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Supervisor: Yazen Alnouti, Ph.D. 

 

Hepatobilary diseases cause the accumulation of toxic bile acids (BA) in the liver, 

blood, and other tissues, which may lead to an unfavorable prognosis.  In this study, 

we compared the urinary BA profile in 257 patients with hepatobilary diseases during 

a 7-year follow-up period.  We investigated the use of the urinary BA profile to 

develop logistic regression models to predict the prognosis of hepatobiliary diseases 

in terms of developing disease-related complications, especially for ascites.  The 

urinary BA profile was characterized by calculating BA indices, which quantify the 

composition, metabolism, hydrophilicity, and toxicity of the BA profile.  All patients 

had high total and individual BA concentrations.  The percentages of primary BA 

(CDCA and LCA) were high, while the percentages of secondary BA (MDCA and 

DCA) were low in patients.  BA indices had lower inter- and intra-individual 

variability than absolute total and individual BA concentrations.  The changes of the 

BA indices were associated with the probability of developing ascites in the entire 

liver-patient population using logistic regression analysis.  BA indices were proved 

as prognostic biomarkers for hepatobilary diseases. 

We have developed and validated a prognosis model based on BA indices to 

predict the prognosis of ascites in the entire liver-patient population.  Other models, 
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including non-BA, original MELD, and mixed BA and non-BA models, were also 

developed to compare their performance with our BA model.  Overall, the mixed BA 

and non-BA model was the most accurate based on Akaike information criterion 

(AIC) and receiver operating characteristic (ROC) analyses.  The mixed BA and 

non-BA had lower AIC values indicating a smaller error of distribution and a better 

trade-off between goodness of fit vs. degrees of freedom.  Moreover, the mixed BA 

and non-BA model had highest area under the ROC curve (AUC) values indicating 

higher accuracy than other models.  One application of the mixed BA and non-BA 

model could be used to predict the development of ascites in patients diagnosed with 

liver-disease at early stages of intervention, such as liver transplantation.  This will 

assist in supply allocation and physician decisions when treating liver diseases. 
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1.1 Bile acids (BA) synthesis, metabolism, and enterohepatic recirculation 

 

Bile Acids (BA) are synthesized in the liver and excreted into bile, which flows to 

the small intestine through the bile duct [1].   BA synthesis takes place in liver cells 

through cytochrome P450-mediated oxidation of cholesterol in many steps [2].  The 

major pathway of BA synthesis is initiated by hydroxylation of cholesterol at the 7α 

position through the action of the CYPA1 enzyme [3].  The next step of BA synthesis 

is the oxidation of the 3β-OH and isomerization of the C5-C6 double bond by the 

microsomal C27-3β-hydroxylated dehydrogenase (C27-3β-HSD).  The forming 

intermediates are either involved in hydroxylation at the 12α position through the action 

of the CYP8B1 enzyme or passed to the next step [4].  The intermediates with 12α 

hydroxylation produce CA, while intermediates that are not involved in hydroxylation 

produce CDCA and CA that belong to primary BA in humans.  The next step of BA 

synthesis is the hydroxylation and oxidation of a carboxylic acid.  This occurs at the 

C27 position through the action of the CYP27A1 enzyme followed by the bile acid 

coenzyme-A (BA-CoA) synthetase [5].  The side chain of these C27 intermediates is 

decreased to C24 BA through β oxidation.  The final step of BA synthesis is involved 

in amidation of the BA-CoA with glycine(G) or taurine (T) via amino acid N 

acyltransferase (BAT) [5]. 

BA can also be synthesized by alternative pathways, which do not require the 

enzyme CYP7A1 to initiate their synthesis [6].  The alternative pathways of BA 

synthesis are initiated through the hydroxylation of cholesterol at side chains C24, C25, 
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or C27 by the action of the CYP7B1 and CYP39A1 enzymes [7].  Compared with the 

major pathway of BA synthesis, the alternative pathways produce more CDCA.  Also, 

these pathways are linked to conditions with deficiency in CYP7A1 activity [7]. 

The enterohepatic recirculation of BA describes the cycle of BA absorbed from 

the intestine into the liver and then re-secreted into bile [1].  BA are excreted from 

liver into bile through efflux transporters, which include the bile salt export pump 

(BSEP), multidrug resistance protein 3 (MDR3), and multidrug resistance-associated 

protein 2 (MRP2) [8].  After meal ingestion, cholecystokinin secretion prompts the 

gallbladder to contract and empty its contents into the duodenum [9, 10]. 

Most amidated BA in the small intestine are absorbed in the ileum through the 

apical Na+-dependent bile salt transporter (ASBT) or organic anion-transporting 

polypeptides (OATPs) [9, 11].  These two transporters have higher affinity on 

amidated BA compared with unconjugated BA [12].  Therefore, unconjugated BA are 

passively absorbed via the intestinal tract due to low affinity on transporters and their 

unionized forms [9, 10].  Also, partial deamination occurs from the bacteria in the 

small intestine, and unconjugated BA are passively absorbed [13].   

 Unabsorbed BA are transferred from the small intestine to the large intestine [1].  

BA undergo bacterial transformation of deamidation and dehydroxylation in the large 

intestine [1, 14].  Due to the dehydroxyaltion of primary BA at the 7α position, 

secondary BA are produced via bacterial transformation, such as DCA and LCA [1, 

14].  Absorbed BA are extracted by the liver through active or passive diffusion.  The 
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majority of BA are amidated in hepatocytes.  Other metabolic pathways take place 

such as sulfation and hydroxylation [1].   BA are excreted in feces when they are not 

absorbed in the intestines [1, 14].   Finally, the enterohepatic cycle is completed 

when the newly synthesized and reabsorbed BA are re-excreted into bile. 

1.2 BA structure, function, and toxicity  

BA are amphipathic steroid molecules synthesized in the liver from cholesterol 

[3].  Figure 1.1 indicates the chemical structure of the major BA, which includes cholic 

acid (CA), muricholic acid (MCA), hyocholic acid (HCA), chenodeoxycholic acid 

(CDCA), deoxycholic acid (DCA), ursodeoxycholic acid (UDCA), murideoxycholic acid  

(MDCA), hyodeoxycholic acid (HDCA), lithocholic acid (LCA), their glycine (G) and 

taurine (T) amidates, and sulfate conjugates. Based on their chemical structure, BA 

can be sorted into mono-OH BA (LCA), di-OH (MDCA, UDCA, HDCA, CDCA, and 

DCA), and tri-OH (CA, HCA, and MCA). 

The physiological functions of BA include cholesterol absorption and elimination, 

fat absorption, and maintenance of a healthy microbiome [15].  Moreover, the 

absorption of lipids and fat-soluble vitamins by emulsification is also related to BA's 

physiological functions [16].  BA work as signalizing molecules by binding to 

numerous receptors, especially the surface G-protein-coupled membrane receptor 

(TGR5) and the nuclear farsenoid-X-receptor (FXR) [17].  Based on that, BA are 

involved in regulating gene expression on cholesterol, glucose metabolism, and 



             

     

 

5 

homeostasis.  For example, one type of primary BA, ursodexoxycholic acid (UDCA), 

is associated with the treatment of cholestatic liver diseases[18].   

BA also have cytotoxic and pathological effects at high concentrations.  BA 

degrade cell membranes, have necrotic effects on mitochondria, detergent effects on 

biological membranes and promote cell mutations that produce cancer [19-21].  In 

more detail, BA bind to the lipid bilayer and increase solubility of plasma membrane 

components at high concentrations.   At the intracellular level, BA decrease the 

mitochondria integrity, and lead to the influence of permeabilization of mitochondria 

membranes, such as depolarization of the organelle and mitochondrial swelling [22].  

Based on that, BA cause mitochondrial collapse, release cytochrome c, and lead to 

apoptosis.  Moreover, BA toxicity is associated with hydrophobicity [22].  The 

increasing of BA hydrophobicity is linked to the efficiency of BA to solubilize membrane 

lipids [22].  Therefore, BA toxicity increase when more hydrophobic BA are 

synthesized.       

1.3 Differences among individual BA 

Individual BA are different from each other through to their physicochemical 

properties, physiological, and pathological functions.  One physicochemical property 

is the lipophilicity of BA, which is determined by the side chain structures and BA 

nucleus [23].  Amidation of BA side chain with G and T cause the reduction of 

lipophilicity by decreasing pka, and it led to the increased solubility.  For example, the 

acidity of unconjugated BA is associated with G and T amidation.  As amidation 
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increases, pka is decreased from unamidated BA to G and T amidated BA [24].  The 

number of hydroxyl groups (OH) on steroids nucleus shows an opposite relationship 

with BA lipophilicity.  For example, tri-OH BA (CA and MCA) is less lipophilic than di-

OH BA (CDCA and DCA), which in turn is less lipophilic than mono-OH BA(LCA).   

Moreover, the position and stereochemistry of OH groups are related to BA lipophilicity 

[24].  For example, di-OH BA (UDCA) is less lipophilic than tri-OH BA (CA).   The 

completed ionization of BA at physiological PH causes decreasing in lipophilicity and 

increasing in solubility and leads to inactivation of membrane permeability.   

BA are amphipathic molecules, and their anions self-associate to form micelles 

in water.  The critical micelles concentration (CMC) is one of the important parameters 

for BA cytotoxicity.  It shows the propensity of molecules to dissociate or aggregate 

in solutions and their level of  toxicity [25].  CA has higher critical micellar 

concentrations than DCA and CDCA; therefore, it has less cytotoxicity at a given 

concentration [26].  Moreover, BA hydrophobicity is another critical parameter to 

determine BA toxicity.  BA are planar molecules with two “faces”.  The one face does 

not have OH groups, making it hydrophobic.  The other face has OH groups, making 

it hydrophilic.   Based on this, BA hydrophobicity also depends on the number, 

position and orientation of OH groups.  The hydrophobic index (HI) is used to describe 

the balance of hydrophilic and hydrophobic of individual BA.  HI of BA is calculated 

from the retention time and capacity factor on a C18 column [1].  The range of HI is 

from -0.94 for the hydrophilic BA (T-UDCA) to +1.46 for the hydrophobic BA(LCA).   
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The hydrophobicity of individual BA is linked to membrane damage [26].  The lower 

value of HI, the higher concentration of hydrophilic BA indicate the lower cytotoxicity 

of BA [27].  Therefore, the individual BA such as DCA, CA, and UDCA can be ranked 

based on their cytotoxicity, [26].  

Affinity to various BA receptors can be influenced by the structural differences of  

Individual BA.  The G protein-coupled receptor (TGR5) works as a cell-surface 

receptor responding to BA [28].  For instance, primary BA (CDCA and CA) are less 

potent TGR5 activators than secondary BA (LCA and DCA) [28].  Farnesoid X 

receptor( FXR) is one type of nuclear receptor of transcription factors that regulates 

BA metabolism [29, 30].  For example, primary BA such as CDCA is limited by FXR 

activation, while secondary BA such as DCA is not [31].  However, glycine-β-MCA 

(Gly-MCA) works as a FXR inhibitor in the intestine [30].    

Individual BA are also differentiated by their pathological effects.  For instance, 

hydrophobic BA such as LCA cause cholestasis in rats and mice.  However,  

hydrophilic BA such as CA cause hypercholeresis [32].  CA is also less likely than 

LCA to cause red blood cell hemolysis [32].  T-amidates are less cytotoxic than G-

amidates and cause less cell membrane lysis than the corresponding G-amidates [32, 

33].  The amount and composition of the BA pool must be maintained to keep normal 

physiological levels.  This also prevents toxicity from the accumulation of toxic BA.      
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1.4 Species Differences of BA 

Major species differences in BA metabolism have been reported in previous 

studies [34-38].  The detoxification of BA mainly focuses on several pathways, such 

as conjugation (sulfation or glucuronidation), amidation (glycine or taurine), and 

hydroxylation by CYP3A [1].  Glycine amidation is less likely to increase BA 

hydrophilicity and decrease their toxicity than taurine amidation.  Glycine amidation is 

mainly observed in humans[39, 40], rabbits[41], and minipigs[42], while taurine 

amidation is mainly observed in mice [6], rats [43], and dogs [44].  Hydroxylation at 

the 6-α,6-β, and 7-β positions, which is the major pathway to produce hydrophilic toxic 

BA, including MCA (mice), HCA (pigs) and UDCA(bears) [27].  BA sulfation are more 

observed in humans and chimpanzees, and less observed in rabbits, rats and mice [6].  

BA glucuronidation are a minor pathway in numerous species such as rats, 

chimpanzees, mice and humans, while dogs show a high level of glucuronidation [45].  

  Major species differences are also reported in BA transport [17, 30, 32].  The 

contribution of efflux through multidrug resistance–associated protein (MRP) 

transporters to drug induced-toxicity are 5-fold lower in humans than rats [34].  The 

affinity of MRP3 transporters in humans is relativity less than in rodents [55].  Similarly, 

the uptake affinity of BA via NTCP (sodium-taurocholate co-transporting polypeptide) 

and OATP (organic anion-transporting polypeptide) transporters is higher in rats than 

in humans [35].  Also, OATP1 and OAPT3 are not effective in humans, dogs or 

rodents[36].    
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Moreover, major species differences in BA-induced toxicity have been reported 

in previous studies and explained by species difference in BA metabolism [34-38].  

CDCA cause harmful hepatic toxicity in monkeys [46], rabbits [47] and dogs [48] 

because they lack BA sulfation capabilities.  Sulfation is the major pathway of BA 

metabolism in humans and chimpanzees, therefore CDCA therapy is not linked to 

hepatic injury for these species [46, 49-52].  Also, LCA and DCA are both hepatotoxic 

in rabbits because of the lack of BA sulfation and hydroxylation [41, 47, 53].  Humans 

are less resistant to CDCA, LCA than mice [54] and rats [55] because of their BA are 

less hydrophilic due to hydroxylation and taurine amidation.  Therefore, species 

difference to BA toxicity is mainly determined by their capability to efficiently metabolize 

BA. 

There are some limitations when using animal models for studying BA toxicity in 

their metabolism.  BA sulfation has been considered as a primary detoxification 

mechanism [1].  Amidation of BA with glycine and taurine amino acids enhance their 

solubility and decrease their toxicity [56].  The sulfation of BA is highest in humans 

and chimpanzees, while other species are very low across all BA in a vivo and in vitro 

study.  Also, the amidation of BA is highest in humans and lowest in rats in the same 

study [45].  BA sulfation and amidation are important to understand the balance 

between physiological and pathological effects [39].  For example, the inhibition of BA 

sulfation and amidation decrease transporter-medicated vectorial transport and effect 
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the liver’s ability for drug-induced adaptation [57].  Based on these limitations, using 

animal models are not as useful as human models for studying BA toxicity.  

 

1.5 BA and Hepatobiliary diseases 

Cholestatic liver diseases are a diverse group of hepatobiliary diseases [2].  The 

major cholestatic liver diseases include primary biliary cirrhosis (PBC) and primary 

sclerosing cholangitis (PSC) [58].  Patients with PSC are most likely to develop 

cirrhosis and end-stage liver disease [58].  Around 90 percent of patients with 

compensated cirrhosis develop into ascites [59].  In liver disease severity, there are 

decompensated and compensated liver diseases.  Patients with decompensated liver 

diseases have severe complications, including liver damage and severe to the point 

where the liver can no longer function.  These complications include ascites [59], 

bacterial peritonitis [60], encephalopathy [61], GI bleeding [62], hepatobiliary 

carcinoma [63], hepatorenal syndrome [64], jaundice [65], peripheral edema [66], and 

portal hypertension [67].  Patients with compensated liver disease do not have severe 

complications, which means the liver is scarred, but it can still perform most basic 

functions [68]. 

BA have deleterious effects on the liver which includes cholestasis, changes in 

liver structure, and hepatocyte ultrastructure [1, 69].  Cholestatic liver diseases are 

associated with bile flow reduction, which is caused by the impairment of bile flow into 

bile duct or defects in bile production [2].  Cholestatic liver diseases cause BA 
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accumulation in the liver, spread into the circular system, extrahepatic tissues, and 

urine.  Many research studies report the changing of BA concentrations in the blood 

and urine at liver disease conditions [1, 70-72].  

There are several human and animal studies illustrating the link between the 

accumulation of toxic BA in the liver, blood and extrahepatic tissues, and unfavorable 

liver disease prognosis [2, 39, 73, 74].   The accumulation of toxic BA in cholestasis 

leads to hepatoxicity and extrahepatic toxicity [75].   For instance, BA concentrations 

correlate to liver and bile duct damages in diseased rabbits, rats and humans [73, 76-

78].  Also, patients with high concentrations of BA are more likely to have 

hepatobiliary complications after liver transplantation[73].  The intracellular 

accumulation of toxic BA influences the upregulation of proteins connected with 

hepatic bile secretion due to the imbalance of BA receptors such as FXR.  After that, 

it inhibits the hepatocellular uptake of BA and BA synthesis [74].  Moreover, toxic 

individual BA are more associated with the damage inflicted on hepatocytes and 

cholangiocytes than total levels of BA [2].  Therefore, the evidence from animal and 

human studies supports the causal link between the accumulation of toxic BA and 

unfavorable prognosis of hepatobiliary diseases. 

1.6 BA as biomarkers of liver diseases 

 

In the US, ten percent of people diagnosed with cholestatic liver diseases led to 

end up with liver transplantation (LT) [79].  Even though liver transplantation is a well-

known therapy for patients with cholesteric liver diseases, one of the major challenges 



             

     

 

12 

is a larger portion of the overall complications occur after LT [80].  For example, PBC 

and PSC relapse after liver LT, and affect graft outcomes during a long period.  

Moreover, Immunosuppression in LT with cholesteric liver disease is poorly 

understand because of the increased acute cellular rejection in patients with 

cholesteric liver diseases [79].  There are not enough data indicating a relationship 

between a immunosuppression regimen and the risk of relapsing for liver cholesteric 

liver diseases after patients undergo LT [79]. 

Aspartate transaminase (AST), alanine transaminase (ALT), alkaline 

phosphatase (ALP), glutamyl transferase (GGT), serum creatinine, protime, 

international normalized ratio (INR) are most commonly used as individual biomarkers 

for the prognosis of hepatobiliary diseases (Table1.1).  However, these biomarkers 

are not specific to bile duct injuries or the liver, and may more commonly be associated 

with non-hepatobiliary conditions [81].  For example, elevated level of serum ALT is 

linked to toxicity in other organs besides the liver.  Using these biomarkers can lead 

to an under evaluation of the severity of the problem [82].  For example, ALT works 

as a poor indicator of disease severity for hepatobiliary diseases such as cholestasis 

[83].   In evaluating liver diseases, models with multiple parameters are preferred and 

show high accuracy compared with models using an individual parameter, such as the 

Child-Turcotte-Pugh (CTP) and the Mayo model for end-stage liver disease (MELD) 

score. 
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Many models, scores and criteria have been developed to predict the prognosis 

of hepatobiliary diseases (Table1.2).  The CTP score, originally used to determine 

the risk of shunt surgery for liver disease severity [84]. The CTP score use three 

biological variables (serum albumin, serum bilirubin and prothrombin) and two clinical 

variables (ascites and encephalopathy).  However, there are several limitations for 

the CTP score.  Variables of ascites and encephalopathy are easily affected by 

extraneous factors [85].  Also, variables of bilirubin and creatinine make the end of 

the CTP scale inaccurate [86].  

  Another model for liver diseases is the Mayo model for end-stage liver disease 

(MELD).  It is used to determine a patient's eligibility for liver transplantation in many 

countries [87].  MELD uses three parameters which are serum bilirubin, International 

normalized ratio (INR), and creatinine.  The MELD score contains a metric using a 

continuous scale to predict the ranking of patients by disease severity [85].  These 

three variables are reproducible and easy to measure.  Combined together, they give 

a high accuracy on how the liver is functioning than CTP.  The level of creatinine is 

related to kidney function.  The level of bilirubin shows how well the liver clears bile.  

INR reflects how well the liver makes factors needed for blood clots [85, 86].  When 

MELD was implemented, it decreased post-transplant mortality rates.  MELD also led 

to accurate predictions of surgical outcomes with alcoholic hepatitis and cirrhosis 

patients [88].   
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Even though it is used globally, MELD still has several limitations.  MELD 

calculation is based on three variables that are not specific to all hepatobiliary diseases 

[87].  For example, patients with a high level of serum creatinine are likely to have 

kidney disease.  The changing status of serum bilirubin is linked to other conditions 

like hemolysis or sepsis [89].  Moreover, in several studies, patients with a low MELD 

score represent a high mortality rate and a less accurate MELD score [89, 90].  Based 

on these issues, using the MELD score to estimate liver disease severity needs to be 

reconsidered.  

Further diagnosis and prognosis of liver disease is critical and depends on 

invasive procedures, endoscopic treatment and evaluation of liver biopsies [91].  

Based on these, noninvasive biomarkers are needed to help on prognosis, diagnosis, 

and evaluation.  For several decades, BA has been considered as potential 

biomarkers for many hepatobiliary diseases based on their accumulation and 

hepatoxicity in hepatobiliary diseases [1].  For example, PSC [92], PBC [92], alcoholic 

liver disease [92], nonalcoholic fatty liver disease [93], hepatitis intrahepatic cholestatic 

of pregnancy [94].  BA biomarkers are an accurate, noninvasive option that can 

improve the diagnosis and prognosis of liver diseases [95-97].  Not only are they 

being more accurate, but they are also a vital addition to treatment and evaluation of 

hepatobiliary diseases.  They could improve the therapeutic outcomes for these 

diseases. 
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1.7 BA indices  

Even though BA as biomarkers have been extensively used for hepatobiliary 

diseases, they have not been effectivity used in clinical studies due to several 

limitations.  Individual BA concentrations are better correlated to the hepatobiliary 

liver condition than total BA concentrations due to the difference in the various BA's 

physiological and pathological properties [26, 72].  Moreover, total and individual BA 

concentrations reflect high inter- and intra-individual variability and make it hard to 

identify baseline ranges in the absence of liver diseases.  BA have shown high inter-

individual variability based on several factors, including gender, alcohol consumption, 

and obesity [97-100].  Also, serum and urinary BA levels show high intra-individual 

variability due to many factors, such as medication intake, and food ingestion [71, 101-

103]. 

Based on these limitations, we have investigated the concept of "BA indices", 

which are ratios calculated from the absolute individual BA concentration and their 

metabolites [39].  These ratios are used to characterize BA profiles by quantifying BA 

composition, hydrophilicity, toxicity, formation of secondary BA, and metabolism [2, 39, 

104, 105].  BA indices have numerous benefits compared to total and individual BA 

concentrations.  BA indices have low inter- and intra-individual variability.  For total 

and individual absolute BA concentrations in urine, the relative standard deviation 

(RSD) is from 66% to 256%, but it is from 10% to100% for BA indices in the same 

population of health subjects [39].  Serum BA level increases after food ingestion 
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because of cholecystokinin's release, which leads to gallbladder contraction resulting 

in increasing bile flow into intestine [39].  Therefore, feeding status has to be 

controlled before the use of serum BA as a reliable biomarker.  Moreover, the 

absolute and most individual BA concentrations increase more than 2-fold one hour 

after a standard meal.  However, BA indices only change 10% in the same individual 

BA after a standard meal [39].  Also, the same trend has shown in urine, urinary BA 

indices have smaller inter-and intra-variability than in serum.  For instance, the 

percentage of RSD of overall BA was 8% and 47% in urine and serum [39].  Moreover, 

urinary BA indices are resistant to feeding status compared with absolute BA 

concentrations in the same population [39].  Therefore, noninvasive urinary BA 

indices are significantly better than absolute urine or serum BA concentrations for 

treating hepatobiliary diseases.  In addition, urinary BA indices have better 

performance than serum liver enzymes such as ALT and AST or total BA 

concentrations in humans and in animal models for cholestatic liver disease diagnosis 

and prognosis [2].   

1.8 Research objectives 

In this study, we have extended the application of BA indices to predict liver 

disease prognosis by recruiting 257 patients with liver diseases over a period of seven 

years.  The study focuses on developing prognostic models based on BA indices to 

predict the individual complication in the entire liver-patient population.  In other words, 

it is used for indicating the prognosis of the complication from a grouped population of 
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liver disease subtypes, with an emphasis on the relationship between the BA indices 

and the severity of the complication.  The various BA, non-BA, and MELD models 

were compared for their accuracy in predicting the prognosis of liver diseases via 

statistical tests. 
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CHAPTER 2 

URINARY BILE ACID INDICES AS PROGNOSTIC BIOMARKERS 

FOR ASCITES ASSOCIATED WITH LIVER DISEASES 
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2.1 Introduction 

Cholestatic liver diseases is a diverse group of hepatobiliary diseases associated 

with limitations in bile flow due to a failure of bile flow or an impairment in bile 

production [2].  Relatively common cholestatic liver diseases include primary biliary 

cirrhosis (PBC) [58], primary sclerosing cholangitis(PSC) [58], alcoholic liver disease 

[106], and nonalcoholic fatty liver disease [93].  

Common complications associated with cholestatic liver diseases include ascites 

[59], bacterial peritonitis [60], encephalopathy [61], GI bleeding [62], hepatobiliary 

carcinoma [63], hepatorenal syndrome [64], jaundice [65], peripheral edema [66], and 

portal hypertension [67].  In particular, ascites is one of the most common 

complications associated with cirrhosis.  The risk of developing ascites is around 60% 

if the cause of cirrhosis has not been treated [107].  Cirrhosis is an advanced-stage 

liver disease caused by fibrosis, which impedes the intrahepatic blood flow, increases 

portal blood pressure, and causes accumulation of fluids in the peritoneal cavity 

(ascites) [108].  The survival of cirrhosis patients decreases from 80% to 50% when 

these patients are diagnosed with ascites [109].  Cirrhosis patients with ascites 

experience several symptoms, such as nausea [110], abdominal distention [111], 

dyspnea [112], edema [113], and hepatorenal syndrome [114]. 

Aspartate transaminase (AST), alanine transaminase (ALT), alkaline 

phosphatase (ALP), glutamyl transferase (GGT), serum creatinine, protime, and INR 

(international normalized ratio) are commonly used biomarkers for the diagnosis and 
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prognosis of liver diseases [81-83].  However, these biomarkers are not specific to 

bile duct or liver injuries, and may be related to non-hepatobiliary conditions [81].  

Therefore, models with multiple parameters/markers were developed to better predict 

the prognosis of liver diseases with higher accuracy than individual parameters [84, 

86].  

Models with multiple parameters have been used globally to predict survival of 

hepatobiliary disease-related complications such as the Child-Turcotte-Pugh (CTP) 

and the Mayo model for end-stage liver disease (MELD) scores [85, 109].  The CTP 

score was originally used to determine the risk of shunt surgery for severity of liver 

disease and its complications, such as GI bleeding and encephalopathy [115, 116]. 

The MELD score was originally used to estimate survival of liver patients undergoing 

the transjugular intrahepatic portosystemic shunt (TIPS) [85].  The MELD score is 

currently used to determine a patient's eligibility for liver transplantation [87].   In 

addition, the MELD score is used as a good predictor of outcome in liver disease 

complications, such as GI bleeding and portal hypertension [85, 115].  Even though 

the CTP and MELD scores have been used globally, they still have several limitations.  

Variables of ascites and encephalopathy are easily affected by extraneous factors in 

the CTP score [85].  And the MELD score has a poor evaluation for patients with 

cholestatic liver disease-related complications, such as ascites and encephalopathy 

[86].   
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More recently, bile acids (BA) have been considered as potential biomarkers for 

prognosis of hepatobiliary diseases [117, 118].  BA are synthesized in the liver and 

excreted into bile, which then flows to the small intestine via the bile duct [8].  BA have 

many physiological functions, such as fat absorption and cholesterol elimination [15, 

17].  Compared to their physiological functions, BA also exhibit pathological effects at 

high BA concentrations.  They are associated with necrotic effects on mitochondria, 

detergent effects on biological membranes, and cancer promoting effects [20, 21].  

There are a plethora of human and animal studies illustrating the link between the 

accumulation of toxic BA in the liver, blood and extrahepatic tissues, and unfavorable 

liver disease prognosis [2, 39, 73, 74].   

However, BA have not been widely used in the clinic as biomarkers for liver 

diseases due to several limitations.  Individual BA concentrations are better 

correlated to hepatobiliary diseases than total BA concentrations due to the difference 

in the various BA's physiological and pathological properties [26, 72].  Both individual 

and total BA concentrations have high inter-and intra-variability under normal 

conditions due to several factors including weight, gender, and alcohol consumption, 

food ingestion, diurnal variation, and medication intake.  Therefore, the normal 

baseline ranges are difficult to establish [71, 97-103]. 

To address these limitations, we have established the concept of “BA Indices.” 

BA indices are ratios calculated from the absolute individual BA concentration and their 

metabolites [2, 39, 104, 105].  BA indices have markedly low inter-and intra-individual 
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variability and are more resistant to the above-mentioned cofactors than absolute BA 

concentrations.  For example, the absolute total and individual BA concentrations 

increased more than 2-fold in individuals one hour after a standardized meal, while BA 

indices changed less than 10% in the same individuals [39].  Furthermore, we have 

demonstrated that urinary BA indices outperformed the currently used blood liver 

enzymes as biomarkers for cholestatic liver diseases [2, 39].  In addition, we have 

recently developed a BA-based survival model (the BA score (BAS) model) to predict 

the prognosis of cholestatic liver diseases [119].  BAS had a higher true-positive and 

true-negative prediction of 5- and 3-year death and liver transplant than other non-BA 

models including MELD.  

Multiple markers and models are used to predict the survival of cholestatic liver 

diseases [120, 121].  However, very few studies have addressed the prognosis of 

cholestatic liver disease-related complications.  For example, the CTP score has 

widely been used in the prognosis of cirrhosis, but it does not provide clear guidance 

of prognosis for cirrhotic patients with complications [122].  Similarly, the MELD score 

has extensively been used to prioritize cirrhotic patients awaiting liver transplantation 

[123], but it still does not correlate with cirrhosis-related complications, including 

encephalopathy and bacterial peritonitis [124].  Therefore, there is a critical need for 

markers/models to particularly predict complications of liver diseases.   

In this study, we have expanded the application of BA indices to predict 

complications, especially ascites, in patients with liver diseases.  The study focuses 
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on developing prognostic models based on BA indices to predict the development of 

ascites in liver patients.   

2.2 Materials and methods 

2.2.1 Study participants 

Patients with hepatobiliary conditions were diagnosed by University of Nebraska 

Medical Center’s (UNMC) hepatology Clinic (Omaha, NE, USA).  The institutional 

review board (IRB) approved this study at UNMC.  Hepatobiliary conditions included 

Chronic Hepatitis C, Chronic hepatitis B, Alcoholic Liver disease, Primary biliary 

cholangitis (PBC), Primary Sclerosing Cholangitis (PSC), Autoimmune Hepatitis, 

Alpha-1-antitrypsin deficiency, Nonalcoholic Fatty Liver Disease, Nonalcoholic 

Steatohepatitis (NASH), Cryptogenic Cirrhosis and Nonalcoholic Steatohepatitis.  

The following complications were diagnosed and monitored by the hepatologists: 

Hepatobiliary Carcinoma, Gastrointestinal Bleeding, Portal Hypertension, Ascites, 

Peripheral edema, Encephalopathy, Jaundice, Bacterial Peritonitis, Hepatorenal 

Syndrome.  Two-hundred fifty-seven patients with cholestatic liver diseases between 

the ages of 19 and 65 years (121 female and 136 male) were treated at the UNMC 

from November of 2011 to December of 2018 were recruited into the study.  Thirty 

milliliters' urine samples were collected from patients on every visit to the hepatology 

Clinic.  All urine samples were stored at -80℃ before BA analysis using liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) until analyzed. 
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2.2.2 Non-BA parameters 

The performance of potential biomarkers from the urinary BA profile has also 

been compared with the performance of existing markers of liver function including 

alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine, 

albumin, bilirubin, international normalized ratio (INR), protime, AST/ ALT ratio, and 

AST/ platelet ratio index (APRI).   

2.2.3 Bile acid (BA) quantification by liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) 

BA concentrations were quantified by LC-MS/MS, as described previously [2, 6, 

39, 40, 104].  Briefly, a Waters ACQUITY ultra performance liquid chromatography 

(UPLC) system (Waters, Milford, MA, USA) coupled to an Applied Biosystem 4000 Q 

TRAP® quadrupole linear ion trap hybrid mass spectrometer with an electrospray 

ionization (ESI) source (Applied Biosystems, MDS Sciex, Foster City, CA, USA) was 

used to perform the LC-MS/MS analysis.  All chromatographic separations were 

performed with an ACQUITY UPLC® BEH C18 column (2.1x 150 mm, 1.7 μm) 

equipped with an ACQUITY UPLC C18 guard column (Waters, Milford, MA, USA).  

The following MS source settings were used: temperature, 500°C; ion spray voltage, 

−4000 V; collision gas pressure, high; curtain gas, 20; gas‐1, 35; gas‐2 35 (arbitrary 

units); Q1/Q3 resolution, unit; and interface heater, on.  Mobile phase consisted of 

7.5 mM ammonium bicarbonate, have been adjusted to pH 9.0 by using ammonium 
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hydroxide (mobile phase A) and 30% acetonitrile in methanol (mobile phase B) at a 

total flow rate of 0.2 ml/min.  The gradient profile was held at 52.5% mobile phase B 

for 12.75 minutes, increased linearly to 68% in 0.25 minutes, held at 68% for 8.75 

minutes, increased linearly to 90% in 0.25 minutes, held at 90% for one minute and 

finally brought back to 52.5% in 0.25 minutes and then followed by 4.75 minutes re‐

equilibration (total run time of 28 minutes per sample).  

2.2.4 Preparation of standard solutions and calibration curves 

For the preparation of standard solutions and calibration curves, blank matrices 

were obtained by charcoal stripping as mentioned early [2, 6, 39, 104].  Stock 

solutions of individual unsulfated BA and the IS (2H4-G-CDCA) were prepared in 

methanol (MeOH) at a concentration of 10 mg/mL and stock solutions of individual 

sulfated BA were prepared in deionized water at a concentration of 1 mg/mL.  Human 

urine was incubated with 100 mg/mL activated charcoal for two hours to remove 

endogenous BA from the matrix.  The mixture was then centrifuged at 16000 x g for 

10 min, and the supernatant was aspirated and filtered using a 0.22-μm nylon filter.  

The filtrate from the stripped urine matrix was used for preparing the calibration curve.  

Eleven‐point calibration curve was prepared by spiking 10 μL of the appropriate 

standard solutions and 10 μL of the IS stock (2H4-G-CDCA) into 100 μL of the stripped 

urine matrices.  The final concentration of IS was 500 ng/ml and the dynamic range 
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of the standard curves for the various unsulfated and sulfated BA analytes was 1-1000 

ng/ml.  

2.2.5 Sample preparation  

Solid phase extraction was used to extract urine samples as mentioned previously 

[2, 6, 39, 40, 104].  100 μL of urine samples were spiked with 10 μL of internal 

standard (IS), vortexed and loaded on to SupelcleanTM LC‐18 SPE cartridges pre-

conditioned with 4 mL MeOH, followed by 4 mL H2O.  Loaded cartridges were then 

washed with 3 mL H2O and eluted with 4 mL MeOH.  The eluates were evaporated 

under vacuum at room temperature and reconstituted in a 100 μL of 50 % MeOH 

solution.  Ten microliters of reconstituted samples were injected for LC-MS/MS 

analysis.  

2.2.6 Calculation of BA indices 

The BA profile in urine was characterized using BA “indices”, as we have 

described previously [2, 39, 40, 45, 104].  Table 2.1 shows a summary of the BA 

indices used in the current study.  BA indices describe the composition, hydrophilicity, 

formation of 12α-OH BA by CYP8B1, metabolism, and formation of secondary BA by 

intestinal bacteria.  The composition indices were calculated as the ratio of the 

concentration of individual BA in all their forms (unamidated, amidated, unsulfated and 

sulfated) to the total concentration of BA.  Hydrophilicity indices include the 
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percentages of the BA pool exist as mono-, di-, or tri-OH BA as well as the 

hydrophobicity index (HI) of the BA pool.  The percentages of mono‐OH BA (LCA), 

di‐OH BA (UDCA, MDCA, HDCA, DCA and CDCA) and tri‐OH BA (CA, MCA, and HCA) 

were calculated as the ratio of the concentration of the sum of the respective BA in all 

their forms to the total concentration of BA.  HI was calculated according to the 

Heuman index, which based on the relative contributions of the individual BA to the 

total BA pool and their HIs [125].  

12α-OH BA are formed by CYP8B1 in the liver and include DCA, CA, Nor-DCA, 

and 3-dehydroCA.  Therefore, CYP8B1 activity can be measured by the ratio of 12α-

OH BA to the remaining of all other BA (non-12α-OH BA).   Another marker for 

CYP8B1 is the ratio of CA to CDCA because CA is formed by the 12α hydroxylation of 

CDCA.  In the same way, the ratio of 12α‐OH (DCA, CA, Nor-DCA, and 3-dehydroCA 

in all their forms) to non‐12α‐OH (HDCA, CDCA, UDCA, LCA, MDCA, MCA, HCA, 12-

oxo-CDCA, 6-oxo- LCA, 7-oxo-LCA, 12-oxo-LCA, isoLCA, isoDCA in all their forms) 

was calculated.  

BA are primarily metabolized by sulfation, and glycine (G), and taurine (T) 

amidation in the liver.  The percentage of sulfation of individual BA was calculated as 

the ratio of the concentration of sulfated BA, in both the unamidated and amidated 

forms, to the total concentration of individual BA in all their forms (unamidated, 

amidated, unsulfated, and sulfated).  The percentage of amidation of individual BA 

was calculated as the ratio of the concentration of amidated BA, in both the unsulfated 
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and sulfated forms, to the total concentration of individual BA in all their forms 

(unamidated, amidated, unsulfated, and sulfated).  In addition, percentages of 

amidation were divided into the percentages of BA existing as taurine (T) or as glycine 

(G) amidates.  

Primary BA are synthesized in the liver and secreted into the intestine via bile, 

where they are metabolized by intestinal bacteria into secondary BA.  The ratio of 

primary (CA, CDCA, MCA and HCA in all their forms) to secondary BA (DCA, LCA, 

UDCA, HDCA, MDCA, Nor-DCA, 12-oxo-CDCA, 3-dehydroCA, 6-oxo-LCA, 7-oxo-LCA, 

12-oxo- LCA, isoLCA, and isoDCA in all their forms) was also calculated.  

2.2.7 Model development 

Logistic regression analysis was used to develop prognostic models to predict 

the prognosis of hepatobiliary diseases in terms of developing disease-related 

complications.  Models were constructed to predict (i) various individual complications 

and (ii) all complications combined (pooled) in the entire liver-patient population as well 

as in the individual disease subtype-populations (patient groups with specific disease 

subtypes).  All statistical analysis was conducted using the Statistical Product and 

Service Solutions (SPSS) software, version 26 (IBM corporation, Armonk, NY, USA). 

We developed models that can be classified into six categories: (i) BA variables 

only, (ii) Non-BA variables only, (iii) Mixed BA and non-BA variables, (iv) Original Model 
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for end-stage liver disease (MELD), (v) MELD variable with coefficients from our data 

set, and (vi) Original MELD modified with BA and/or non-BA variables.  

Individual BA and/or non-BA variables were analyzed as possible predictors in a 

univariate logistic regression analysis.  Significant variables (P<0.05) were selected 

from the univariate analysis to include in the multivariate analysis.  The backward 

elimination regression method was used to retain the most significant variables with 

retention criteria of P < 0.05 during the multivariate analysis. 

The estimated odds ratio (OR) of developing complications by BA and/or non-

BA variables was calculated from the final multivariate logistic regression model for all 

subjects.  

log  (OR) = log [
P̂

1 − P̂
] = a + b1x1 + ⋯ + bkxk 

 

Where P̂ is the probability of developing complications; a is the intercept; and b 

represents regression coefficients for the x variables [126]. 

The final multivariate logistic regression model describes the association 

between significant BA and/or non-BA variables and the odds of developing 

complications.  Then, we rewrote the multivariate logistic regression model as a 

function of the predicted probability, which transforms the estimated probabilities of 

complications to a scale of 0 to 1 using the following equation: 

 

P̂ =
exp( log (OR))

 1 +  exp( log (OR))
 



             

     

 

30 

2.2.8 Model goodness of fit, validation and performance 

Goodness of fit was assessed by using the Hosmer–Lemeshow test for logistic 

regression models.  This test compares the observed number of individuals to the 

expected number of individuals in each pattern, which shows how well the data fits into 

the model [126].  In general, the Hosmer–Lemeshow test indicates a poor fit if the 

value is less than 0.05. 

We used Akaike information criterion (AIC) to estimate out-of-sample prediction 

error from multivariate logistic regression models [127].  AIC values were derived 

from the likelihood function of models and result in a maximum likelihood estimate in 

the same data set [127].  Therefore, AIC values were used to compare models with 

different error distribution.  Minimizing AIC values represents a good trade-off 

between goodness of fit and degrees of freedom [128].  The AIC values were 

calculated by: 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝐾      

Where 𝐿 is the maximized likelihood function; 𝐾 is the number of parameters 

in the different models [129]. 

Bootstrapping was used to validate the models.  Bootstrapping is a resampling 

technique used to estimate statistics on a population by sampling a dataset with 

replacements [130].  The parameters included P-value, Bias, and Standard Error 

[131].  The bootstrapping estimate of bias indicated the difference between the 

estimates computed using the original sample and the mean of the bootstrap estimate.  
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The standard error represented the standard deviation of the estimator and reflects 

how far our sample estimate deviates from the actual parameters [132].  The range 

of regression coefficients (B) was defined as the 95% confidence interval of the 

bootstrap estimator.  Acceptance criteria of P-values were set at 0.05.    

We also performed receiver operating characteristic curve (ROC) on the scores 

from multivariate logistic regression models to determine their cut-off value in 

differentiating patients with or without ascites.  The cut-off values with optimum 

specificity vs. sensitivity were selected and the areas under the ROC curve (AUC) 

values were calculated.  AUC of 0.9 or greater is rarely seen, AUC between 0.8 and 

0.9 indicates excellent diagnostic accuracy, and any AUC over 0.7 may be considered 

clinically useful [126].  

The performance of the different models in predicting the occurrence of 

complications were compared using statistical outcomes from the Hosmer–Lemeshow 

test, AIC values, bootstrapping, and AUC values. 

 

2.3 Results 

2.3.1 Demographics 

Table 2.2 shows a summary of patients who participated in this study. The 

demographic variables included age, BMI, gender, and race.  During the 7-year 

follow-up period, there were 257 patients with cholestatic liver diseases.  The 
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development of the following liver disease-related complications was monitored: 

ascites (62), bacterial peritonitis (2), encephalopathy (36), GI bleeding (18), 

hepatobiliary carcinoma (15), hepatorenal syndrome (1), jaundice (7), peripheral 

edema (63), and portal hypertension (106).   

2.3.2 Univariate logistic regression analysis for ascites prediction in the entire 

liver-patient population   

Table 2.3 shows the results of univariate logistic regression analyses for ascites 

prediction by BA indices in the entire liver-patient population.  The odds ratio (OR) 

quantifies the magnitude of the risk of developing ascites per one unit as well as 10% 

and 20% change of the normal value changes in BA indices.  We found correlation 

between the odds of developing ascites and many BA indices (P < 0.05).  Positive 

regression coefficients (B) values indicate that odds of developing ascites increase 

with increasing the values of BA indices, while negative coefficients imply the odds of 

developing ascites increase with decreasing the value of BA indices.  For example, 

for every 20% increase in the % CDCA, the odds of developing ascites increased 

1.387-fold (OR: 1.387; P < 0.05).  In contrast for every 20 % increase in %MDCA, the 

odds of developing ascites decreased 0.774-fold (OR: 0.774; P<0.05).  

We performed the same univariate logistic regression analysis for demographics 

and non-BA parameters as well (Table 2.4).  For demographics, only gender was 

significant (p < 0.05), with the odds of developing ascites being significantly 1.3-fold 
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higher in males than females.  For non-BA parameters, increasing levels of creatinine, 

INR, protime, AST, bilirubin, AST/ALT, and MELD significantly increased the odds of 

developing ascites, whereas decreasing levels of albumin and ALT significantly 

increased the odds of developing ascites.  For every 20 % increase in the INR, the 

odds of developing ascites increased 1.391-fold (OR: 1.391; P < 0.05).  In contrast, 

for every 20 % increase in the albumin, the odds of developing ascites decreased 

0.231-fold (OR: 0.231; P < 0.05).   

2.3.3 Multivariate logistic regression analysis for ascites prediction in the entire 

liver-patient population  

The BA Model 

In multivariate logistic regression analysis, a backward elimination regression 

was used to retain the most significant BA variables from univariate analysis.     

The only BA variables retained in the multivariate model were %MDCA and % 

Primary BA, which were independently predictive of developing ascites (Table 2.5.a).  

The estimated odds ratio (OR) of developing ascites as a function of BA variables (BA-

OR) for individual patients were calculated using this equation: 

BA score = Log (BAOR) = -3.463-(2.452 ×% MDCA) + (0.045 ×% PrimaryBA) 

The predicted probability (P̂) of ascites as a function of BA (BA-P̂) variables is 

then calculated using this equation:   

BA (P̂)  =
exp  ( Log (BA OR))

 1 +  exp( Log (BA OR))
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Figure 2.1.a shows the probability of developing ascites (BA-P̂) as predicted by 

the BA score. 

For example, for a patient with a %MDCA of 1%, and %Primary BA of 30%, the 

estimated odds ratio (BA-OR) of developing ascites by BA variables: 

BA score = Log (BAOR) = -3.463-(2.452 ×1%) + (0.045 ×30%) = -4.564 

Then, the predicted probability of developing ascites (BA-P̂) by BA variables can 

be calculated as: 

BA (P̂)  =
exp  ( − 4.565)

 1 + exp( − 4.565)
= 0.01 

We tested the effect of the significant demographic variables from univariate 

analysis, i.e., gender, on this BA multivariate model.  Gender was retained in the 

multivariate analysis but with no-minimal improvement of model validation criteria, 

including the bootstrapping approach (Appendix. Table A).  For example, %MDCA 

and %Primary BA variables did not show any improvement for their p-values when 

compared with the BA model without gender.  The value of bias, standard error, and 

relative standard error was not decreased in the BA model with gender.  Furthermore, 

gender was retained in the BA model with no-minimal improvement for model 

comparison, including akaike information criterion and area under the ROC curve 

(Appendix. Table B).  For example, the AIC and AUC value was 215.63 and 0.833 

which resulted in relatively minimal improvement to both values from the BA model 

without gender (AIC:223.56; AUC:0.811).   Therefore, we did not include gender in 

the multivariate logistic regression model. 



             

     

 

35 

The Non-BA model 

Albumin level and MELD were the only significant predictive variables of 

developing ascites (Table 2.1.b).  The estimated odds ratio (OR) of developing 

ascites as a function of non-BA variables (non-BA-OR) for individual patients was 

calculated from this equation: 

non − BA score = Log  (non BA OR) = 0.947 − (1.205 × Albumin level (
g

dl
)) +

(0.189 × MELD) 

The predicted probability (P̂) of developing ascites as a function of non-BA (non-

BA-P̂) variables were calculated using this equation:   

Non BA (P̂)  =
exp( Log  (non BA OR))

 1 +  exp( Log  (non BA OR))
 

Figure 2.1.b shows the probability of developing ascites as predicted by the non-

BA score. 

For example, for a patient with albumin level of 1 g/dl, and MELD of 5, the 

estimated odds ratio (non-BA-OR) of developing ascites by non-BA variables: 

 

non − BA score = Log  (non BA OR) = 0.947 − (1.205 × 1 (
g

dl
)) + (0.189 × 5 ) = 

0.687 

Then, the predicted probability (non-BA- P̂ ) of developing ascites by non-BA 

variables can be calculated as: 

Non BA (P̂)  =
exp( 0.687)

 1 +  exp( 0.687)
= 0.67 
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We performed the same multivariate logistic regression analysis for 

demographics and non-BA parameters as well.  The results of the demographic 

variable (gender) were the same as the BA model.  Because of no-minimal 

improvement on model validation and comparison, we did not include it in the 

multivariate logistic regression for the non-BA model (Appendix. Table A-B). 

 

The Mixed BA and Non-BA model   

The variables retained in the multivariate model were %CDCA, 

primary/secondary BA, albumin level, and MELD which were independently predictive 

of developing ascites (Table 2.5.c).  The estimated odds ratio (OR) of developing 

ascites by mixed BA and non-BA for individual patients was calculated from this 

equation: 

mixed BA and non − BA score = Log  (mixed BA and non BA OR) = − 0.275

+ (0.029 × %CDCA) − (0.077 ×
PrimaryBA

SecondaryBA
)

− (1.143 × Albumin level (
g

dl
)) + (0.189 × MELD) 

The predicted probability (P̂) of developing ascites as a function of mixed BA and 

non-BA (mixed BA and non-BA-P̂) variables were calculated using this equation: 

Mixed BA and non BA (P̂) =
exp( Log  (mixed BA and non BA OR))

 
1 +  exp( Log  (mixed BA and non BA OR))

 

Figure 2.1.c the probability of developing ascites as predicted by the mixed BA 

and non-BA score. 
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For instance, for a patient with %CDCA of 15%, Primary/Secondary BA of 1, 

Albumin level of 1 g/dl, and MELD with 2, the estimated odds ratio (mixed BA and non-

BA-OR) of developing ascites by mixed BA and non-BA variables: 

mixed BA and non − BA score = Log  (mixed BA and non BA OR) = − 0.275

+ (0.029 × 15) − (0.077 × 1) − (1.143 × 1 (
g

dl
)) + (0.189 × 2)

= −0.682 

Then, the predicted probability (mixed-BA and non-BA -P̂) of developing ascites by 

mixed BA and non-BA variables can be calculated as: 

Mixed BA and non BA (P̂) =
exp( − 0.682)

 
1 +  exp( − 0.682)

= 0.34 

The demographic variable (gender) results for multivariate regression analysis 

in this model were the same as the previous models (Appendix. Table A-B).  Thus, 

we did not include gender in the multivariate logistic regression for the mixed BA and 

non-BA model.   

 

The Original MELD model 

We also performed the same multivariate logistic regression analysis for the 

MELD parameter (Table 2.5.d).  The estimated odds ratio (OR) of developing ascites 

as a function of original MELD variables for individual patients was calculated from this 

equation: 

original MELD score = Log  (MELD − OR) = − 4.049 + (0.276 × MELD) 

The predicted probability (P̂) of developing ascites as a function of original MELD 

variables were calculated using this equation:   
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MELD (P̂)  =
exp( Log  (MELD))

 1 +  exp( Log  (MELD))
 

Figure 2.1.d shows the probability of developing ascites as predicted by the 

original MELD score.   

For example, for a patient with MELD of 1, the estimated odds ratio (MELD) of 

developing ascites by MELD variables: 

original MELD score = Log  (MELD − OR) = − 40.49 + (0.276 × 1) = −3.773 

Then, the predicted probability (MELD- P̂ ) of developing ascites by MELD 

variables can be calculated as: 

MELD (P̂)  =
exp( − 3.773)

 1 +  exp( − 3.773)
= 0.02 

Similar to the BA model development, we did not include gender in this model 

(Appendix. Table A-B). 

Other Hybrid Models 

In addition, we used the same methodology to develop other models (Appendix. 

Table C) including: (i) MELD variables with coefficients from our data set to create a 

model with the original MELD variables, but with model coefficients derived from our 

data set.  In this model, creatinine and INR variables from the original MELD were not 

statistically significant.  (ii) Original MELD modified with BA or non-BA variables at a 

time, to test if the performance of the original MELD could be improved by adding 

significant BA or non-BA parameters from the univariate analysis.  Original MELD 

modified with BA variables only did not pass the Hosmer–Lemeshow test (P-value 

<0.05), while original MELD modified with non-BA variables only did improve the 
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performance of the original MELD variables.  However, this model has poor 

performance because of the low AUC (0.865) and high AIC (171) values compared to 

the mixed BA and non-BA model.    (iii) Original MELD was modified with both BA 

and non-BA variables, to test if the performance of the original MELD could be 

improved by adding both significant BA and non-BA parameters from the univariate 

analysis.  This model did not result in any improvement compared to the mixed BA 

and non-BA model (Table 2.5.c).  In this model’s performance, AUC (0.875) and AIC 

(167) values were the same as the mixed BA and non-BA model.  Since none of these 

models has improved the performance of our main models, we did not further evaluate 

any of these approaches.  

Similar to the BA model development, gender was not included in other hybrid 

models (Appendix. Table D). 

2.3.4 Model goodness of fit, validation, and performance  

The Hosmer–Lemeshow test was used as one criteria to evaluate goodness of 

fit for all logistic regression models.  For the BA model, the p-value of the Hosmer–

Lemeshow (HL) test was 0.168 (p>0.05), which means that the observed and expected 

results were not significantly different, indicating the logistic regression of the BA model 

fit the data well.  Other models including the non-BA model (p=0.228), the mixed BA 

and non-BA model (p-value = 0.11) also had a p value > 0.05.  For the original MELD 
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model, the p-value of the Hosmer–Lemeshow test was 0.029 (p< 0.05), indicating the 

logistic regression of the original MELD model did not fit the data well (Table 2.6).   

Table 2.6 also shows the Akaike information criterion (AIC) for ascites prediction. 

AIC values were used to compare models with different error distribution.  The AIC 

values for the BA, non-BA, mixed BA and non-BA, and original MELD models were 

223.56, 170.81, 167.3, and 180.45.  The BA model had a larger AIC value than the 

non-BA, mixed BA and non-BA, and original MELD models, which means this model 

did not have a good trade-off between goodness of fit and degrees of freedom.  This 

indicates that the logistic regression of the BA model demonstrated a large error 

distribution.   

  Table 2.7 describes the bootstrapping validation for ascites prediction.    

Bootstrapping validation results for all four models indicated that the regression 

coefficients (B-value) were in the range of the 95% confidence intervals and p-values 

were statistically significant for all covariates (p-value<0.05).  Bias values were 

relatively small (-0.056 to 0.016), which means the estimates calculated using the 

original sample and the mean of the bootstrap estimate were not significantly different.  

In contrast, standard error (SE) and relative standard error (RSE) (0.02% to 296.3%) 

values of the bootstrapping analysis were relatively high, which may reflect our sample 

estimate derivates far from the actual parameter (Appendix. Figure A). 

Figure 2.2 shows the receiver operating characteristics (ROC) curves of all four 

models for ascites prediction.  The area under the ROC curve (AUC) for the BA, non-
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BA, mixed BA and non-BA, and original MELD were 0.81, 0.87, 0.88, and 0.86, 

respectively.  

We also calculated the sensitivity (SEN), specificity (SPE), positive predictive 

value (PPV) and negative predicative values (NPV) from ROC analysis (Table 2.6). 

For instance, in the BA model, the sensitivity and specificity were 33.90% and 88.30%, 

the positive and negative predictive values were 48.80% and 80.20%.   

Potential cut-off values of all 4 model scores to best differentiate patients with vs. 

without ascites were selected based on the optimum sensitivity vs. specificity from 

ROC analysis.  The ROC-optimum cut-off values for BA, non-BA, mixed BA and non-

BA models, and original MELD models for ascites prediction were -0.99, -1.18, -1.06, 

and -1.09, respectively (Table 2.6).  

Moreover, we tested if patient populations with scores below vs. higher than these 

optimum cut-off values can be distinguished using ROC analysis.  The p-value of 

AUCs were used to find statistically significant differences between the low- vs. high-

score populations (Figure 2.3 and Table 2.8).  The null hypothesis for p-value of 

AUCs were AUC=0.5.   

2.3.5 Prediction for other complications 

We also followed the same approach to predict other complications of liver 

diseases including bacterial peritonitis, encephalopathy, GI bleeding, hepatobiliary 

carcinoma, hepatorenal syndrome, jaundice, peripheral edema, and portal 
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hypertension.  Appendix. Table E shows the ROC analyses, p-values of the 

bootstrapping, Hosmer-Lemeshow tests, and Akaike information criterion (AIC) tests 

for the BA models.  Appendix. Tables F-H show similar results for non-BA, mixed 

BA and non-BA, and original MELD models.   

 

2.4 Discussion 

 

In this study, we have examined the ability of BA indices to predict complications 

in patients with liver diseases.  Logistic regression analysis was used to develop 

models to predict the prognosis of hepatobiliary diseases in terms of developing 

disease-related complications.  In addition to the BA model, we have developed (i) 

non-BA, (ii) mixed BA and non-BA variables to compare with the BA-only and non-BA 

only models.  (iii) MELD variables with coefficients from our data set were used to 

create a model with the original MELD variables, but with model coefficients derived 

from our data set.  (iv) Original MELD was modified with BA and/or non-BA variables, 

to test if the performance of original MELD can be improved by adding significant BA 

and non-BA parameters from the univariate analysis.  First, individual BA and non-BA 

variables were analyzed as possible predictors of developing ascites in a univariate 

logistic regression analysis.  Then multivariate models were built using backward 

elimination regression, where only the most significant variables from the univariate 

regression were retained.   
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The final multivariate logistic regression models were then validated using 

bootstrapping method.  Goodness of fit criteria also included the Hosmer-Lemeshow 

test, the Akaike information criterion (AIC), and multiple parameters from the receiver 

operating characteristic (ROC) analyses.  

From univariate logistic regression analysis, total UDCA, total CA, total 

MCA, %CDCA, %sulfation, total Mono-OH, % T-amidation, % tri-OH, % non-12α-OH, 

and % primary BA significantly increased the odds of having ascites, whereas total 

DCA, total HDCA, %LCA, % G-amidation, %mono-OH, and % secondary BA 

decreased the odds of having ascites (Table 2.3).   

For demographics, univariate logistic regression analysis showed that the odds 

of having ascites was significantly 1.3-fold higher in males than females.  For non-BA 

parameters, creatinine, INR, protime AST, bilirubin, AST/ALT, and MELD increased 

the odds of having ascites, whereas albumin and ALT decreased the odds of having 

ascites (Table 2.4). 

Using multivariate logistic regression analysis, we have constructed these final 

models for ascites prediction: 

(i) The BA variables (BA-OR) model for ascites prediction: 

          BA score =  Log  (BA OR) = − 3.463 − (2.452 × %MDCA) + (0.045 × %PrimaryBA ) 

(ii) The non-BA variables (non-BA-OR) model for ascites prediction:  

          non − BA score =  Log  (non BA OR) = 0.947 − (1.205 × Albumin level (
g

dl
)) +

(0.189 × MELD) 
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(iii) The original MELD variables (MELD-OR) model for ascites prediction: 

original MELD score = Log  (MELD OR) = − 4.049 + (0.276 × MELD) 

(iv) The mixed BA and non-BA variables (mixed BA and non-BA-OR) model for 

ascites prediction: 

mixed BA and non − BA score

= Log  (mixed BA and non − BA − OR) = − 0.275 + (0.029 × %CDCA)

− (0.077 ×
PrimaryBA

SecondaryBA
) − (1.143 × Albumin (

g

dl
))

+ (0.189 × MELD) 

Gender was the only significant demographic variable in univariate logistic 

regression analysis for all models.  However, it was not included in these models 

because it resulted in but with no-minimal improvement of model validation criteria 

including bootstrapping, AIC, and ROC-AUC (Appendix. Tables A-D).  Therefore, 

we did not include gender in the multivariate logistic regression model. 

Cholestatic diseases are associated with impaired bile flow to the intestine, which 

is expected to translate into reduced transformation of primary BA into secondary BA 

by intestinal bacteria.  Therefore, an accumulation of primary and a decrease in 

secondary BA in the blood may indicate further impairment in bile flow and existing 

liver disease [2, 133-136].  This was in agreement with the BA model, where 

increasing % Primary BA and decreasing %MDCA (a secondary BA) were the final 

significant predictors of liver disease prognosis.  Furthermore, we have previously 

demonstrated survival model development for death prediction using cox regression 



             

     

 

45 

analyses.  The same results have shown in their BA model, where increased %CDCA 

and %Tri-OH BA (both are primary BA) were the significant predictors of liver disease 

prognosis into death. 

As shown in Figure 2.1, the probability of developing ascites increased as a 

function of BA, non-BA, mixed BA and non-BA original MELD, and original MELD 

scores.   In general, logistic regression analysis produces a S-shaped curve, when 

predicated probability is plotted against the explanatory score [137].   All four models 

produced such S-shaped curves except for the BA score.  This is expected in the 

absence of extreme values of BA scores from our data set.  However, with more 

subject enrollment in the future, more extreme BA score values; therefore, S-curve 

shape, are expected. 

Hosmer–Lemeshow test was one of the criteria to evaluate the goodness of fit 

for logistic regression models.  The Hosmer–Lemeshow test results supported the 

validity of the BA, non-BA, and mixed BA and non-BA models (P-value >0.05), but not 

the original MELD model (Table 2.6).  The original MELD model was the only model 

with P-value < 0.05, which indicates the expected and observed results were 

significantly different.  

We also used Akaike information criterion (AIC) to compare the estimated out-

of-sample prediction error from multivariate logistic regression models.  Minimizing 

AIC values represents a good trade-off between goodness of fit vs. degrees of freedom 

[128].  The AIC value of the BA, non-BA, and original MELD models were 233.56, 
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170.81, and 180.45, which were higher than the AIC value of the mixed BA and non-

BA model (167.3) (Table 2.6).  

Models were validated using the bootstrapping method (Table 2.7).  

Bootstrapping is a resampling technique used to estimate statistics on a population by 

sampling a dataset with replacement [130].  Random samples were taken one at a 

time, with replacement from our data set to create a series of 1000 new data sets.  

Statistics were calculated by comparing these data sets.  In the BA model, the relative 

standard error was relatively large because the model parameter (%MDCA) has a high 

relative standard error (Appendix. Figure A).  This could be due to the fact 

that %MDCA  was not normally distributed in the original data set and because the 

sample size was relatively small [138].  Despite the high relative standard error, the 

BA model could be considered to pass the bootstrapping validation given the relatively 

small sample size of our study.  Overall, the bootstrapping validation results 

supported the validity of the BA, non-BA, mixed BA and non-BA, and original MELD 

models for ascites prediction. 

 ROC analysis was used to compare the models for their accuracy to predict liver 

patient prognosis into complications such as ascites.  The higher the arear under the 

ROC curve (AUC), the greater the overall accuracy of the marker in distinguishing 

between groups.  For prognostic models, AUC of 0.9 or greater is rarely seen.  AUC 

between 0.8 and 0.9 indicates excellent accuracy.  And any AUC over 0.7 may be 
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considered clinically useful [139-141].  Therefore, all four models show high accuracy 

for ascites prediction. 

ROC analysis was also performed to test sensitivity, specificity, and positive and 

negative predictive values (Table 2.6).  The sensitivity is the proportion of true 

positive patients (patients who were predicted to have ascites and actually did have 

ascites) to the actual positive patient population (total number of patients who actually 

did have ascites).  The specificity is the proportion of true negative patients (patients 

who were predicted not to have ascites and actually did not have ascites) to the actual 

negative patient population (total number of patients who actually did not have ascites).  

The positive predictive value is the proportion of true positive patients to the total 

number of predicted positive patients.  The negative predictive value is the proportion 

of true negative patients to the total number of predicted negative patients.  The high 

sensitivity and specificity correspond to the high positive and negative predictive 

values, vice versa.  Predictive values are more commonly used than sensitivity and 

specificity in clinical studies [137].  The higher positive and negative predictive values 

are preferred comparing model performance.   Based on that, we compared positive 

and negative predictive values for all four models.  The non-BA model has higher 

positive and negative predictive values than other models.  In addition, the mixed BA 

and non-BA model also has high predictive values closed to the non-BA model. 

Therefore, both non-BA and mixed BA and non-BA models show better model 

performance than others.   
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Moreover, ROC analysis was used to determine potential cut-off values which 

quantify the normal range of biomarkers.  The selection of optimum cut-off values is 

a tradeoff between sensitivity vs. specificity, where lower cut-off values are associated 

with higher sensitivity but lower specificity, and vice versa.  Scores for the BA, non-

BA, mixed BA and non-BA, and original MELD models were identified as cut-off values 

with optimum sensitivity vs. specificity, which were -0.99, -1.18, -1.06, and -1.09 

respectively (Table 2.6).  For example, a BA score of -0.99 was considered an 

optimum cut-off value in differentiating patients with vs. without ascites because it 

maintained a balance between sensitivity (74%) vs. specificity (74%).  

 These ROC optimum cut-off values were used to split the overall patient 

population into two populations for every model.  One population contained patients 

with model scores higher than the cut-off score and the other contained patients with 

model scores lower than the cut-off score.  The p-value of AUCs from the two 

populations for every model were then used to find statistically significant differences 

(Figure 2.3 and Table 2.8).  The p-value of AUCs are smaller than 0.05 and lead to 

the rejection of the null hypothesis, indicating AUCs are above the reference line 

(AUC=0.5), and vice versa.  Only ROC-optimum cut-offs for the BA score (-0.99) 

resulted in statistically significant different AUCs based on their p-values; therefore, 

they were able to distinguish high- vs. low-score patient populations. 

In addition to ascites, we attempted to develop similar models for the prediction of 

other common liver disease complications including bacterial peritonitis, 
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encephalopathy, GI bleeding, hepatobiliary carcinoma, hepatorenal syndrome, 

jaundice, peripheral edema, and portal hypertension (Appendix. Tables E-H).  None 

of these complications were as accurately predicted as ascites by any of the BA and 

non-BA models.  In general, models for the prediction of other complications had 

lower sensitivity, lower specificity, lower AUC values, and higher AIC values.  This 

could be due to the fact that other complications were less common than ascites 

(except for portal hypertension and peripheral edema) in our study.  Overall, 

improving prediction accuracy would require an increase in the study population to 

predict all these other complications. 

 

2.5 Conclusions 

 

 We have developed and validated a prognosis model based on BA indices to 

predict the development of liver disease complications such as ascites.  Other 

models, including non-BA, mixed BA and non-BA, and original MELD models, were 

also developed to compare their performance with our BA model.  Overall, the 

mixed BA and non-BA model was the most accurate based on AIC and ROC 

analyses.  The mixed BA and non-BA had lower AIC values indicating a smaller 

error of distribution and a better trade-off between goodness of fit vs. degrees of 

freedom (Table 2.6).  Moreover, the mixed BA and non-BA model had the highest 

AUC values indicating higher accuracy than other models (Figure 2.2).  Therefore, 

the mixed BA and non-BA model could be used to predict the development of ascites 
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in patients diagnosed with liver-disease at early stages of intervention, such as liver 

transplantation.  This will assist in supply allocation and physician decisions when 

treating liver diseases.   
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2.6 Figures and Tables  

 

Figure 1.1 The chemical structure of major BA and their glycine, taurine, and 

sulfate conjugates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bile acid R1 R2 R3 R4 

Tri-OH BA 

Cholic acid (CA) H OH H OH 

α-Muricholic acid (α-MCA) β-OH OH H H 

β-Muricholic acid (β-MCA) β-OH H OH H 

ω-Muricholic acid (ω-MCA) α-OH H OH H 

Hyocholic acid (HCA) α-OH OH H H 

Di-OH BA 

Chenodeoxycholic acid (CDCA) H OH H H 

Deoxycholic acid (DCA) H H H OH 

Ursodeoxycholic acid (UDCA) H H OH H 

Mono-OH BA 

Lithocholic acid (LCA) H H H H 

R5 

Unamidated BA OH 

Glycine-amidated BA (G-BA) NH2CH2COOH 

Taurine-amidated BA (T-BA) NH2CH2CH2SO3H 

R6 

Unsulfated BA H 

Sulfated BA SO3H 

 

  



             

     

 

52 

Figure 2.1 The relationship between the BA, non-BA, mixed BA and non-BA, 

and original MELD model scores and the probability of developing ascites.   

 

(a) BA model                                      (b) Non-BA model 

 

(c) Mixed BA and Non-BA model             (d) Original MELD model                                
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Figure 2.2 Receiver operating characteristics (ROC) curves of the BA, non-BA, 

mixed BA and non-BA, and original MELD models for ascites prediction. The 

area under the ROC curves (AUC) for (a) BA model, (b) non-BA model, (c) mixed BA 

and non-BA model, and (d) original MELD model for differentiating patients with 

ascites from patients without ascites. 

(a) BA model                                (b) Non-BA model 

                                

(c) Mixed BA and Non-BA model         (d) Original MELD model 
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Figure 2.3 ROC analysis using optimum cut-off values in BA, non-BA, mixed 

BA and non-BA, and original MELD model scores. 
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Table 1.1 Currently used biomarkers for hepatobiliary diseases. 

 

 
Biomarker Normal Range Disease 

Aspartate aminotransferase. 

(AST) 
8IU/L- 48 IU/L 

Hepatocellular injury with any 

cause[141] 

Nonalcoholic fatty liver disease[142] 

Primary biliary cirrhosis (PBC)[143] 

Alanine aminotransferase  

(ALT) 
 

7U/L- 55 U/L 
 

Hepatocellular injury with any 

cause[141] 

Nonalcoholic fatty liver disease[142] 

Primary biliary cirrhosis (PBC)[143] 
 

Gamma-glutamyl transferase. 

(GGT) 
8U/L- 61 U/L 

 

Biliary or pancreatic disease[141] 

Primary biliary cirrhosis (PBC)[143] 
 

Alkaline phosphatase (ALP) 40U/L-129U/L 
 

Cholestatic liver disease[141] 

Primary biliary cirrhosis (PBC)[143] 
 

Albumin 3.5-5.0 g/dL 
 

Nephrotic syndrome[141] 

Cirrhosis[144] 

Total proteins 6.3-7.9 g/dL 
 

Hepatitis C 

Alcoholic fatty liver disease[145] 

Total bilirubin 0.3-1 mg/dL 
Cirrhosis 

Nonalcoholic fatty liver disease[142] 

Unconjugated bilirubin 0.2-0.8 mg/dL 
Cirrhosis 

Nonalcoholic fatty liver disease[142] 

Conjugated bilirubin 0.1-0.3 mg/dL 
Cirrhosis 

Nonalcoholic fatty liver disease[142] 

Lactate dehydrogenase (LD) 122-222 U/L 
 

Hepatocellular carcinoma 

Acute liver failure (ALF)[146] 
 

Prothrombin time (PT) 
9.4-12.5 

seconds 

Prolonged in liver disease 

,Pancreatic 

insufficiency[141];Cirrhosis[147] 

International normalized ratio 

(INR) 
~1.1 

Cirrhosis[148]; Non‐alcoholic fatty 

liver disease[149] 

Serum creatinine 

0.84-1.21 

milligrams 

per deciliter 

Nonalcoholic fatty liver disease[150] 

Hepatobiliary diseases [2] 
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Table1.2 Summary of models/scores/criteria for prediction of hepatobiliary 

disease prognosis 

 

Models, Scores or Criteria Disease Outcomes Study 

population 

Normal 

range 

Body composition-MELD (BC-MELD) = 

MELD score+3.59*skeletal muscle mass 

index (SM)I+5.42*high intramuscular 

adipose tissue content (IMAC)+2.06*high 

visceral-to-subcutaneous adipose tissue 

area ratio (VSR).[151] 

Cirrhosis with 

liver 

transplantation 

LTM 173 patients 

(male, 97; 

female 76) as 

acute liver 

failure as the 

indication for LT. 

NA 

Risk score=0.002*Carbohydrate Antigen 

19-9 ((CA-199) +0.072*Age-6.612d[152] 

Atypical bile 

duct 

hyperplasia  

The model for 

predicting 

atypical 

hyperplasia in 

the 

intrahepatic 

bile duct 

Total 375 

patients. The 

atypical 

hyperplasia 

group 36 

patients (man,15 

and women,21). 

The non-atypical 

hyperplasia 

group 339 

patients (93 

males, 246 

female) 

NA 

HBV-ACLF MELD (HAM) model= 0.174* 

MELD + 1.106 * hepatic encephalopathy 

(HE) -(0.003*alpha-fetoprotein(AFP))+ 

(0.237*white blood cell (WBC)) + (0.103 

*Age) - 11.388[153] 

Hepatitis B 

virus related 

acute-on-

chronic liver 

failure (HBV-

ACLF)  

STM A total of 530 

HBV-ACLF 

patients. training 

cohort (300 

patients) and 

validation cohort 

(230 patients) 

NA 

Risk score = 3.090 + 0.035 *Age (years) - 

0.050 *PTA (%) + 0.005 * TBIL (mmol/L) + 

0.044 *D/T (%) - 0.072 * Na (mmol/L) + 

0.180 * HBV DNA (log10IU/mL) [154] 

Acute 

deterioration 

(AD) of 

hepatitis B 

virus (HBV)-

related chronic 

liver disease 

(CLD)  

The 

verification 

and 

evaluation the 

new 

prediction 

model  

754 patients with 

AD of HBV-

related CLD, 

training cohort 

(580 patients) 

and a validation 

cohort (174 

patients) 

Score > 

-2.12 

(higher 

survival 

rate)  

Score 

<-2.12 

(lower 

survival 

rate) 
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ABIDE model= [2.003*INR+ 

0.824*AST/ALT ratio + 0.821*(Type 2 

diabetes:0 if absent, 1 if present) + 

0.806*(esophageal varices: 0 if absent, 1 if 

present) + 0.332 *total bilirubin.[155] 

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

LTM related 

to liver 

cirrhosis in 

NAFLD 

patients 

512 patients in 

derivation 

cohort, 299 

patients with 

compensated 

cirrhosis 244 of 

346 in validation 

cohorts 

The high 

score ≥ 

4.1 

The low 

model 

score <4.1 

 

Chronic Liver Failure Consortium (CLIF)-C 

Acute-on-chronic liver failure (ACLF) 

score= 10 x (0.33 *CLIF-C OF + 0.04 * 

age + 0.63 * Ln [leukocyte count] -2)[156] 

Acute-on-

chronic liver 

failure (ACLF) 

STM A total 177 

patients with 

Acute-on-

chronic liver 

failure (ACLF),  

Male (132)  

Female (45) 

The score 

≤ 39 with a 

higher 

survival 

rate. The 

score ≥ 51 

with a 

lower 

survival 

rate. 

 

The age-bilirubin-international normalized 

ratio-creatinine (ABIC) score = (age *0.1) 

+ (serum bilirubin * 0.08) + (serum 

creatine * 0.3) +(INR * 0.8)[157]  

Acute-on-

chronic 

hepatitis B liver 

failure (HBV-

ACLF)  

STM A 398 total 

patients 

diagnosed with 

HBV-ACLF, a 

training cohort of 

305 patients and 

a validation 

cohort of 93 

patients 

The score 

> 9.44  

With 

shorter 

survival 

time. 

The score 

≤ 9.44 had 

longer 

survival 

 

The Platelets- albumin-bilirubin (PALBI) 

score = (2.02*log10 bilirubin) +(-

0.37*(log10 bilirubin)2) +(-0.04 *albumin) 

+(-3.48*log10 platelets) +(1.01* (log10 

platelets)[158] 

Cirrhosis  Prognostic 

indicator of 

mortality  

A total 195 

patients,127 

male, 68 

Female, median 

age 66 years 

PALBI 

score: 

grade 1 

(score ≤-

2.53), 

grade 2 

(>-2.52 to 

-2.09), and 

grade 3 

(>-2.09) 

 



             

     

 

58 

The albumin- bilirubin (ALBI) score = 0:66 

× log10 bilirubin (μmol/l) − 0.085 × albumin 

(g/l) [159] 

Decompensate

d cirrhosis  

STM A total 456 

patients with 

DeCi, The 

median age 

53.5, Male(302), 

Female (154) 

NA 

ICGR15-MELD model= 0.117 × ICGR15 + 

0.128 × MELD score − 3.446.[160] 

Early allograft 

dysfunction 

(EAD) and 

early 

postoperative 

complications 

after LT 

The 

accuracy of 

model 

A total 87 

consecutive liver 

transplant 

patients, a 

training cohort 

(n=61) and an 

internal 

validation cohort 

(n=26) 

The score 

≥0.098 

(66.7% of 

EAD 

incidence). 

The 

score< 

0.098 

(6.5% of 

EAD 

incidence) 

CLIF Consortium Acute Decompensation 

scores (CLIF-C ACLF) = 

10×[0.03×Age(year) + 0.66×Ln 

(Creatinine(mg/dL)) + 1.71×Ln (INR) + 

0.88×Ln (WBC (10^9 cells/L)) - 0.05 × 

Sodium(mmol/L)+8[161] 

Chronic Liver 

Failure  

STM A total 209 

patients with 

ACLF and 1245 

patients without 

ACLF (Chronic 

Liver Failure) 

NA 

Lille Model and MELD Score=  [2.4778 * 

(Lille model - 0.4114) + 0.0695 * (MELD – 

24.6812)] * 0.9836  [162] 

Alcoholic 

hepatitis  

STM A total of 712 

patients. 67 

patients from the 

derivation data 

set and 108 

patients from the 

validation data 

set from 8 

pooled cohort 

studies. 

NA 

Lille Model and Maddrey DF score= S = 

2.5373 * (Lille model - 0.4195) + 0.0095 * 

(Maddrey’s DF - 61.8519)] * 0.9850[162] 

Alcoholic 

hepatitis 

STM A total of 712 

patients. 67 

patients from the 

derivation data 

set and 108 

patients from the 

validation data 

set from 8 

NA 
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pooled cohort 

studies. 

Lille Model and ABIC Score= S = 2.3260 * 

(Lille model - 0.4114) + 0.2362 * (ABIC - 

8.3882)] *0.980[162] 

Alcoholic 

hepatitis 

STM A total of 712 

patients. 67 

patients from the 

derivation data 

set and 108 

patients from the 

validation data 

set from 8 

pooled cohort 

studies. 

NA 

Modified CTP score, Second modified 

CTP score, and creatinine-modified CTP 

core (Ascites, Encephalopathy, Serum 

bilirubin, Albumin and INR)[163] 

Cirrhosis  The 

transplant-

free survival 

in. 

A total 30,897 

cirrhotic patients 

with at least 5 

years of follow-

up, (72.3 %) 

male (97.2 %) 

cirrhotic patients 

NA 

King's College criteria (KCC) (The grade of 

hepatic encephalopathy, arterial blood pH, 

prothrombin time, and serum 

creatinine)[164] 

Acute liver 

Failure 

STM  100 consecutive 

patients with 

acetaminophen-

induced ALF  

NA 

APACHE II score = acute 

physiology score + age points + chronic 

health points[116] 

Acute-on-

chronic liver 

failure  

STM 100 patients 

were enrolled in 

the study, 

including 87 

males and 13 

females, with a 

median age of 

49 years  

NA 

The sequential organ failure assessment 

(SOFA) score (PaO2/FiO2 (mmHg), 

Plateletsx 103/mm, Bilirubin (mg/dl) 

Glasgow Coma Sore. Creatinine, (mg/dl), 

hypotension (yes or no))[165] 

Paracetamol-

induced acute 

liver injury 

Comparing 

prognostic 

accuracy on 

both modified 

MELD and 

SOFA score  

A total of 138 

patients (61 

males, 77 

female). 125 

were classified 

as ‘non-

paracetamol’ 

cases, and 123 

patients had 

taken a 

staggered 

NA 
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paracetamol 

overdose. 

MESO=[MELD/Na (mmol/L)] +100  

 

iMELD=MELD+[age(years)*0.3]-

[0.7*Na(mmol/L] +100,   

 

UKELD=5*(1.5*ln(INR)+0.3*ln(creatinine(u

lmol/L)+0.6*ln(bilirubin(lmol/L)-

13*ln(mmol/L)+70 [165] 

Paracetamol-

induced acute 

liver injury 

Comparing 

prognostic 

accuracy on 

both modified 

MELD and 

SOFA score  

A total of 138 

patients (61 

males, 77 

female). 125 

were classified 

as ‘non-

paracetamol’ 

cases, and 123 

patients had 

taken a 

staggered 

paracetamol 

overdose. 

NA 

MDF (Maddrey’s discriminant function) 

=4.6(prothrombin time -control time) + 

serum bilirubin [in µmol/L]/17.1[166] 

Alcoholic 

hepatitis 

STM A total 66 

patients with 

alcoholic 

hepatitis 

NA 

The Glasgow alcoholic hepatitis score 

(GAHS)[167] 

Alcoholic 

hepatitis  

STM A total 241 

patients with 

alcoholic 

hepatitis  

The 

score<9 

(high 

survival 

rate) 

The 

score 

≥9(lowe

r survival 

rate)  

Beclere model = (0.0484 × [Age in Years] 

+ 0.469 × [encephalopathy] + 0.537 × 

Loge [Bilirubin in μmol/L] - 0.052 × 

[Albumin in g/L] [168] 

Alcoholic 

hepatitis  

STM A total 183 

patients enrolled 

in the study 

NA 

The Alcoholic Hepatitis Histologic Score 

(AHHS) 

(Stage of fibrosis, Bilirubinostasis, 

Neutrophil infiltration, 

Megamitochondria)[169] 

Alcoholic 

hepatitis  

STM A Total 121 

patients 

admitted to the 

Liver Unit in 

Spain, and a 

total 205 

patients from 5 

academic 

centers in the 

low 

morality 

(0-3 

points) 

Moderate 

morality 

(4-5 

points). 
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United States 

and Europe 

High 

morality 

(6-9 

points) 

TAP score = 100 × (exp [lr]/ 1 + exp [lr]; 

Note lr = −3.71 + (0.34*TMA) - 

(0.087*Pentane) [170] 

Alcoholic 

Hepatitis  

The severity 

of patients 

with Alcoholic 

Hepatitis 

A total of 80 

patients, 43 

healthy subjects 

without liver 

disease  

The score 

≥36 with 

high 

mortality 

The CLIF-SOFA score (Bilirubin, Cerebral 

failure, INR, mean arterial pressure, partial 

pressure of arterial oxygen/fraction of 

inspired oxygen)[171] 

Acute-on-

chronic liver 

failure  

STM and 

LTM  

A total 1349 

patients with 

ACLF 

NA 

GLOBE score = 0.044378 * age at start of 

UDCA therapy + 0.93982 * LN(bilirubin 

times the upper limit of normal [ULN] at 1 

year follow-up)+0.335648*LN(alkaline 

phosphatase times the ULN at 1 year 

follow-up) - 2.266708 * albumin level times 

the lower limit of normal (LLN) at 1 year 

follow-up)- 0.002581 * platelet count per 

109/L at 1 year follow- up + 1.216865[172] 

Primary biliary 

cirrhosis  

The 

transplant-

free survival 

for patients 

with PBC  

4119 patients 

with PBC treated 

with 

ursodeoxycholic 

acid in European 

and North 

American 

countries  

NA 

UK-PBC Risk Scores [173] Primary biliary 

cirrhosis  

LTM 4,099 patients 

with PBC  

NA 

Rochester I Criteria: ALP 2* ULN (upper 

limit of normal)[174]  

Primary Biliary 

Cholangitis  

LTM  A total 180 

patients, who we 

continue to 

follow with PBC. 

NA 

Paris I Criteria: ALP 3× ULN; AST 2× ULN; 

and TB 1 mg/dL [174] 

Primary Biliary 

Cholangitis  

LTM  A total 292 

patients with 

PBC 

NA 

Rotterdam Criteria: TB <1× ULN and 

albumin >1× LLN[174] 

Primary Biliary 

Cholangitis  

LTM  A total 375 

patients with 

PBC and 

median follow-

up time was 9.7 

years  

NA 

Toronto Criteria: ALP 1.67× ULN[174] Primary Biliary 

Cholangitis  

LTM A total 69 

Patients with 

PBC  

NA 

Paris II Criteria: ALP 1.5× ULN; AST 1.5× 

ULN; and TB 1 mg/dL[174] 

Primary Biliary 

Cholangitis  

LTM A total165 

patients with 

NA 
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early-stage PBC 

followed up for 

an average 7 

years 

UDCA: Albumin(,38g/L) , Histologic stage ( 

>3), Lack of biochemical response at 1 

year.[175] 

Primary Biliary 

Cholangitis  

LTM A total 192 

patients with 

PBC 

NA 

Glasgow alcoholic hepatitis score (GAHS): 

Age, Leukocytes, Urea, PT (prothrombin) 

ratio, Bilirubin[176] 

Alcoholic 

hepatitis  

STM and 

LTM 

A total 274 

patients with 

alcoholic 

hepatitis 

NA 

Lille model= exp(R)/(1 + exp(-R);  R=  

3.19–0.101 * (age in years) + 0.147 * 

(albumin day 0 in g/L) + 0.0165 * (bilirubin 

day 0 - bilirubin day 7 (mmol/l)) - 0.206 * 

(renal insufficiency) - 0.0065 * (bilirubin 

day 0 in mmol/l)- 0.0096  (PT in 

seconds)[176] 

Alcoholic 

hepatitis  

STM A total 274 

patients with 

alcoholic 

hepatitis 

NA 

MELD-Na score= MELD + 1.59 * (135-

Na), with maximum and minimum Na of 

135 and 120 mEq/L [176]  

Alcoholic 

hepatitis  

STM A total 274 

patients with 

alcoholic 

hepatitis 

NA 

Mayo model = 0.871 log. (bilirubin in 

mg/dl) +-2.53 1og (albumin in gm/dl) 

+0.039* age in years +2.38 log. 

(prothrombin time in sec) +0.859 

edema[177] 

Primary Biliary 

Cirrhosis  

LTM A total 106 Mayo 

Clinic primary 

biliary cirrhosis 

patients  

NA 

The Nutritional Index (CONUT) [178] End-Stage 

Liver Diseases 

(ELD) 

LTM A total 58 

patients with 

end-stage liver 

diseases 

NA 

Prognostic nutritional indices (Onodera: 

PNI-O) = 10Albumin + 0.005(total 

lymphocyte count))[178] 

End-Stage 

Liver Diseases 

(ELD) 

LTM A total 58 

patients with 

end-stage liver 

diseases 

NA 

Actin-free Gc-globulin combine with King's 

college hospital criteria [179] 

Acute liver 

failure (ALF) 

STM   A total of 252 

patients with 

varying 

etiologies from 

the U.S. ALF 

Study Group  

NA 
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Clichy’s Criteria (Factor V, age, and the 

presence of grade 3-4 

encephalopathy)[180] 

Fulminant 

hepatic failure 

(FHF)  

STM A total 120 

consecutive 

patients with 

FHF, adults (n = 

64) and children 

(n = 56) 

NA 

End-Stage Liver Disease (PELD) = 

4.80*[Ln serum bilirubin (mg/dL)] + 

18.57*[Ln INR] - 6.87*[Ln albumin (g/dL)] + 

4.36*(year old) + 6.67*(growth failure)[180] 

Fulminant 

hepatic failure 

(FHF)  

STM A total 120 

consecutive 

patients with 

FHF, adults (n = 

64) and children 

(n = 56) 

NA 

London Criteria (muscle fatigability or 

weakness presence of symptoms 

including the brain and centra nervous 

system, autonomic dysfunction, fluctuation 

of symptoms)[181] 

Acute liver 

failure  

STM  A total 61 

patients had 

fulminant liver 

failure  

NA 

Hangzhou Criteria (Total tumor diameter 

less than or equal to 8 cm, Total tumor 

diameter more than 8 cm, with 

histopathologic grade I or II and 

preoperative AFP level less than or equal 

to 400 ng/mL)[182] 

Hepatocellular 

Carcinoma  

LTM A total 195 

patients with 

HCC were 

retrospectively 

analyzed and 

various clinical 

and pathological 

factors  

NA 

logit(P)=-4.595+0.824×fibrinogen 

concentration (g/L) + 0.641 × AFP score  

1 for AFP<=20ng/ml,  

2 for 20<AFP<=100ng/ml,  

3 for100<AFP<=200ng/ml,  

4 for 200<AFP<=400ng/ml,  

5 for AFP>400ng/ml )[183] 

 
 

Hepatocellular 

Carcinoma  

LTM  A total of 119 

patients 

receiving liver 

transplantation 

for 

43hepatocellular 

carcinoma  

The score 

< -0.85 

with 

better 

outcome 

The score 

> -0.85 

with less 

outcome 

Milan Criteria (Single tumor less than 5 cm 

in size, no more than three tumors, all less 

than 3 cm in diameter)[184] 

Hepatocellular 

Carcinoma  

LTM A total 195 

patients with 

HCC were 

retrospectively 

analyzed and 

various clinical 

and pathological 

factors  

NA 
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UCSF criteria (1 tumor ≤6.5 cm or ≤3 

tumors with the largest tumor diameter 

≤4.5 cm and total tumor diameter ≤8 

cm)[185] 

Liver 

transplantation 

(OLT) for 

patients with 

hepatocellular 

cancer (HCC)  

LTM A total of 3,434 

patients 

underwent OLT 

for HCC during 

the study period 

NA 

Radiomics score=2.688195- 4.306105e-

09× (Contrast_0) + 7.882485e-08× 

(Cluster Prominence_0) + 3.492191× 

(Information measure of correlation2_0) + 

3.088437× (Inverse difference normalized 

(INN)-0)-2.511158× (Information measure 

of correlation2_2)-1.641851× 

(Energy_2.5)[186] 

Solitary 

hepatocellular 

carcinoma 

(HCC) 

LTM A total of 319 

solitary HCC 

patients  

Rad 

score>4.3

2 with high 

mortality 

Rad 

score≤ 

4.32 with 

low 

mortality 

Barcelona Criteria (ALP)[174] Primary Biliary 

Cholangitis  

LTM A total 292 

patients with 

PBC 

NA 

MELD-XI score = 5.11 * ln (serum 

bilirubin) + 11.76 * ln (serum creatinine) + 

9.44 [187] 

End-Stage 

Liver Disease 

in pediatric 

patients 

undergoing 

orthotopic heart 

transplant 

STM and 

LTM 

A total 2,939 

patients met the 

inclusion criteria  

NA 

Adam's score  (Age, Presence of 

extrahepatic metastases; Major hepatic 

resection, R2 resection DFI, Primary tumor 

type)[188] 

Non colorectal, 

non-

neuroendocrine 

(NCNN) liver 

metastases 

Prediction of 

survival rate 

A total 78 

consecutive 

patients with 

NCNN liver 

metastases 

Low score 

(0-3) 

Medium 

score (4-

6); High 

score (7-

10)  

ALFSG prediction model= Logit SS= 2.67 

– 0.95(HE*)+1.56(Etiology*)- 

1.25(Vasopressor Use*) - 0.70 (ln bilirubin) 

- 1.35 (ln INR)[189] 

Acute liver 

failure  

LTM A total 1974 

patients who 

met criteria for 

ALF  

NA 

NAFLD fibrosis score = -1.675 + 0.037 * 

Age (yrs)+0.094*BMI(kg/m2)+1.13 * 

IFG/diabetes (Yes=1, No=0) + 0.99 * 

AST/ALT ratio-0.013 * Platelet (10^9/L) -

0.66 *Albumin (g/dl)[190] 

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

The liver-

related 

mortality  

A total 646 

biopsy proven 

NAFLD patients 

NAFLD 

score<-

1.45 (Low) 

NAFLD 

score>0.6

7(High)  
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FIB-4 index= Age (yrs) * AST 

[U/L]/(Platelet [10^9/L] * (ALT 

[U/L]^1/2)[190] 

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

The liver-

related 

mortality  

A total 832 

patients with 

NAFLD 

FIB-4 

index<1.3(

Low); FIB-

4 

index>3.2

5(High) 

BARD score (AST/ALT ratio> 0.8=2 

points; BMI>28=1 point; Presence of 

diabetes= 1points; Score range from 0 to 4 

points)[190]   

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

The liver-

related 

mortality  

A total 827 

patients with 

NAFLD  

NA 

APRI score (AST to Platelet Ratio Index).  

(AST [IU/L])/(AST upper limit of normal 

[IU/L])/(Platelet [10^9/L])[190] 

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

The liver-

related 

mortality  

A total 236 

patients fulfilled 

in this study  

NA 

Hepascore = exp [-4.185818 - (0.0249 * 

Age) + (0.7464* SEX) + (1.0039*a2 

macroglobulin) + (0.0302*Hyaluronic 

acid)+(0.0691 Bilirubin) -

(0.0012*GGT)][190] 

Non-alcoholic 

fatty liver 

disease 

(NAFLD)  

The liver-

related 

mortality  

A total 510 

patients with 

hepatitis B or C 

and matched on 

fibrosis stage 

were included 

NA 

FORNs score=7.811 -3.131ln (platelet 

count) +0.781ln(GGT)+3.467ln(age)-

0.014(cholesterol)[191] 

Chronic 

Hepatitis C 

Patients 

Without 

Hepatic 

Fibrosis 

The liver-

related 

mortality  

The cohort study 

included 502 

consecutive 

patients with 

chronic hepatitis 

C. 

FORNs 

score 

<4.21 and 

>6.9with 

significant 

fibrosis.   

BARDI score (improved BRAD score by 

adding INR)[192] 

Advanced liver 

fibrosis in 

nonalcoholic 

fatty liver 

disease  

The liver-

related 

mortality  

A total 107 

patients with 

biopsy proven 

NAFLD were 

enrolled.  

NA 

Frailty index=(-0.33*gender- adjusted grip 

strength)+(-2.529*number of chair stands 

per second)+(-0.04* balance time)+6[193] 

Cirrhosis  The liver-

related 

mortality  

A total 536 

patients enrolled 

in the study 

NA 

The donor risk index (DRI) (Age, COD 

(cause of death), DCD (donation after 

cardiac death), Partial/Split, race, regional/ 

national share, height, CIT (cold ischemia 

time)[194] 

Nonalcoholic 

fatty liver 

disease 

The liver-

related 

mortality  

A total 20023 

transplants, 

using livers from 

deceased 

donors 

Donor risk 

index 

(≤1.1or

>1.5)  

The balance of risk (BAR) score (MELD 

score, cold ischemia time, recipient age, 

donor age, previous liver transplantation, 

End-stage liver 

disease  

The mortality 

and 

A total 233 

patients  

BAR 

score>18 

(higher 
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and life support at the time of 

transplant)[195] 

posttransplant 

outcome  

survival 

rates) 

BAR≤18 

(lower 

survival 

rates). 

   

ADOPT-LC score (score range from 0-8) 

(Age CTP class (A, B, C), Charleston 

comorbidity index, Duration of anesthesia 

(<180, 181-420, >420))[196] 

Cirrhosis  The in-

hospital 

mortality  

A total 2197 

patients are 

involved in this 

study.  

NA 

Model for Early Allograft Function Scoring 

(MEAF)[197] 

Early allograft 

dysfunction 

STM A study 

including 1026 

consecutive liver 

transplants 

patients was 

performed for 

MEAF score 

development  

NA 

ALF in-hospital mortality score (ALFIHMS) 

= 0.714 + 0.02 (total bilirubin) + 0.03 

(APACHE II score) × 10[198] 

Acute liver 

failure (ALF)  

The in-

hospital 

mortality  

55 individuals 

with ALF were 

included in the 

study. 

ALFIHMS 

score>15 

with 50% 

higher in-

hospital 

mortality. 

Note: STM and LTM represents the short-term mortality and long-term mortality. 
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Table 2.1 List of BA indices. 

 

Composition 
Hepatic 

Metabolism 
Hydrophilicity CYP8B1 Activity 

Intestinal 

Contribution 

Concentration of 

individual BA 
Total Sulfated Total Mono-OH Total 12α-OH Total Primary 

% of individual BA Total G-amidated Total Di-OH Total non-12α-OH Total Secondary 

 Total T-amidated Total Tri-OH 12α-OH/ non12α-OH Primary/ Secondary 

 % Sulfation % Mono-OH CA/ CDCA % Primary 

 % Amidation % Di-OH % 12α-OH % Secondary 

 % G-amidation % Tri-OH % non-12α-OH 
 

 % T-amidation HI  
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Table 2.2 Demographics. 

 

Total Patients(N) 257 

Gender 

Male 136 

Female 121 

Age (years) 

Mean ± SEM 52.2 ± 0.71 

Body Mass Index (BMI) 

Mean ± SEM 30.7 ± 0.45 

Race 

White 

217 

217 

103 Black 11 

Asian 7 

Hispanic 4 

Others 18 

Liver disease complications 

Ascites 62 

Bacterial peritonitis 2 

Encephalopathy 36 

GI bleeding 18 

Hepatobiliary carcinoma 15 

Hepatorenal syndrome 1 

Jaundice 7 

Peripheral edema 63 

Portal hypertension 106 
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Table 2.3 Univariate logistic regression analyses for the prediction of 

developing ascites in the entire liver-patient population based on BA indices. 

BA concentrations are in (µM), while BA indices are in percentage. HI is hydrophobicity index. 

BA (µM) / BA indices 
 

B-value (Regression 

Coefficient) 
P-value 

Odds ratio (OR): Exp (B) 

1 unit 

change 

 10% 

change 

  20% 

change Total BA 0.002    0.059 
 

1.002   1.010 1.020 

Total LCA 0.024 0.275 1.024   1.007   1.013 

Total UDCA 0.001 0.538 1.001 1.002 1.004 

Total CDCA 0.009 0.002 1.009 1.017 1.034 

Total DCA -0.001 0.871 0.999 0.999 0.999 

Total HDCA -20.099 1.000 0.000 0.980 0.961 

Total MDCA -20.104 0.999 0.000 0.923 0.851 

Total CA 0.052 0.007 1.053 1.013 1.027 

Total MCA 0.008 0.528 1.008 1.002 1.005 

Total HCA 0.407 0.012 1.502 1.007 1.015 

% LCA -0.071 0.004 0.931 0.936  0.877 

% UDCA -0.049 0.000 0.952  0.892  0.795 

% CDCA 0.048 0.000 1.049 1.178 1.387 

% DCA -0.061 0.000 0.941 0.908 0.825 

% HDCA -6.66 0.108 0.001 0.980 0.960 

% MDCA -3.281 0.003 0.038 0.880 0.774 

% CA 0.065 0.005 1.067 1.040 1.081 

% MCA -0.007 0.713 0.993  0.996 0.991 

% HCA -0.671 0.001 0.511 0.977 0.954 

Total Unamidated 0.016 0.076 1.016 1.009 1.017 

Total G-amidated 0.002 0.103 1.002 1.008 1.017 

Total T-amidated 0.019 0.016 1.019 1.011   1.021 

% Amidation 0.041 0.017 1.042 1.433 2.054 

% G-amidation -0.004 0.665 0.996 0.970 0.940 

% T-amidation 0.037 0.002 1.038 1.039   1.080 

Total Unsulfated 0.061 0.076 1.016 1.009 1.017 

Total Sulfated 0.002 0.061 1.002 1.009 1.018 

% Sulfation 0.012 0.338 1.012 1.106 1.224 

Total Mono-OH 0.024 0.275 1.024 1.007 1.013 

Total Di-OH 0.002 0.074 1.002 1.008 1.017 

Total Tri-OH 0.018 0.029 1.018 1.010 1.021 

% Mono-OH -0.071 0.004 0.931 0.936 0.877 

% Di-OH 0.018 0.095 1.018 1.142 1.304 

% Tri-OH 0.021 0.108 1.021 1.027 1.055 

Total 12α-OH 0.008 0.162 1.008 1.007 1.014 

Total non-12α-OH 0.002 0.068 1.002 1.008 1.017 

12α-OH/ non12α-

OH 

-0.787 0.114 0.455 0.974 0.948 

CA/ CDCA -0.997 0.159 0.369 0.974 0.949 

% 12α-OH -0.033 0.014 0.968 0.928 0.861 

% non-12α-OH 0.033 0.014 1.034 1.291 1.666 

Total Primary 0.007 0.003 1.007 1.017 1.034 

Total Secondary 0.001 0.543 1.001 1.003 1.005 

Primary/ Secondary 0.09 0.001 1.094 1.020 1.041 

% Primary 0.049 0.000 1.050 1.258 1.582 

% Secondary -0.049 0.000 0.952 0.770 0.594 

HI 0.074 0.012 1.077 0.999 0.998 
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Table 2.4 Univariate logistic regression analyses for the prediction of  

developing ascites in the entire liver-patient population based on 

demographics and non-BA parameters 

B-value: regression coefficient. *Race is a categorical variable which contain five race groups. There are five values 

for B-value and OR, one for each race group, which are not shown, because was not statistically significant in 

univariate logistic regression analysis. NA: Not applicable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Demographics and. 

Non-BA parameters 
B-value  P-value 

Odds ratio (OR): Exp (B) 

1 unit 

change 

10% 

change 

20% 

change Age(year) 0.012 0.366 1.012 1.000 1.001 

BMI -0.008 0.685 0.992 1.000 0.999 

Gender  1.291 0.000 3.636 NA NA 

Race * 0.258 *   *    * 

Creatinine (mg/dL) 0.048 0.601 1.049 1.005 1.010 

Albumin (g/dL) -1.980 0.000 0.138 0.481 0.231 

INR 1.529 0.000 4.614 1.180 1.391 

Protime (sec) 0.133 0.000 1.142 1.156 1.337 

AST (U/L) 0.003 0.168 1.003 1.017 1.034 

ALT (U/L) -0.004 0.257 0.996 0.977 0.955 

Bilirubin (mg/dL) 0.536 0.000 1.709 1.069 1.142 

AST/ALT 1.895 0.000 6.653 1.246 1.552 

MELD 0.276 0.000 1.318 1.281 1.642 



             

     

 

71 

Table 2.5 Multivariate logistic regression analyses for ascites in the entire liver-

patient population. 

(a) BA model 

 

BA 

Parameters 

B-value (Regression 

Coefficient) 

Standard 

Error 

P-value Odds ratio (OR): Exp (B) 

1-unit 

change 

10% 

change 

20% 

change Intercept -3.463 - 0.000 0.031 - - 

% MDCA -2.452 1.112% 0.027 0.086 0.909 0.826 

% PrimaryBA 0.045 0.008% 0.000 1.046 1.234 1.524 

Using the regression coefficients from this table, the estimated (OR) of developing ascites by the BA model is: 

BA score=Log (BAOR)= -3.463-(2.452 ×% MDCA) +(0.045 ×% Primary BA) 

 (b) Non-BA model 

 

Non-BA 

parameters 

B-value (Regression 

Coefficient) 

Standard 

Error 

P-value Odds ratio (OR) : Exp (B) 

1-unit 

change 

10% 

change 

20% 

change Intercept 0.947 - 0.560 2.577 - - 

MELD 0.189 0.050 0.000 1.208 1.185 1.404 

Albumin level -1.205 0.387 0.002 0.300 0.640 0.410 

Using the regression coefficients from this table, the estimated (OR) of developing ascites by the Non-BA model is: 

  non-BA score=Log (Non-BAOR) = 0.947+ (0.189 × MELD) -(1.205 × albumin level) 

(c) Mixed BA and Non-BA model  

 

Mixed BA and non-BA 

parameters 

B-value 

(Regression 

Coefficient) 

Standard 

Error 

P-value Odds ratio (OR): Exp (B) 

1-unit 

chang

e 

10% 

chang

e 

20% 

chang

e 

Intercept -0.275 1.768 0.894 0.79 - - 

% CDCA 0.029 0.012% 0.014 1.029 1.104 1.218 

PrimaryBA/SecondaryBA

A BA 

-0.077 0.032 0.015 0.926 0.983 0.967 

Albumin level -1.143 0.407 0.004 0.319 0.655 0.429 

MELD 0.189 0.053 0.000 1.208 1.185 1.404 

Using the regression coefficients from this table, the estimated (OR) of developing ascites by the mixed BA and non-

BA model is 

mixed BA and non-BA score=Log (BA-OR) = -0.275+(0.029×%CDCA) – 

(0.077×Primary BA/Secondary BA) - (1.143 × Albumin level) + (0.189 × MELD) 

 

(d) Original MELD model 

 

MELD 

Parameters 

B-value (Regression 

Coefficient) 

Standard 

Error 

P-value Odds ratio (OR): Exp (B) 

1-unit 

change 

10% 

change 

20% 

change Intercept -4.049 0.554 0.000 1.317 - - 

MELD 0.276 

276 

0.045 0.000 0.017 0.026 0.001 

Using the regression coefficients from this table, the estimated (OR) of developing ascites by the original MELD 

model is: 

original MELD score= Log (MELD-OR) = -4.049+ (0.276 × MELD) 
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Table 2.6 Model comparisons for ascites prediction.  

 

(a) BA model 

 

ROC Analysis   

SEN SPE PPV NPV Cutoff value (SEN, SPE) HL(P-value) AIC value 

33.90% 88.30%  48.80% 80.20% -0.99 (74%, 74%) 0.168 223.56 

 

(b) Non-BA model 

 

ROC Analysis   

SEN SPE PPV NPV Cutoff value (SEN, SPE) HL(P-value) AIC value 

56.40% 91.50%  72.10% 84.30% -1.18 (78%, 78%) 0.228 170.81 

 

 

(c) Mixed BA and Non-BA model 

 

ROC Analysis   

SEN SPE PPV NPV Cutoff value (SEN, SPE) HL(P-value) AIC value 

54.50% 90.10% 68.2% 83.60% -1.06 (78%, 78%) 0.11 167.3 

 

 

(d) Original MELD model 

 

ROC Analysis   

SEN SPE PPV NPV Cutoff value (SEN, SPE) HL(P-value) AIC value 

45.50% 91.50%  67.60% 81.30% -1.09 (76%, 76%) 0.029 180.45 

SEN (sensitivity), SPE (specificity), PPV (positive predictive value), NPV (negative predictive value).  P-value is for 

the Hosmer-Lemeshow test (HL).  AIC is Akaike information criterion. 
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Table 2.7 Bootstrapping validation for ascites predication models. 

B-value (Regression Coefficient).  SE (Standard Error).  RSE (Relative standard Error).  CI (Confidence 

Interval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables B-value Bias SE RSE p-value 95% CI 

Lower Upper 

BA model 

Intercept -3.463 -0.049 0.548 - 0.001 -4.666 -2.445 

% MDCA -2.452 -0.192 0.948% 296.3% 0.002 -4.823 -1.148 

% PrimaryBA 0.045 -0.049 0.008% 0.02%

% 

0.001 0.032 0.061 

Non-BA model 

Intercept 0.947 -0.056 1.702 - 0.554 -2.606 4.139 

MELD 0.189 0.009 0.062 0.59% 0.001 0.086 0.325 

Albumin_level -1.205 -0.014 0.389 11.21% 0.001 -2.028 -0.490 

Mixed BA and non-BA model  

 Intercept -0.236 -0.052 2.029 - 0.897 -4.572 3.484 

% CDCA 0.029 -0.002 0.013% 0.03% 0.013 -0.001 0.052 

Primary/Secondary

BA 

-0.077 0.012 0.055 1.58% 0.028 -0.164 0.053 

Albumin (g/dL) -1.158 -0.023 0.46 13.26%

% 

0.005 -2.108 -0.219 

MELD 0.189 0.016 0.066 0.63% 0.003 0.087 0.341 

Original MELD model 

Intercept -4.049 -0.098 0.658 - 0.001 0.183 0.411 

MELD 0.276 0.007 0.061 0.59%

. 

0.001 -5.573 -2.996 
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Table 2.8 ROC analysis using optimum cut-off values. 

 

 

 

 

 

 

 

 

 

 

 

 
 

AUC is the area under the ROC curve.  SE (Standard Error).  CI (Confidence Interval). 

  

Cutoff AUC P-value SE 95% CI 

Lower Upper 

BA score 

High BA score<-0.99 0.842 0.00 0.05 0.752 0.932 

Low BA score≥-0.99  0.527 0.65 0.06 0.41 0.644 

Non-BA score 

High non-BA score<-1.18  0.806 0.00 0.05 0.707 0.905 

Low non-BA score≥-1.18 0.670 0.01 0.07 0.538 0.801 

Mixed BA and non-BA score 

High BA and non-BA score<-1.06  0.895 0.00 0.04 0.821 0.970 

Low BA and non-BA score≥-1.06  0.672 0.01 0.06 0.546 0.797 

Original MELD score 

High original MELD score<-1.09  0.879 0.00 0.04 0.809 0.949 

Low original MELD score≥-1.09 0.657 0.01 0.06 0.532 0.782 
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Appendix  

Figure A. Histograms for the BA, non-BA, mixed BA and non-BA, and original 

MELD model’s variables. 

(a) BA model’s variables 

 

 

 

 

 

 

 

(b) Non-BA model’s variables 

 

 

 

 

 

 

 

(c) Mixed BA and non-BA model’s variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) Original MELD model 
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Table A. Bootstrapping validation for ascites predication models with gender. 

 

 

B-value (Regression Coefficient).  SE (Standard Error).  RSE (Relative standard Error).  CI (Confidence 

Interval). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables B-value Bias SE RSE p-value 95% CI 

Lower Upper 

 BA model 

Intercept -4.057 - - - - - - 

% MDCA -2.568 -0.201 1.07% 334.4% 0.009 -5.309 -1.096 

% PrimaryBA 0.044 0.001 0.008% 0.02% 0.001 0.03 0.062 

Gender 1.121 0.023 0.404 76.2% 0.003 0.387 1.996 

 Non-BA model 

Intercept 0.385 - - - - - - 

MELD 0.180 0.016 0.065 0.62% 0.003 0.086 0.347 

Albumin_level -1.248 -0.023 0.409 11.57% 0.001 -2.131 -0.480 

Gender 1.213 0.011 0.482 91.0% 0.004 0.368 2.263 

 Mixed BA and non-BA model 

 Intercept -0.54 - - - - - - 

% CDCA 0.025 -0.001 0.014% 0.04% 0.026 -0.003 0.052 

Primary/Secondary

BA 

-0.068 0.006 0.054 1.7% 0.042 -0.159 0.059 

Albumin (g/dL) -1.230 -0.03 0.438 12.4% 0.002 -2.151 -0.438 

MELD 0.181 0.019 0.064 0.61% 0.003 0.084 0.327 

Gender 1.127 0.056 0.528 99.6% 0.01 0.224 2.322 

 Original MELD model 

Intercept -4.696 - - - - - - 

MELD 0.270 0.014 0.064 0.61% 0.001 0.180 0.425 

Gender 1.083 0.043 0.446 84.1% 0.011 0.294 2.070 
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Table B. Model comparison for ascites prediction with gender.   

 

 

 

 

 

 

 

 

 

 

 

 

AUC is the area under the ROC curve. AIC is Akaike information criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

The BA model with gender 

AUC value AIC value 

0.833 215.63 

The non-BA model with gender 

AUC value AIC value 

0.872 164.15 

The mixed BA and non-BA model with gender 

AUC value AIC value 

0.878 160.8 

The original MELD model with gender 

AUC value AIC value 

0.855 175.29 
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Table C. Other models for ascites prediction. 

 

Other Models Logistic(P) Bootstrapping(P) HL(P) AUC AIC value 

MELD variables with coefficients from our data set 

Creatinine           0.739 NA  

NA 

 

NA 

 

NA INR 0.155 NA 

Bilirubin 0.000 NA 

Original MELD modified with BA variables  

MELD 0 0.002 0.037 

 

0.859 171 

%PrimaryBA 0.009 0.005 

Original MELD modified with non-BA variables 

MELD 0.000 0.001 0.228 0.865 171 

Albumin level 0.002 0.001 

Original MELD modified with BA and non-BA variables 

%CDCA 0.014 0.013  

0.11 

 

0.875 

 

167 Primary/SecondaryBA 0.015 0.028 

Albumin level 0.005 0.005 

MELD 0.000 0.003 

(P) is P-value.  NA: Not applicable.  Bootstrapping was not performed because P-values of model parameters were 

not significant (P-value > 0.05).  HL is the Hosmer–Lemeshow test.  AUC is the area under the ROC curve. 

AIC is Akaike information criterion. 
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Table D. Other models for ascites prediction with gender. 

 

 

Other Models Logistic(P) Bootstrapping(P) HL(P) AUC AIC value 

MELD variables with coefficients from our data set 

Creatinine           0.537 NA 

 

NA 

 

NA 

 

NA 

INR 0.091 NA 

Bilirubin 0.000 NA 

Gender 0.002 NA 

Original MELD modified with BA variables  

MELD 0.000 0.001 

0.043 0.862 171 %PrimaryBA 0.017 0.025 

Gender 0.02 0.021 

Original MELD modified with non-BA variables 

MELD 0.000 0.003 

0.706 0.870 165 Albumin level 0.001 0.001 

Gender 0.006 0.008 

Original MELD modified with BA and non-BA variables 

%CDCA 0.031 0.026 

 

0.145 

 

0.878 

 

161 

Primary/SecondaryBA 0.032 0.042 

Albumin level 0.003              

0.003 

0.002 

MELD 0.001 0.003 

Gender 0.013 0.01 

(P) is P-value.  NA: Not applicable.  Bootstrapping was not performed because P-values of model parameters were 

not significant (P-value > 0.05).  HL is the Hosmer–Lemeshow test.  AUC is the area under the ROC curve. 

AIC is Akaike information criterion. 
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Table E. Prediction of other liver disease complications using BA models.  

 

 ROC Analysis     

Other 

Complications 

SEN SPE PPV NPV AUC B(P) HL(P) 

 

AIC value 

Bacterial peritonitis 0% 100% 0% 99.2% 0.952 0.001 0.967 22.39 

Encephalopathy 2.8% 98.1% 20.0% 85.7% 0.777 0.001 0.744 177.75 

GI bleeding 0% 100% 0% 92.8% 0.791 0.001 0.027 112.81 

   Hepatobiliary 

carcinoma 

0% 100% 0% 94% 0.745 0.001 0.714 104.52 

Hepatorenal 

syndrome 

NA NA NA NA NA NA NA NA 

Jaundice 14.3% 100% 100% 97.6% 0.867 0.001 0.218 55.22 

Peripheral edema 17.5% 98.80% 64.7% 77.7% 0.710 0.553 0.418 262.89 

Portal hypertension 63.2% 82.6% 72.8% 75.3% 0.813 0.001 0.480 266.10 

SEN (sensitivity), SPE (specificity), PPV (positive predictive value), NPV (negative predictive value).  HL is the 

Hosmer–Lemeshow test.  AUC is the area under the ROC curve.  B(p) is the P value for Bootstrapping method.   

AIC is Akaike information criterion.  NA: Not applicable. 
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Table F. Prediction of other liver disease complications using non-BA models. 

 

 ROC Analysis     

Other 

Complications 

SEN SPE PPV NPV AUC B(P) HL(P) 

 

AIC value 

Bacterial peritonitis NA NA NA NA NA NA NA NA 

Encephalopathy 24.2% 97.0% 61.5% 86.4% 0.829 0.001 0.140 145.28 

GI bleeding 0.0% 100.0% 0.0% 92.9% 0.762 0.001 0.588 105.72 

 Hepatobiliary 

carcinoma 

NA NA NA NA NA NA NA NA 

Hepatorenal 

syndrome 

NA NA NA NA NA NA NA NA 

Jaundice 25.0% 99.1% 50.0% 97.3% 0.961 0.001 0.967 43.63 

Peripheral edema 38.6% 90.7% 59.5% 80.7% 0.839 0.003 0.225 193.34 

Portal hypertension 67.4% 82.2% 78.0% 72.8% 0.818 0.005 0.251 213.17 

SEN (sensitivity), SPE (specificity), PPV (positive predictive value), NPV (negative predictive value).  HL is the 

Hosmer–Lemeshow test.  AUC is the area under the ROC curve.  B(p) is the P value for Bootstrapping method.   

AIC is Akaike information criterion.  NA: Not applicable. 
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Table G. Prediction of other liver disease complications using mixed BA and 

non-BA models. 

 

 ROC Analysis     

Other 

Complications 

SEN SPE PPV NPV AUC B(P) HL(P) 

 

AIC value 

Bacterial peritonitis 0.0% 100.0% 0.0% 99.2% 0.952 0.004 0.967 22.39 

Encephalopathy 24.2% 86.4% 61.5% 86.4% 0.829 0.001 0.14 145.28 

GI bleeding 0.0% 100% 0.0% 92.8% 0.809 0.008 0.886 111.72 

Hepatobiliary 

carcinoma 

0.0% 100% 0.0% 94.0% 0.717 0.001 0.703 107.07 

Hepatorenal 

syndrome 

NA NA NA NA NA NA NA NA 

Jaundice NA NA NA NA NA NA NA NA 

Peripheral edema 50.9% 91.9% 69.0% 84.1% 0.857 0.352 0.694 188.06 

Portal hypertension 67.7% 87.4% 80.7% 77.6% 0.858 0.006 0.09 223.88 

SEN (sensitivity), SPE (specificity), PPV (positive predictive value), NPV (negative predictive value).  HL is the 

Hosmer–Lemeshow test.  AUC is the area under the ROC curve.  B(p) is the P value for Bootstrapping method.   

AIC is Akaike information criterion.  NA: Not applicable. 
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Table H. Prediction of other liver disease complications using original MELD 

models.  

 

 ROC Analysis     

Other 

Complications 

SEN SPE PPV NPV AUC B(P) HL(P) 

 

AIC value 

Bacterial peritonitis NA NA NA NA NA NA NA NA 

Encephalopathy 24.2% 97.0% 61.5% 86.4% 0.829 0.001 0.14 145.28 

GI bleeding 27.1% 90.5% 75.9% 52.8% 0.684 0.001 0.72 108.07 

Hepatobiliary 

carcinoma 

NA NA NA NA NA NA NA NA 

Hepatorenal 

syndrome 

NA NA NA NA NA NA NA NA 

Jaundice 90.9% 91.0% 75.9% 97.0% 0.939 0.001 0.799 43.9 

Peripheral edema 28.1% 93.6% 64.0% 76.2% 0.778 0.001 0.279 207.81 

Portal hypertension 63.2% 81.4% 75.9% 70.3% 0.818 0.001 0.022 221.49 

SEN (sensitivity), SPE (specificity), PPV (positive predictive value), NPV (negative predictive value).  HL is the 

Hosmer–Lemeshow test.  AUC is the area under the ROC curve.  B(p) is the P value for Bootstrapping method.   

AIC is Akaike information criterion.  NA: Not applicable. 
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