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Chapter 1. Introduction 

1. Renal Anatomy 

The kidneys are bean-shaped structures located in the retroperitoneal space on the 

posterior abdominal wall on each side of the spine. Because of the position of the liver, 

the right kidney is often located slightly more inferior and lower than the left kidney. 

During renal filtration, the blood enters the kidney through the renal arteries and exits 

through the renal veins. Furthermore, through the ureters, the urine is transported to the 

bladder after renal filtration. The kidneys could be divided into three regions: the renal 

cortex, medullar, and pelvis (Scheme. 1A). The basic structure and functional units of 

kidneys are called nephrons, and they locate in the cortex and medullar of the kidneys. 

The adult human kidneys contain 1-2.5 million nephrons, those basic kidney unites are 

fundamentally necessary for maintain the balance between fluid homeostasis, 

osmoregulation, and waste filtration [1]. Nephrons are composed of the renal corpuscle, 

distal tubule, proximal tubule, loop of Henle, collecting ducts, and peritubular capillaries 

which surround the tubules in the tubulointerstitium (Scheme. 1B) [2]. According to the 

position of glomeruli and the length of the loop of Henle, nephrons have been divided 

into two types. The cortical nephrons with shorter loops of Henle with glomeruli locate in  

the outer cortex, and the juxtamedullary nephrons, which have long loops of Henle with 

glomeruli near the corticomedullary border. The ratio of cortical to juxtamedullary 

nephrons is around 85:15 and 75:25 in humans and mice, respectively [3]. As shown in 

Scheme 1C, the blood is transported into the renal corpuscle through the afferent arteriole, 
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then further transported to the glomeruli. The relatively high blood pressure in the 

glomerular cavity induces the blood fluids filtered into the Bowman’s space, then further 

flow to the proximal tubules for further reabsorption and secretion. The proximal tubules 

are covered with microvilli which play an important role in keeping the balance between 

urinary reabsorption and secretion of the filtered blood fluids. The unfiltered residual 

blood is then outflowed through the efferent arteriole to the peritubular capillaries and 

renal vein and finally join to the main bloodstream [4].  

The renal filtration of the blood fluids happens in the glomerulus (Scheme. 1D), and 

the glomerular filtration membrane (GFM) [5-10], which is supported by mesangial cells, 

plays a pivotal role in renal filtration. The GFM consists of four different layers: 

endothelial glycocalyx, endothelial cells, glomerular basement membrane (GBM), and the 

podocytes (Scheme. 1E). Each layer has its unique size cut-off or charge properties. The 

layer of endothelial glycocalyx is composed of glycosaminoglycans like heparin sulfate, 

hyaluronic acid, and chondroitin sulfate, and it plays an essential role in preventing 

protein leakage during renal filtration due to its negatively charged property [9]. A 

monolayer of endothelial cells forms the endothelial cell layer, which has 70-90 nm 

fenestrations. The GBM with a pore size in the range of 2-8 nm, and mainly consist with 

laminin, proteoglycans and type IV collagen. The laminin and proteoglycans (mainly 

heparin sulfate) form the network and the collagen forms the backbone of GBM. The layer 

of podocyte faces the Bowman’s space and locate on another side of GBM, it has a pore 

size in the range of 4-11 nm and covered with a glycocalyx with a thickness around 200 

nm [4]. Based on this specific four-layer structure of GFM, the permeability for renal 
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filtration not only depends on size [11] but also charge [12]. Under normal conditions, the 

size and charge selectivity of GFM ensures that only small solutes and water could be 

filtrated from plasma to the urine [13]. High molecular-weight components such as red 

blood cells and albumin are retained in the blood during renal filtration. The impairment 

of this barrier results proteinuria which is a hallmark of glomerular diseases [14].  
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Scheme 1. Renal anatomy. (A) The bean shaped structure of kidney and is divided into 

three regions: renal cortex, medulla and pelvis. (B) Detailed structure of nephron which 

consist of the renal corpuscle, distal tubule, proximal tubule, loop of Henle, collecting duct 

and peritubular capillary. (C) The cross section of renal corpuscle. (D) Detailed structure 

of glomerulus, it composed of mesangial cells, glomerular capillary lumen, and GFM. (E) 

Detailed structure of GFM which consist with glycocalyx, endothelial cells, GBM, 

podocyte, and podocyte glycocalyx. (Adapted from [4]). 

  



5 

 

2. Acute Kidney Injury 

Acute kidney injury (AKI) is characterized by a sudden decrease in renal function 

which is associated with complex pathophysiological mechanisms [15, 16]. Despite the 

progresses in understanding the underlying pathophysiology, AKI continues to be a 

public health concern in the global and impacting ~13.3 million patients every year and 

without any pharmacological treatments available [17, 18]. In 266 studies (included a total 

of 4,502,158 patients) that used KDIGO (Kidney Disease: Improving Global Outcomes) 

definition of AKI, this disease affected 21% of hospital admissions of LMICs (low-to-

middle income countries), which broadly agree the worldwide incidence of AKI (Scheme 

2) [19]. AKI is mainly caused by decreased blood flow, direct damage to kidneys, blockage 

of the urinary tract clinically, and frequently diagnosis with an incident around 5.0% to 

7.5% in hospitalized patients and 50% to 60% in critical ill patients [15, 20-24]. Moreover, 

AKI usually associate with high morbidity, mortality, and increased cost, about 1.7 million 

death every year [18]. With the improvements in patients care and the availability of low 

nephrotoxic drugs, the mortality rates in critically ill patients with AKI have declined, 

however the mortality rates are still significantly high, especially in AKI patients who 

require dialysis [25-27]. Patients who survive from AKI are at increased risk of developing 

chronic kidney disease (CKD) which is defined by continued kidney disease for a period 

of more than 90 days [28], and end-stage renal disease (ESRD) which can lead to poor life 

quality and high long-term costs for patients who recovered from AKI [29-31]. Given those 

many reasons, treatments are needed to decrease AKI associated high morbidity, 

mortality and cost.   
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Scheme 2. Published estimates of the incidence of AKI as defined using KDIGO criteria 

vary widely across the world. The percentages shown in the scheme indicate the ratio of 

the hospitalized population with AKI. (Adapted from [19]) 
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2.1. Pathophysiology of AKI  

Filtration and excretion of nitrogenous waste produces from blood is one of the most 

important functions of kidney, and the elevated level of blood urea nitrogen (BUN) and 

serum creatinine (Scr) served as an indicator for decreased renal function which resulted 

from kidney injury. AKI is defined by rapid decrease glomerular filtration rate (GFR) 

which result in retention of BUN and Scr, thus the diagnosis of AKI is based on the 

measurement of these blood substances in patients over time and the rapid decrease of 

GFR usually occurs over the course of hours to days for AKI patients [32, 33]. The 

underlying pathophysiology of AKI has been well studied by scientists in the last few 

decades. Animal models of AKI which represent nephrotoxicity and ischemia-reperfusion 

injury provided important insights for us to understand the behind mechanism of AKI 

[17]. Based on the AKI animal models, scientists have disclosed fundamental information 

on disease mechanisms of AKI. 

2.1.1. Animal models for AKI study 

Ischemia reperfusion induced AKI (IRI-AKI) and cisplatin induced AKI (CIS-AKI) 

are the most two widely used animal models for AKI study. Ischemia is a leading cause 

of AKI clinically, which could result from several conditions, such as renal vascular 

occlusion or obstruction, cardiac surgery, and kidney transplantation. Even the in vitro 

studies of isolated renal cells are valuable to study the pathophysiology of ischemic AKI, 

it is imitated to mimic the complexity of human body. Thus, the in vivo animal models 

are needed to better understand the pathophysiology of AKI. Various animal models of 



8 

 

ischemic AKI have been developed and tested in the decades and currently there are two 

kinds of renal ischemia-reperfusion (IR) models are mainly used: the bilateral renal 

ischemia reperfusion [34-44] and unilateral renal ischemia reperfusion  model [45-51]. 

Based on whether the contralateral kidney is removed, unilateral renal ischemia 

reperfusion model can be further divided into two subtypes: with contralateral 

nephrectomy or without contralateral nephrectomy. Because of the more relevance to 

human pathologic conditions where both kidneys are normally affected by blood supply, 

the bilateral ischemia reperfusion AKI model is the most used one in many studies [34, 

52-56]. The initial ischemia reperfusion AKI models were developed with large size 

animals, then rat and mice became the most popular models since 1960 and 1990 

respectively. The small size animal model requires less drug consumption for 

experimental testing when compared with large size animals [57].  

Except ischemia reperfusion induced kidney injury, chemical agents induced AKI is 

a frequent entity in clinical medicine. The kidneys are the major target organ for toxic 

effect drugs [58]. Even it is difficult to estimate nephrotoxic AKI due to the variation of 

patient populations and the standards for AKI, nephrotoxicity has been reported that 

associate with about 8-60% of hospitalized AKI cases [59]. Cisplatin, a platinum-based 

chemotherapeutic drug that have been widely used in the treatment of a variety of solid 

tumors [60], is frequently limited by various significant side effects, especially its 

nephrotoxicity. Almost one-third of patients develop nephrotoxicity after a single dose of 

cisplatin at the dose of 50-100 mg/m2 [61, 62]. To prevent the AKI and improve the survival 

rate in cancer patients who receiving cisplatin-based chemotherapy, it is necessary to 
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understand the pathogenesis of cisplatin induced renal injury. The decreased renal 

plasma flow and GFR, and the increased renal vascular resistance make the cisplatin 

nephrotoxicity an idea model for nephrotoxic AKI study [63].  

2.1.2. Inflammation and immune cells infiltration in AKI 

Inflammation is complex process that is needed to eliminate harmful pathogens and 

mediate tissue repair after injury. Nevertheless, excess and unresolved inflammation 

could promote autoimmune disorder, fibrosis, and tissue damage [64, 65]. The release of 

cytokines and recruitment of neutrophiles and macrophages at the site of injury are 

recognized as hallmarks of the early inflammation response. Moreover, recent data 

showed that T cells also participate in early inflammatory responses in AKI [66]. The 

Immune mechanisms involved in the pathogenesis of AKI have been studied most 

extensively in IRI-AKI and CIS-AKI animal models. This part is focused on the 

introduction of the involvement of immune cells in AKI (Scheme 3). 

The infiltration of neutrophils has been detected in mouse kidneys subjected to 

ischemia reperfusion injury [67, 68] and biopsy samples from patients with early AKI [69, 

70]. As one of the important effector cells in the innate immune system, neutrophils 

transmigrate into kidney by using adhesion molecules like intracellular adhesion 

molecule-1 (ICAM-1) and P-selectin after kidney insult. The released cytokine, proteases, 

and reactive oxygen species (ROS) from infiltrated neutrophils finally promote kidney 

injury [71]. Recent studies have shown that inhibiting vascular adhesion protein-1 and 

leukotriene B4-leukotriene B4 receptor axis could block neutrophils infiltration in injured 
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kidneys, and finally attenuate IRI-AKI and CIS-AKI respectively [72, 73]. Therefore, 

neutrophils are expected to have an important role in the development of AKI.  

Macrophages are also suspected to have an important role for kidney injury. Even 

the number of resident macrophages in normal kidneys are few, the amount markedly 

increases soon after IRI, especially in the outer medulla [74]. The activated macrophages 

has the potential activity of phagocytic and release several cytokines, like IL-1, IL-6, IL-8, 

IL-12, and TNF, which facilitate the inflammatory cascade and contribute to the 

establishment of kidney injury [75]. The depletion of monocytes and macrophages 

systemically, attenuated early kidney injury in an IRI-AKI mice model [76]. Macrophages 

also play a role in renal repair. By switching from a proinflammatory M1 phenotype to an 

anti-inflammatory M2 phenotype, the renal repair process promoted [77]. The M2 

phenotype switching of macrophages might be due to the phagocytic uptake of 

neutrophils by macrophages and the change of intrarenal microenvironment [78, 79]. The 

role of macrophages in cisplatin induced AKI (CIS-AKI) model is not well studied. The 

renal infiltration of macrophages preceded loss of renal function; however, the inhibition 

of macrophages infiltration was not enough to prevent CIS-AKI [80, 81].  

Except neutrophiles and macrophages, renal dendritic cells and lymphocytes are also 

play very important role in the development and repairment of AKI. The dendritic cells 

are act as messengers between innate and adaptive immune systems as they present 

antigens to T cells. The renal resident dendritic cells mostly consist of TNF-secreting cells 

at the early phase of IRI-AKI. Moreover, the process of endothelium binding and 
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stimulated MCT cells. (B). Cellular uptake study of Cy3 labeled polymers by using flow 

cytometry to quantify the mean fluorescence intensity ratios from hypoxia stimulated to 

normal MCT cells. (C). Intracellular trafficking of polymers in hypoxia stimulated and 

normal MCT cells by using confocal microscopy, one of three studies for each polymer 

was presented. For all the hypoxia related cell culture studies, MCT cells were incubated 

in a hypoxia chamber (1% O2, 94% N2, and 5% CO2) for 24 h, then cells were transferred 

to a normal incubator for 6 hours before other studies. Data are shown as mean ± SD (n = 

3). ****P < 0.0001, ***P < 0.001, **P < 0.01. (Continued Figure 39) 

 

 

Figure 40. Confocal microscopy for the determination of MCT cell surface CXCR4 

expression. MCT cells were stimulated with hypoxia for 24 h in a hypoxia cell culture 

chamber, then cells were transferred to normal incubator for another 6 h before anti-

CXCR4-APC staining. The expression of CXCR4 (pink) on hypoxia stimulated MCT cells 

was observed.  
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2.4. Polymer protein binding 

The primary function of the kidney is for blood filtration and reabsorption. Every day, 

around 180 liters of primary urine without macromolecules are formed in the kidneys. 

After the reabsorption and excretion performed by renal tubular systems, the final daily 

excretion is around 1-1.5 liter [375]. Thus, the intravenous injection might be the best way 

for the administration of renal targeted delivery systems, as they can travel with a large 

volume of blood and reach to the kidneys, and release their payload at the target. 

However, there are several biological barriers that may limit the functionality of 

polymeric carriers for effective drug delivery, such as the formation of the protein corona, 

the opsonization by the mononuclear phagocyte system (MPS), nonspecific distribution, 

and so on [376]. In our case, nonspecific surface protein absorption may hinder the CXCR4 

binding ability of polymeric carriers, and it may therefore limit their following 

applications. Hence, to understand the impacts of polymer with different properties 

modification on the formation of the protein corona, we analyzed adsorbed proteins by 

polymers. First, the protein corona from each polymer was analyzed using SDS-PAGE 

after proteins were dissociated from polymers (Figure 41A). After staining with 

Coomassie brilliant blue, the proteins bands were appeared, indicating that various serum 

proteins were adsorbed to the surface of polymers. The protein identities were 

represented by the molecular weight of each band, and the intensity of each band 

indicated amounts of absorbed proteins. In particular, proteins around 55kDa were the 

most absorbed ones for each polymer, which might be hemopexin [377]. After quantifying 

the intensity of absorbed proteins with ImageJ, we observed that PEI, PP-OH(L), and PP-
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OH(H) showed relatively lower absorbed proteins amounts; and the polymers containing 

hydrophobic moieties (PP-CH3) showed the highest protein binding amounts among all 

the polymers (Figure 41B and C). In a more quantitative measurement, the BCA protein 

assay was performed to measure the concentrations of isolated proteins. As shown in 

Figure 41D, the PEI, PP-OH(L), and PP-OH(H) absorbed about 0.22 mg, 0.28 mg, and 0.31 

mg proteins per milligram of polymers, respectively. While the amounts of absorbed 

proteins increased with introducing hydrophobicity to polymers, PP-CH3(L) and PP-CH3(H) 

absorbed about 1.09 mg and 0.91 mg proteins per milligram of polymers, respectively, 

which might be because the higher surface energy of hydrophobic polymers allows 

stronger hydrophobic interactions between polymers and proteins, thus resulted in the 

increased protein adsorption [378].  
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Figure 41. Protein absorption of synthesized polymers in mouse serum. (A) Scheme 

illustration of polymers surface absorbed protein analysis. Polymers (2 mg/mL) were 

mixed with 200 ul of mice serum at 37 °C for 1 h (1), after precipitation (2), the polymer 

and protein mixtures were washed with cold PBS for 3 times (3), then after dissociation 

with cell lysis RIPA buffer and precipitation, the absorbed proteins were obtained from 
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the supernatants (4). Finally, the amounts of proteins were quantified by BCA protein 

assay and SDS-PAGE. (B) The absorbed proteins were determined by SDS-PAGE. (C) 

Quantification the intensity of absorbed proteins in SDS-PAGE by ImageJ. (D) Protein 

binding to polymers was determined by BCA protein assay (Wprotein/Wpolymer = 

protein (mg)/polymer (mg). (Continued Figure 41) 
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2.5. Biodistribution 

In the previous studies, we have confirmed the CXCR4 binding ability of PP and its 

derivatives in the CXCR4 redistribution assay (Figure 36C). Moreover, we have confirmed 

that the hydrophilic modified polymers (PP-OH) showed less surface protein binding 

(Figure 41) and higher hypoxia to normoxia ratio in the cellular uptake study (Figure 39). 

Those advantages of PP-OH from in vitro studies might make it a promising carrier for 

targeted drug delivery to the injured kidney for AKI therapy. However, further in vivo 

studies are needed to confirm it. Hence, to understand how different modifications affect 

renal accumulation, we conducted the biodistribution study for all the polymers in an 

unliteral ischemia-reperfusion induced AKI mouse model, where the renal injury was 

induced in the left kidney with left renal artery clamping (I/R), while the right kidneys 

were performed as left kidneys without clamping (Sham). Mice were sacrificed at 24 h 

after intravenous administration with Cy3 labeled polymers, and major organs were 

collected for ex vivo fluorescence imaging by an IVIS system (Figure 42A), and the 

fluorescence intensities of the region of interest (ROI) from each organ were quantified for 

each group (Figure 43). Generally, we found that all the polymers were mainly 

accumulated in the liver and injured kidneys. In particular, PP, PP-OH, PP-COOH(L), and 

PP-CH3 showed relatively more selective accumulation in the injured kidneys. However, 

PEI, PP-COOH(L), and PP-NH2 showed higher selective accumulation in the liver when 

compared with other organs in the same group. Using ROI ratios between I/R kidney to 

the liver in the same mouse, we found that PP-OH(L) and PP-OH(H) showed the highest I/R 

kidney to liver ratios, and it is around 2.4 times higher than PEI. Other polymers like PP, 
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PP-COOH(L), and PP-CH3(L) also showed a significant higher I/R kidney to liver ratio than 

PEI. However, PP-COOH(H), PP-HN2, and PP-CH3(H) didn’t show any difference with PEI 

(Figure 42B). Moreover, after quantifying the I/R kidney to sham kidney ROI ratios and 

compared with the PEI group, we found that PP-OH(L) and PP-CH3(H) showed the 

highest ratio. The PP, PP-OH(H), and PP-CH3(L) showed relatively significantly higher 

ratios; however, PP-COOH and PP-NH2 didn’t show any difference with PEI (Figure 42C). 

Based on those results, we found that polymers with hydrophilic modification showed 

great selectivity accumulation ability in the injured kidneys as indicated by the 

significantly higher ratios of both I/R kidney to the liver and I/R kidney to the sham kidney. 

This further enhances the role of PP-OH as a potential renal drug delivery carrier for AKI 

treatment. The favorable accumulation of PP-OH in injured kidneys might be because of 

the less surface protein absorption on PP-OH. In this way, more CXCR4 targeting moieties 

are exposed on the surface and increase their chance to bind to CXCR4 receptors in the 

injured renal tubule cells. As for PEI, even less protein absorption was observed. It 

showed low I/R kidney to the liver and I/R kidney to sham kidney ROI ratios, which might 

be because of the lack of CXCR4 targeting ability due to no CXCR4 binding moieties on it.   
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Figure 42. Biodistribution study of synthesized polymers in unilateral IRI-AKI mice. 

(A) Represent ex vivo imaging of detected organs at 24 hours post intravenously injection. 

From left to right: thymus, heart, lung, liver, spleen, injured kidney, normal kidney, femur. 

(B, C) Region-of-interest (ROI) ratios of injured kidney to liver (B), and ROI ratios of 

injured kidney to normal kidney (C) at post 24 hours post injection. Data are shown as the 

mean ± SD (n = 3). *** p < 0.001, ** p < 0.01, * p < 0.05, ns = no significant difference.  
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Figure 43. Region of interest analysis of the major organ uptake of synthesized polymers 

at post 24 hours injection in unilateral IRI-AKI mice, PEI was used as control (n=3).  
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3. Conclusions 

In this study, we have synthesized a panel of nine polymers. One is polymeric 

plerixafor and another eight were based on polymeric plerixafor, introduced with 

different modifications moieties. Those polymers were showed excellent CXCR4 binding 

effects either in the CXCR4 redistribution assay or in the cellular uptake study in MCT 

cells. Moreover, we found that after introducing hydrophilic moieties, PP-OH showed less 

protein absorption, which might relate to their enhanced accumulation in the injured 

kidneys. These findings not only enhance our fundamental understanding the 

relationship between the surface modification of polymers and their transportation in 

normal and injured kidneys, but also provide us initial insights into improved CXCR4 

targeted drug delivery system to AKI.  
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4. MATERIALS AND METHODS 

4.1. Materials 

5-Amino-1-pentanol, 6-Aminocaproic acid (EACA), 1,5-Diaminopentane, 1-

Aminohexane, and N,N′-Diacetyl-1,6-hexanediamine (HMBA) were purchased from 

Sigma-Aldrich. AMD3100 was obtained from BioChemPartner. Cy3-NHS was purchased 

from Lumiprobe Corporation. APC labeled anti-CXCR4, and IgG isotopy were purchased 

from BD Bioscience. RPMI-1640 medium and Fetal bovine serum (FBS) were obtained 

from Hyclone. CellTiter-Blue reagent was purchased from Promega. Mouse renal tubular 

epithelial cells (MCT) and human tubular cells (HK-2) provided by Dr. Padanilam. 

4.2. Polymer synthesis and characterization 

Polymers were synthesized by Michael polyaddition of predetermined ratio of 

AMD3100, HMBA, and modification moieties as previously reported [373] (Figure 34). In 

a typical reaction, HMBA (112.2 mg, 0.5 mmol), AMD3100 (200.8 mg, 0.4 mmol), and 

EACA (13.1 mg, 0.1 mmol) were added into a glass vial containing methanol/water 

mixture (4 mL, 7/3 v/v). Polymers were synthesized under nitrogen atmosphere in dark 

at 37 °C for 3 days. Then, additional 20 mg of plerixafor was added to and the mixture 

was stirred for another 6 h to consume any residual acrylamide groups. The reaction 

mixture was then added dropwise to excess of 1.25M HCl in ethanol to keep pH was 

around 3. The resulting precipitated HCl salt of polymers was isolated by centrifugation. 

The polymers were washed twice in ethanol, dried in vacuum, and dissolved in water and 

dialyzed (MWCO 3.5 kDa) against water for 2 days before freeze-drying. The feed ratio, 
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reagent, and reaction time were according to Table 1. The weight- and number- average 

molecular weights and dispersity (Đ) were determined by size exclusion chromatography 

using Viscotek GPCmax chromatography system equipped with a refractive index 

detector and a low- and right-angle light scattering detector (Malvern Instruments, UK). 

A single pore AquaGelTM columns (cat# PAA-202 and PAA-203) from PolyAnalytik 

(London, ON, Canada) was used in this study. Sodium acetate buffer (0.1 M, pH 5.0) was 

used as an eluant with flow rate of 0.3 mL/min.  

4.3. Synthesis of Cy3-labeled polymers 

PEI and synthesized polymers were fluorescently labeled with Cy3 using NHS 

activated esterification reaction [334]. Briefly, 50 mg polymers were dissolved in 5 mL DI 

water, then 0.5 mg of Cy3-NHS in DMSO were dropwise into the polymer solutions 

followed by overnight stirring at room temperature under dark condition. The reaction 

mixtures were then dialyzed for 7 days to remove the unreacted Cy3-NHS. Then the Cy3 

labeled polymers were obtained after lyophilization, and the amount of conjugated Cy3 

was determined by UV-visible absorption spectroscopy using a calibration curve. 

4.4. Cell culture 

MCT cells were cultured in RPMI-1640 medium with 10% fetal bovine serum (FBS) 

and 1% penicillin/streptomycin. HK-2 cells were cultured in Keratinocyte Serum Free 

Medium (K-SFM) with 0.05 mg/ml bovine pituitary extract (BPE) and 5 ng/ml epidermal 

growth factor (EGF) supplements. Human bone osteosarcoma U2OS cells stably 

expressing human CXCR4 receptor fused to the N-terminus of enhanced green fluorescent 
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protein (EGFP) were cultured in DMEM supplemented with 2 mM L-Glutamine, 10% FBS, 

1% penicillin/streptomycin and 0.5 mg/mL G418. All the cells were cultured in 37 °C cell 

incubator with 5% CO2.  

4.5. In vitro cytotoxicity  

The Cell Titer Blue assay was used to determine the cytotoxicity of the polymers. 

Briefly, mice tubule cells (MCT) and human tubule cells (HK-2) were seeded in 96-well 

plates at 8000 cells/well for 24 hours. Then polymers were suspended in fresh cell culture 

medium with different concentrations and incubated with cells. After 24 h of incubation, 

the medium was replaced with a mixture of 100 ul of serum-free medium and 20 ul of 

CellTiter-Blue reagent for 2 h. Then the fluorescence (560/590 nm) was measured by using 

a SpectraMax iD3 Multi-Mode Microplate Reader (MolecularDevices, CA). The relative 

cell viability (%) was determined as [fluorescence]sample/[fluorescence]untreated× 100%. 

4.6. CXCR4 redistribution assay 

CXCR4 redistribution assay was used to determine the CXCR4 antagonism of all the 

synthesized polymers as described before[373], PEI, PBS, and AMD3100 were used as 

controls. Briefly, U2OS cells expressing EGFP-CXCR4 receptors were seeded in black 96-

well plates at the density of 8000 cells per well for 24 h. Cells were washed twice with 

assay buffer (DMEM supplemented with 2 mM L-Glutamine, 1% FBS, 1% Pen-Strep and 

10 mM HEPEs) and then incubated with polymers and controls in assay buffer containing 

0.25% DMSO at 37 °C for 30 min. SDF-1 was then added to each well with a final 

concentration of 10 nM for 1h. Then cells were fixed with 4% formaldehyde at room 
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temperature for 20 min and washed 3 times with PBS. Then cell nuclei were stained with 

1 uM Hoechst in PBS containing 0.5% Triton X-100. Images were taken by EVOS 

fluorescence microscope at 20 X. Then high-content analysis was performed to quantify 

the CXCR4 antagonistic activity according to the internalized EGFP-CXCR4 receptors. 

4.7. Cell hypoxia-reoxygenation and CXCR4 expression 

The MCT cells were plated in 6-well plates at a density of 3x106 cells per well and 

incubated until they reached approximately 90% confluence for experiment. To mimic the 

ischemia-reperfusion injury in vitro, the cells were cultured for 24 h under hypoxic 

conditions (1% O2, 94% N2, and 5% CO2) in serum free medium to induce hypoxic injury. 

After hypoxic treatment, the cells were transferred back to regular culture medium with 

oxygen for 6 h for reoxygenation. Control cells were incubated in complete culture 

medium in a regular incubator (5% CO2 and 95% air). Then cells were detached from the 

plate and sained with anti-CXCR4-APC antibody or control IgG isotype according to 

manufacturer’s protocol. After washing three times with could PBS, flow cytometry was 

used to quantify the expression of cell surface CXCR4 receptors, and the results were 

processed using FlowJo software.  

4.8. Cellular uptake and intracellular trafficking of polymers 

Flow cytometry was conducted to study the cellular uptake of polymers. MCT cells 

were seeded in 12-well plates at the density of 3 × 104 per well and cultured to 

approximately 80% confluence. Then cells were incubated with Cy3 labeled polymer 

(2μg/mL) at 37 °C for 3 h. After washing with PBS twice, cells were detached and subjected 
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to analysis using a BD FACS Calibur flow cytometer (BD Bioscience, Bedford, MA). The 

results were processed by using FlowJo software. The intracellular trafficking was 

observed by LSM 800 Laser Scanning Microscope (Zeiss, Jena, Germany). Briefly, MCT 

cells were cultured in an 8-well cell culture chamber with coverslip glass at 2× 104 cells per 

well for overnight. After 24 h, cell culture medium was replaced with fresh medium 

suspended with Cy3 labeled polymers at the concentration of 2 μg/mL for 3 h. After 

washing with cold PBS three times, the cells were fixed with 4% formaldehyde at room 

temperature for 20 min, then stained with 1 uM Hoechst in PBS for another 10 min. 

4.9. Protein binding affinity 

Polymers at the concentration of 2 mg/mL were incubated with 200 ul of mice serum 

on a shaker at 37 °C for 1 h. Then the mixtures were centrifuged at 1.4x104 g for 1 h at 4 °C. 

After washing three times with cold PBS, the protein pellets were resuspended in 50 ul of 

RIPA lysis buffer containing 1% HaltTM Protease Inhibitor Cocktail to release proteins 

from the surface of polymers. Then the mixtures were centrifuged at 1.4x104 g for 30 min 

at 4 °C, and the supernatants were collected. After collection, 5 ul of each supernatant was 

diluted 20 times with 95 ul saline, and 25 ul of each diluted solution was applied in the 

protein BCA assay to determine their concentrations. To visualize the molecular weight 

distribution of absorbed proteins by the polymers, 25 ul of the supernatant was loaded to 

SDS-PAGE for protein separation. After staining with Coomassie Brilliant Blue for 30 min 

and washing with DI water for 24 h, the proteins in the gel were visualized by ChemiDoc 
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Chapter 5. Summary and Future Directions 

Acute kidney injury affects over 13 million people worldwide and leads to about 2 

million deaths each year. Patients who survive from AKI are in the high risk to develop 

chronic kidney disease or end stage renal disease, and ultimately result in kidney failure. 

Despite the extensive basic research and the growing understanding of the underlying 

pathophysiology, AKI remains a significant unmet medical requirement, and no effective 

pharmacological treatments are available. Due to the complicate pathophysiology of AKI, 

it may be necessary to develop combinational treatment methods to simultaneously treat 

AKI for better treatment outcomes.  

As one of the most well-known tumor suppressor proteins, p53 has been attracted 

increasing attentions as a therapeutic target in AKI. p53 induced cell death has been 

considered as the major contributor for the development of AKI. Inhibition of p53 by 

siRNA has been demonstrated the beneficial effect both in IRI-AKI and CIS-AKI animal 

models. However, large amount of free siRNA was required to achieve desired 

therapeutic outcomes due to the lack of renal targeted siRNA delivery systems. Growing 

evidence shows that CXCR4/SDF-1 axis is involved in the pathology of AKI, and block 

CXCR4 by antagonism could inhibit renal immune cells infiltration and improve renal 

function. Moreover, CXCR4 has been reported overexpression on injured tubules, which 

could be used as a target for therapeutic reagents delivery to the injured renal tubule cells.  

Taking advantage of the role of CXCR4 and p53 in AKI, we have developed two 

polycations, one is PCX and another one called C-CS. Both polymers were showed 
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