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DYNAMICS OF PROTEIN-DNA INTERACTIONS 

CHARACTERIZED BY ATOMIC FORCE MICROSCOPY 

ABSTRACT 
Yaqing Wang, Ph.D. 

University of Nebraska Medical Center, 2021 

Supervisor: Yuri L. Lyubchenko, Ph.D., D.Sc. 

This thesis describes the nanoscale studies of protein-DNA interactions with different 

complexities using atomic force microscopy (AFM). One of the systems deals with DNA 

replication rescue. To maintain the genetic integrity, replication machinery needs to 

minimize the error rate, repair the damages, and restart the stalled replication caused by the 

attacks from the environment and inside the cell. The stalled replication rescue is 

orchestrated by a series of proteins- for example, the DNA helicases PriA and RecG and 

the ssDNA binding protein (SSB).  

We demonstrated that SSB stimulates the restart process in two aspects. First, SSB 

facilitates the binding of PriA to the DNA substrates. Second, SSB remodels PriA, allowing 

the loading of PriA onto the duplex strands and the thermally driven and ATP-independent 

translocation of PriA. Importantly, we discovered that PriA changes the moving direction 

during translocation, which increases the residence time for PriA to bind to the vicinity of 

the replication fork. We hypothesize that PriA alters the direction by switching to the other 

DNA strand, a novel property of PriA that ensures the rescue at the fork position on various 

stalled replication forks.  
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Based on previous studies in the lab that revealed the remodeling of RecG by SSB, 

we hypothesize that the ATP-independent translocation of RecG can be stopped by the 

lesions in template DNA, leading to the dissociation of RecG from the DNA substrates. 

The results confirmed that DNA mispairings damage the binding of RecG and limit the 

translocation of remodeled RecG. Furthermore, the characterization of RecG dynamics on 

a mobile fork substrate suggests that RecG can couple the ATP-dependent fork regression 

with the SSB displacement during the fork rescue. 

Another system focuses on the assembly of nucleosome arrays. To test the 

hypothesis that DNA sequence is a factor in the compaction of nucleosomes, we assembled 

nucleosomes on DNA substrates with different sequences. Our data showed that 

nucleosomes are often positioned close to each other, suggesting that non-specific 

sequence allows nucleosomes to communicate actively, and the internucleosomal 

interactions could compact nucleosomes into higher-ordered structures.  

 

  



vi 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS.................................................................................................................. ii 

ABSTRACT ...................................................................................................................................... iv 

TABLE OF CONTENTS .................................................................................................................. vi 

LIST OF FIGURES ............................................................................................................................ x 

LIST OF TABLES ........................................................................................................................... xii 

LIST OF ABBREVIATIONS ......................................................................................................... xiii 

LIST OF CONTRIBUTIONS .......................................................................................................... xv 

 

Chapter 1. INTRODUCTION ............................................................................................................ 1 

1.1 DNA replication ....................................................................................................................... 1 

1.2 Stalled replication fork rescue ................................................................................................. 2 

1.3 Nucleosome array..................................................................................................................... 9 

1.4 Significance ............................................................................................................................ 10 

Chapter 2. METHODS ..................................................................................................................... 12 

2.1 Introduction ............................................................................................................................ 12 

2.2 Materials and reagents ........................................................................................................... 16 

2.3 AFM sample preparation ....................................................................................................... 17 

2.3.1 Assemble the DNA substrates ........................................................................................ 17 

2.3.2 Functionalize the mica surface ....................................................................................... 20 

2.3.3 Prepare the protein-DNA complex ................................................................................. 20 

2.3.4 Deposit the samples on the APS-mica............................................................................ 21 

2.4 AFM imaging and Data analysis ........................................................................................... 21 



vii 
 

Chapter 3. CHARACTERIZATION OF THE BINDING INTERACTION OF PRIA WITH 
STALLED REPLICATION FORKS............................................................................................... 27 

3.1 Introduction ............................................................................................................................ 27 

3.2 Methods .................................................................................................................................. 28 

3.2.1 Purify the proteins ........................................................................................................... 28 

3.2.2 Assemble the DNA substrates ........................................................................................ 29 

3.2.3 Prepare the AFM sample of protein-DNA complex ...................................................... 31 

3.2.4 Acquire and analyze the AFM images ........................................................................... 32 

3.3 Results .................................................................................................................................... 32 

3.3.1 The binding preference of PriA to the DNA substrates ................................................. 33 

3.3.2 The interactions between PriA and SSB on the stalled DNA fork ................................ 41 

3.3.3 The interactions of PriA and SSB in the absence of DNA ............................................ 49 

3.3.4 The role of the C-terminal of SSB in the protein-protein interaction ............................ 51 

3.4 Discussion .............................................................................................................................. 55 

3.4.1 The role of ssDNA and fork in PriA binding activity .................................................... 55 

3.4.2 Remodeling of PriA by SSB on the stalled fork ............................................................ 56 

3.4.3 The protein-protein interaction and the effect of SSB tail region on it ......................... 57 

3.4.4 Conclusion ....................................................................................................................... 59 

Chapter 4. DYNAMICS OF PRIA AT STALLED DNA REPLICATION FORKS ..................... 60 

4.1 Introduction ............................................................................................................................ 60 

4.2 Methods .................................................................................................................................. 61 

4.2.1 Purify the proteins ........................................................................................................... 61 

4.2.2 Assemble the DNA substrates ........................................................................................ 61 

4.2.3 Preparation of protein-DNA complex ............................................................................ 63 

4.2.4 Dry sample imaging and imaging in aqueous solution with time-lapse AFM .............. 63 

4.3 Results .................................................................................................................................... 63 

4.3.1 The ATP-dependent translocation of PriA on the fork substrates ................................. 63 



viii 
 

4.3.2 The visualization of PriA translocation in the presence of ATP ................................... 70 

4.4 Discussion .............................................................................................................................. 77 

4.4.1 The specificity of PriA in binding to fork DNA ............................................................ 77 

4.4.2 The ATP-dependent translocation and dynamics of PriA ............................................. 78 

4.4.3 The strand-switching property of PriA ........................................................................... 80 

4.4.4 Conclusion ....................................................................................................................... 81 

Chapter 5. RESTRICTION OF RECG TRANSLOCATION BY DNA MISPAIRING ............... 82 

5.1 Introduction ............................................................................................................................ 82 

5.2 Methods .................................................................................................................................. 83 

5.2.1 Purify the proteins ........................................................................................................... 83 

5.2.2 Assemble the DNA substrates ........................................................................................ 84 

5.2.3 Prepare the protein-DNA complexes .............................................................................. 84 

5.2.4 Acquire and analyze the AFM images ........................................................................... 85 

5.3 Results .................................................................................................................................... 86 

5.3.1 The interaction between SSB and RecG on the designed fork DNA substrates ........... 88 

5.3.2 The restriction of RecG translocation by the mispairing on the parental duplex .......... 90 

5.4 Discussion .............................................................................................................................. 94 

5.4.1 The effects of SSB on RecG binding to the fork DNA substrates ................................. 94 

5.4.2 The translocation of RecG limited by the lesions in the parental duplex ...................... 95 

5.4.3 Conclusion ....................................................................................................................... 96 

Chapter 6. DNA FORK REGRESSION DYNAMICS INDUCED BY RECG HELICASE ........ 97 

6.1 Introduction ............................................................................................................................ 97 

6.2 Methods .................................................................................................................................. 97 

6.2.1 Purify the proteins ........................................................................................................... 97 

6.2.2 Assemble the DNA substrates ........................................................................................ 98 

6.2.3 Prepare the protein-DNA complexes .............................................................................. 98 



ix 
 

6.2.4 Acquire and analyze the AFM images ........................................................................... 99 

6.3 Results .................................................................................................................................... 99 

6.3.1 The two dynamic states of the F12 fork substrate.......................................................... 99 

6.3.2 The assembly of a Holliday Junction on the F12 DNA substrate................................ 104 

6.3.3 The fork regression of the F12 DNA substrate by RecG ............................................. 108 

6.4 Discussion ............................................................................................................................ 114 

6.4.1 The fork regression by RecG in the presence of ATP ................................................. 114 

6.4.2 Conclusion ..................................................................................................................... 115 

Chapter 7. ASSEMBLY OF NUCLEOSOME ARRAY INTO HIGHER-ORDER STRUCTURES
......................................................................................................................................................... 116 

7.1 Introduction .......................................................................................................................... 116 

7.2 Methods ................................................................................................................................ 117 

7.2.1 Prepare the DNA substrate ........................................................................................... 117 

7.2.2 Assemble the nucleosome ............................................................................................. 118 

7.2.3 AFM imaging and data analysis ................................................................................... 118 

7.3 Results and discussion ......................................................................................................... 119 

7.3.1 The assembly of oligo-nucleosome on the DNA substrate .......................................... 119 

7.3.2 The internucleosomal distance of the trinucleosome ................................................... 128 

7.3.3 Discussion ..................................................................................................................... 130 

Chapter 8. SUMMARY.................................................................................................................. 131 

8.1 The PriA helicase at the stalled replication fork ................................................................. 131 

8.2 The RecG helicase at the stalled replication fork ................................................................ 132 

8.3 The nucleosome array .......................................................................................................... 132 

8.4 Prospects ............................................................................................................................... 133 

Chapter 9. REFERENCES ............................................................................................................. 135 

 

  



x 
 

LIST OF FIGURES 

Figure 1.1. Schematic of the unbroken stalled fork rescue initiated by RecG. ................................ 5 

Figure 1.2. Schematic of PriA replication restart initiation. ............................................................. 8 

Figure 2.1. Schematic of the principle of AFM............................................................................... 14 

Figure 2.2. Assembly of the fork DNA substrates. ......................................................................... 19 

Figure 2.3. Measurement of the protein position. ........................................................................... 23 

Figure 2.4. Measurement of the protein distribution of the complexes containing PriA and SSB 
proteins. ............................................................................................................................................ 25 

Figure 2.5. Measurement of the size of the protein. ........................................................................ 26 

Figure 3.1. DNA substrates designed for this chapter. .................................................................... 30 

Figure 3.2. AFM results of DNA substrates. ................................................................................... 34 

Figure 3.3. AFM results of DNA and SSB complexes. .................................................................. 36 

Figure 3.4. In the absence of SSB, PriA binds preferentially to the F3 DNA substrate. ............... 38 

Figure 3.5. In the presence of SSB, PriA can be localized to duplex regions of forks. ................. 42 

Figure 3.6. AFM results of DNA and PriA complexes. .................................................................. 44 

Figure 3.7. The distributions of proteins in double-feature complexes on each fork DNA 
substrate, with the SSB position corresponding to zero value on the maps. .................................. 46 

Figure 3.8. Volume analysis for samples of fork DNA mixed with SSB and PriA. ...................... 48 

Figure 3.9. Size analysis for free protein: volume distributions fitted by Gaussian for PriA, and 
SSB, respectively.............................................................................................................................. 50 

Figure 3.10. AFM results of fork DNA and SSBΔC8 complexes. ................................................. 52 

Figure 3.11. SSB∆C8 does not load PriA. ....................................................................................... 54 

Figure 4.1. DNA substrates designed for this chapter. .................................................................... 62 

Figure 4.2. The control experiment of PriA mixed with fork DNA substrates in the absence of 
ATP. .................................................................................................................................................. 65 

Figure 4.3. The ATP-dependent translocation of PriA on the fork DNA substrates. ..................... 67 



xi 
 

Figure 4.4. The control experiment of PriA mixed with duplex DNA substrate (1036 bp in 
length). .............................................................................................................................................. 69 

Figure 4.5. Time-lapse AFM data of PriA translocation on the lagging strand arm of the F13 
DNA substrate. ................................................................................................................................. 72 

Figure 4.6. Time-lapse AFM data of PriA translocation on the parental duplex of the F13 DNA 
substrate. ........................................................................................................................................... 74 

Figure 4.7. Time-lapse AFM data of PriA translocation on the lagging strand arm of the F13 
DNA substrate. ................................................................................................................................. 76 

Figure 5.1. The design for the lesions in the stalled replication fork.............................................. 87 

Figure 5.2. AFM analyses of the RecG-SSB-DNA complexes on each DNA substrate in the 
absence of ATP................................................................................................................................. 89 

Figure 5.3. The mapping of protein positions on each DNA substrate. ......................................... 91 

Figure 5.4. The analysis for the RecG-SSB distance. ..................................................................... 93 

Figure 6.1. Dynamic fork design for this chapter. ......................................................................... 101 

Figure 6.2. AFM analysis for the fork position of the F12 DNA substrate (the kinked DNA 
molecules). ...................................................................................................................................... 103 

Figure 6.3. AFM analysis of the fork position on the F12 DNA substrate probed by annealing 
with a complimentary 69-nt ssDNA. ............................................................................................. 105 

Figure 6.4. AFM results of SSB-F12 DNA substrates in the absence of ATP. ............................ 107 

Figure 6.5. AFM analyses of the RecG-SSB-F12 complexes in the absence and presence of ATP.
......................................................................................................................................................... 109 

Figure 6.6. The SSB position in the complex. ............................................................................... 111 

Figure 6.7. The RecG position in the RecG-DNA complex. ........................................................ 113 

Figure 7.1. The AFM image of the nucleosome array. ................................................................. 121 

Figure 7.2. Gallery of the subpopulations in the oligo-nucleosome. ............................................ 123 

Figure 7.3. AFM analyses for the arm length of the “2-1” subpopulation in the trinucleosome. 127 

Figure 7.4. The measurement for the distance between the nucleosomes in the “2-1” 
subpopulation of the trinucleosome. .............................................................................................. 129 

  



xii 
 

LIST OF TABLES 

Table 3.1. The binding yield of DNA with PriA at the molar ratio of 1:8. .................................... 40 

Table 7.1. The yield of each oligo-nucleosome. ........................................................................... 124 

 

  



xiii 
 

LIST OF ABBREVIATIONS 

AFM Atomic Force Microscopy 

SSB Single-Stranded DNA Binding Protein 

ssDNA Single-Stranded DNA 

ORC Origin Recognition Complex 

E.coli Escherichia coli 

NCP Nucleosome core particle 

STM Scanning Tunneling Microscopy 

PSD Position-Sensitive Photodetector 

IC-AFM Intermittent Contact Mode Atomic Force Microscopy 

AC-AFM Alternating Contact Mode Atomic Force Microscopy 

TM-AFM Tapping Mode Atomic Force Microscopy 

HS-AFM High-Speed Atomic Force Microscopy 

APS 1-(3-Aminopropyl) silatrane 

DBD DNA Binding Domain 

HD Helicase Domain 

3’BD 3’-Binding Domain 

WHD Winged-Helix Domain 

CTD C-terminal domain 

WT Wild Type Protein 

OB-fold oligonucleotide-oligosaccharide binding fold 



xiv 
 

EM Electron Microscopy 

Cryo-EM Cryo-Electron Microscopy 

 

  



xv 
 

LIST OF CONTRIBUTIONS 

Chapter 2 is quoted from the source “Wang, Y., Sun, Z., Bianco, P. R., and Lyubchenko, 

Y. L. (2021) Characterize the Interaction of the DNA Helicase PriA with the Stalled DNA 

Replication Fork Using Atomic Force Microscopy. Bio-protocol 11, e3940-e3940” with permission. 

Chapter 3 is reformatted from our published paper “Wang, Y., Sun, Z., Bianco, P. R., and 

Lyubchenko, Y. L. (2020) Atomic force microscopy-based characterization of the interaction of 

PriA helicase with stalled DNA replication forks. Journal of Biological Chemistry 295, 6043-6052” 

with permission.  

Chapter 4 is based on the publication “Sun, Z., Wang, Y., Bianco, P. R., and Lyubchenko, 

Y. L. (2021) Dynamics of the PriA Helicase at Stalled DNA Replication Forks. The Journal of 

Physical Chemistry B 125, 4299-4307” with permission. Zhiqiang and I did the experiments and 

analyses.  

Chapter 5 and 6 are adapted from the source “Sun, Z., Wang, Y., Bianco, P. R., and 

Lyubchenko, Y. L. (2020) Nanoscale interaction of RecG with mobile fork DNA. Nanoscale 

Advances 2, 1318-1324” with permission, and a submitted manuscript.  

Chapter 6 is the preliminary data for the nucleosome array project that Tommy and I are 

working on.  

 



1 
 

Chapter 1. INTRODUCTION 

Protein-DNA interactions are of fundamental importance to living cells involved in key biological 

processes such as packaging, replication, recombination, restriction, and transcription. Therefore, 

it is crucial to understand the nature of protein-DNA interactions and their role in gene expression, 

cell division, and differentiation. Many proteins, such as repressors and restriction endonucleases, 

have high specificity for their particular target sites. In contrast, others, especially those involved 

in packaging or replication, have low or no sequence specificity. Significant progress has been 

made in the detailed analysis of specific protein-DNA interactions, opening avenues in the 

treatment of numerous diseases. However, DNA-protein interactions are far from being completely 

understood despite numerous techniques that have been developed. 

This thesis focuses on the protein-DNA interactions involved in stalled replication rescue 

(SSB, RecG, and PriA) and DNA packaging in chromatin. The use of atomic force microscopy 

(AFM), a method for direct nanoscale visualization of label-free molecular systems, provided 

insights into questions relating to PriA interactions with stalled replication forks and the formation 

of the nucleosome array depending on the DNA sequence. 

1.1 DNA replication  

Replication is the process in which two identical DNA molecules are produced from the double-

stranded DNA molecule. DNA replication is the fundamental genetic process that defines the fate 

of the cell (1-5). Each strand of existing DNA acts as a template for replication during cell division, 

and the resulting daughter cells contain the same genetic information as the parental cell (6,7). This 

phenomenon of the old strand serving as a template for the new strand makes the DNA replication 

semi-conservative. The DNA replication in eukaryotes and prokaryotes proceeds bidirectionally 
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(8,9). In eukaryotes, the replication machinery is more complicated due to the differences in the 

DNA sizes, presence of telomeres, and packing of DNA with complexes of histones (10).  

DNA replication in eukaryotes requires extracellular signals to coordinate specialized cell 

divisions in different tissues of multicellular organisms (11,12). It must be completed with the time 

available during the S phase of the cell cycle. Therefore, the replication process is initiated at 

multiple origins by forming multiple replication forks (13,14). Initiation of DNA replication in 

eukaryotes begins with the formation of the origin recognition complex (ORC) at the origin of 

replication, which recruits other essential DNA replication proteins. The DNA double helix at the 

origin is then unwound by the helicase activity, resulting in the strand separation into a Y shape 

replication fork. The replication fork is bidirectional from the origin of the replication; one strand 

oriented in the 3’-to-5’ direction is called the leading strand, and the other strand oriented in the 5’-

to-3’ direction is called the lagging strand. On the leading strand, DNA polymerase moves toward 

helicase. However, on the lagging strand, DNA polymerase moves away from the replication fork, 

and the lagging strand is copied as a series of short fragments (Okazaki fragments). Each of the 

Okazaki fragments is later fused by DNA ligase to produce the full, unfragmented strand. The 

leading and lagging strands are replicated in different processes to compensate for the differences 

in their replication directions (15).  

During the entire replication process, replication forks frequently encounter obstacles that 

cause fork stalling. Such events cause incompletely replicated chromosomes that prevent the 

segregation of full genomes to daughter cells if left unrepaired. Under normal conditions, several 

proteins around the replication region serve to repair, stabilize and restart the stalled forks and 

complete the process (16,17). It is important to know that many of the components involved in the 

replication process are encoded by the tumor suppressor genes (18,19). A loss of function due to 

deletion or mutation could lead to genomic instability, a hallmark of cancer.  

1.2 Stalled replication fork rescue 
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Even though several studies have been performed over the years to understand the activity of 

different protein networks in the rescue of the stalled replication forks, the process is still unclear. 

Because of the comparative simplicity, prokaryotes are ideal for investigating the basic mechanisms 

of molecular biology. Escherichia coli (E.coli) has been the long-studied model system to 

understand the complex molecular mechanisms in eukaryotic biological processes. Similar to 

eukaryotes, the replication initiates at the oriC in prokaryotes (15,20-22). The initiation of the 

replication generates two replication forks in a bidirectional way that move away from each other 

until it encounters the terminus region. After that, the site-specific recombination or decatenation 

resolves the division of two daughter molecules at the end of the replication process. Each 

replication fork stalls or collapses at least once during the cell cycle (23,24), which could be 

deleterious to the cell if replication failed to restart. Fork stalling could result from the replisome 

facing a physical barrier to progression or the replisomes encountering a shortage of DNA synthesis 

precursors (25-27). Impediment also includes the other proteins bound to the DNA ahead of the 

replication forks, such as DNA repair enzymes, RNA polymerase, DNA polymerase and the 

coupled ribosomes, non-coding lesions on the DNA, abnormal structure of DNA, RNA-DNA loops 

(R loops), and single- or double-stranded DNA breaks (25,26,28-33). The rescue of the stalled forks 

is required to protect further lethal events to the cell. Genome duplication depends on the 

coordination between the DNA replication, repair, and recombination machinery (15,34). In some 

cases, the replisome components rescue the stalled forks, since this process does not require 

recombinational repair machinery (28,35-38). 

Here we mainly focus on the stalled replication fork at which DNA remains intact, but the 

replisome progression is blocked. Figure 1.1 shows a possible pathway for the rescue of stalled 

forks, which involves the DNA helicase RecG-regulated regression of the newly replicated strands 

of DNA at the stalled fork to form a Holliday junction-like structure intermediate (39-42). This 

structure will be processed with branch migration by the multi-subunit enzyme RuvAB. The 
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junction may be cleaved by the dimeric Holliday Junction resolvase RuvC to form a substrate for 

the DNA helicase PriA to process (43-45). However, when the replisome encounters a double-

strand DNA break or a nick in the leading strand, the impeded fork will undergo rescue by RecBCD 

(46-48). Alternatively, the impeded fork with double-strand breaks can be rescued by homologous 

recombination through the RecF pathway (49-51). Similar to the RecBCD pathway, the RecF 

pathway also requires RecA for strand invasion (51-55). In some instances, stalled forks can be 

directly restarted by components of the replisome itself (56-59).  
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Figure 1.1. Schematic of the unbroken stalled fork rescue initiated by RecG. After replisome 
disassembly from the impeded replication fork, SSB (blue spheres) binds to the ssDNA gap rapidly 
(step I) if there is any. RecG then binds and regresses the fork to form a Holiday Junction, displacing 
SSB from the fork (step II). This structure can be further processed by RuvAB (step III) or RuvC 
(step IV) that cleave the substrate for PriA to restart the replication (step V). Meanwhile, RecG can 
directly bind to the stalled fork and initiate the rescue. This schematic is adapted from reference 
(17). 
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In addition to the enzymes, the single-stranded DNA binding protein (SSB) is also 

important to the stalled replication rescue. SSB binds and protects exposed single-stranded DNA 

(ssDNA) and interacts with multiple proteins at forks, including replisome components and repair 

enzymes (60-64). It is a homo-tetramer with two domains in each monomer; the N-terminal domain 

that is responsible for tetramer formation and DNA binding and the C-terminal domain that 

mediates protein-protein interactions (65,66). SSB binds tightly and cooperatively to ssDNA while 

still providing access to the protein partners (63). When protein-protein interactions occur between 

an SSB tetramer and an interactome partner, loading that protein onto DNA can take place, which 

increases access of that protein to the needed sites on the DNA (67,68).  

In this thesis, we focus on the interactions of RecG and PriA helicases with stalled forks 

and the role of SSB protein in these interactions. RecG is a monomeric DNA helicase that catalyzes 

fork regression on nascent stalled forks. At the stalled fork, RecG catalyzes simultaneous annealing 

of nascent and template strands, which leads to the formation of four-way DNA junctions (Holliday 

Junctions) during the regression process (41,42,69,70). It was demonstrated by our lab that SSB 

also affects fork regression by stimulating RecG binding to the fork and remodeling RecG so that 

the helicase scans the parental duplex ahead of the fork by thermal sliding to test the integrity of 

the fork (71-73). After the fork regression, the stalled replication fork can be further branch 

migrated by RuvAB and cleaved by RuvC into a substrate for PriA (74-76). Alternatively, RecG 

can regress forks into the PriA substrates directly (77).  

PriA is another important player in the replication fork recovery process. It is a monomeric 

DNA helicase involved in most replication reactivation mechanisms, recruiting the replisome back 

onto the stalled fork (23,78-80). It has been shown to unwind DNA with a 3’-to-5’ polarity fueled 

by the hydrolysis of ATP (81,82). PriA can recognize multiple DNA structures, ranging from 

simple replication forks to D-loops formed in recombinational repair (23,83,84). In addition to 

structure-specific binding, PriA also binds to the SSB at the replication forks through protein-
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protein interactions, which stimulates helicase activity (23,83-87). This helicase is responsible for 

duplex unwinding to load DnaB onto the lagging strand. Once DnaB has been loaded, the replisome 

will form and resume the replication (88,89).  
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Figure 1.2. Schematic of PriA replication restart initiation. PriA binds to the stalled 
replication forks with either duplex or SSB-bound ssDNA lagging strand. PriA remodels the 
lagging strand arm to expose ssDNA by either unwinding DNA or altering the DNA-binding mode 
of SSB. This schematic is adapted from reference (85). 
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1.3 Nucleosome array  

The DNA of a single mammalian cell fits into the confines of the nucleus by a hierarchical scheme 

of folding and compaction into chromatin. The nucleosomes core particle (NCP) is the basic 

repeating subunit of chromatin. Nucleosomes consist of an octameric histone core (comprising two 

copies each of H2A, H2B, H3, and H4) wrapped around 147 bp of DNA in about 1.75 superhelical 

turns (90-92). The disordered positively charged tails of histone proteins flexibly surround the core 

and play an essential role in many biological processes (93). The histone tails also contain many 

important epigenetic modification sites (94). The electrostatic interactions between the negatively 

charged DNA and the positively charged histone proteins stabilize the NCP, while the sequence of 

nucleosomal DNA may also determine the strength of histone-DNA interactions and may mediate 

the organization of nucleosomes into larger scales (95,96). The assembly of DNA into nucleosomes 

protects DNA from nucleases and restricts the binding of trans-acting factors. However, for 

transcription to occur, the nucleosomal DNA needs to unwrap from the central histone core, which 

can be mediated by modifications to the histone tails (97,98).  

The nucleosomes, together with linker histones (H1), self-organize into chromatin, the 

higher-order structure. Experimental approaches have indicated that chromatin in living cells 

predominantly comprises irregular structures (99-104). Additionally, the results from chromosome 

conformation capture techniques and electron cryotomography have revealed the existence of 

clusters of only a few nucleosomes(103-106). This further suggests that chromatin organization is 

dominated by intermediate scale assemblies (107). Meantime, it has been proposed that 

tetranucleosomes are the functional and structural units that regulate gene expression (103,108-

110). There might be two possible motifs of tetranucleosome that serve regulatory functions, the 

α-tetrahedron and the β-rhombus. However, these studies were performed with the DNA substrates 
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containing repeats of the nucleosome-specific DNA sequences that raise questions on the role of 

the DNA sequence in the nucleosome array assembly (111). 

Using atomic force microscopy (AFM) and high-speed time-lapse atomic force microscopy 

(HS-AFM), our lab characterized the sequence-dependent nucleosome nanoscale structure by 

comparing the positioning of nucleosomes and DNA wrapping on the non-specific sequence to that 

on the synthetic Widom 601 positioning sequence (111). The AFM analyses suggest that 

nucleosomes assemble on the non-specific sequence without any preference for the position. On 

dinucleosomes, the nucleosomes formed on the non-specific sequence have a tendency to locate 

near the position of the nucleosome formed on the 601 sequence. This indicates that the 

internucleosomal interactions play a role in nucleosome positioning.   

1.4 Significance  

The rescue of replication forks stalled on the DNA template is critically essential for cell division 

and survival and for maintaining the integrity of the genome (112). When the replication stress is 

prolonged, it can lead to irreversible fork breakage to the replication fork, resulting in genome 

instability and the development of cancer (113,114). In this consideration, a comprehensive 

understanding of how cells rescue their stalled forks might lead to new strategies in cancer 

treatment. E.coli has been used as a study model to understand the stalled replication fork rescue. 

The starting point of many models for rescue involves regression of the newly replicated strands to 

form a Holliday Junction, which is driven by helicases including RecG, RuvABC, and RecA (115-

119). The endpoint of most mechanisms is to produce a structure for PriA to load the replicative 

DNA helicase DnaB onto the DNA, leading to the resumption of replication (77,120-122).  

The results presented in this thesis elucidate the roles of SSB on interactions of PriA and 

RecG with the stalled replication rescue. These analyses revealed that PriA has a binding preference 

to a fork substrate with a nascent lagging strand, and it is the fork structure that plays an essential 
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role in PriA’s selection of DNA substrates. Furthermore, we found that SSB loads PriA onto the 

duplex regions of the substrates, suggesting remodeling of PriA by SSB. The high-speed AFM 

analyses revealed a novel property of PriA that it could switch the DNA template during translation. 

The lesions on the duplex DNA impair the binding of RecG to the fork, resulting in an inability to 

regress the stalled fork. The interactions between RecG and SSB with the mobile fork substrate 

showed that RecG regresses the stalled fork and displaces the SSB.  

Elucidating principles of the assembly of the nucleosomal array into higher-order structures 

is critical for understanding the function of chromatin. Chapter 7 presents the preliminary data for 

the assembly of the nucleosome array depending on the DNA sequence. Here we designed a DNA 

substrate capable of binding at least four nucleosomes, consisting of a Widom 601 sequence as an 

anchor and a non-specific sequence for three additional histone octamers to bind. These studies 

revealed a strong effect of the DNA sequence on the assembly of nucleosome arrays, allowing for 

the formation of condensed oligonucleosomes with tight interactions between them.  
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Chapter 2. METHODS 

2.1 Introduction  

Atomic force microscopy (AFM), developed from scanning tunneling microscopy (STM), has 

offered a wide range of bio-applications in the past few decades due to its unprecedented sub-

nanometer resolution of single molecules on the surfaces (123-126). By using a sharp tip scanning 

over the surface of the sample while sensing the interaction between the tip and the sample, AFM 

allows measurements of biological samples in physiological-like environments at a high spatial 

resolution, avoiding complex sample preparation procedures (127-129). The monitored interactions 

between the tip and the surface arise from different forces, including van der Waals forces, short-

range repulsive forces, adhesion and capillary forces (130,131). 

Besides surface imaging, AFM force measurements can be used to probe molecular 

interactions, physicochemical properties, surface stiffness, and macromolecular elasticity, 

contributing to our knowledge of the sample’s physical properties. When used in an imaging mode, 

the AFM cantilever scans the surface of the specimen line after line, whereas in a force-probing 

mode, the cantilever is moved only in the vertical direction, perpendicular to the specimen plane 

(132,133). The vertical motion of the cantilever is controlled by piezoelectric actuators affording 

sub-nanometer resolution. The displacement of the cantilever is monitored directly with either a 

capacitor or a linear voltage differential transformer. As a result, high-resolution force-versus-

extension curves of single molecules can be recorded (134). 

As shown in Figure 2.1, the standard AFM consists of five main components; a tip 

connected to a cantilever, a piezoelectric scanner, a position-sensitive photodetector (PSD), an 

optical lever system, and a feedback-loop system. By mounting the cantilever on the piezoelectric 
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element and measuring the shift from its natural resonance frequency due to the interactions 

between the tip and samples, topographical information of the sample can be extracted.  
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Figure 2.1. Schematic of the principle of AFM. The position of the tip relative to the sample is 
controlled by the piezoelectric scanner. During scanning, the vertical displacement of the tip is 
detected using the optical lever principle. The position of the light spot on the PSD is measured and 
sent as deflection signals to the feedback electronics. This figure is adapted from reference (135). 
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Typically, AFM has three different modes of operation: contact mode, non-contact mode, 

and intermittent-contact mode. In contact mode, the tip-sample interaction is maintained by 

measuring the deflection of the tip cantilever determined by van der Waals repulsive forces. In this 

mode, due to the strong repulsive interaction between tip and sample surface, damage or 

deformation of the biological sample can occur during the scanning process (136). In non-contact 

mode, the system vibrates a stiff cantilever near its resonant frequency without making contacts 

with the sample (137). The resonance frequency and amplitude of the oscillating probe decrease as 

the sample surface is approached. The development of the intermittent-contact (IC) mode or 

alternating contact (AC) mode, also known as tapping mode (TM) AFM, is a key advance in AFM 

technology. In AC/IC/TM-AFM, a cantilever is deliberately vibrated at the frequency close to the 

cantilever resonance frequency by a piezoelectric modulator with a very small amplitude (138). 

The van der Waals attractive force between the sample surface and the tip changes the amplitude 

and the vibration, which is monitored by the feedback-loop system to control the tip-sample 

distance while the tip approaches the surface (139). The tapping mode AFM overcomes problems 

such as friction and adhesion that are usually associated with conventional AFM approaches, 

allowing high-resolution imaging of soft samples that are difficult to examine using the contact 

AFM technique (140-144). 

When choosing AFM as a single-molecule biophysical technique to characterize the 

interactions between DNA and proteins, it is important to realize that accurate data collection is 

often delicate due to the several limitations and difficulties associated with the technique. One of 

the most crucial aspects is sample preparation. Indeed, to withstand the force exerted by the 

scanning probe, the sample must be well attached to an appropriate solid substrate. Several methods 

have been developed to functionalize the solid substrate (145-148). We use aminopropyl silatrane 

(APS) to functionalize the mica surface with amine groups (146,149-162). The major advantage of 

these sample preparation procedures is that they work under a wide variety of ionic conditions, pH, 
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and over a wide range of temperatures, allowing us to characterize the interactions between DNA 

substrate and different types of proteins. Additionally, the dried samples can be stored in vacuum 

or argon for at least several weeks. 

Another advantage of AFM is the capability to scan the samples in an aqueous solution. 

High-speed AFM (HS-AFM) has been developed to overcome the slow data acquisition rate of a 

conventional AFM instrument, which can acquire images at a sub-second rate, thereby allowing 

for the observation of DNA-protein dynamics at the nanoscale level (163-167). In addition to the 

high scan rate, which is about 1,000 times faster than possible with a conventional AFM, the tip-

sample interaction is also minimized. Typically, the force applied in HS-AFM is <100 pN, and the 

tip-sample interaction is also reduced as a result of the high oscillation frequency (~1.6 MHz) (168). 

The HS-AFM tips are sharpened to a radius of curvature as small as ~ 1 nm, which allows for 

nanometer resolution while imaging in the aqueous solution.  

Our lab has applied the regular tapping mode AFM and the HS-AFM to study the dynamics 

of nucleic acid molecules, intrinsically disordered proteins, nucleosomes, and DNA-protein 

interactions (126,146,150,155,157,159,162,169-178). In this chapter, a general description of the 

experimental approaches used in this thesis is provided, with specifics of each approach addressed 

in the methods section of each subsequent chapter.   

2.2 Materials and reagents 

1. Amicon Ultra-0.5 ml centrifugal filters (Millipore-sigma, UFC503008, pore size: 30 kDa 

NMWCO) 

2. Nonwoven cleanroom wipes: TX604 TechniCloth (TexWipe, catalog number: TX604) 

3. Petri dish (Fischer Scientific, catalog number: 08-757-100A) 

4. Standard disposal cuvette (Perfector Scientific, catalog number: 9002)  
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5. Distilled deionized H2O (DDI H2O) 

6. pUC19 Vector (New England Biolabs, catalog number: N3041S) 

7. PCR primers (IDT, custom order) 

8. DreamTaq polymerase (ThermoFisher Scientific, catalog number: EP0701) 

9. Deoxynucleotide (dNTP) Solution Mix (New England Biolabs, catalog number: N0447S) 

10. PCR purification kit (Qiagen, catalog number: 28104) 

11. Restriction endonuclease: DdeI (New England Biolabs, catalog number: R0175S) 

12. Restriction endonuclease: BspQI (New England Biolabs, catalog number: R0712S) 

13. CutSmart® Buffer (New England Biolabs, catalog number: B7204S) 

14. Oligonucleotide (IDT, custom order) 

15. T4 Polynucleotide Kinase (New England Biolabs, catalog number: M0201S) 

16. T4 DNA Ligase (ThermoFisher Scientific, catalog number: 15224090) 

17. Muscovite Block Mica (AshevilleMica, catalog number: Grade-1) 

18. 1-(3-Aminopropyl) silatrane (APS) [synthesized as described in ref (149)] 

19. TESPA-V2 AFM probe (Bruker AFM Probes, catalog number: TESPA-V2) 

2.3 AFM sample preparation 

2.3.1 Assemble the DNA substrates 

The tail DNA substrate (T3 or T5) was assembled from a duplex-DNA segment with a sticky end 

(the 224 bp segment for T3, the 356 bp segment for T5) and a tail-DNA segment. The fork DNA 
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substrate was assembled from two duplex-DNA segments with sticky ends (the 224 bp segment 

and the 356 bp segment) and a core fork segment (shown in Figure 2.1). 

  



19 
 

 

Figure 2.2. Assembly of the fork DNA substrates. A, the F3 DNA substrate: ligate two duplex-
DNA segments with sticky ends (the 224-bp segment and the 356-bp segment) and a core fork 
segment (with a 3'-end, 69-nucleotide single-stranded region) together. B, the F5 DNA substrate: 
ligate two duplex-DNA segments with sticky ends (the same duplex-DNA segments used for the 
F3 DNA substrate) and a core fork segment (with a 5'-end, 69-nucleotide single-stranded region) 
together.  
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The 224-bp segment was obtained by the PCR reaction using pUC19 as the template and 

the forward primer F364, 5’-GAGTTCTTGAAGTGGTGGCC-3’, and reverse primer R356, 5’-

GGTAACTGTCAGACCAAGTTTACTC-3’. The PCR product was cut by DdeI and purified by 

electrophoresis gel purification (2% w/v agarose gel) , and separated from the gel using the Gel 

Extraction Kit from Qiagen (Hilden, DE). Similarly, the 356-bp segment was obtained from the 

PCR reaction using pUC19 and the forward primer F480, 5’-GCGATTAAGTTGGGTAAC-3’, and 

reverse primer R480, 5’-GTTCTTTCCTGCGTTATC-3’. The PCR product was cleaved by BspQI 

and purified by agarose gel. DNA concentration was then determined using NanoDrop 

Spectrophotometer (ND-1000, Thermo Fischer). 

2.3.2 Functionalize the mica surface  

The 50 mM 1-(3-Aminopropyl) silatrane (APS) stock solution was prepared in DDI H2O as 

described (149). The stock solution can be kept for more than a year at 4 °C. An aliquot of 15 ml 

working APS solution (167 μM) was diluted from the APS stock. Mica strips (1 × 3 cm) can be cut 

from high-quality mica sheets, which will be placed diagonally in a cuvette. A schematic of the 

process to prepare APS functionalized mica for AFM imaging is shown in ref (179). We use a razor 

blade to cleave layers of the mica until both sides are freshly cleaved. The freshly cleaved mica 

will be placed into the APS-filled cuvette and incubated for 30 min. We then rinse the mica piece 

under running DDI H2O droplets or slow fluid for ~10 s. Both sides of the APS-mica strip will be 

dried under the gentle argon flow. After that, the APS-functionalized mica is ready to use. 

Otherwise, it can be stored in a clean cuvette in a vacuum chamber or in the argon atmosphere for 

at least a week. 

2.3.3 Prepare the protein-DNA complex 

The binding solution was diluted from the 10× binding buffer.The binding solution contains 10 

mM Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, and 1 mM DTT. The protein-DNA mixture 
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was mixed and incubated at room temperature (~20 °C) for 10 min. After incubation, the protein-

DNA complex solution was diluted to achieve a lower DNA concentration (~2 nM) and ready for 

deposition onto the APS functionalized mica. 

2.3.4 Deposit the samples on the APS-mica 

A 10 μl aliquot of the diluted protein-DNA sample was deposited at the center of the APS-mica 

piece (1 × 1 cm) and incubated for two minutes. We then rinse the mica sample with DDI H2O 

droplets for ~10 s to remove all buffer components and dry the deposited mica sample under a light 

flow of clean argon gas with the help of a clean wipe. The mica sample was attached to the magnetic 

puck by double-faced adhesive tape and stored in a vacuum cabinet filled with argon for at least 3 

hours before imaging.  

2.4 AFM imaging and Data analysis  

Images were acquired using a MultiMode 8, Nanoscope V system (Bruker, Santa Barbara, CA) 

operated in tapping mode in the air on TESPA probes (320 kHz nominal frequency and a 42 N/m 

spring constant) from the same vendor. 

The AFM images were analyzed using the FemtoScan Online software package (Advanced 

Technologies Center, Moscow, Russia). Graphs were made by Origin software (OriginLab 

Corporation, Northampton, MA, USA). The contour length of the DNA molecule was measured 

from one end to the other. For the internal length calibration, the measurements were collected to 

generate a histogram and fitted with Gaussian distribution. The calibration factor was obtained by 

dividing the mean value (nm) over the designed substrate length (bp).  

The protein position was measured from the end of the short arm on the DNA substrates 

towards the center of the protein (arm length 1, shown in Figure 2.3 B). And we continued to 

measure from the center of the protein towards the other end of the DNA substrate to obtain the 
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contour length of the DNA (arm lengths 1 and 2 together, shown in Figure 2.3 B). The arm length 

in bp can be acquired by dividing the measured length over the calculated calibration factor.  

 

  



23 
 

 

Figure 2.3. Measurement of the protein position. A, representative AFM image (0.5 µm ×0.5 µm) 
of F5 DNA substrate with PriA. The Z-scale is 3 nm. Arrow points to bound PriA on the F5 DNA 
substrate. B, zoomed-in image (0.25×0.25 µm) with the dotted line showing the contour length 
measurement. The position of each protein is measured from the end of the short arm to the center 
of the protein (dotted green line). The total length of the protein-bound DNA substrate was 
measured continuously from the center of the protein to the end of the other arm (dotted blue line). 
C, the histogram for PriA position on the F5 DNA substrate using the data of the short arm length. 
The histogram was fitted by Gaussian with a single peak centered at 254 ± 23 bp (S.D.), and with 
a bin size of 20 bp.  
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For the double-feature complexes, the height of each feature was measured using the cross-

section feature of the software as described below. We were able to distinguish the proteins 

according to the volume measurement. For the length measurement, we start from the end closer to 

the SSB, continuously measure towards the center of SSB and the helicase, and continue recording 

until the end of the other side of the DNA substrate (Figure 2.4 B). 
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Figure 2.4. Measurement of the protein distribution of the complexes containing PriA and SSB 
proteins. A, representative AFM image of the PriA+SSB+fork DNA (0.5×0.5 µm). The Z-scale is 
3 nm. B, the zoomed-in image (0.25×0.25 µm) of the double-protein complex with the dotted line 
showing the contour length measurement. The red arrow directs to PriA in the complex, while the 
blue arrow directs the SSB position. C, map of the proteins on the F3 DNA substrate with the SSB 
position corresponding to zero value. Blue diamonds indicate the position of SSB, and the red dots 
point to the PriA position.  
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The volume of the protein was collected from two sets of height (H) and full width at half 

maximum values (D) by orthogonal cross-section measurements (Figure 2.5 A). The measured 

height and width were applied to the formula as described in (128,180): V = 3.14 × H/6 × (0.75 × 

D1 × D2 + H2).  

 

Figure 2.5. Measurement of the size of the protein. A, representative AFM image of the double-
protein complex (0.2×0.2 µm). B-E, cross-section profiles (green and blue lines) of a protein 
produce the height distribution curves: B and C, the plots for SSB; D and E, the height distributions 
for PriA. Based on these curves, height (H) and width (D) values were collected for the protein 
volume calculation.  
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Chapter 3. CHARACTERIZATION OF THE BINDING 

INTERACTION OF PRIA WITH STALLED REPLICATION 

FORKS 

3.1 Introduction  

DNA replication frequently overcomes obstacles such as DNA lesions, tightly bound protein-DNA 

complexes, and unusual secondary structures such as double-strand breaks (23,34,36,181). 

Impeded forks must be restarted for the DNA replication to be accurately completed (182). 

Consequently, numerous mechanisms have evolved that either help minimize the frequency or 

remove the roadblocks and restart the stalled fork. In some cases, stalled forks can be directly 

restarted by the components of the replisome itself (56-59). Otherwise, the restart of stalled 

replication can be reinitiated by the recombinational repair machinery. In E. coli, the DNA helicase 

PriA is involved in the replication restart machinery (121). PriA recognizes abandoned DNA 

replication forks, remodels the DNA at the fork junction, and loads the replicative DNA helicase 

DnaB onto the template lagging strand arm, allowing replication to continue (85,183). 

PriA remodels stalled DNA forks with 3’-to-5’ DNA helicase activity, which opens the 

duplex for entry of DnaB when sufficient ssDNA is not available (81). Alternatively, PriA can 

modulate the DNA-binding mode of SSB if ssDNA gaps are occupied by SSB (85). PriA has a two-

domain architecture; an N-terminal DNA binding domain (DBD) and a C-terminal helicase domain 

(HD) (184-189). The two evolutionarily conserved helicase lobes link ATP hydrolysis to DNA 

translocation and unwinding. Outside of the helicase core, the N-terminal 3’-binding domain (3’BD) 

binds the leading arm of replication forks, with specificity for the 3’-OH group of the nascent 

leading strand. A winged-helix domain (WHD) is tethered to the 3’BD and the helicase core by the 
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structurally dynamic linker and interacts with the parental duplex. A C-terminal domain (CTD) 

forms a structural core by interfacing with the other domains, except for the loosely-associated 

WHD. The isolated CTD has been shown able to bind to a variety of DNA structures in vitro, 

including ssDNA, duplex DNA, and a replication fork mimic. In addition to its DNA-binding 

functions, PriA interacts with other proteins, including SSB and PriB (86,87,190,191). The 

cooperation among each domain preserves the recognition and binding activity of PriA to various 

DNA constructs as well as the interaction with other proteins (16,85,192).  

We used AFM to understand how PriA interacts with forks and how SSB might influence 

binding. These experiments were performed in the absence of ATP to separate the DNA-binding 

properties of PriA from its helicase activity. The AFM studies revealed the role of the fork type on 

the efficiency of PriA binding. Furthermore, SSB protein interacts with PriA and potentially 

changes the protein conformation, allowing for the binding of PriA to the DNA duplex. 

Experiments with the SSB mutant revealed the necessity of the C-terminal segment in this 

remodeling activity of SSB.  

3.2 Methods 

3.2.1 Purify the proteins 

All the proteins in this chapter were provided by Dr. Piero Bianco, University of Nebraska Medical 

Center.  

Purification of the PriA protein followed the method described in (86). The his‐PriA 

protein was purified by ammonium sulfate precipitation followed by affinity chromatography using 

HisTrap FF crude column, SP Sepharose column (Equilibrated with 20 mM potassium phosphate, 

pH 7.6, 150 mM KCl, 0.1 mM EDTA, and 1 mM DTT; Eluted with a linear 150–500 mM KCl 

gradient) and Heparin column (Equilibrated with 20 mM Tris‐OAc, pH 7.5, 0.1 mM EDTA, 1 mM 
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DTT, 10% (v/v) Glycerol, and 100 mM KCl; Eluted with a linear KCl gradient of 100–600 mM). 

Fractions containing PriA were pooled and dialyzed overnight against storage buffer (20 mM Tris‐

HCl (pH 7.5), 1 mM DTT, 400 mM KCl, and 50% (v/v) glycerol). PriA concentration was 

determined using an extinction coefficient (ε) of 104,850 M−1 cm−1 (73). 

SSB protein was purified from strain K12∆H1∆trp, as described in references (63,193). 

The concentration of the purified protein was determined at 280 nm using ε = 30,000 M−1 cm−1 (73). 

Similar to the wildtype (WT), the his-SSB∆C8 mutant protein was purified using nickel column 

chromatography, followed by step elution from ssDNA–cellulose (194).  

3.2.2 Assemble the DNA substrates 

Each tail DNA substrate (T3 or T5) was assembled from a duplex-DNA segment and a tail-DNA 

segment. The preparation of duplex-DNA segments, the 224 bp segment for T3 and the 356 bp 

segment for T5, were described in Chapter 2.3.1. The tail-DNA segment for T3 was assembled 

from the phosphorylated ssDNA oligonucleotides O42 (5’-

TCATGACTCGCTGCGCAAGGCTAACAGCATCACACACATTAACAATTCTAACATCTG-

3’) and O43 (5’- CCTTGCGCAGCGAGTCA-3’); O42 and O43 were mixed in an equal molar 

ratio, and annealed by heating to 95°C and then cooling down slowly to room temperature. The 

tail-DNA segment was then ligated with the 224 bp duplex-DNA segment in the molar ratio of 1:1 

to assemble the T3 DNA substrate. Similar to the assembly of the T3 DNA substrate, the tail-DNA 

segment for T5 was annealed from the 5’-phosphorylated oligonucleotides O36 (5’-

TACGTGTAGGAATTATATTAAAGAGAAAGTGAAACCCAAAGAATGAAAAAGAAGAT

GTTAGAATTGTAAGCGGTATCAGCTCACTCATA-3’) and O37 (5’ 

GCTTATGAGTGAGCTGATACCGC-3’) in the equal molar ratio and then was ligated together 

with the 356 bp duplex-DNA segment in 1:1 molar ratio to obtain the T5 DNA substrate. 
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Figure 3.1. DNA substrates designed for this chapter. T3 DNA substrate comprises a 244 bp duplex 
region and a 3’-end 69-nucleotide single-stranded region. T5 DNA substrate has a 5’-ssDNA region 
of the same length, but the duplex size is 376 bp. For the F3 DNA substrate (3’-end) and the F5 
DNA substrate (5’-end) DNA, 69 nt ssDNA was placed inside the 673 bp (676 bp for F5 DNA 
substrate) duplex with unequal lengths of the DNA duplex regions. Arrows mark the 3’-end of 
DNA strands.  
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The fork DNA substrates (F3 and F5 DNA substrates) were assembled from two duplex-

DNA segments and a core fork segment. The core fork segment of the F3 DNA substrate was 

assembled by annealing the 5’-phosphorylated oligos in the same molar ratio (O30: 5’-

TCATCTGCGTATTGGGCGCTCTTCCGCTTCCTATCT-3’; O31: 5’-

TCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCATA-3’; O32: 5’-

GCTTATGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCTTGCGCAGCGAGTCA

GTGAGATAGGAAGCGGAAGAGCGCCCAATACGCAGA-3’ and O33: 5’-

CACTGACTCGCTGCGCAAGGCTAACAGCATCACACACATTAACAATTCTAACATCTG

GGTTTTCATTCTTTGGGTTTCACTTTCTCCAC-3’). While the core fork segment of the F5 

DNA substrate was annealed from phosphorylated O30, O31, O32, and O34 (O34: 5’-

CTAACAGCATCACACACATTAACAATTCTAACATCTGGGTTTTCATTCTTTGGGTTTC

ACTTTCTCCACCACTGACTCGCTGCGCAAGG-3’), in the same molar ratio. The two 

duplexes and core fork segment were ligated together at the molar ratio of 1:1:1 at 16°C overnight. 

The final products were purified with HPLC using a TSKgel DNA-STAT column.  

3.2.3 Prepare the AFM sample of protein-DNA complex 

PriA/DNA complex was prepared by mixing the PriA monomer (molar concentration: 100 nM) 

with DNA substrates (molar concentration: 45 nM) in a molar ratio of 8:1. The mixture was 

incubated in 10 µl of binding buffer [10 mM Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, 1 mM 

DTT] for 10 min at room temperature. After incubation, the complex was then diluted to achieve a 

lower DNA concentration (~1 nM), which was ready for deposition onto the APS functionalized 

mica. 

SSB/PriA/DNA complex was prepared by mixing the proteins first: the SSB tetramer 

(molar concentration: 50 nM) was mixed with PriA monomer in a molar ratio of 1:2, and the 

mixture was kept on ice for 30 minutes before use. The mixture of proteins was added to fork DNA 

substrates in a 1:2:4 (DNA substrates: SSB: PriA) molar ratio and then incubated in 10 µl binding 
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buffer for 10 min at room temperature. After incubation, the complex was then diluted to achieve 

a lower DNA concentration (~1 nM) for AFM imaging using the APS functionalized mica 

procedure. 

1-(3-aminopropyl) silatrane (APS) functionalized mica was used as the AFM substrate for 

all experiments. Fresh cleaved mica was incubated in 4ml APS (167 µM) in a cuvette for 30 min 

and then was rinsed with DDI H₂O thoroughly as described in Chapter 2.3.4. 10 µl of the sample 

were deposited onto the APS functionalized mica for two minutes. After two minutes of incubation, 

the mica was rinsed with DDI H₂O and then was dried with a gentle argon flow. 

3.2.4 Acquire and analyze the AFM images  

Images were acquired using tapping mode in air on a MultiMode 8, Nanoscope V system (Bruker, 

Santa Barbara, CA) using TESPA probes (320 kHz nominal frequency and a 42 N/m spring 

constant) from the same vendor. The dry sample AFM images were analyzed using the FemtoScan 

Online software package (Advanced Technologies Center, Moscow, Russia). The yield of protein-

DNA complexes was calculated from the number of complexes dividing by the total number of 

DNA molecules. The positions of each protein were measured from the end of the short arm on the 

DNA substrates towards the center of the protein. The contour lengths of the DNA were then 

continuously measured from the center of the protein towards the other end of the DNA substrate. 

The histograms were approximated with Gaussian distribution, and the mean values and errors (S.D. 

and SEM) were calculated using Origin software (OriginLab Corporation, Northampton, MA, 

USA). The protein height and volume were measured with the cross-section option. The volume 

was calculated by applying the measured data to the formula: V = 3.14 × H/6 × (0.75 × D₁ × D₂ + 

H²), in which D₁ and D₂ are the diameters of the protein, which were measured twice, and H is the 

average height of the two measurements of the protein. 

3.3 Results 
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3.3.1 The binding preference of PriA to the DNA substrates 

The designed DNA substrates were assembled and verified by contour length measurements, shown 

in Figures 3.1 and 3.2, respectively. The tail substrates, T3 and T5, are duplex DNA with a 69-nt 

ssDNA tail on one end. By having different polarities of the ssDNA tail, these two substrates allow 

us to elucidate the effect of ssDNA polarity in the recognition and binding of PriA. The T3 DNA 

substrate consists of a 244 bp duplex region and a 3’-end 69-nucleotide single-stranded region. The 

T5 DNA substrate has a 5’-ssDNA region of the same length, but the size of its duplex region is 

376 bp. The F3 and F5 DNA substrates also differ in the polarity of 69-nt ssDNA. The interactions 

of PriA with these substrates allow us to evaluate the role of fork orientation at the junction in the 

binding activities of PriA. These forks contained a 69 nt ssDNA arm asymmetrically placed within 

the DNA duplex region. The F3 DNA substrate has a gap in the nascent leading strand, while the 

F5 DNA substrate has a gap in its nascent lagging strand. Consequently, for the F3 DNA substrate, 

the DNA duplex regions are a 280 bp parental duplex and a 393 bp lagging strand arm. For the F5 

DNA substrate, the parental duplex has 416 bp residues, and the other duplex region is a 260 bp 

leading strand arm. 
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Figure 3.2. AFM results of DNA substrates. The upper panel shows AFM images of tail and fork 
DNA substrates. A–D, 1.5 x1.5 μm AFM images of the T3 DNA substrate, the T5 DNA substrate, 
the F3 DNA substrate, and the F5 DNA substrate, respectively. The bar size is 300 nm. Z-scale is 
2 nm. The lower panel shows DNA contour length measurements. Histograms were approximated 
by Gaussian functions with a bin size of 20 bp. E, the histogram for the T3 DNA substrate has a 
peak centered at 249 ± 20 bp (S.D.). F, the histogram for the T5 DNA substrate indicates a centered 
peak at 379 ± 25 bp. G, the histogram for the F3 DNA substrate is approximated by Gaussian with 
a peak centered at 676 ± 18 bp. H, the histogram for the F5 DNA substrate was centered at 683 ± 
16 bp.  
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SSB protein was separately bound to each of the substrates to evaluate the accessibility of 

ssDNA. The AFM images are shown in Figure 3.3, demonstrating that SSB binds to only one of 

the two ends on tail DNA substrates. On fork DNA substrates, the position of SSB was measured 

from the end of the short arm towards the center of the protein in each complex. The histograms 

were approximated by single-peak Gaussians. The peak values, 276 ± 14 bp (S.D.) on the F3 DNA 

substrate and 260 ± 16 bp on the F5 DNA substrate, correspond to the fork positions as designed, 

which are 280 and 260 bp for F3 and F5 DNA substrates, respectively.  
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Figure 3.3. AFM results of DNA and SSB complexes. A–D, large-scale AFM images of DNA-SSB 
complexes (1.5 × 1.5 μm): the T3 DNA substrate with SSB, the T5 DNA substrate with SSB, the 
F3 DNA substrate with SSB, and the F5 DNA substrate with SSB, respectively. Z-scale is 3 nm. E, 
a zoomed-in image shows the measurement of the protein position. The image size is 250 nm². F, 
the Gaussian-fitted histogram for SSB position on the F3 DNA substrate was centered at 276 ± 14 
bp (S.D.), with a bin size of 20 bp. G, the histogram for SSB position on the F5 DNA substrate was 
approximated by Gaussian distribution with a peak centered at 260 ± 16 bp. H and I, the volume 
histograms for bound SSB on fork DNA substrates. The bin size was 20 nm³. The average volume 
for SSB was 163 ± 31 nm3.  
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When mixed with T3 and T5 DNA substrates, PriA binds to only one end of the tail DNA 

substrates regardless of the large excess of the protein (8:1 PriA-to-DNA molar ratio), shown in 

Figures 3.4 A and B. Analysis of over 500 complexes demonstrated that <0.5% PriA was observed 

bound to both the ssDNA tail and the blunt end of the tail DNA substrate. This suggests that PriA 

binds poorly to blunt ends or dsDNA. Furthermore, the binding yield of PriA on tail DNA substrates, 

collected from three independent experiments, was 9.2 ± 0.3% on T3 DNA and 7.9 ± 0.7% on T5 

DNA, pointing to a minor preference for PriA binding to the substrate with 3’-ssDNA tail. 
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Figure 3.4. In the absence of SSB, PriA binds preferentially to the F3 DNA substrate. A–D, 0.5 µm 
× 0.5 µm AFM images of the T3 DNA substrate with PriA, the T5 DNA substrate with PriA, the 
F3 DNA substrate with PriA, and the F5 DNA substrate with PriA, respectively. Arrows direct to 
bound PriA on DNA substrates. Z-scale is 3 nm. E and F, histograms for PriA position on fork 
DNA substrates, approximated by Gaussian with a bin size of 20 bp. The peaks were found to be 
centered at 288 ± 24 bp (S.D.) on the F3 DNA substrate and at 254 ± 23 bp on the F5 DNA substrate, 
respectively.  
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To assess the interactions of PriA with fork DNA substrates, PriA was separately bound to 

F3 and F5 DNA substrates and imaged, shown in Figures 3.4 C and D. The results show that PriA 

was bound exclusively to a site embedded within the duplex region. To determine if the binding 

site corresponds to the position of the fork, we measured the position of PriA in each complex from 

the end of the short arm toward the center of the protein. The histograms, shown in Figures 3.4 E 

and F, were fitted by single-peak Gaussians with a bin size of 20 bp. The centered peak of the 

histogram for PriA position on the F3 DNA substrate was found to be 295 ± 20 bp (S.D.). For PriA-

DNA complexes on the F5 DNA substrate, the peak was centered at 254 ± 23 bp (S.D.). These peak 

values match the designed fork position, which supports our previous assumption that the fork 

provides the recognition and binding site for PriA to load onto DNA replication forks.  

The yields of complexes for both substrates were measured, and the data revealed different 

results compared with tailed DNA substrates, shown in Table 3.1. The yield of PriA on the F3 DNA 

substrate was 13.0 ± 1.2%, while it was 8.2 ± 1.3% on the F5 DNA substrate based on the results 

of three independent experiments. As the polarity of the ssDNA tail does not play an essential role 

in the binding preference for PriA, the difference between F3 and F5 DNA substrates suggests that 

other structural features of the fork substrates must be involved. 
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Table 3.1. The binding yield of DNA with PriA at the molar ratio of 1:8. 

 T3+PriA T5+PriA F3+PriA F5+PriA 
Binding yield 9.2 ± 0.3% 7.9 ± 0.7% 13.0 ± 1.2% 8.2 ± 1.3% 
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3.3.2 The interactions between PriA and SSB on the stalled DNA fork 

Studies show that SSB binds to the RecG and PriA helicases both in vivo and in vitro (86). 

Previously, we demonstrated that SSB remodeled RecG during DNA loading (71). Does SSB-PriA 

interaction also alter PriA binding activities? A similar analysis was performed to answer this 

question. Here, PriA was preincubated with SSB at a 2:1 molar ratio for 10 minutes on ice. Then, 

the mixture was added to fork DNA substrates in the molar ratio of 2:1 (complex: DNA substrate), 

and allowed to bind for 10 minutes at room temperature before deposition onto mica substrate for 

imaging.  

Figure 3.5 shows that for both F3 and F5 DNA substrates, double-feature complexes were 

observed. The double features correspond to PriA and SSB bound to the same DNA molecule, with 

the larger protein being SSB and the smaller one being PriA, as explained below. Furthermore, in 

some complexes, the two proteins are located far from each other, while in others, SSB and PriA 

co-localize on the DNA (insets i and ii, respectively). These data suggest that interaction of PriA 

with SSB leads to a change in PriA conformation, allowing PriA to bind to duplex DNA. We termed 

this property of SSB remodeling, which was initially identified for SSB-mediated loading of RecG 

protein on the DNA fork. 
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Figure 3.5. In the presence of SSB, PriA can be localized to duplex regions of forks. A and B, 
large-scale AFM images of F3 DNA substrate +SSB+PriA and F5 DNA substrate +SSB+PriA, 
respectively. Z-scale is 3 nm. Insets i and ii, a gallery of zoomed-in images of each complex to the 
right. Green arrows direct to PriA in the complexes, while SSB position is directed by blue arrows. 
C and D, histograms for SSB position in double-feature complexes, fitted by Gaussian function 
with a bin size of 20 bp. Peaks of SSB distributions were approximated at 256 ± 14 bp (S.D.) on 
the F3 DNA substrate and at 252 ± 14 bp on the F5 DNA substrate, respectively. E and F, 
histograms for PriA position in well-separated double-feature complexes on F3 and F5 DNA 
substrates, respectively.  
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PriA and SSB were bound to each DNA substrate separately, imaged, and analyzed to 

identify each protein in the double-feature complexes. As measured, SSB volume is between 159 

± 29 and 168 ± 27 nm3 (Figures 3.3 H and I). In contrast, the volume of PriA range from 113 ± 23 

to 116 ± 29 nm3 (Figures 3.6 C and D). Therefore, the large proteins correspond to SSB, and the 

smaller ones are PriA. Based on this, the positions of SSB and PriA could be collected. The 

distribution of SSB positions is narrow, and the Gaussian maximum (F3 DNA substrate: 256 ± 14 

bp and F5 DNA substrate: 252 ± 14 bp) correlates with the specific binding of SSB to the ssDNA 

region at the fork. The results show that SSB remains bound at the fork position (Figures 3.5 C and 

D) 
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Figure 3.6. AFM results of DNA and PriA complexes. A and B, large-scale AFM images of DNA-
PriA complexes (1.5 µm × 1.5 μm): the F3 DNA substrate with PriA, and the F5 DNA substrate 
with PriA, respectively. Z-scale is 3 nm. C and D, volume distributions for bound PriA on fork 
DNA substrates. The bin size was 20 nm3. The histogram of bound PriA on the F3 DNA substrate 
was centered at 116.3 ± 29.1 nm3 (S.D.) by single-peak Gaussian fitting. The histogram of bound 
PriA on the F5 DNA substrate was centered at 112.9 ± 23.4 nm3. The average volume for PriA was 
115 ± 30 nm3 (S.D.).  
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The results show that SSB enables the loading of PriA onto the duplex regions (Figures 3.5 

E and F), whereas in the absence of SSB, PriA binds specifically to the fork region. In Figure 3.7, 

the position of PriA was mapped relative to that of SSB, as the SSB position indicates where the 

fork is. In the maps, the SSB position (green squares) is set to zero, marking the fork position. For 

the F3 DNA substrate, PriA (red dots) bound to the parental duplex arm sits in the negative interval, 

and the positive values indicate PriA positioning on the lagging strand. The occurrence of PriA 

positioning on the parental arm, or the lagging strand, or colocalizing with SSB at the fork was 

found to be 28, 32, and 40%, respectively. Therefore, in the presence of SSB, PriA is loaded 

preferentially at the fork. While it is loaded onto the duplex regions, there is no preference for one 

region over the other. In contrast, for the F5 DNA substrate, the occurrence of PriA positioning on 

the parental arm, or the leading strand, or colocalizing with SSB at the fork was found to be 24, 48, 

and 28%, respectively. Therefore, on the F5 DNA substrate, the fork with a gap in the nascent 

lagging strand, PriA is preferentially loaded onto the leading strand. 
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Figure 3.7. The distributions of proteins in double-feature complexes on each fork DNA substrate, 
with the SSB position corresponding to zero value on the maps. Green squares indicate the position 
of SSB, and the red dots point to the PriA position. A, the map of proteins on the F3 DNA substrate. 
PriA in negative interval means that they positioned on the parental strand, and positive values 
indicate PriA positioned on the lagging strand. B, the map of proteins on the F5 DNA substrate. 
PriA in negative interval means that they positioned on the leading strand, and positive values 
indicate PriA positioned on the parental strand.  
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In addition to the colocalized double-feature complexes, single-feature complexes were 

observed at the fork position, but the sizes of these complexes varied. The complex could be bound 

PriA, SSB, or SSB-PriA complexes of larger sizes. The volume data was collected to identify the 

components of each protein-DNA complex. The volume distribution fitted with multi-peak 

Gaussians for the F3 DNA substrate is shown in Figure 3.8 A. Peak 1 is centered at 137 ± 37 nm3, 

which is close to the volume of bound SSB on the F3 DNA substrate (Xc, 159 ± 29 nm3 in Figure 

3.3 H). Peak 2 is approximated at 244 ± 28 nm3, corresponding to the complexes of PriA and SSB 

(free PriA volume: 58 ± 12 nm3, bound SSB volume: 159 ± 29 nm3). The population of those large 

features is ~24%, approximated by the area under Gaussian. 
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Figure 3.8. Volume analysis for samples of fork DNA mixed with SSB and PriA. A, the multi-peak 
Gaussian fitted distribution for the single-feature complexes on the F3 DNA substrate. Peak 1 is 
centered at 137.2 ± 36.5 nm³, and peak 2 is approximated at 243.7 ± 28.1 nm³. The population 
approximated by the area under the curve is 76.1% for peak 1 and 23.9% for peak 2. B, the volume 
distribution for single-feature complexes on the F5 DNA substrate. The peak fitted with Gaussian 
was centered at 169.8 ± 44.6 nm³. C, the volume distribution for free proteins in the same image. 
The histogram shows three peaks based on multi-peak Gaussian fitting, which are 58.7 ± 12.4 nm³, 
102.9 ± 22.3 nm³, and 233.1 ± 20.4 nm³. The population approximated by the area under the curve 
is 59.9% for peak 1, 27.5% for peak 2, and 12.6% for peak 3.  
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A similar analysis was done for F5 DNA substrates with data shown in Figure 3.8 B. The 

volume distribution was fitted with single-peak Gaussian with a peak centered at 170 ± 45 nm3. 

This value shows a minor difference from the volume of bound SSB on the F5 DNA substrate (168 

± 27 nm3, shown in Figure 3.3 I), suggesting that the SSB-PriA complexes formation are subtle at 

the fork region of F5 DNA substrate. 

3.3.3 The interactions of PriA and SSB in the absence of DNA 

To characterize the interaction of SSB-PriA in the absence of DNA, we also analyzed the sizes of 

free proteins in the same samples, with fork DNA substrates mixed with SSB and PriA. The volume 

distribution is shown in Figure 3.8 C. The histogram shows three peaks based on multi-peak 

Gaussian fitting, which are 59 ± 12 nm3, 103 ± 22 nm3, and 233 ± 20 nm3. Peak 1 matches the 

volume of free PriA (58 ± 12 nm3), shown in Figure 3.9 A. Peak 2 is close to the volume of free 

SSB (91 ± 21 nm3 in Figure 3.9 B). Peak 3 could be assigned to the SSB-PriA complex, even though 

the measured volume of each protein was smaller than half of the 3rd peak value, because neither 

tetrameric SSB nor monomeric PriA aggregates with themselves, based on the narrow single-peak 

distribution of each volume measurement in single-protein binding control experiments. Also, peak 

3 is with the smallest probability, which is 12.6% evaluated by the area under the curve, while the 

probabilities of the other two are 59.9% for peak 1 and 27.5% for peak 2. Therefore, though the 

population of the SSB-PriA complexes is low, the interaction between SSB and PriA in the absence 

of DNA also exists. 
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Figure 3.9. Size analysis for free protein: volume distributions fitted by Gaussian for PriA, and 
SSB, respectively. A, the histogram for free PriA protein was centered at 58.3 ± 11.5 nm3 (S.D.) by 
single-peak Gaussian fitting, with a bin size of 10 nm3. B, the histogram for free SSB was centered 
at 91.4 ± 20.8 nm3 with single-peak Gaussian fitting. The bin size was 20 nm3.  
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3.3.4 The role of the C-terminal of SSB in the protein-protein interaction  

It is known that the C-terminal domain of SSB is required for interactome partner binding (87,195). 

To determine whether the C-terminal domain of SSB is required for PriA loading, we used the 

SSB∆C8 protein, which has the acidic tip removed. First, the binding of the SSB mutant to F3 and 

F5 DNA substrates was assessed. Results show that yield of SSB∆C8 binding onto each DNA 

substrate was 83.7% for the F3 DNA substrate and 81.8% for the F5 DNA substrate (Figure 3.10). 

This is, within experimental error, the same as that observed for wild type. Thus, ssDNA binding 

for this mutant is unaffected, which is consistent with the previous studies (73,194,196). 
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Figure 3.10. AFM results of fork DNA and SSBΔC8 complexes. A and B, 0.5 x0.5 μm AFM 
images of the F3 DNA substrate with SSBΔC8, the F5 DNA substrate with SSBΔC8, respectively. 
Z-scale is 3 nm. C and D, volume distributions for fork DNA-SSBΔC8 complexes. The bin size 
was 20 nm3. The histogram of bound SSBΔC8 on the F3 DNA substrate was centered at 103.6 ± 
35.6 nm³ (S.D.) by single-peak Gaussian fitting. The histogram of bound SSBΔC8 on the F5 DNA 
substrate was centered at 122.6 ± 27.9 nm³. The average volume for SSBΔC8 was 114 ± 42 nm3.  
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In the following experiments, PriA and SSB∆C8 were mixed in the same way as it was 

done for the wild-type experiments, then incubated with the DNA substrates and imaged. The yield 

of double-feature complexes formed on both F3 and F5 DNA substrates was reduced to less than 

5%, much lower than that of WT SSB and PriA (Table 3.1). Furthermore, analysis of the sizes of 

the single-feature complexes revealed that these were bound SSB∆C8 complexes, as the sizes 97 ± 

26 nm3 and 111 ± 31 nm3 on F3 and F5 DNA substrates, respectively (Figure 3.11). Collectively, 

these results show that SSB∆C8 does not interact with PriA or facilitate the loading of PriA onto 

the DNA.  
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Figure 3.11. SSB∆C8 does not load PriA. A and B, 0.5 µm × 0.5 µm AFM images of the F3 DNA 
substrate with SSB∆C8 and PriA, and the F5 DNA substrate with SSB∆C8 and PriA, respectively. 
Z-scale is 3 nm. C, the volume analysis of the single-feature complexes on the F3 DNA substrate. 
The distribution was fitted with single-peak Gaussian, and the peak was found to be centered at 
97.1 ± 25.7 nm³. D, the single-peak Gaussian distribution for the single-feature complexes on the 
F5 DNA substrate. The centered peak is approximated at 110.9 ± 30.7 nm³. E, the volume 
distribution for free proteins in the sample of fork DNA substrates mixed with SSB∆C8 mutant and 
PriA. The histogram was fitted by Gaussian with a single peak centered at 48.6 ± 17 nm³.  
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We also characterized the role of the C-terminus on the interaction of SSB and PriA in the 

absence of DNA. The analysis was done for free proteins in the way characterized above. In Figure 

3.11 E, the volume distribution was fitted by Gaussian with a single peak centered at 49 ± 17 nm3, 

which is different from the multi-peak distribution of free proteins in the wild-type experiments. 

Thus, the difference between results of PriA with WT SSB and SSB∆C8 mutant further emphasizes 

the role of SSB C-terminus in the interactions with its partner protein, that the acidic tip of SSB is 

needed for the SSB-PriA interaction. 

3.4 Discussion 

The primary function of PriA is to restart the replication process by facilitating the loading of the 

replicative DNA helicase, DnaB, onto the stalled replication fork (121). Once bound, PriA exposes 

ssDNA for DnaB by unwinding the lagging strand or remodeling SSB-coated ssDNA (85,197). 

This priming process requires the binding of PriA to various DNA structures (16), which was the 

focus of this paper, as it remains unclear how PriA differentiates among various DNA structures 

and then plays the role that is needed for the restart of the stalled replication fork. Therefore, we 

performed studies in the absence of ATP to uncouple the DNA binding property of PriA from its 

helicase activity.  

3.4.1 The role of ssDNA and fork in PriA binding activity 

On the fork DNA substrates, PriA binds to both substrates at the fork position, with a preference to 

the F3 DNA substrate with a nascent lagging strand, which is an unexpected finding. According to 

previous publications, PriA should bind preferentially to the F5 DNA substrate that has a gap in 

the nascent lagging strand since it provides a 3’-OH group at the fork junction as the recognition 

and binding site for the 3’-DNA binding domain of PriA, while the F3 DNA substrate does not 

(85,187,197). Our finding on PriA’s binding preference suggests the participation of the other 
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domains in PriA-DNA binding. It is in line with the previous finding that PriA binds to the arrested 

replication fork in a manner independent of a 3’-terminus as well (187). In addition to the 

independence of polarity, the bend at the fork position may play an important role in PriA binding 

activity as well, as demonstrated in references (184,198). This emphasizes the essential role of the 

fork structure and the presence of a nascent lagging strand in the binding of PriA onto the stalled 

replication fork.  

Our model on the role of other PriA domains in the assembly of the complexes with the 

replication fork is supported by the findings that PriA does not have a binding preference to the 

polarity of ssDNA in the tailed DNA substrates. Nurse et al. demonstrated that PriA bound with 

high affinity to duplexes with 3’-tails, whereas it did not bind to duplexes with 5’-tails at all (198). 

However, they detected stable binding of the 3’-extension when the ssDNA tail exceeded 12 nt and 

high-affinity binding results when the tails were more than 16 nt in length. In our studies, the size 

of the ssDNA region is 69 nt. Thus, the ssDNA region might also involve in the binding activity of 

multiple domains and then stabilize the interaction between PriA and DNA substrates. Note that 

PriA has over 100-fold higher binding yield with the ssDNA region than the blunt end on the tail 

DNA substrates. This property also contributes to the high efficiency of targeting the stalled 

replication fork where the restart is needed. 

3.4.2 Remodeling of PriA by SSB on the stalled fork 

Although the interactions between SSB protein and PriA have already been characterized 

(86,87,184,191,199), our results revealed a novel role of SSB in the interaction with PriA in the 

fork DNA substrates. As shown in Figure 3.5, both proteins can be colocalized at the fork position 

(insets ii), where PriA binds to the fork while SSB binds to the ssDNA region. Interestingly, we 

also identified complexes shown as insets i on both images in which SSB and PriA are well 

separated. On both substrates, SSB locations produce narrow distributions (histograms C and D in 

Figure 3.5). However, the positions of PriA in the SSB-PriA complexes assembled on both 
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substrates are very broad (Figures 3.5 E and D). These data are in contrast with the data obtained 

from PriA-DNA complexes in the absence of SSB, in which PriA has narrow distribution on each 

histogram and the peak positions coincide with the location of the fork (Figures 3.4 E and F). Thus, 

we hypothesize that after remodeling, PriA can bind to the DNA duplex with spontaneous 

translocation over DNA duplexes, comparable to what was observed for RecG (71,72). 

Based on the mapping of positions of proteins on the fork substrates in Figure 3.7, PriA 

shows no preference to the flanks of the F3 DNA substrate (28% on parental strand and 32% on 

lagging strand). However, on the F5 DNA substrate, which has a gap in the lagging strand, 

remodeled PriA showed a preference to the leading strand. Note that in the absence of SSB, PriA 

binds specifically to the fork regions of the fork substrates. These suggest that the SSB-PriA 

interaction changes the helicase conformation so that PriA becomes capable of binding to DNA 

duplex, which is similar to the remodeling of RecG protein by SSB proposed by us (71). The 

translocation mobility of RecG has been proven by direct visualization of RecG mobility using the 

time-lapse AFM (72). Therefore, it was hypothesized that remodeling of RecG by SSB allows 

RecG to translocate along the duplex strands in an ATP-independent way so that RecG can be 

recruited rapidly to accomplish its fork regression role. Recently the protein-protein interaction of 

SSB with partner protein has been reported for RecQ (191,200,201) and RecOR (202,203), 

suggesting that the remodeling of components of the DNA replication machinery is a common 

property of SSB. The remodeling of PriA by SSB facilitates the binding of PriA onto duplex DNA, 

which is shown in Figure 3.5. Thereby, the binding and/or translocation of PriA along the duplex 

may stimulate the association of PriA at the stalled replication fork in an ATP-independent way, 

facilitating the restart process once the ATP is available for PriA helicase activity. 

3.4.3 The protein-protein interaction and the effect of SSB tail region on it 

PriA interacts with SSB both in the absence and presence of fork DNA substrates. According to 

published data, the stimulation effect or the localization activity of SSB-PriA interaction requires 
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an excess of SSB over the helicase (86,87,184,199). In our experiments (Figure 3.8), colocalized 

PriA-SSB complexes on DNA were detected at a molar ratio of 1:2, SSB-to-PriA, with the 

concentration of PriA being 5 nM. The volume analysis of colocalized SSB and PriA complexes 

(Figure 3.8 A) was clearly seen for F3 DNA substrate from peak 2, and the yield of such complexes 

was 24% compared with the single-feature complexes (76%), which correspond to complexes with 

SSB binding only. Considering that the single-feature complexes count for 78% binding events in 

the mixture sample (with the rest of events being 7% of free DNA substrates and 15% of double-

feature complexes), the overall binding yield of PriA-SSB on F3 DNA should be 0.24 × 0.78, which 

is 18.7%. No such identified peak appears on the F5 DNA substrate (Figure 3.8 B), suggesting that 

the colocalization depends on the substrate structure. On the F3 DNA substrate, which is a better 

substrate for binding by PriA alone (Table 3.1), the occurrence of colocalization is much higher. In 

this way, the interaction between SSB and PriA increases the binding of PriA to fork DNA 

substrates and improves the selectivity of PriA to the more favorable substrate. This suggests that 

the SSB stimulation effect, as it is known on PriA helicase activity, also plays a role in the binding 

activities of PriA.  

In addition to the protein-protein interaction found in protein-DNA complexes, the volume 

analysis of free protein (Figure 3.8 C) revealed a minor peak (peak 3). It has a larger volume than 

each protein itself and can be attributed to the complex formed by the SSB-PriA assembly. So, 

SSB-PriA interaction is independent of the presence of DNA or ATP. This property helps SSB 

localize or direct PriA to the needed place more efficiently. 

Studies showed that most of the interactions between SSB and its partner protein are 

mediated by the C-terminus of SSB (66,86,204). The C-terminal domain of SSB, corresponding to 

residues 117-178, can be sub-divided into the intrinsically disordered linker (aa 117-170) and the 

highly-conserved acidic tip (66). The linker mediates protein-protein interactions while the acidic 

tip is required to maintain the structure of the C-terminus of SSB so that it does not bind to SSB 
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itself (194). Thus, when the acidic tip is mutated or deleted, the C-terminus binds to SSB, thereby 

inactivating the protein. Consequently, SSB-partner interactions are lost. Experiments with the 

SSB∆C8 in which the acidic tip of SSB was removed showed that the yield for double-feature 

complexes dropped, and these findings are in line with the effect C-terminus on the remodeling of 

RecG (71), suggesting that C-terminus plays an important role in the SSB remodeling of PriA as 

well.  

3.4.4 Conclusion 

Our study revealed several novel properties of the interactions of PriA and stalled DNA replication 

forks, with or without SSB. In the absence of ATP, we observed that PriA binds preferentially to 

the forked DNA with a gap in the nascent leading strand. Since PriA showed no clear preference 

towards the polarity of ssDNA in tail DNA substrates, it is the fork structure that plays an essential 

role in PriA binding. The interactions between SSB and PriA revealed the remodeling of PriA by 

SSB, which loaded PriA onto the duplex DNA, and this property of SSB can be attributed to its C-

terminal segment. It could be an ATP-independent translocation activity by which PriA slides along 

the DNA duplex and searches for the site needed to get restarted. 
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Chapter 4. DYNAMICS OF PRIA AT STALLED DNA 

REPLICATION FORKS 

4.1 Introduction  

In Chapter 3, we investigated the structure-dependent fork-recognition pattern of PriA in the 

absence of ATP. We found that the PriA binds preferentially to the F3 DNA substrate, which has 

a nascent lagging strand, compared to the other forked or tailed DNA substrates. Here we extend 

our previous studies to the direct visualization of the PriA-DNA dynamics in the presence of ATP. 

As discussed before, PriA recognizes the abandoned DNA replication fork in a structure-

specific manner and remodels the stalled fork to expose an ssDNA region for the replisome to load. 

In the presence of ATP, PriA binds and interacts with the three arms of the DNA replication fork 

(85). PriA requires an ssDNA region (at least 2-nt) to initiate the helicase activity in the 3’-to-5’ 

direction (197,205). In a recent model, the movements of the helicase lobe of PriA have been 

proposed to enable PriA to “pull in” the lagging strand arm to unwind the duplex (192). In the PriA 

dominated replication restart pathway, PriA only needs to unwind few base pairs of the lagging 

strand arm to promote the replication restart (16,182,206). However, there are still some unknown 

features of PriA: Does the helicase remain bound at the fork position during translocation? How 

does the ssDNA at fork position regulate the translocation activity? 

This chapter shows that most of the PriA molecules are observed bound at the fork in the 

presence of ATP. However, PriA is capable of translocating over distances as far as several hundred 

base pairs. On the fork substrate with a nascent lagging strand (the F3 DNA substrate), PriA 

translocates preferentially onto the parental duplex. When there is an additional 5-nt ssDNA gap 

on the lagging strand arm at the fork position (the F13 DNA substrate), PriA translocates on both 
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the parental and lagging arms, with no preference to the 69-nt ssDNA gap over the 5-nt ssDNA gap 

on the F13 DNA substrate. Time-lapse AFM imaging revealed long-range translocation of PriA 

and a previously undiscovered property of PriA; PriA can switch to the other DNA strand during 

translocation on the DNA duplex. By switching the bound DNA template, PriA is able to redirect 

to the fork position when the DNA substrate lacks an ssDNA gap on the lagging strand arm. In this 

way, the efficiency of the PriA-mediated DNA replication resumption can be accelerated. These 

novel features of PriA shed light on the mechanisms of the stalled replication rescue. 

4.2 Methods 

4.2.1 Purify the proteins 

All the proteins in this chapter were provided by Dr. Piero Bianco, University of Nebraska Medical 

Center. Purification of PriA follows the protocol described in Chapter 3.2.1. 

4.2.2 Assemble the DNA substrates 

The preparation of the F3 DNA substrate is described in Chapter 3.2.2. Figure 4.1 shows the design 

of the fork substrates. The construction of the F13 DNA substrate is similar to that of the F3 DNA 

substrate except for the fork segment. Oligos O30, O31, O32, O33 were annealed to form the core 

fork segment of the F3 DNA substrate. For the F13 DNA substrate, O31 was replaced by O46 (5’-

CGGCTGCGGCGAGCGGTATCAGCTCACTCATA-3’) to leave an ssDNA gap on the lagging 

strand arm at the fork position. 



62 
 

 

Figure 4.1. DNA substrates designed for this chapter. In the F3 and F13 DNA substrates, the 69 nt 
ssDNA was placed inside the 673 bp duplex with unequal lengths of the DNA duplex regions, 
corresponding to the parental duplex (280 bp) and the lagging arm (393bp). The F13 DNA substrate 
contains a 5-nt ssDNA gap on the lagging arm (388 bp) at the fork position. The gap position is 
marked in the schematic. Arrows mark the 3’-end of DNA strands.  
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4.2.3 Preparation of protein-DNA complex 

Fork DNA construct (F3 or F13 DNA substrate) was mixed with the PriA separately in a molar 

ratio of 1:2 and incubated in 10 µl of binding buffer [10 mM Tris-HCl (pH 7.5), 50 mM NaCl, 5 

mM MgCl2, 1 mM DTT, 1 mM ATP] for 10 min. The complexes were then ready for deposition 

on the AFM substrates, with a 2 nM final concentration for fork DNA substrates and 1 nM for 

dsDNA. 

4.2.4 Dry sample imaging and imaging in aqueous solution with time-lapse AFM 

The dry sample preparation and acquisition are the same as described in Chapter 3.2.4. The sample 

preparation for time-lapse AFM follows our previous research; A mica disk (1.5 mm in diameter) 

was glued to the glass cylinder and then attached to the time-lapse AFM stage. The mica was 

cleaved with tape and functionalized with 167 μM APS. An aliquot of the sample (2.5 μl) was 

deposited on the APS functionalized mica and incubated for 2 min at room temperature. The sample 

was then rinsed with 20 μl of binding buffer. Time-lapse images were acquired using a commercial 

time-lapse AFM instrument (RIBM Co. Ltd., Tsukuba, Japan), with the custom-built, high-aspect-

ratio, high-frequency carbon probes manufactured as described in (based on BL-AC10DS, 

Olympus Corp., Tokyo, Japan). The scan size was set to 300 nm × 300 nm, and the scan rate 

corresponding to the data acquisition was 600 ms/frame. The time-lapse HS-AFM movies were 

read with the Falconview plugin in Igor software (kindly provided by T. Ando) and saved as regular 

image files. The images were then analyzed using the FemtoScan. 

4.3 Results 

4.3.1 The ATP-dependent translocation of PriA on the fork substrates 
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Both F3 and F13 DNA substrates have a 69 nt ssDNA as the template leading strand arm of the 

fork, shown schematically in Figure 4.1. In the F3 DNA substrate, the single-stranded leading 

strand is flanked by a 280 bp parental duplex and a 396 bp lagging strand arm, which is the same 

as the one in Chapter 3. The F13 DNA substrate differs from the F3 DNA substrate by incorporating 

a 5-nt ssDNA gap on the lagging strand arm at the fork position. The contour length of F3 and F13 

DNA substrates were measured, and the data are shown as the histograms in Figures 4.2 E and F. 

The maxima of the contour length were centered at 660 ± 28 bp for the F3 DNA substrate and 669 

± 31 bp for the F13 DNA substrate, which match the design of both DNA substrates. We then 

prepared the control experiment for the PriA-DNA complexes in the absence of ATP. Figures 4.2 

A-D shows that PriA binds specifically to the fork position in the absence of ATP, as expected.  
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Figure 4.2. The control experiment of PriA mixed with fork DNA substrates in the absence of ATP. 
A and B, the AFM images of PriA on the F3 DNA substrate and the F13 DNA substrate, 
respectively. Z-scale is 3 nm. Arrows pointed to the PriA-DNA complexes. C and D, the histograms 
for PriA position measurement, approximated by Gaussian distribution with a bin size of 20 bp. E 
and F, the histogram for the DNA contour length measurement.  
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PriA was mixed with F3 or F13 DNA substrate separately in the presence of ATP and 

incubated for 10 min at room temperature. The representative images of each assembled protein-

DNA complex with zoomed-in snapshots to the right are shown in Figures 4.3 A and B. The bright 

circular features in the images are the complexes of PriA with DNA substrates, as indicated with 

black arrows. The yields of PriA-DNA complexes in the presence of ATP were 11.3 ± 1.4% and 

14.3 ± 1.2% for the F3 and F13 DNA substrates, respectively. In snapshots i and iii, PriA was 

located at the fork position. In snapshots ii and iv, PriA was located distal to the fork position of 

the F3 or F13 DNA substrates, with the fork positions indicated with green arrows. We then mapped 

the positions of PriA on each substrate (Figures 4.3 C and E), with the DNA contour length shown 

on the y-axis. The position of PriA, indicated by the blue triangles, was measured from the end of 

the parental duplex to the center of the protein. The parental duplex is the short flank for both 

substrates, corresponding to the bottom part of the map.  

The results in Figure 4.3 C show that most of the PriA molecules are bound to the fork 

position of the F3 DNA substrate (~80%), with the remaining bound to duplex regions (~20%). 

Furthermore, in Figure 4.3 D, the histogram for the PriA position on the F3 DNA substrate, the 

peak centered at 276 ± 25 bp corresponds to the designed fork position. Based on Figures 4.3 C 

and D, ~80% of PriA are located at the fork position, while ~20% of PriA are non-fork located. In 

the control experiments (shown in Figure 4.4), PriA does not bind to the duplex DNA (1kb in length) 

neither in the absence nor in the presence of ATP. Thus, the non-fork locations can be attributed to 

the ATP-dependent translocation activity of PriA, which can be coupled with the helicase activity.  
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Figure 4.3. The ATP-dependent translocation of PriA on the fork DNA substrates. A and B, the 
typical AFM images of PriA with fork DNA substrates, respectively. Black arrows point to the 
PriA-DNA complexes. The zoomed images to the right of each panel (300 nm × 300 nm) show 
selected PriA-DNA molecules, with the fork position indicated by green arrows. C and E, mapping 
of PriA on each DNA substrate. The schematic of the DNA substrate is present to the right of each 
graph. Each DNA molecule is aligned to the end of the parental strand, and PriA molecules are 
represented as blue triangles. When a second PriA is present on a DNA molecule, the triangle is 
colored green. D and F, the distributions for PriA position measured from the end of the parental 
duplex of each DNA substrate.  
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Surprisingly, PriA molecules were also observed on the lagging strand arm of the F3 DNA 

substrate, which account for ~20% of all the non-fork-located complexes. According to the 

previous studies, PriA requires a small single-stranded gap (two bases or larger) at the fork in order 

to initiate the helicase activity (42,197). Since there is only one ssDNA gap on the F3 DNA 

substrate, which is the 69-nt single-stranded leading strand template, we hypothesized that PriA 

would translocate on the leading strand template in the 3’-to-5’ direction. Following this direction, 

PriA can continue translocating on the parental duplex towards the end. The result of PriA position 

distribution on the lagging strand arm based on the single-molecule AFM study indicates a potential 

novel property of PriA that has not been discovered due to the limitation of the other approaches. 

We will discuss this in Chapter 4.4.3. 
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Figure 4.4. The control experiment of PriA mixed with duplex DNA substrate (1036 bp in length). 
A, the AFM image of PriA with the duplex DNA substrate in the absence of ATP. B, the AFM 
image of PriA with the duplex DNA substrate in the presence of ATP.  
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The results in Figures 4.3. B and E show that, similar to the complexes on the F3 DNA 

substrate, the majority of PriA molecules are bound at the fork of the F13 DNA substrate. 

According to Figure 4.3 F, 60% of the PriA molecules are bound to the fork position, as shown by 

the Gaussian distribution with a peak centered at 276 ± 21 bp. In contrast to the F3 DNA substrate, 

the non-fork-located PriA molecules on F13, which count for the rest 40% of molecules examined, 

were distributed equally on the parental duplex and the lagging strand arm. This is due to the 

additional 5-nt ssDNA gap on the lagging strand template at the fork position that allows PriA to 

initiate its helicase activity on the lagging strand and translocate towards the end of the lagging 

strand arm following the 3’-to-5’ direction. Since PriA shows no preference for translocating along 

the parental strand over the lagging strand of the F13 DNA substrate, the sizes of the ssDNA gap, 

which are 69-nt on the leading strand and 5-nt on the lagging strand, do not affect the direction of 

PriA translocation activity. 

In addition to the complexes with one PriA molecule bound, a small fraction of the 

complexes contain two PriA molecules (Figure 4.3 A, molecules #22, 29, 50, and 64; Figure 4.3 B, 

molecules #12, 19, and 43). These can result from two PriA molecules binding sequentially, 

followed by translocation over the duplex arms.  

4.3.2 The visualization of PriA translocation in the presence of ATP 

The mapping data suggest that PriA can translocate away from the fork position over a hundred 

base pairs in the presence of ATP. To directly visualize the translocation of PriA, we performed 

time-lapse AFM experiments with the high-speed AFM. In these experiments, PriA was mixed 

with the F13 DNA substrate in the binding buffer [10mM Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM 

MgCl2, 1 mM DTT, 1mM ATP] for 10 minutes at room temperature. The mixture was deposited 

onto the APS mica, incubated for 2 minutes, and rinsed with the binding buffer before scanning. 

The sample was imaged under aqueous buffer conditions to obtain the dynamics of the PriA−DNA 
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interactions. The scan rate of a typical image (300 × 300 nm2) was 600 ms. Movies were assembled 

after the frame-by-frame recording of each selected complex of interest.  

Figure 4.5 A displays the frames demonstrating the PriA translocation activity on the 

lagging strand arm of the F13 DNA substrate. The black arrows direct to PriA, and the green arrows 

indicate the fork position when it is visible. In Figure 4.5 B, the traces of complexes from the frames 

in Figure 4.5 A are shown for clarity. PriA translocated away from the fork position towards the 

end of the lagging strand arm and ended with dissociation from the DNA. The position of PriA 

measured from the end of the parental strand is shown in Figure 4.5 C (the black curve), which 

demonstrates that PriA translocated gradually on the lagging strand arm for ~100 bp from frames 

6 to 11. Then PriA appeared to stay motionless between frames11 and 17, followed by a rapid 

translocation during frames 17 to 20 over a distance of ~100 bp. After that, PriA dissociated from 

the DNA substrate. The grey curve in Figure 4.5 C shows the PriA position measured from the end 

of the lagging strand arm. To determine whether the changes in the DNA contour length accounts 

for the difference in the position of PriA instead of the active translocation, we measured the DNA 

contour length in each frame, shown as the blue curve in Figure 4.5 C. It is shown that the DNA 

contour length remains constant, except for frames 17 and 18. The decrease in the contour length 

measurement in these frames is caused by the end of the lagging strand arm floating up from the 

mica surface, as the PriA position measured from the end of the parental duplex did not change 

from frame 16 to 17. Since the DNA contour length remains constant and PriA is observed in 

different positions, we conclude that the changes in PriA position were due to ATP-dependent PriA 

translocation on the lagging strand arm.  
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Figure 4.5. Time-lapse AFM data of PriA translocation on the lagging strand arm of the F13 DNA 
substrate. A, the selected frames from the HS-AFM movie. The black arrows point to the PriA 
locations, while the green arrows point to the fork position when it is visible. B, traces of the 
complexes shown in A, corresponding to each frame. The F13 DNA substrate and PriA are colored 
blue and green, respectively. The stars mark the end of the parental arm. C, the position 
measurement of PriA on the F13 DNA substrate. The green dots mark the fork position when the 
fork is visible. The blue, black, and grey curves show the DNA contour length, PriA position 
measured from the end of the parental arm and from the end of the lagging arm, respectively. 
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Translocation activities of PriA on the parental duplex of the F13 DNA substrate were also 

observed (Figure 4.6). The selected frames from the HS-AFM movie are shown in Figure 4.6 A, 

with the traces of the complex placed below each frame for clarity (Figure 4.6 B). PriA remained 

bound at a position near the end of the parental duplex from frames 1 to16. A burst in translocation 

occurred between frames 16 to 17, where PriA translocated toward the fork position over ~100 bp 

(Figure 4.6 C). After that, PriA remained motionless until it dissociated from the DNA substrate. 

As we discussed in the previous section (Chapter 4.3.1), PriA can translocate to the parental duplex 

from the leading strand template. It can also translocate on the lagging strand arm toward the end 

of the lagging strand arm, following the 3’-to-5’ direction. However, in this movie, PriA 

translocated toward the fork position, in the direction contrary to either case discussed above. This 

observation further suggests that PriA might have a novel property, as mentioned in Chapter 4.3.1, 

allowing PriA to translocate in the opposite direction as expected.  
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Figure 4.6. Time-lapse AFM data of PriA translocation on the parental duplex of the F13 DNA 
substrate. A, the selected frames from the HS-AFM movie. The black arrows point to the PriA 
locations, while the green arrows point to the fork position when it is visible. B, traces of the 
complexes shown in A, corresponding to each frame. The F13 DNA substrate and PriA are colored 
blue and green, respectively. The stars mark the end of the parental arm. C, the position 
measurement of PriA on the F13 DNA substrate. The green dots mark the fork position when the 
fork is visible. The blue, black, and grey curves show the DNA contour length, PriA position 
measured from the end of the parental arm and from the end of the lagging arm, respectively. 
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In addition to the observation of PriA translocation in different directions, the changes in 

the translocation direction were also directly visualized. The data in Figure 4.7 A show a few frames 

from the HS-AFM movie, with the traces of the complex placed below each frame for clarity 

(Figure 4.7 B). The quantitative analysis is shown in Figure 4.7 C, which is the position 

measurement of PriA as a function of time. The black curve indicates the PriA position measured 

from the end of the parental duplex, while the grey curve shows the PriA position measured from 

the end of the lagging arm. The blue curve corresponds to the DNA contour length measurement, 

which shows relatively low time-dependent variability of the DNA length. However, the position 

of PriA changes non-monotonously. Initially, PriA translocated toward the end of the lagging strand 

arm, from frames 35 to 47, over ~180 bp. PriA then changed its direction, translocating back toward 

the fork position, from frames 51 to 56. During frames 57 to 80, PriA did not change its position. 

After that, PriA translocated away from the fork for 200 bp on the lagging strand arm (frames 80 

to 90). From frame 100, PriA changed its direction again and translocated for 100 bp back toward 

the fork position.  
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Figure 4.7. Time-lapse AFM data of PriA translocation on the lagging strand arm of the F13 DNA 
substrate. A, the selected frames from the HS-AFM movie. The black arrows point to the PriA 
locations, while the green arrows point to the fork position when it is visible. B, traces of the 
complexes shown in A, corresponding to each frame. The F13 DNA substrate and PriA are colored 
blue and green, respectively. The stars mark the end of the parental arm. C, the position 
measurement of PriA on the F13 DNA substrate. The green dots mark the fork position when the 
fork is visible. The blue, black, and grey curves show the DNA contour length, PriA position 
measured from the end of the parental arm and the end of the lagging arm, respectively. 
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Thus, the time-lapse AFM experiments provided direct evidence for the long-range 

translocation of PriA and revealed that the direction of translocation could change. Since PriA 

unwinds DNA in the 3’-to-5’ direction, the change in the translocation direction indicates that PriA 

can switch between DNA strands in the duplex during the translocation. 

4.4 Discussion 

The AFM studies in this chapter revealed three novel properties of PriA in complex with the stalled 

replication fork in the presence of ATP; (1) the specificity of PriA in binding to the different fork 

DNA molecules with and without gaps at the fork position; (2) the ATP-dependent dynamics of 

PriA at the fork position and the long-range translocation of PriA mediated by ATP hydrolysis, and 

(3) DNA strand switching by PriA during translocation.  

4.4.1 The specificity of PriA in binding to fork DNA  

According to Chapter 3, PriA binds specifically to the fork position in the fork DNA substrates in 

the absence of ATP, with no detectable binding to the duplex DNA. This is consistent with previous 

studies that fork binding is essential for PriA to initiate the replication restart 

(184,185,197,198,207,208). In Figure 4.2, the control experiments also show that PriA binds 

exclusively to the fork position of both F3 and F13 DNA substrates in the absence of ATP. 

Furthermore, the control experiments in Figure 4.4 suggest that PriA does not bind to the duplex 

DNA regardless of the presence of ATP. 

In the presence of ATP, PriA unwinds a few base pairs of the lagging strand arm to facilitate 

the binding of DnaB and the further loading of the rest of the replication machinery onto the stalled 

replication fork (122,209). There are two conceivable ways for PriA to process the fork DNA 

substrates for DnaB. In one way, PriA binds to the fork position by placing the helicase domain on 

the 69-nt template leading strand (185). This allows PriA to translocate from the fork position 
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toward the parental arm, following the 3’-to-5’ direction. Alternatively, PriA binds to the fork 

position with the helicase domain positioned on the lagging strand arm (189). Then, PriA would 

translocate along the lagging strand arm away from the fork position if there is a small ssDNA gap 

on the lagging strand. The second way is available for the complexes on the F13 DNA substrate 

exclusively, because the F3 DNA substrate does not have an ssDNA region on the lagging strand 

required to initiate the ATP-dependent helicase activity. Additional interactions involving the 

winged-helix domain and the 3’-DNA binding domain further stabilize the binding of PriA to the 

fork position.  

The results in Figure 4.3 shows that PriA is mainly located at the fork position of both fork 

DNA substrates in the presence of ATP. As we discussed, PriA only needs to unwind several base 

pairs of the lagging strand arm for DnaB to load. However, the expected unwinding activity (up to 

5 bp) is too subtle to be detected in our system. According to the histograms (Figures 4.3 D and F), 

the peaks can be partially attributed to the unwinding of a small region of the duplex DNA at the 

fork position. Based on Keck’s model, PriA unwinds the duplex DNA by “pulling” the DNA across 

the helicase domain and couples the protein-protein interaction to the helicase activity, hereby 

loading the replisome onto the abandoned fork substrate (192). So, the peak in the histograms can 

also be due to this specific unwinding pattern. However, 20% of the overall PriA-DNA complexes 

are non-fork located on the F3 DNA substrate. On the F13 DNA substrate, the non-fork located 

PriA count for 40% of the overall complexes. These non-fork-located complexes suggest that PriA 

can translocate over large distances as well. We will discuss this in the next section (Chapter 4.4.2). 

4.4.2 The ATP-dependent translocation and dynamics of PriA 

The translocation of PriA is directly visualized by the static experiments (Figure 4.3) and the time-

lapse AFM experiments (Figures 4.5, 4.6, and 4.7). Figure 4.3 reveals the partition of PriA 

translocation on the parental duplex and the lagging strand arm of the fork DNA substrates. On the 

F3 DNA substrate (Figures 4.3 A, C, and D), most of the non-fork-located PriA translocated onto 
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the parental duplex. However, there are 20% of the non-fork-located PriA translocating on the 

lagging strand arm, whereas on the F13 DNA substrate, there is almost no preference for PriA 

translocating to the parental duplex over the lagging strand arm (Figures 4.3 B, E, and F). The 

difference in the translocation activities could arise from the specific fork structure at each DNA 

substrate. 

PriA requires at least 2 nt of ssDNA region (197) to initiate the helicase activity and there 

is only one ssDNA region on the F3 DNA substrate; therefore, the helicase domain of PriA binds 

to the 69-nt ssDNA at the fork, translocating onto the parental duplex from the template leading 

strand, in the 3’-to-5’direction. The F13 DNA substrate contains an extra 5-nt ssDNA region on 

the lagging strand arm at the fork position. This allows PriA to translocate on the F13 DNA 

substrate in two different ways. In one way, PriA initiates the helicase activity from the 69-nt single-

stranded leading strand template, translocating onto the parental duplex in the 3’-to-5’direction. In 

another way, PriA starts the helicase activity from the 5-nt ssDNA gap on the lagging strand 

template, translocating toward the end of the lagging strand arm, in the same 3’-to-5’direction. 

Since PriA translocates on the parental and lagging arms of the F13 DNA substrate in an almost 

equal ratio, it suggests that PriA originally initiates unwinding with no preference to the 5-nt 

ssDNA gap over the 69-nt ssDNA gap at the fork position. This is consistent with the data of PriA 

unwinding activity in bulk, which shows a similar unwinding efficiency of PriA on the parental 

duplex and lagging strand arm (52% on the parental duplex, 46% on the lagging strand arm, and 

2% on both duplex regions) (197). 

However, 20% of PriA translocated from the fork to the lagging strand arm of the F3 DNA 

substrate. This is similar to an earlier finding that PriA mostly unwound the parental arm of a 

substrate with shorter duplex regions compared to the F3 DNA substrate (197). There were also 

10% of the lagging strand arm unwound by the helicase activity. These can be assigned to the DNA 
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breathing at the fork, which provides the affinity of PriA to the lagging strand arm to some degree. 

Alternatively, it can be a novel property of PriA that enables it to alter the translocation activity. 

Furthermore, the data in Figure 4.3 shows PriA located far away from the fork position, 

which can be as distant as several hundred base pairs. No such complexes have been found from 

the control experiments performed in the absence of ATP (Figure 4.2). These data are consistent 

with the ATP-dependent translocation of PriA that results in fork-distal positions. However, it 

conflicts with the model proposed by Keck that PriA remains bound at the fork position and 

unwinds the duplex DNA (192).  

4.4.3 The strand-switching property of PriA 

The results from time-lapse AFM revealed a previously undiscovered property of PriA- the 

capability to alter the direction of the translocation by switching the bound-DNA template during 

translocation. Figures 4.5, 4.6, and 4.7 reveal that PriA can move towards and away from the fork 

position. The data in Figure 4.7 show that initially, the PriA translocated away from the fork 

position and then translocated towards the fork, which was in the opposite direction. These data 

also show that PriA altered the translocation direction multiple times. Since PriA translocates in 

the 3’-to-5’ direction, and it does not bind to dsDNA, the changes in translocation direction could 

result from strand switching or from backtracking along the same DNA strand, as discovered for 

HIM-6 (210). Typically, backtracking occurs over a few unwinding steps. However, in Figure 4.7, 

PriA translocated away and towards the fork over a distance of ~200 base pairs. Therefore, the 

changes in the translocation direction are due to the strand-switching property of PriA. This 

explains why PriA was observed on the lagging strand of the F3 DNA substrate; originally, PriA 

translocates along the template leading strand toward the parental duplex, then it switches to the 

other DNA template, translocating back to the fork position. In the experiments with no other 

proteins present in the microenvironment, PriA does not pause for DnaB loading. Instead, it 

continues translocating along the template lagging strand after switching the template strand. The 
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strand-switching property is not without precedent. It has been observed at the single-molecule 

level for UvrD, a helicase that unwinds DNA duplex in the 3’-to-5’ direction (211). 

4.4.4 Conclusion 

In conclusion, several novel properties of PriA in the ATP-dependent helicase activity were 

revealed in this chapter. We have shown that PriA remains mainly bound to the fork position in the 

presence of ATP. This corresponds to the previous studies and supports the recent model that PriA 

stays bound at the fork while unwinding the duplex DNA. However, the motor function of PriA 

drives it away from the fork position, translocating over distances as large as 400 bp. Importantly, 

PriA can translocate on both the parental duplex and the lagging strand arm of the DNA substrates, 

with the final direction dictated by the fork structure. PriA originally initiates unwinding with no 

preference to the 5-nt ssDNA gap over the 69-nt ssDNA gap at the fork position. Finally, we found 

that PriA can switch the bound-DNA strand to the other DNA strand during translocation, allowing 

it to change the translocation direction. As a result, PriA is capable of moving towards and away 

from the fork position. It is conceivable that strand switching serves to redirect PriA back to the 

fork position when the ssDNA gap is not present on the lagging strand so that the resumption of 

DNA replication can be directed to the lagging strand arm of the fork. In addition, it may also serve 

to clear the DNA near the fork position to ensure the unobstructed reloading of the replisome. 
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Chapter 5. RESTRICTION OF RECG TRANSLOCATION 

BY DNA MISPAIRING 

5.1 Introduction  

RecG is a monomeric DNA helicase that binds and regresses stalled DNA replication forks. In the 

process, it couples DNA unwinding to duplex rewinding, resulting in the extrusion of Holliday 

Junctions (34,41,205). For regression to occur, RecG forms an intimate complex with the stalled 

fork (212). Here, the wedge domain of RecG binds to the fork region, while the helicase domains 

are predicted to bind to the parental duplex ahead of the fork. Modeling of RecG revealed that it 

unwinds the replication fork through a structural transition with the helicase domains by 

hydrolyzing ATP. In addition to RecG, SSB plays an essential function in fork rescue by enhancing 

and controlling the activity of RecG in the early stages of the reaction (70,86,116,213).  

We have used AFM to understand the functions of RecG and SSB on a designed stalled 

replication fork (71,72). We demonstrated that the interaction of fork-bound SSB leads to 

remodeling of RecG during the loading process. As a result, RecG becomes capable of spontaneous 

translocation ahead of the replication fork over distances as large as 200 bp, and this was directly 

visualized by HS-AFM (72). During translocation, the helicase domains unwinds the dsDNA in a 

3’-to-5’ direction, and regression is inhibited by reversing the polarity of the phosphate backbone 

in either leading or lagging strands (41). Since the helicase domains are essential to the movement 

of RecG and translocation is inhibited by the altered phosphodiester backbone, it is conceivable 

that duplex imperfections, such as those induced by DNA damaging agents or a failure to correct 

errors during DNA replication, may impair the interaction of RecG with a stalled DNA replication 
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fork. This may function as a signal to RecG that the fork structure is compromised so that instead 

of regressing the fork, RecG dissociates.  

To test this, we assembled the fork DNA substrates with duplex imperfections in the 

parental duplex. The duplex imperfections include a C-C mismatch or a G-bulge, positioned either 

10 or 30 bp upstream of the fork. These positions are either within or outside the footprint of the 

helicase bound to a fork (212,214). Results herein show that when a duplex imperfection is placed 

10 bp from the fork, the binding efficiency of RecG is negatively impacted and cannot be rescued 

by SSB to the levels observed for undamaged DNA. In contrast, a G-bulge or C-C mismatch placed 

30 bp from the fork does not affect RecG binding in the absence or presence of SSB. Instead, these 

duplex distortions restrict RecG sliding to the region between the duplex imperfections and the fork 

itself. Collectively, these data show that DNA substrates with damage in the immediate vicinity of 

the fork position will likely not be repaired by a fork regression pathway, as the damage impairs 

the binding of RecG to the fork resulting in an inability to regress the stalled fork. 

5.2 Methods  

5.2.1 Purify the proteins  

All the proteins in this chapter were provided by Dr. Piero Bianco, University of Nebraska Medical 

Center.  

RecG protein was purified as described previously (71). Briefly, the protein was eluted 

from a 100 ml Q-Sepharose column equilibrated in buffer A [20 mM Tris-HCl (pH 8.5), 1 mM 

EDTA, 1 mM DTT, 10 mM NaCl], using a linear salt gradient (10–1000 mM NaCl), with RecG 

eluting between 250 and 360 mM NaCl. The pooled fractions were then subjected to heparin FF 

and hydroxyapatite chromatography. Pooled fractions from the hydroxyapatite column were 

dialyzed overnight in S buffer [10 mM KPO4 (pH 6.8), 1 mM DTT, 1 mM EDTA and 100 mM 
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KCl]. The protein was applied to a 1 ml MonoS column and eluted using a linear KCl gradient 

(100–700 mM) with RecG eluting at 350 mM KCl. The fractions containing RecG were pooled 

and dialyzed overnight against storage buffer [20 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1 mM 

DTT, 100 mM NaCl and 50% (v/v) glycerol]. The protein concentration was 

spectrophotometrically determined using an extinction coefficient of 49,500 M-1 cm-1 (71). 

SSB protein was purified from strain K12∆H1∆trp as described previously (86). The 

concentration of the purified SSB protein was determined at 280 nm using an extinction coefficient 

of 30, 000 M-1 cm-1. The site size of SSB protein was determined to be 10 nucleotides per monomer 

by monitoring the quenching of the intrinsic fluorescence of SSB that occurred on binding to 

ssDNA(116,213).  

5.2.2 Assemble the DNA substrates  

The fork DNA substrates were assembled from two duplexes and the core fork segment, following 

our previous methodology. The difference in the assembly of the F3 DNA substrate and the 

mismatching DNA substrates (F6, F7, and F8 DNA substrates) is the core segment. To assemble 

the core segment of the F6 DNA substrate, O33 was replaced by O35 (5’-

CACTGACTCCCTGCGCAAGGCTAACAGCATCACACACATTAACAATTCTAACATCTG

GGTTTTCATTCTTTGGGTTTCACTTTCTCCAC-3’). To assemble the core segment of the F7 

DNA substrate, O30 was replaced by O30-bulge (5’-

TCATCTGCGTATTGGGCGCTCTTCGCGCTTCCTATCT-3’). For the F8 DNA substrate, O30 

was replaced by O30-mismatch (5’-TCATCTGCGTATTGGGCGCTCTTCCCCTTCCTATCT-

3’).  

5.2.3 Prepare the protein-DNA complexes  
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SSB/DNA complex was prepared by mixing the SSB tetramer with the DNA substrates 

(molar concentration: 20 nM) in a molar ratio of 2:1, and incubated in 10 µl of binding buffer [10 

mM Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, 1 mM DTT] for 10 min at room temperature. 

RecG/DNA complex was prepared by mixing RecG with the DNA substrate (molar 

concentration: 20 nM) in a molar ratio of 4:1, and incubated in 10 µl of binding buffer for 10 min 

at room temperature. 

SSB/RecG/DNA complex was prepared by mixing SSB tetramer (concentration: 20 nM) 

and DNA in the molar ratio of 1:2 in 30 µl of binding buffer for 10 min at room temperature. The 

RecG protein (4:1 molar ratio to DNA) was added into the mixture and incubated for an additional 

30 min. The final molar ratio of DNA: SSB: RecG was 1:2:4, and the final DNA concentration was 

2 nM before deposition.  

5.2.4 Acquire and analyze the AFM images 

1-(3-aminopropyl) silatrane (APS) functionalized mica was prepared as described in Chapter 2.3.4 

and used as the AFM substrate for all experiments. 10 µl of the sample were deposited onto the 

APS functionalized mica for two minutes. The mica was then rinsed with DDI H₂O and dried with 

a gentle argon flow. Images were acquired using tapping mode in the air on a MultiMode 8, 

Nanoscope V system (Bruker, Santa Barbara, CA) using TESPA probes (320 kHz nominal 

frequency and a 42 N/m spring constant) from the same vendor.  

The dry sample AFM images were analyzed using the FemtoScan Online software package 

(Advanced Technologies Center, Moscow, Russia). The SSB positions were measured from the 

end of the short arm to the center of the protein. The DNA contour length was then obtained by 

continuously measuring to the other end of the DNA substrate. The yield of protein-DNA 

complexes was calculated from the ratio of the number of complexes to the total number of DNA 

molecules. 
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5.3 Results  

The DNA substrates that have lesions on the parental strand of the stalled DNA replication forks 

are shown in Figure 5.1. We took the F3 DNA substrate as a control, as the duplex regions are of 

different lengths, which allows us to distinguish between the parental and lagging strand arms of 

the fork in AFM images (71). This fork was used to study RecG binding activities and SSB-RecG 

interactions, representing the preferred fork substrate for RecG, as shown previously 

(41,42,72,205). The F6, F7, and F8 DNA substrates are similar to the F3 DNA substrates, except 

for the addition of a mismatch or bulge in the parental duplex region. The F6 DNA substrate 

contains a C-C mismatch at 10 bp upstream of the fork position. The F7 DNA substrate contains a 

single G-bulge on the parental arm positioned 30 bp upstream of the fork, while the F8 DNA 

substrate contains a C-C mismatch at the same position. The C-C mismatch can change the local 

structure of DNA- inducing global helical bending or opening, and affecting the depth and width 

of minor groove in the center of the helix (215,216). The G bulge in the F7 DNA substrate contains 

an extra G on one DNA strand, and there are two C bases, one on each side of G, which makes it 

less stable than other lesions (217). The mismatch or bulge positions were designed to be within 

the RecG thermal sliding distance of SSB bound to a fork (71,72,214). Furthermore, the 10 bp 

imperfection is within the RecG-fork footprint, whereas the 30 bp imperfections are outside this 

region (212,214). 
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Figure 5.1. The design for the lesions in the stalled replication fork. A, the original F3 DNA 
substrate, which contains 69 nt ssDNA between the two perfectly paired DNA duplexes (280bp 
and 393bp). B, the F6 DNA substrate, containing the C-C mismatch on the parental duplex at 10 
bp away from the fork position. C, the F7 DNA substrate, containing a single G bulge at 30 bp 
upstream of the fork. D, the F8 DNA substrate, having a C-C mismatch on the parental duplex at 
30 bp away from the fork. 
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5.3.1 The interaction between SSB and RecG on the designed fork DNA substrates 

As shown in Figure 5.2, both SSB and RecG can be observed bound to the same DNA molecule 

(indicated by the black arrows) in the absence of ATP. SSB and RecG can be readily discerned 

based on the size analyses; this is presented in the insets of Figure 5.2, with the larger feature being 

SSB (blue arrow) and the smaller being RecG (red arrow). Furthermore, for most DNA molecules 

with both proteins bound, SSB and RecG are at distinct positions and seldom colocalize. There are 

some DNA molecules with only a single feature, and analysis shows that these are SSB-DNA 

complexes.  

To assess the ability of SSB to load RecG onto the fork substrates, we measured the yield 

of protein-DNA complexes in RecG only and SSB-RecG experiments. Results show that the yield 

of RecG complexes is higher when SSB is added first compared to when there is RecG only (Figure 

5.2 E). The graph shows that when duplex imperfection is positioned 10 bp from the fork (the F6 

DNA substrate), binding of RecG is inhibited 2-fold, regardless of the presence of SSB. In contrast, 

when the duplex imperfection is positioned 30 bp away from the fork, RecG binding with or without 

SSB loading is unaffected, with F7 and F8 DNA substrates producing yields similar to that on the 

F3 DNA substrate. This suggests that when the imperfection is within the RecG-fork footprint, 

helicase binding is impaired. Additionally, this also indicates that the initial loading site of RecG 

by SSB encompasses 10 base pairs from the fork. 



89 
 

 

Figure 5.2. AFM analyses of the RecG-SSB-DNA complexes on each DNA substrate in the 
absence of ATP. A-D, the AFM images of SSB and RecG on the F3, F6, F7 and F8 DNA substrate, 
respectively. The scale bar is 200 nm. Black arrows point to the double-protein complexes. The 
insets (200 nm × 200 nm) are the zoomed images of typical double-feature complexes; the blue 
arrows point to SSB, and the red arrows point to RecG protein. E, yields of SSB-RecG complexes 
on the fork DNA substrates. In the absence of SSB (orange bars), the binding yield of RecG on the 
DNA substrates are 10.6 ± 1.9% (on the F3 DNA substrate), 5.4 ± 1.2% (on the F6 DNA substrate), 
7.4 ± 1. 5% (on the F7 DNA substrate) and 7.3 ± 1.5% (on the F8 DNA substrate), respectively. 
With SSB premixed with DNA substrates (blue bars), the RecG binding yields increased to 27.4 ± 
5.3%, 11.6 ± 4.1%, 24 ± 3.6%, and 21.3 ± 3%, respectively. 
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5.3.2 The restriction of RecG translocation by the mispairing on the parental duplex 

We then investigated whether SSB can remodel RecG on all fork substrates and allow RecG to 

translocate over the duplex arms of the fork. To do this, we mapped the positions of SSB and RecG 

on all four DNA substrates, and the data are shown in Figure 5.3. SSB and RecG positions were 

measured from the end of the parental duplex (short arm). Since SSB binds specifically to the 

ssDNA of the fork DNA substrates, the position of SSB was set to 0 on the map. When RecG 

translocates on the parental strand, the position of RecG has a negative value (below SSB in the 

graph). When RecG translocates on the lagging strand, the position of RecG has a positive value 

(above SSB in the graph).  
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Figure 5.3. The mapping of protein positions on each DNA substrate. A-D, mapping of RecG 
positions relative to the SSB binding site (the fork position) on the F3, F6, F7, F8 DNA substrate, 
respectively. The map is constructed relative to the position of SSB position, indicated with 
triangles, while RecG is marked with circles.  
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In 75% of cases, RecG binds to the parental duplex of the F3 DNA substrate, with the 

translocation distance being 48 ± 13 bp (Figure 5.4 A). While on F6, F7 and F8 DNA substrates, 

RecG binds to the parental duplex in 60%, 75% and 74% of the cases, respectively. This is 

consistent with our previous finding; when the helicase is loaded onto the fork by SSB, RecG is 

visualized preferentially on the parental duplex arm of each substrate (71). When a DNA 

imperfection is positioned 10 bp from the fork (the F6 DNA substrate), the translocation preference 

that RecG is loaded onto the parental duplex decreased to 60%, compared to that of the 75% on the 

F3 DNA substrate. This is accompanied by an increase in inappropriate loading onto the lagging 

strand arm, up from 25 to 40%. Finally, the translocation distance for RecG on the parental duplex 

arm of this fork is 1.6-fold lower, which is at 30 ± 11 bp (Figure 5.4 B). In contrast, when either a 

C-C mismatch or a G-bulge was positioned 30 bp from the fork junction, the loading of RecG by 

SSB and the translocation preference are unaffected by the DNA imperfection. This follows as the 

duplex imperfection is positioned outside the footprint of RecG bound to a fork. However, the 

translocation distances for the F7 and F8 DNA substrates are measured to be 26 ± 11 bp and 26 ± 

10 bp (Figures 5.4 C and D), respectively, which are 1.8-fold shorter than those on the F3 DNA 

substrate.  
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Figure 5.4. The analysis for the RecG-SSB distance. A-D, the histograms of the distance between 
the SSB and RecG on the parental duplex of the F3, F6, F7, and F8 DNA substrate, respectively. 
Histograms were approximated with Gaussian distribution, and the values corresponding to 
maxima on these distributions are shown in each histogram. E-H, the histograms of the distance 
between the SSB and RecG on the lagging strand arm of the F3, F6, F7, and F8 DNA substrate, 
respectively. 
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In contrast to the narrow distributions of translocation distances on parental duplex arms 

observed for each fork substrate, the translocation distance of RecG on the lagging strand arms arm 

varies over a wide range (Figures 5.4 E-H). There is no preferred translocation distance of RecG 

on the lagging strand. These data show that the C-C mismatch and G-bulge at 30 bp away from the 

fork limit the translocation of RecG on the parental arm to the region between the mismatch and 

the fork itself. Note that the translocation distance of RecG on the F6 DNA substrate is also 1.6-

fold lower than that observed on undamaged DNA, where the duplex imperfection is 10 bp from 

the fork. It is conceivable that the C-C mismatch at this position perturbs the helicase domains from 

the proper association with the DNA duplex so that dissociation is favored.  

5.4 Discussion 

The RecG DNA helicase plays a crucial role in stalled replication fork rescue, where it regresses 

forks where replisomes were impeded. In the previous study, we found that the helicase is 

remodeled by SSB so that it slides on the parental duplex DNA ahead of the fork prior to the onset 

of fork regression, using thermal energy (71). We proposed that this sliding can test the integrity 

of the parental DNA ahead of the fork. Consequently, if duplex imperfections are encountered, this 

could result in RecG disengaging from the fork, thereby controlling the frequency of fork regression. 

To test this, we used AFM to visualize the effects of duplex lesions on the thermal sliding of RecG 

in the presence of SSB.  

5.4.1 The effects of SSB on RecG binding to the fork DNA substrates 

Our previous study suggested that fork-bound SSB enhances the loading of RecG onto forks. 

According to the yield calculated from each experiment, DNA mixed with RecG only or mixed 

with both SSB and RecG, the binding of RecG is increased when SSB is added to the DNA first 

(Figure 5.4). The binding is followed by thermal sliding predominantly on the parental duplex of 
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the fork DNA substrate, which is mediated by the helicase domains. In the absence of SSB, RecG 

is observed bound exclusively to the fork via its wedge domain. However, when SSB is bound to 

the fork, RecG is loaded onto the duplex regions with a preference for the parental duplex. This 

suggests that for a properly oriented SSB tetramer bound with the correct polarity, loading of RecG 

by one of the four available linker regions has dramatic effects on thermal sliding mediated by the 

helicase domains.  

It has been proposed that, for SSB-RecG interaction to occur, the PXXP motifs in one 

intrinsically disordered linker of DNA-bound SSB bind to the oligonucleotide-oligosaccharide 

binding fold (OB-fold) in the wedge domain of RecG, which could result in the remodeling of 

RecG by SSB and the loading of RecG onto the DNA substrate (194,195,218). As the RecG OB-

fold is required for fork regression and is occluded during SSB binding, the only way for RecG to 

bind to DNA is via its helicase domains (69,212,213). Once loaded, the helicase slides using 

thermal energy on the parental duplex of stalled replication forks, and this was proposed to be a 

duplex integrity-sensing mechanism (72). Once the helicase returns to the fork region, ATP 

hydrolysis-coupled regression ensues concomitant with the displacement of SSB (41,73). Here, 

RecG generates ≥35 pN of force to dislodge the first SSB tetramer, which communicates via the 

linker/OB-fold network of interactions to the remaining DNA-bound SSB tetramers, resulting in 

their cooperative dissociation (73).  

5.4.2 The translocation of RecG limited by the lesions in the parental duplex 

Based on our previous study, SSB remodels RecG and loads the helicase onto the parental duplex 

of the fork substrate (71,72). When the parental duplex has lesions (the F7 and F8 DNA substrates), 

the translocation distance is limited to the range of the distance between the fork and the lesion 

positions. On the F6 DNA substrate, the translocation distance is also lower than that on the F3 
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DNA substrate, suggesting that the CC-mismatch at this position perturbs the helicase domains 

from properly associating with the DNA duplex so that dissociation is favored.  

The correctly loaded RecG bound to the parental duplex slides within a limited range while 

sensing the integrity of the parental duplex region. If the duplex integrity is intact, then in the 

presence of ATP, fork regression coupled to SSB displacement ensue. In other cases, the helicase 

can be improperly loaded onto the lagging strand arm of the fork (Figures 5.4 E-H), resulting in 

aimless sliding either towards or away from the fork (directionality cannot be ascertained from the 

AFM images). The net result is that this improperly loaded RecG will not regress the fork. Instead, 

it could translocate away from the fork, or if it does return to the fork, it could unwind the fork in 

the presence of ATP.  

5.4.3 Conclusion  

This chapter tested our hypothesis that if duplex imperfections could result in RecG disengaging 

from the fork and control the fork regression frequency. We found that a C-C mismatch or G-bulge 

placed 30 bp ahead of the fork has no effect on the efficiency of SSB loading but restricts RecG 

sliding to within the 30 bp from the fork. In contrast, on the DNA substrate with a C-C mismatch 

positioned 10 bp from the fork, the efficiency of RecG-loading by SSB decreases, but sliding is 

unrestricted for those loaded helicase molecules. These suggest that RecG can sense the integrity 

of the parental duplex ahead of the fork, and only when the duplex is intact will fork regression 

ensue. 
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Chapter 6. DNA FORK REGRESSION DYNAMICS 

INDUCED BY RECG HELICASE 

6.1 Introduction  

We have demonstrated that the interaction of fork-bound SSB leads to the remodeling of RecG 

during the loading process onto the DNA (71,72). We then characterized that the lesions in the 

parental duplex limit the translocation of RecG in Chapter 5. As the fork substrates used in the 

previous study were static, fork regression could not be visualized, and the interplay between SSB 

and RecG during this dynamic process could not be studied. Therefore, we constructed a mobile 

fork substrate to visualize the fork regression in the dynamic situation, which contains a 41 bp 

complementarity between the template leading strand and the template lagging strand downstream 

the fork region. It was anticipated that it would interconvert between two states, S1 and S2, driven 

by spontaneous branch migration.  

As expected, in the absence of proteins, these two states were directly observed using AFM. 

Furthermore, in the presence of SSB, a bimodal distribution for the protein position corresponding 

to the two states of the fork was observed. In the absence of ATP, RecG bound preferentially to 

state S1, while in the presence of ATP, RecG regressed the fork and displaced SSB in the process. 

SSB maintains the fork structure (state S2) following regression by RecG. These findings show 

that the DNA helicase couples DNA unwinding to duplex rewinding and the displacement of SSB 

bound to the DNA, consistent with a previous single-molecule study (41). 

6.2 Methods  

6.2.1 Purify the proteins  
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All the proteins in this chapter were provided by Dr. Piero Bianco, University of Nebraska Medical 

Center. SSB and RecG proteins were purified as described in references (71,86,113). 

6.2.2 Assemble the DNA substrates  

The mobile fork DNA substrate (F12 DNA substrate) was assembled from two duplex-DNA 

segments and a core fork segment, similar to our previous methodology in Chapters 3, 4 and 5. The 

duplex-DNA segments were the same as used in Chapters 3 and 4. The core fork segment was 

assembled by annealing the ssDNA oligos (O30: 5’-

TCATCTGCGTATTGGGCGCTCTTCCGCTTCCTATCT-3’, O45: 5’-

TCGTTCGGCTGCGGCGAGCGGGATCTAGTAGCTCTGCAGCACTGCATAATTATCAGC

TCACTCATA-3’, O46: 5’- 

GCTTATGAGTGAGCTGATAATTATGCAGTGCTGCAGAGCTACTAGATCGCCGCTCGC

CGCAGCCGAACGACCTTGCGCAGCGAGTCAGTGAGATAGGAAGCGGAAGAGCGCCC

AATACGCAGA-3’, O47: 5’- 

CACTGACTCGCTGCGCAAGGTCGTTCGGCTGCGGCGAGCGGCGATCTAGTAGCTCTG

CAGCCTTCATCTTTGGGTTCACTTTCTCCAC-3’) in the same molar ratio. The duplex DNA 

segments and the core fork segment were ligated together in a molar ratio of 1:1:1 at 16°C overnight. 

The final products were purified with HPLC using a TSKgel DNA-STAT column.  

6.2.3 Prepare the protein-DNA complexes  

SSB/DNA complex was prepared by mixing the SSB tetramer with the DNA substrates (molar 

concentration: 20 nM) in a molar ratio of 2:1, and incubated in 10 µl of binding buffer [10 mM 

Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, 1 mM DTT] for 10 min at room temperature. 

RecG/DNA complex was prepared by mixing RecG with the DNA substrate (molar 

concentration: 20 nM) in a molar ratio of 4:1, and incubated in 10 µl of binding buffer for 10 min 

at room temperature. 
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SSB/RecG/DNA complex was prepared by mixing SSB tetramer (concentration: 20 nM) 

and RecG in the molar ratio of 1:2 in 30 µl of binding buffer on ice for 30 min. The DNA substrate 

was then mixed with the SSB-RecG complexes in a molar ratio of 1:2 and incubated in 10 µl of 

binding buffer for 30 min at room temperature. The final molar ratio of DNA: SSB: RecG was 

1:2:4. 

The binding buffer for the experiments with ATP has the following composition:10 mM 

Tris-HCl (pH 7.5), 50 mM NaCl, 5 mM MgCl2, 1 mM DTT.  

6.2.4 Acquire and analyze the AFM images 

1-(3-aminopropyl) silatrane (APS) functionalized mica was prepared and used as the AFM 

substrate for all experiments. Ten microliters of the sample were deposited onto the APS 

functionalized mica for two minutes. The mica was rinsed with DDI H₂O and dried with a gentle 

argon flow. Images were acquired using tapping mode in the air on a MultiMode 8, Nanoscope V 

system (Bruker, Santa Barbara, CA) using TESPA probes (320 kHz nominal frequency and a 42 

N/m spring constant) from the same vendor.  

The dry sample AFM images were analyzed using the FemtoScan Online software package 

(Advanced Technologies Center, Moscow, Russia). The SSB positions were measured from the 

end of the short arm to the center of the protein. The DNA contour length was then obtained by 

continuously measuring to the other end of the DNA substrate. The yield of protein-DNA 

complexes was calculated from the ratio of the number of complexes to the total number of DNA 

molecules. 

6.3 Results 

6.3.1 The two dynamic states of the F12 fork substrate 
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The F12 DNA substrate used in this study has a 3’-end, 69-nt ssDNA region inserted between two 

heterologous duplex regions of different lengths (Figure 6.1), similar to the static fork DNA 

substrates that we designed for the previous chapters. As shown in the schematic of Figure 6.1, the 

duplex region on the left of the fork position corresponds to the parental duplex, while the duplex 

region on the right corresponds to the lagging strand arm of the fork substrate. The single-strand 

region at the fork position is the template leading strand. In contrast to the F3 DNA substrate in 

Chapters 3, 4 and 5, the central core of the F12 DNA substrate is homologous as there is a 41-nt 

region of ssDNA at the fork position, which is complementary to the template lagging strand. This 

design allows the fork to migrate between state S1 and state S2, as shown in Figure 6.1. At the state 

S1, the length of the parental duplex (the short duplex region) is 280 bp, and the length of the 

lagging strand arm is 423 bp, while the ssDNA region at the fork position is 69 nt. At the state S2, 

the length of the parental duplex is 321 bp, with the 41-nt complementary region of the ssDNA at 

the fork position annealing to the template lagging strand. Hence, the length of the lagging strand 

arm decreases to 382 bp. This design of the mobile fork is predicted to permit the study of the fork 

regression process. 
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Figure 6.1. Dynamic fork design for this chapter. The F12 DNA substrate has a 3’-end 69-nt 
ssDNA region flanked by the duplex regions of different lengths. Within the ssDNA region, there 
is a 41-nt region (colored red) complementary to the template lagging strand. Consequently, the 
fork can equilibrate between two states (designated S1 and S2). Interconversion between S1 and 
S2 involves duplex DNA formation of the complementary sequences in the ssDNA and the 
template lagging strand. This results in a net increase of the parental duplex by 41 bp and a decrease 
in the lagging strand arm. 
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We imaged the F12 DNA substrate using AFM to determine if the fork can migrate 

between the two states. Figure 6.2 A shows a representative AFM image of the F12 DNA substrate. 

The zoomed-in images i and ii are the observation of sharp kinks at the fork position. The kink can 

be explained by the nick at the fork joint. The long ssDNA at the fork position can also contribute 

to the kink formation. This interpretation is supported by the kink position measurement of the 

distance from the end of the parental duplex to the kink position. The distribution of fork positions 

and the full length of DNA are shown in Figures 6.2 B and C. The histogram for the fork position 

can be approximated by a bimodal Gaussian distribution. The peak positions are 281 ± 9 bp and 

308 ± 12 bp, which corresponds to the two states of the F12 DNA substrate. This suggests that the 

fork is dynamic between two states as designed. The DNA contour length measurement for the F12 

DNA substrate is shown in Figure 6.2 C. The histogram is approximated with Gaussian distribution, 

and the peak is centered at 700 ± 27 bp, which corresponds to the designed length of the F12 DNA 

substrate (703 bp).  
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Figure 6.2. AFM analysis for the fork position of the F12 DNA substrate (the kinked DNA 
molecules). A, typical AFM images of the F12 DNA substrate. Zoomed-in images (300 nm × 300 
nm) of selected molecules with a clear appearance of the kink are shown to the right (i and ii). B, 
the distribution for fork positions measured from the end of the parental duplex. C, the contour 
length measurement for the F12 DNA substrate. The distributions were fitted by Gaussians, and 
the peak values Xc, defined by the maxima values ± S.D., are indicated on the histograms. 
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6.3.2 The assembly of a Holliday Junction on the F12 DNA substrate 

To further confirm the mobility of the fork position between the two states, a 69-nt ssDNA, which 

is complementary to the 69-nt ssDNA of the F12 DNA substrate, was annealed to the fork DNA 

substrate. Given the self-complementarity at the fork position, the annealing can lead to the 

structures shown in Figure 6.3 A. If the fork is at state S1, the annealing will form a three-way 

junction on the F12 DNA substrate. However, a four-way Holliday Junction will be formed if the 

fork was at state S2.  
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Figure 6.3. AFM analysis of the fork position on the F12 DNA substrate probed by annealing with 
a complimentary 69-nt ssDNA. A, the schematic of the annealed DNA substrate. The 
complementary 69-nt ssDNA is colored in gray. B, representative AFM image of the annealed fork 
DNA substrate with a 69-nt ssDNA. Inset (size: 300nm × 300nm) shows the enlarged images of 
the annealed F12 DNA substrate. C, the distribution for the dsDNA position at the fork measured 
from the end of the parental duplex. D, the contour length measurement for the annealed F12 DNA 
substrate. E, the selected frames of the F12 DNA substrate from the HS-AFM movie. Frames 1 and 
2 show the 3-way junction, while frames 3 and 4 show the 4-way junction. The arrows indicate the 
fork position. F, the schematic of the substrate and changes of the fork position in the movie. The 
DNA molecule is aligned to the end of the parental duplex and colored in orange. The dsDNA at 
the fork position is colored in blue.   
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The representative AFM image of the annealed substrate is shown in Figure 6.3 B. We 

mapped the fork positions in Figure 6.3 C. The histogram was fitted with a bi-distribution Gaussian. 

The peaks are centered at 283 ± 6 bp and 309 ± 11 bp, which correspond to the two peaks measured 

for the kink position on the free DNA substrate (Figure 6.2 B). The distribution for the contour 

length measurement was fitted with a single-peak Gaussian with the peak centered at 700 ± 26 bp, 

as shown in Figure 6.3 D. The dynamic of Holliday junction was also visualized with HS-AFM 

and the selected frames are shown in Figure 6.3 E. The measurement of the ssDNA position from 

the selected frames in Figure 6.3 F suggests that the fork is dynamic during data acquisition.  

It is also necessary to determine whether the binding of SSB would affect the equilibrium 

between the states S1 and S2. Therefore, we prepared samples of SSB-F12 DNA substrate 

complexes to mimic fork regression buffer conditions. The typical AFM image of SSB-F12 

complexes in the absence of ATP is shown in Figure 6.4 A. The SSB protein appears as a bright 

globular feature. The SSB position on the F12 DNA substrate was measured from the end of the 

parental strand to the center of the protein and shown in Figure 6.4 B. The distribution can be fitted 

with a bi-distribution Gaussian with peaks centered at 285 ± 18 bp and 317 ± 13 bp, which correlate 

with the fork position on free DNA substrate (Figure 6.2 B). This result suggests that SSB binds to 

the fork at both states and does not affect the migration of the fork position.  
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Figure 6.4. AFM results of SSB-F12 DNA substrates in the absence of ATP. A, a representative 
image of the SSB-F12 complex in the absence of ATP. B, the distribution of SSB position fitted by 
bi-distribution Gaussian. 
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6.3.3 The fork regression of the F12 DNA substrate by RecG  

The experiments with both SSB and RecG bound to the F12 DNA substrate were performed. In 

these experiments, SSB and RecG were premixed and then added to the F12 DNA substrate. The 

experiments were performed in the absence and presence of ATP separately. Typical AFM images 

are shown in Figures 6.5 A and C. Most protein-DNA complexes have one protein bound onto the 

DNA substrate, while some DNA molecules have double-feature complexes with one feature larger 

than the other. The volume of the protein in the single-feature complex and the larger one in double 

particles in Figure 6.5 A was measured, and the average volume is 155.8 ± 30 nm3, which is close 

to the volume of SSB (122.8 ± 22 nm3). This suggests that the protein in the single-feature complex 

or the larger protein in the double-feature complex is SSB, while the smaller protein in the double-

feature complex corresponds to RecG. To check if RecG can change the binding of SSB to the F12 

DNA substrate, we measured the position of SSB and the histograms are displayed in Figures 6.5 

B and D. In the absence of ATP (Figure 6.5 B), the distribution of SSB is still broad and can be 

fitted by the bi-distribution Gaussian. The peak values are 278 ± 12 bp and 311 ± 11 bp, consistent 

with the distribution observed for SSB only with DNA (Figure 6.4 B). In contrast, when the buffer 

contains ATP, the distribution of SSB positions is narrow and can be fitted with a single peak 

Gaussian (Figure 6.5 D). The average position is 313 ± 14 bp, which corresponds to state S2 of the 

F12 DNA substrate. These results suggest that in the presence of ATP, RecG can rewind the 

complementary region on the fork DNA substrate, displacing SSB from the ssDNA.  
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Figure 6.5. AFM analyses of the RecG-SSB-F12 complexes in the absence and presence of ATP. 
A, representative images of RecG-SSB-F12 complexes in the absence of ATP. Arrows point to the 
typical complexes. The two insets show the typical single and double feature complexes on the F12 
DNA substrate (size: 300nm ×300nm). B, the distribution of SSB in the complexes, in the absence 
of ATP. The histogram is fitted by the bi-distribution Gaussian. C, representative images of RecG-
SSB-F12 complexes presence of ATP. D, the distribution of SSB in the complexes, in the presence 
of ATP. The histogram is fitted by a single peak Gaussian distribution. 
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To investigate if the shift of SSB position was caused by the fork regression, we performed 

experiments with the non-hydrolyzable ATP-analog, ATPγS, instead of ATP. First, the position of 

SSB in the complexes was measured (Figure 6.6 A). The histogram was fitted with a two-peak 

Gaussian distribution, with the average positions at 289 ± 7 bp and 313 ± 8 bp, which are very close 

to positions of SSB in the absence of ATP (Figure 6.4 B). As a control, to determine whether ATP 

can change the binding activity of SSB to F12, the sample of SSB-F12 in the presence of ATP was 

prepared, and the positions of SSB were measured (Figure 6.6 B). The fitting of the histogram by 

Gaussian distribution shows two peaks centered at 290 ± 16 bp and 316 ± 7 bp. The distribution of 

the SSB position on the F12 DNA substrate is consistent in the absence and presence of ATP or 

ATPγS, suggesting that ATP does not affect the position of SSB on F12.  
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Figure 6.6. The SSB position in the complex. A, the distribution for SSB position in the RecG-
SSB-DNA complexes in the presence of ATPγS. The histogram is fitted by the bi-distribution 
Gaussian. B, the distribution for SSB position in the SSB-DNA complexes in the presence of ATP. 
The histogram is fitted by the bi-distribution Gaussian. 

 

  



112 
 

Similar experiments were done for RecG to determine whether fork position is altered in 

the presence of nucleoside triphosphate (Figure 6.7). In the absence of ATP, the RecG position on 

the F12 DNA substrate can be fitted with a single peak, and the position 281 ± 16bp corresponds 

to state S1 of the fork substrate (Figure 6.7 A). In the presence of ATP, the histogram of the RecG 

position becomes broad and can be fitted with two Gaussian distributions (Figure 5.7 B). The peak 

positions are 280 ± 15 bp and 310 ± 16 bp. The maximum at 310 bp suggests that RecG binds to 

the fork and regresses it from state S1 to state S2. Hence, in the presence of ATP, RecG catalyzes 

the regression of the fork from state S1 to S2. However, due to the design of the fork, a fraction of 

the regressed forks revert to S1 once RecG disengages from the DNA, which explains the broad 

distribution of RecG position in Figure 6.7 B.  
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Figure 6.7. The RecG position in the RecG-DNA complex. A, the distribution for RecG position 
in the RecG-DNA complexes in the absence of ATP. The histogram is fitted by the Gaussian 
distribution. B, the distribution for RecG position in the RecG-DNA complexes in the presence of 
ATP. The histogram is fitted by the bi-distribution Gaussian. 
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6.4 Discussion 

As a static fork was used in the previous study, it was impossible to study the fork regression 

catalyzed RecG. Therefore, a dynamic fork design was required, designated F12 DNA substrate. It 

is shown that the designed fork substrate equilibrates between two states: S1 (a stalled replication 

fork) and S2 (a regressed fork). Additionally, SSB binds to each state without a clear preference. 

The primary finding is that RecG drives fork regression and displaces SSB from DNA in the process, 

consistent with previous single-molecule studies with magnetic tweezers. 

6.4.1 The fork regression by RecG in the presence of ATP 

The binding of RecG to the F12 DNA substrate remains transient so that the complex yield remains 

as low as 6.3% and is unaffected by the presence of ATP. Furthermore, the presence of ATP does 

not change the partition of the F12 DNA between states S1 and S2 (Figure 6.7). This follows 

because of the transition from state S1 to S2 due to the fork regression by RecG. However, a fraction 

of the regressed fork will revert back to S1, thereby reestablishing the equilibrium. In contrast, 

when SSB is present in the regression reaction, it binds to the fork at state S2, trapping the fork and 

producing an increase in the ratio of S2:S1 (Figure 6.5). The RecG-dependent shift in this ratio was 

only observed in the presence of ATP since the equilibrium between S1 and S2 was unaltered in 

the absence of ATP or the presence of the non-hydrolyzable analog ATPγS. The control 

experiments demonstrate that SSB alone does not alter the S1:S2 ratio, and it can maintain the 

status of the fork state after binding to F12 DNA substrate. Therefore, the only way this ratio could 

be altered is if RecG bound to the SSB-DNA complex and then hydrolyzed ATP to drive fork 

regression, concomitant with the SSB displacement. 

Similar to previous studies with the static F3 fork DNA substrate, we observed the SSB-

mediated remodeling of RecG based on the direct visualization of double-feature complexes on the 

F12 DNA substrate. In these complexes, the SSB position coincides with the location of the fork, 
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whereas RecG binds to DNA far from the fork position. Thus, regardless of whether the fork is 

static or dynamic, SSB-loading of RecG concomitant with helicase remodeling is observed. This 

suggests that remodeling is intrinsic to the SSB-mediated loading process. Although the remodeling 

of RecG by SSB was observed on the dynamic fork, the yield of the double-feature complexes (~5% 

on F12 DNA substrate) was lower than that on the static fork F3 DNA substrate (~10%). This 

finding suggests that once loaded onto the parental duplex, RecG slides back to the fork, the wedge 

domain engages the fork, resulting in regression and displacement of SSB and this dynamics is 

coupled to ATP hydrolysis. For this to occur, SSB must slide some short distance on the ssDNA 

tail and away from the fork to permit wedge domain access. SSB sliding has been demonstrated 23. 

In contrast, RecG sliding before the onset of regression can only occur when the duplex DNA is 

undamaged. Ultimately this ensures that the regression does not occur, and other repair enzymes 

must process the DNA first. 

6.4.2 Conclusion 

In this chapter, we characterized the interaction between RecG and SSB on the mobile fork 

substrate. The mobile fork substrate migrates simultaneously between two states; the stalled fork 

(state S1) and the regressed fork (state S2). The presence of SSB does not alter the states of the fork 

substrate. In the absence of ATP, RecG binds preferentially to state S1. While in the presence of 

ATP, RecG regressed the fork and displaced SSB in the process.  
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Chapter 7. ASSEMBLY OF NUCLEOSOME ARRAY INTO 

HIGHER-ORDER STRUCTURES 

 

7.1 Introduction  

DNA in eukaryotic cells is packaged into chromatin through extensive association with histone 

proteins (219-221). Nucleosome is the fundamental unit of chromatin, which regulates the readout 

and expression of eukaryotic genome (222-224). It is a DNA-protein complex with approximately 

147 base pairs of DNA wrapped around a protein complex known as histone octamer (91,225,226). 

Canonical histone octamers consist of two copies of the four core histone proteins, H2A, H2B, H3, 

and H4 (90). The positively charged histone octamers bind strongly to the negatively charged DNA. 

The X-ray crystallography revealed the atomic structure of the nucleosome and explained how 

DNA is wrapped around histone octamers in a superhelix of approximately one and three-quarters 

of turns (227). Meanwhile, the spatial organization of nucleosomes in chromatin continues to be 

the source of debate. Initially, it was proposed that nucleosomes condense into a 30-nm-diameter 

chromatin fiber based on electron microscopy (EM) or X-ray scattering analyses of chromatin 

extracted from various organisms (228-231). Most recently, however, a combination of EM 

topography with a developed labeling method (ChomEMT) does not support the assembly of 

ordered 30-nm fibrils (232). Instead, they showed the assembly of 10-nm fibers in the cell that are 

not uniform; instead, they are heterogeneous and vary in diameter between 5 and 24 nm. Potential 

reasons are discussed in the recent review article (233), in which the major role is given to 

electrostatics, as ionic strength for experiments in vitro and inside cells are very different. The 

authors also suggest that the absence of the 30-nm fiber formation can be due to nucleosome loss 

or irregular nucleosome spacing in native chromatin. It has then been proposed that nucleosome 
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fibers exist in a highly disordered, interdigitated state (109,234,235). What is the reason for such 

irregular spacing of nucleosomes? We have recently shown that the internucleosomal distance 

within dimers of nucleosomes varies depending on DNA sequences (111). No such effect is 

detected if repeats of such a highly sequence-specific DNA motif as Widom 601 are used in similar 

experiments (236). Note that most structural studies of chromatin, including papers cited above, 

used repeats of the 601 motif.  

Our central hypothesis is that the DNA sequence is a factor that is critically involved in the 

interactions between nucleosomes and their assembly into higher-order structures. To test this 

hypothesis, we designed a DNA substrate with the specific positioning sequence, the 601 motif, 

and the non-specific sequence from the plasmid DNA that does not have such strong binding 

affinity as the 601 motif. By incorporating sequences with varying binding affinities into one DNA 

substrate, we can investigate the internucleosomal interactions and assembly pattern on this 

substrate and compare that with the previous studies on the repeated 601 motifs. Here, we 

conducted experimental nanoscale structural studies using single-molecule AFM, which can 

characterize the dynamic states of biological systems (173,237-239). Here, we present the analyses 

for the oligo-nucleosomes in AFM topographic images that provide the organizational properties 

and internucleosomal interactions of the nucleosome array.  

7.2 Methods  

7.2.1 Prepare the DNA substrate  

The DNA substrate used in nucleosome assembly contains the 147 bp 601 Widom sequence flanked 

by plasmid DNA, 113 bp, and 738 bp in length (shown in Figure 7.1). It is generated from PCR 

using a plasmid vector pUC57 with the forward primer (5’-GATGTGCTGCAAGGCGATTAAG-

3’) and the reverse primer (5’-GGGTTTCGCCACCTCTGAC-3’). The DNA substrate was 
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concentrated from the PCR product and purified using gel electrophoresis. DNA concentration was 

then determined using NanoDrop Spectrophotometer (ND-1000, Thermo Fischer) before being 

used for nucleosome assembly.  

7.2.2 Assemble the nucleosome 

Nucleosomes were assembled using a gradient dilution method optimized from our previous 

research (111,240-242). Recombinant human histone octamers were purchased from The Histone 

Source (Fort Collins, CO) for use in assembly. Before assembly, histones were dialyzed against the 

initial dialysis buffer [10 mM Tris (pH 7.5), 2 M NaCl, 1 mM EDTA, 2 mM DTT] at 4°C for 1 

hour. DNA (25 pmol) was then mixed with the histone octamer at a molar ratio of 1:5. The total 

volume of the mixture should be adjusted to 10 µl with 5 M NaCl and DDI H2O so that the start 

concentration in the reaction is 2 M NaCl. The mixture was diluted with dilution buffer [10 mM 

Tris (pH 7.5)] using a syringe pump (0.07 µl/min for 1000 min) to decrease the salt concentration 

to 0.25 M NaCl, allowing the histone to bind the DNA and form the nucleosome core particle. The 

nucleosomes were then dialyzed for 1 hour against a fresh low salt buffer before being diluted to 

300 nM and stored at 4°C. The final concentration of the nucleosome n was adjusted to 2 nM right 

before deposition, using imaging buffer [10 mM HEPES (pH 7.5), 4 mM MgCl2].  

7.2.3 AFM imaging and data analysis 

Sample preparation for AFM imaging was performed as described in previous chapters. The 

nucleosome sample was deposited onto the APS-functionalized mica and incubated for 2 minutes 

at room temperature. After that, the sample was rinsed with DDI H2O and dried with argon flow. 

The samples were stored in vacuum before being imaged.  

Images were acquired using tapping mode in the air on a MultiMode 8, Nanoscope V 

system (Bruker, Santa Barbara, CA) using TESPA probes (320 kHz nominal frequency and a 42 
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N/m spring constant) from the same vendor. The dry sample AFM images were analyzed using the 

FemtoScan Online software package (Advanced Technologies Center, Moscow, Russia). 

DNA contour length analysis was performed by measuring from one end of free DNA to 

the other. The mean measured value of free DNA on an image was divided by the known length of 

the given substrate, yielding a conversion unit. Flank measurements for the nucleosomes were 

obtained by measuring from the DNA end to the center of the nucleosome for both arms. 5nm was 

subtracted from each measured flank length/internucleosomal distance to account for the length 

contributed by the histone core. The flank length and the internucleosomal distance measurements 

were divided by the calculated conversion unit to convert measurements in nm to bp. The 

histograms were approximated with Gaussian distribution, and the mean values and errors (S.D. 

and SEM) were calculated using Origin software (OriginLab Corporation, Northampton, MA, 

USA). 

7.3 Results and discussion 

The DNA substrate used in this chapter contains a 147 bp strong positioning 601 Widom sequence 

in the non-specific sequence of DNA (Figure 7.1 A). The 601 sequence has been widely used in the 

studies of the nucleosome array for its high affinity for histone octamers (243). Incorporating the 

non-specific sequence in the DNA substrate allows us to characterize the internucleosomal 

interactions on the non-specific sequence, which provides insights into chromatin folding.  

7.3.1 The assembly of oligo-nucleosome on the DNA substrate 

We prepared the nucleosome sample with DNA and histone octamers mixed at the ratio of 1:5, and 

the AFM image of the assembled oligo-nucleosome is shown in Figure 7.1 B. The bright circular 

features are the nucleosome cores, and the strands are the unbound DNA in the nucleosomes. The 

compact arrangement of the nucleosomes is shown in the image, with the arrows pointing to the 
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compact structures. The randomness in these structures contrasts with the solenoid model, where 

the nucleosome arrangement is well-organized (244,245). This could be due to the incorporation 

of the non-specific sequence in the designed substrate; the fewer artificial sequences included, the 

more freedom for nucleosomes to self-assemble into compact structures.  

  



121 
 

 

Figure 7.1. The AFM image of the nucleosome array. A, the design of the DNA substrate. It is a 
998 bp DNA with a 601 sequence placed between the 113 bp flank and the 738 bp non-specific 
sequence. The length of the non-specific sequence allows three potential histone octamers to bind 
(147 bp for each nucleosome + 60 bp linker). B, the AFM image of the assembled nucleosome on 
the DNA substrate. The arrows point to the compact structures observed in the AFM image. C, 
gallery of the assembled oligo-nucleosome. i, the mononucleosome; ii, the dinucleosome; iii, the 
trinucleosome; iv, the tetranucleosome.  
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When the DNA substrate and histone octamers were mixed at the ratio of 1:5, the 

tetranucleosome, trinucleosome, dinucleosome, and mononucleosome were observed. The 

representative snapshots of each type of oligo-nucleosome are shown in Figure 7.1 C. Interestingly, 

there are subpopulations observed in the oligo-nucleosome; the well-separated nucleosomes and 

the compacted nucleosomes. The representative images of each subpopulation in the oligo-

nucleosome are shown in Figure 7.2. We first calculated the yield and the sub-population of each 

oligo-nucleosome (table 7.1). The yields of trinucleosomes and tetranucleosomes are very close to 

each other. Furthermore, the well-separated nucleosomes are the minor sub-population in both 

trinucleosomes and tetranucleosomes, indicating that the compact structures are more favored than 

the well-separated structures with uniform spacing in higher-order structures.  
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Figure 7.2. Gallery of the subpopulations in the oligo-nucleosome. The scale bar size is 50 nm, 
and the Z-scale is 4 nm. A, the subpopulations in dinucleosomes. B, the subpopulations in 
trinucleosomes. C, the subpopulations in tetranucleosomes. 
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Table 7.1. The yield of each oligo-nucleosome. In the subpopulation, “1-1”, “1-1-1,” and “1-1-1-
1” are the well-separated nucleosome. The “2”, “3,” and “4” are the compacted nucleosome, 
depending on the number of the nucleosome in the complex.  

 Yield (N=493) Subpopulation  

Free DNA 2.8% NA 

Mononucleosome 16.6% NA 

Dinucleosome 20.3% 
1-1 83.6% 

2 16.4% 

Trinucleosome 30.9% 

1-1-1 29.8% 

2-1 51.2% 

3 19.0% 

Tetranucleosome 29.4% 

1-1-1-1 10.7% 

2-1-1 17.5% 

2-2 14.6% 

3-1 37.9% 

4 19.4% 
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The compaction and various spacing of oligonucleosomes contradict most of the 

nucleosome array studies where the unwrapped linker DNA stays around 10-50 bp in length (246-

248). In those studies, the DNA substrates typically consist of 601 sequences spaced by the linker 

DNA. This high thermodynamic and structural stability of 601 DNA wrapping has the practical 

advantage that nucleosomes are readily formed and behave homogeneously, so the 601 sequence 

has become near-ubiquitous as an experimental substrate. Nevertheless, this homogeneity brings 

disadvantages for studying nucleosome dynamics and their biological relevance in the eukaryotic 

genome. However, in our design, the DNA sequence is non-specific except for one 601 sequence. 

The 738 bp of the non-specific is adequate for three additional histone octamers to bind, considering 

that the mean wrapping efficiency of the nucleosome is ~147 bp and the linker length is ~60 bp. 

One view is that nucleosome remodeling complexes might regulate the nucleosome positions and 

override the sequence preference (249). Another argument is that nucleosome remodeling 

complexes may allow nucleosomes to search and bind the high-affinity sequences regulated by 

their intrinsic preferences, which results in a thermodynamic equilibrium between the nucleosomes 

and the site-specific DNA binding proteins (250). It has been proved that eukaryotic genomes use 

a nucleosome positioning code and link the resulting nucleosome positions to specific chromosome 

functions (251). Our observation of the various linker lengths between the nucleosomes formed on 

the designed DNA substrate suggests that the DNA sequence might also regulate the positioning 

of nucleosomes and their arrangement into chromatin.  

We then turned our focus to the internucleosomal distance because we found that, among 

each oligo-nucleosome, the majority of the subpopulation are the ones that have a well-separated 

nucleosome. For dinucleosomes, the “1-1” subpopulation has a higher yield (83.6%) compared to 

the compacted dinucleosome (the “2” subpopulation, 16.4%). It is also the “2-1” subpopulation for 

trinucleosomes that has a relatively high yield (51.2%) compared to the other subpopulation. 

Similarly, the “3-1” subpopulation has a yield of 37.9% among tetranucleosomes. Why is the well-
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separated nucleosome away from the compacted ones? Is it wrapped by the 601 sequence or the 

non-specific sequence? We measured the arm lengths for the “3-1” subpopulation in the 

trinucleosomes to assign the 601-motif nucleosome. The arm length on the well-separated 

nucleosome is referred to as arm length 1, while the arm length on the compacted nucleosome is 

arm length 2, shown in Figure 7.3 A. 10 nm was subtracted from each measured distance to account 

for the length contributed by the histone core in each nucleosome. From the histograms of the arm 

length measurements, both arm lengths 1 and 2 can be fitted with Gaussian distribution, with 

centered peaks at 100 ±26.8 bp for arm length 1 and 108 ± 18.3 bp for arm length 2. Both are very 

close to the designed flank length (113 bp), but the distribution of arm length 2 is wider than that 

of arm length 1. In this case, we need to label the end of the flank to differentiate the 601 sequence 

from the non-specific sequence, as we did in our previous study. Since the observed size of the 

streptavidin-biotin complex is similar to the nucleosomes, we used rhizavidin for our oligo-

nucleosome experiment, which exhibits a high affinity towards biotin with a dimeric quaternary 

structure (252,253). The AFM images of the rhizavidin-labeled samples have been acquired, but 

we are still collecting the data. 
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Figure 7.3. AFM analyses for the arm length of the “2-1” subpopulation in the trinucleosome. A, 
the schematic of the arm length measurements. Arm length 1 is the length measured from the center 
of the well-separated nucleosome to the nearest end of the arm. Arm length 2 is the distance 
measured from the end of the other arm, on the compacted nucleosome side, to the center of the 
nearest nucleosome. B, the histogram of the arm length 1 fitted by Gaussian distribution. C, the 
histogram of the arm length 2 fitted by Gaussian distribution. Bin size in each histogram is 20 bp.  
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7.3.2 The internucleosomal distance of the trinucleosome 

Another question arose during data acquisition and analyses; what is the range of internucleosomal 

interaction? To answer that, we measured the distance between the nucleosomes in the “2-1” 

subpopulation of the trinucleosomes. Figure 7.4 A shows that the distance from the center of the 

well-separated nucleosome to the one closest to it in the compacted nucleosomes is terminated 

distance 1, while the distance between the two compacted nucleosomes is terminated distance 2. 

10 nm was subtracted from each measured distance to account for the length contributed by the 

histone core in each nucleosome. The results shown in Figure 7.4 B suggest that the distance 

between the well-separated nucleosome from the compacted nucleosomes starts from 90 bp. In 

contrast, the distance of the compacted nucleosomes is in the range of 0-70 bp. This indicates that 

distances within 70 bp are more favorable for the internucleosomal interactions to compact the 

nucleosomes into proximity. However, we still need to assign the nucleosome wrapped by the 601 

sequence from the one wrapped by the non-specific sequence before driving any conclusion. In 

addition to the rhizavidin-labeled samples, we also designed a DNA substrate containing the non-

specific sequence only. The results from these experiments will further characterize the effects of 

the 601 sequence in the internucleosomal interaction and the nucleosome array.  
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Figure 7.4. The measurement for the distance between the nucleosomes in the “2-1” subpopulation 
of the trinucleosome. A, the schematic of the distance measurements. Distance 1 is measured from 
the center of the well-separated nucleosome to the nearest center of the other nucleosome. Distance 
2 is the distance between the centers of compacted nucleosomes. B, the histogram of distance 1 
fitted by Gaussian distribution. C, the histogram of distance 2 fitted by Gaussian distribution. Bin 
size in each histogram is 10 bp.  
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7.3.3 Discussion  

To test our central hypothesis that the DNA sequence is a critical factor in the interactions between 

nucleosomes and their assembly into higher-order structures, we designed a DNA substrate with 

both specific positioning DNA sequence (the Widom 601 sequence) and non-specific DNA 

sequence. The size of the designed DNA substrate is enough for four nucleosome core proteins to 

bind, allowing us to investigate the nucleosome arrangement on the basis of our dinucleosome 

study (111). On the DNA substrate designed for dinucleosomes, which has one 601 sequence and 

a non-specific sequence of the same size, we found that nucleosomes wrapped by the non-specific 

sequence indicate a positioning preference relative to the 601-wrapped nucleosome. Furthermore, 

the analyses for the internucleosomal distance suggest that the interactions between the 

nucleosomes are independent of the nucleosomal wrapping efficiency, an important geometrical 

characteristic that defines the orientation of one nucleosome relative to another.  

In this chapter, we found that nucleosomes tend to be positioned close to each other on the 

DNA substrate designed for tetranucleosomes (Figure 7.1, Table 7.1). The analysis for the 

internucleosomal distance of the trinucleosome (Figure 7.4) shows a cut-off value for the distance 

between adjacent nucleosomes. So we suggest that the internucleosomal interaction could compact 

the nucleosomes within a certain range (~ 80 bp) into proximity. The preliminary analyses indicate 

that the nucleosome positioning is rather random on the non-specific DNA sequence, and the 

internucleosomal interactions might regulate nucleosome spacing and compaction. However, we 

need more analyses to elucidate the effects of 601-motif and internucleosomal interactions in the 

nucleosome array. 
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Chapter 8. SUMMARY  

The research described above has several significant contributions for understanding the molecular 

mechanism of the stalled replication fork rescue and the nucleosome array assembly. 

8.1 The PriA helicase at the stalled replication fork 

We first demonstrated that SSB loads PriA onto the duplex arms of the fork DNA substrates, 

suggesting that the interaction of PriA with SSB changes the helicase conformation so that PriA 

becomes capable of binding to duplex DNA, which is termed as remodeling. As a result, the 

remodeled PriA can bind to the DNA duplex with spontaneous translocation over DNA duplexes, 

which may stimulate the association of PriA at the stalled replication fork in an ATP-independent 

way and facilitate the restart process once the ATP is available for PriA helicase activity. 

Furthermore, the interaction between SSB and PriA increases the binding of PriA to fork DNA 

substrates. This suggests that the SSB stimulation effect, as it is known on PriA helicase activity, 

also plays a role in the binding of PriA onto DNA substrates. In addition, the protein-protein 

interactions of SSB with other partner proteins, reported for RecQ (200,201,210) and RecOR 

(202,203), suggest that the remodeling of components of the DNA replication machinery is a new 

property of SSB.  

The AFM approach allowed us to characterize the ATP-dependent dynamics of PriA on 

the fork DNA substrates (Chapter 4). In the presence of ATP, PriA was observed to bind mainly to 

the fork position, but it can also translocate over distances as distant as several hundred base pairs. 

When PriA was observed at the fork position, the unwinding of a small region of the duplex DNA 

could happen based on Keck’s model that PriA unwinds the duplex DNA by “pulling” the DNA 

across the helicase domain (192). However, the non-fork-located complexes suggest that PriA can 
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translocate over large distances as well. We also discovered that PriA changed its translocation 

direction several times, revealing a previously undiscovered property of PriA- the capability to alter 

the direction of the translocation. We suggest that the changes in the moving direction are due to 

the strand-switching property of PriA, which can redirect PriA back to the fork position of a less-

favored substrate, such as a substrate without an ssDNA gap on the lagging strand. After that, PriA 

can unwind the lagging strand to recruit DnaB onto the stalled replication fork.  

8.2 The RecG helicase at the stalled replication fork 

We have demonstrated that the interaction of fork-bound SSB leads to remodeling of RecG during 

the loading process onto a static fork DNA (72,254). As a result, RecG can translocate 

spontaneously ahead of the replication fork over distances as large as 200 bp. We hypothesized that 

duplex imperfections function as a signal to RecG that the fork structure is compromised so that 

instead of regressing the fork, RecG dissociates. In Chapter 5, we assembled the fork DNA 

substrates with duplex imperfections in the parental duplex to test our hypothesis. The results show 

that damages in the immediate vicinity of the fork position decrease the binding of RecG to the 

fork, resulting in a failure to regress the stalled fork. We then characterized the fork regression 

dynamics by RecG on a mobile fork substrate in Chapter 6. The AFM analysis suggests that SSB 

binds to the fork DNA substrate at both states and does not affect the migration of the fork position. 

On the contrary, the results show that RecG binds preferentially to state S1 in the absence of ATP, 

while in the presence of ATP, RecG regresses the fork. The fork regression is coupled with SSB 

displacement, and after that, SSB maintains the regressed fork structure. 

8.3 The nucleosome array 

In Chapter 7, we investigated our central hypothesis that the DNA sequence is essential for the 

interactions between nucleosomes and their assembly pattern into higher-order structures, building 
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on the previous results obtained for internucleosomal interactions on dinucleosomes (111). The 

AFM images show random arrangements in the higher-order nucleosome structures, which differ 

from the well-organized structures with uniform spacing in the solenoid models (245). The 

preliminary data show that nucleosomes are often positioned close to each other, suggesting that 

the non-specific sequence allows nucleosomes to communicate actively and form compacted 

structures. Furthermore, the internucleosomal distance of the trinucleosome shows a cut-off value 

for the adjacent nucleosomes. This analysis indicates that the internucleosomal interaction between 

nucleosomes wrapped by the non-specific DNA sequence within a certain range (~ 80 bp) could 

compact the nucleosomes into higher-ordered structures.  

8.4 Prospects   

Replication stress is a complex phenomenon that has severe implications for genome stability, cell 

survival, and human disease. However, the lack of knowledge on the replication fork rescue process 

impedes progress in the treatment of these diseases. As shown in Chapters 3-6, the characterization 

of the stalled replication fork processed by PriA helicase, RecG helicase, and SSB provides a 

fundamental step toward better understanding the eukaryotic replication fork rescue. Our long-term 

goals are to elucidate each step in the replication fork rescue process, explain properties of the 

involved proteins, and identify potential anti-rescue risks. The ultimate goal is to translate this 

knowledge to the eukaryotic replication rescue machinery and provide novel insights into potential 

diseases caused by defective responses to replication stress.  

In the current project, we presented the ATP-independent PriA binding preference to the 

DNA substrates, the remodeling of PriA by SSB, the protein-protein interactions between PriA and 

SSB in the absence of ATP, and the ATP-dependent translocation of PriA. So the characterization 

of the PriA-mediated rescue process together with SSB in the presence of ATP will improve 

biological relevance since it has been discussed that SSB stimulates the ATP-dependent helicase 



134 
 

activity of PriA (87,197). Additionally, experiments with other enzymes, such as RecG, RecBCD, 

and RuvABC, added before PriA in the presence of SSB and ATP are essential towards a 

comprehensive understanding of the replication rescue.  

Nucleosome serves three primary roles; first, it brings the first level of genomic compaction, 

wrapping around ~ 147 bp of DNA in 1.75 turns (255). Second, it interacts with transcription factors 

and displays post-translational modifications (256). Third, nucleosomes can self-assemble into 

higher-order compaction of chromatin (225). We have discussed the sequence-dependent 

nucleosome structure, interactions between the dinucleosomes wrapped by the Widom 601 

sequence and the non-specific sequence (111), and the interactions between the translation factor 

NF-ƙB and nucleosome (240). In Chapter 7, we investigate the positioning of the nucleosome and 

the internucleosomal interactions in a higher-order structure, tetranucleosome. As discussed in the 

result section, further analyses are needed for the rhizavidin-labeled samples and the non-specific 

DNA substrate samples to elucidate the role of DNA sequence in the positioning and 

internucleosomal interactions. Moreover, an extension of the current study to use HS-AFM and 

characterize the dynamics of the higher-order structures of nucleosome array is another potential 

for future studies. 

It has been demonstrated that deficient rescue of the replication can cause replication fork 

breakdown, trigger spontaneous DNA breakage, leading to mutability and cancer (257). Further 

investigation of the protein-DNA and protein-protein interactions during the replication rescue 

process will open new venues for pharmaceutical and biomedical research. In addition, knowledge 

generated in the assembly of nucleosome array will shed light on the characterization of the 

pathogenic events caused by abnormal nucleosome dynamics, such as the aberrant chromatin 

remodeling in the pathology of Huntington’s disease.  
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