expression using the “affy” and “limma” packages within R-Bioconductor. 

Overall assessment of expression data comparing the tumor and normal samples 

from TCGA showed an upregulation of MUC1, MUC5AC, and MUC15 within the 

tumors. Furthermore, we saw a loss of MUC2 and MUC4. Interestingly, MUC16 

was seen to be highly expressed in a specific subset of patients. Closer 

assessment of these patients led to the identification of a strong correlation 

between microsatellite instability (MSI) status and MUC16 expression, wherein 
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most of the MSI-high patients also showed a higher expression of MUC16. 

Furthermore, the study of the expression differences between normal colon, 

tubular adenomas (TA), and sessile serrated adenomas/polyps (SSA/Ps) led to 

the identification of MUC5AC and MUC17 as being uniquely overexpressed in 

SSA/Ps and not in the TAs. Furthermore, mutational analysis of tumor samples 

from TCGA led to an interesting finding wherein 28% of the TCGA patients had a 

mutation in MUC16. This assessment could be independently validated in RNA-

seq data from various other sources with a mutation range of 10-40% all across. 

Intriguingly, these mutations were highly correlated with other mutations common 

in colorectal cancer like BRAF, MSH6, TP53, KRAS, and others. Additional 

assessment of these mutations based on MUC16 domain structure helped in 

identifying most of these as part of the SEA domain of this large mucin. 

Interestingly, the SEA domain has been widely studied for its role in cell migration 

and cancer metastasis. Considering both the overexpression and high mutation of 

MUC16 in colorectal cancer, a functional assessment of MUC16 and its associated 

gene signature was then carried out. Interestingly, similar to other cancers the 

MUC16 associated signature was significantly associated with immune-based 

signatures suggesting its potential importance in colorectal cancer setup (data not 

presented).  

The study, for the first time, identifies this specific subset of colorectal cancer 

patients with a MUC16 overexpression. Considering the importance of MUC16 in 

cancer biology and studies in other cancers, this can prove a potential therapeutic 

avenue for future studies.  
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7.1.2. Computational analysis of Mucins in Gastric Cancer identifies 

prognostically relevant clusters.  

The aforementioned mucin family of proteins is known to have important roles 

within gastric adenocarcinoma. However, similar to colorectal cancer, a 

comprehensive analysis of these mucins has not yet been carried out in the gastric 

cancer setting. Considering this and taking leverage of the big data resources, this 

study aimed to assess differential mucin signature using bioinformatics 

techniques.  

Like the colorectal cancer study, the expression, mutation, and survival data and 

statistics from the TCGA gastric adenocarcinoma dataset were downloaded from 

UCSC Xena and assessed using R-Bioconductor and SAS-JMP. Furthermore, the 

mutational analysis was verified using cBioPortal a web-based tool.  

This in-silico assessment helped us identify a loss of MUC5AC in gastric 

adenocarcinoma cases. Furthermore, a significant upregulation of MUC13, 

MUC20, and MUC15 was observed. Interestingly, MUC13 and MUC15 were also 

observed to have a significant prognostic significance. Additionally, similar to the 

earlier study, a very high percentage of MUC16 high cases showed a mutational 

significance, with over 30% of patients showing a MUC16 mutation. Interestingly, 

this could be corroborated in various other datasets from gastric cancers. 

Furthermore, an unsupervised clustering analysis identified specific mucin 

signatures as potential biomarkers. Most interestingly, MUC1 and MUC13 formed 

a very strong cluster which could also be corroborated in independent validation 

datasets.  
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Overall, this study has led to the identification of potential mucin-based biomarker 

panels, which can find their application in prognostication and further the study of 

mucins in the gastric cancer setting.  

 

7.1.3 Presence and structure-activity relationship of intrinsically disordered 

regions across mucins.  

Intrinsically disordered regions (IDRs) are sequences of low complexity with a low 

proportion of hydrophobic residues and a high number of repeating residues. 

Furthermore, these regions show a preponderance of polar and charged residues 

and a general lack of an ordered core that comprises a traditional structured 

domain. Additionally, these IDRs, in turn, show a specific biological implication, 

such as in cell cycle regulation, transcription, splicing, translation, and signaling. 

Further, IDRs or intrinsically disordered proteins (IDPs) are known to have specific 

roles in various diseases such as many cancers, cardiovascular defects, diabetes, 

and others. Considering this and the aforementioned role of mucins in various 

cancers, this study focused on identifying IDRs within the various members of the 

mucin family of proteins.   

The study uses a sequence-based approach making use of the web-based 

prediction tool D2P2 to identify regions of intrinsic disorder with mucins. Further, to 

identify the functional role of these IDRs, Pfam domain prediction was applied to 

identify IDRs present within predicted domains. This was then followed by an 

assessment of phosphorylation and glycosylation sites. Furthermore, mucin 
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interactome studies and a functional assessment were carried out to correlate the 

presence of IDRs with their functions. 

Interestingly, the study identified a high prevalence of IDRs across the entire mucin 

family. All mucins were predicted to have a high (>40%) to moderate (>20% and 

<40%) levels of disorder. Specifically, transmembrane mucins were disordered 

compared to secreted mucins except for MUC7. Interestingly, the average 

predicted disorder (58%) within the mucin family exceeded the average disorder 

(30%) within the human genome. Additionally, many of the mucins were found to 

have a high number of large-sized molecular recognition features (MoRFs) known 

to have implications for protein-protein interactions. Specifically, the largest known 

mucin, MUC16, was found to have the highest number of MoRFs and, in turn, the 

highest number of interacting partners. The study further successfully identified 

cancer-related pathways to be affected by mucins and the interacting partners, 

corroborating earlier known studies and establishing the importance of IDRs.  

This study, for the first time, studied the presence of IDRs within the mucin family. 

Considering the important role of mucins in cancer biology, this identification can 

lead to specific applications of targeting these IDRs for therapeutic interventions. 

Furthermore, the correlation of the post-translation modifications with these IDRs 

can help in studying the biological effects of mucins in greater detail and will be of 

great importance to the field.  
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7.1.4 Connectivity Mapping-based identification and evaluation of ISOX: A 

novel therapeutic strategy for Pancreatic Cancer.  

Pancreatic Cancer (PC) maintains its unglorified third rank amongst all 

malignancy-related deaths in the United States and is projected to escalate to the 

second position by 2030. The Pancreatic Cancer Action Network (PanCAN) 

explicitly declares the lack of promising therapeutic modalities as a major 

confounder for this appalling survival. Therapeutics interventions in PC have been 

challenging for researchers and physicians alike. While various efforts have been 

made to identify new potent therapeutics, the one target at a time approach has 

failed to identify robust therapeutic interventions. Better methods are urgently 

needed. In this regard, genomics-driven computational methods have started 

gaining popularity in recent times. This study uses one such approach called the 

Connectivity Map (CMAP), a big data repository of gene expression profiles of 

various small molecule inhibitors.  

The data from 106 tumors from PC patients and 68 normal samples was processed 

using R-Bioconductor, and a limma-based analysis used to generate a global gene 

signature for PC. This signature was mapped to the over 2300 drug profiles within 

the big-data CMAP to identify nine drugs with the propensity to reverse the global 

gene signature from PC. Further, to identify drugs with higher specificity, a similar 

CMAP analysis was carried out using patient-derived xenografts (PDX), human 

cell lines, and human tumoroids. This comprehensive CMAP analysis led to the 

identification of ISOX as a potential therapeutic drug for PC. This in-silico 

identification was then followed by an in vitro and in vivo assessment of ISOX 
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efficacy in various PC models. Furthermore, RNA-seq assessment followed by a 

broad in-silico analysis was carried out to identify the mechanism of action for the 

small molecule ISOX in PC.  

Computationally identified small molecule ISOX was found to be highly efficacious 

(IC50 2.4 nM-1.5 µM) in myriad PC cell lines. Furthermore, combination studies 

with commonly used chemotherapies gemcitabine and 5-FU showed that ISOX 

could synergistically increase the efficacy of both drugs. Additionally, ISOX 

induced over 50% apoptosis in PC cell lines and caused a G0/G1 arrest of PC 

cells. Interestingly, this effect of ISOX could also be observed in 3D tumoroid 

models of PC derived from KPC (KRASG12D, p53R172H; Pdx-1-Cre) mice and human 

tumor tissues. In pancreatic orthotopic mouse studies, a 10-fold reduction in tumor 

weight was observed at 50 mg/kg of ISOX alone (p-value = 0.014) and in 

combination with 5-FU (p-value=0.02). Furthermore, the combination-treated mice 

showed no local or distant metastasis.  Interestingly, the ISOX alone and 

combination-treated mice survived significantly (log-rank p-value < 0.05) better 

than the control animals, further supporting the therapeutic potential of ISOX. 

Further, RNA-seq analysis of ISOX treated mice led to the identification of HDAC 

dependent cMYC inhibition as a mechanism of action of ISOX. This was further 

supplemented by a pathway analysis of ISOX-LINCS signature, which helped to 

identify specific enrichment of MYC-MAX-MAD complex and hence establish the 

mechanism of action. 

While CMAP has been used in other malignancies, this study provides one of the 

first comprehensive assessments of the CMAP data in PC setting. Furthermore, 
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this study establishes a pipeline starting from an in-silico identification followed by 

an in-vitro and in-vivo validation that can be applied to other cancers as well as 

other disease settings. Additionally, the study successfully established ISOX as a 

potential therapeutic strategy for PC.  

 

7.2 FUTURE DIRECTIONS 

 
Overall, through the use of bioinformatics and sophisticated laboratory-based 

validation techniques, we have been able to answer pertinent problems relating to 

GI cancers. The comprehensive analysis of mucins in disease initiation and 

progression in gastric and colorectal cancers helped us establish a consensus for 

the role of these mucins in both these pathologies. Noteworthy to mention is that 

this study, for the first time, established the clinical relevance of MUC16 in 

colorectal cancer, which can have direct implications in therapeutic interventions. 

Additionally, our published study of the intrinsically disordered regions in mucins 

has not only led to a better understanding of these proteins but also holds 

relevance in the therapeutic targeting of these mucins. Further, our pre-clinical 

assessment of ISOX helped identify and establish ISOX as a highly effective 

therapy for pancreatic cancer, and we are working on translating this into a clinical 

setting. While these studies have helped us understand various aspects of GI 

cancers, a lot remains to be explored.  

7.2.1 Exploratory studies for MUC16 based therapeutic interventions in CRC.   

MUC16 expression and mutation have been associated with therapy in various 

cancers (95), (107), (280). Our study found MUC16 to be upregulated in a subset 
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of CRC patients paving the path for such interventions in CRC. While a lot of 

research has been carried out to identify a potential therapy for CRC patients, most 

effort has limited success, with survival showing very slight improvement. In this 

regard, if we can find therapeutics which can increase the survival of even a 

smaller subset of patients, it would still be worth pursuing. Considering this, 

exploration of MUC16 based therapeutics in MSI high CRC patients will prove 

beneficial.  

7.2.2 Validation of IDR through NMR and X-Ray crystallography studies. 

 

 As previously mentioned, our study of IDR in mucins identified a large percentage 

of intrinsically disordered regions within various mucins. IDRs have been 

implicated to have roles in protein-protein interaction, diseases, and hence 

therapeutic interventions. Further, considering the important role of mucins in 

various GI cancers, information about IDRs can prove beneficial for therapeutic 

interventions in these high mortality cancers. However, computational methods 

applied in this study warrant a wet lab validation before these intrinsically 

disordered regions can be explored further. Considering that, NMR or X-Ray 

crystallography-based validation of mucin IDRs will prove to be beneficial and will 

have implications in targeting mucins for therapeutic interventions.   

7.2.3 ISOX mechanistic studies.  

Our studies in PC helped us identify and establish ISOX as a potential therapeutic 

for PC. Mechanistic studies of ISOX action have led to the identification of both 

HDAC inhibition as well as a MYC inhibition driven action. However, further studies 
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into the mechanism of ISOX’s action would prove extremely valuable to our 

understanding of this novel therapeutic. Our RNA-sequencing analysis has given 

us a novel insight into the mechanism of action of ISOX and has also opened 

avenues for further research. The pathway analysis also identified specific stem 

cell related pathways which are known to be extremely relevant in PC progression. 

Current studies are underway to identify the more specific effects of ISOX on the 

stem cell population and the downstream effectors. Further, various other 

pathways like PI3K-AKT-mTOR signaling are worth pursuing. Furthermore, 

previous studies have elucidated that ARID1A mutations are dependent on 

HDAC6 in tumor progression (274). Furthermore, ARID1A is one of the top 

mutated genes in various PC datasets. Considering this, it would be extremely 

interesting to study the interdependence of ARID1A and ISOX action.  

7.2.4 ISOX efficacy studies in patient-derived xenograft models.  

To gain more insight into the efficacy of ISOX in pancreatic cancer, patient-derived-

xenograft models (PDX) of pancreatic cancer can be used in addition to the cell-

line orthotopic models already used in the study. Furthermore, the most common 

mouse models for PC namely, KC and KPC, can be used to study the efficacy of 

ISOX.  

7.2.5 Toxicity studies on ISOX.  

 

Additionally, considering that the final goal of these therapy-based studies are 

human clinical trials, it would be imperative to carry out toxicity studies in mouse 
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and bigger animal models. While no initial toxicity was observed in the orthotopic 

mouse models, these results might vary in immune-efficient animal models. These 

studies would add to the translation potential of ISOX and hence make it easier to 

translate into a clinical setting.  

7.2.6 Clinical trials for ISOX efficacy.  

 

The eventual aim of this study is to be able is to test the efficacy of ISOX in a 

clinical setting in the form of a clinical trial.  
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