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ABSTRACT 

Worldwide economic and medical improvements have led to profound 

demographic shifts towards an older overall population. Unfortunately, with older 

age comes a variety of neurological changes which act to decrease individual 

quality of life and independence. Since the advent of functional neuroimaging, 

investigation of age-related changes in neural activity has been of particular 

interest. However, changes in population-level neural dynamics with age remain 

poorly characterized. Herein, we utilized magnetoencephalography (MEG), 

comprehensive neuropsychological assessments, and advanced analytical 

techniques to investigate spectrally-specific changes in neural oscillatory activity 

in a healthy aging population. First, we examined age-related deficiencies in 

visual processing using a well-established visual entrainment paradigm (Chapter 

1). Next, we used a more complex visual grating paradigm to allow us to 

characterize age-related changes in visual gamma oscillations, as well as how 

these changes relate to individual processing speed (Chapter 2). Finally, we 

extended our investigation into higher-order cognition by utilizing a Sternberg 

working memory paradigm (Chapter 3). Overall, these results provide novel 

insights into the oscillatory underpinnings of age-related changes in cognition 

and serve as a foundation for future research into oscillatory deficits in patients 

affected by neuropsychological disorders which are prevalent in older individuals 

(e.g., Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies). 
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INTRODUCTION 

Aging and Associated Changes to Cognition: 

Over the past century, the global population has experienced a dramatic 

demographic shift towards an older life expectancy due, in large part, to advances in 

medicine and economic development (1). Unfortunately, even in the absence of 

pathologic processes, aging is associated with a variety of cognitive changes. 

Importantly, the rate of age-related cognitive decline is highly domain specific, with some 

steadily declining throughout all of adulthood while others showing little to no change 

until later adulthood (i.e., ~60-70 years; 2, 3, 4). When discussing cognitive domains 

which change with age, these domains are commonly grouped into fluid and crystallized 

abilities (5). Fluid abilities are those which require active processing of new information 

at the time of examination and include domains such as processing speed, working 

memory, and visuospatial processing. Crystallized abilities primarily depend on the use 

of previously acquired knowledge and represent one’s ability to recall topics such as 

language (i.e., syntax and vocabulary) and general information (e.g., historical details 

and scientific facts). Previous research has demonstrated that healthy aging is 

associated with declines in fluid abilities throughout adulthood, whereas crystallized 

abilities have been shown to increase through later adulthood (i.e., ~70) before 

plateauing (2, 4, 6). The study of these age-related cognitive changes, and their neural 

correlates, is crucial as these cognitive functions are pivotal for maintaining a high 

quality of life and functional independence in aging individuals.  

Age-Related Changes to Neural Structure and Function: 

Structurally, healthy aging is associated with a variety of gross anatomical 

changes in both the gray and white matter. Across the entire brain, older adults tend to 

have less gray matter, volume and thickness, than those of younger adults (7). 

Interestingly, this loss of gray matter is largely not due to neuronal cell loss. Instead, this 
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gray matter atrophy is associated with degeneration of dendritic arborization 

(e.g., decreased number of dendritic spines and dendritic shortening; 8, 9), 

ultimately leading to reductions in total synaptic density. Beyond gray matter 

alterations, healthy aging is also associated with white matter changes including 

decreases in white matter volume and increases in the number of white matter 

lesions (7). These white matter changes are related to the dysfunction of both 

neurons (e.g., axonal and myelination loss) and glial cells (e.g., astrocytic 

gliosis), and are predictive of poor performance on tasks of processing speed, 

executive function, and memory (10). Interestingly, the spatial specificity of age-

related gray and white matter abnormalities are quite similar, with prefrontal 

cortical regions affected the most, followed by temporal and parietal cortices, and 

leaving the occipital cortices relatively spared (7, 11, 12).  

Considering the well-documented age-related declines in fluid cognitive 

abilities and structural neural degeneration, early researchers investigating 

functional neural activity in older participants expected to find patterns of 

decreased activation as a function of age (13). Instead, initial positron emission 

tomography (PET) and functional magnetic resonance imaging (fMRI) studies 

revealed robust age-related increases in activity, particularly in prefrontal cortical 

areas and sometimes involving bilateral hemispheric recruitment (14-16). Since 

then, these results have been replicated and expanded upon; notably, two large 

scale fMRI meta-analyses demonstrated age-related increases in activity in 

fronto-parietal areas and decreases in occipital regions during a variety of 

different cognitive tasks (17, 18). Several highly influential theories have been 

proposed to explain these age-related changes in neural activity, including the 

Hemispheric Asymmetry Reduction in Older Adults (HAROLD) theory, the 
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Posterior-Anterior Shift in Aging (PASA) model, and the Compensation-Related 

Utilization of Neural Circuits Hypothesis (CRUNCH).  

The first of such theories was the HAROLD model which proposed that, under 

similar cognitive loads, older individuals would display less lateralized (i.e., more 

bilateral) prefrontal cortical (PFC) activity compared to younger individuals (14). Further, 

it was suggested that these age-related decreases in PFC lateralization might reflect 

either neural compensation (i.e., greater recruitment of neural resources to maintain 

adequate functionality) or dedifferentiation of cognitive abilities (i.e., the loss of functional 

specialization of cortical regions; 14). Next came the PASA model, which focused on the 

observation that age-related increases in frontal cortical activity are often accompanied 

by decreases in posterior cortical (i.e., occipito-temporal) activity, and that the frontal 

overactivation may be compensatory to offset the posterior sensory deficits (19). Finally, 

CRUNCH proposed that, at any age, individuals would recruit additional neural circuitry 

to meet increasingly difficult task demands (20). Critically, CRUNCH posited that older 

individuals would display greater neural activity, relative to younger individuals, at all task 

difficulties. However, as task difficulty increases, an inflection point (i.e., “CRUNCH 

point”) would be reached in which older participants exhaust their ability to recruit 

additional neural resources for compensation, resulting in declining task performance 

and decreased levels of neural activity. Each of these theories is supported by a plethora 

of previous research across a variety of different neuroimaging modalities (e.g., PET, 

fMRI, EEG, MEG) and in many cognitive domains (e.g., working memory, attention, 

visuospatial processing) (13, 14, 19-23).  

Neural Oscillations: 

Neural oscillations are the rhythmic fluctuations in dendritic membrane potentials 

which are the result of intrinsic cellular properties and population-level neural activity 

(24), and can be measured using local field potentials (LFP), electrocorticography 
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(ECoG), electroencephalography (EEG), and magnetoencephalography (MEG). 

These oscillations are typically grouped into several canonical bands, including 

delta (~1-3 Hz), theta (~4-7 Hz), alpha (~8-12 Hz), beta (~15-30 Hz), and gamma 

(>30 Hz). Each of these frequency bands have unique cortical distributions and 

are associated with distinct cognitive functions (25). Alterations to cortical 

oscillatory activity have been linked to a variety of neuropsychiatric disorders, 

including schizophrenia (26), autism (27), Parkinson’s disease (28), and 

Alzheimer’s disease (29). Despite the clear clinical utility of neural oscillations, to 

date, research investigating oscillatory changes as a function of healthy aging is 

relatively sparse.  

Resting-state electrophysiological analyses have demonstrated age-

related decreases in lower frequency activity (i.e., delta and theta) and increases 

in higher frequency activity (i.e., beta and gamma; 25, 30). Further, healthy aging 

has been associated with decreases in peak alpha frequency (31), however, 

results from analyses of age-related changes in alpha activity remain quite mixed 

(25, 30, 32). Results from task-based oscillatory analyses of healthy aging have 

largely supported the major neurocognitive theories of aging (i.e., HAROLD, 

PASA, and CRUNCH). Specifically, across several frequency bands (i.e., theta, 

alpha, beta, and gamma), these electrophysiological analyses have 

demonstrated age-related increases in higher-order cognitive regions 

(particularly in prefrontal areas) (33-38), increases in bilateral prefrontal cortical 

recruitment (35), and a shifting of activity away from posterior regions towards 

more anterior regions (e.g., weaker posterior activity and stronger frontal activity) 

(39-45). Despite the utility of the existing healthy aging electrophysiologic 

literature, the vast majority of this previous work was done using sensor-level 
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data. As such, the cortical generators of these age-related oscillatory changes remain 

largely poorly characterized.  

Neuroimaging using Magnetoencephalography: 

 Magnetoencephalography is a passive and noninvasive neuroimaging technique 

which utilizes an array of superconducting sensors to measure the minuscule magnetic 

fields (i.e., ~10-15 T) that are produced by population-level neural activity. As such, similar 

to EEG and in contrast to fMRI, MEG directly measures neural activity with excellent 

temporal resolution (i.e., millisecond). Importantly, unlike electric fields, magnetic fields 

are not distorted by the intervening tissues (e.g., scalp, skull, CSF), which have a wide 

range of different conductivity values. Thus, MEG provides better spatial precision for 

source reconstruction compared to EEG. The combination of good spatial precision and 

excellent temporal resolution afforded to MEG makes it an ideal neuroimaging modality 

for the characterization of neural oscillatory activity. 

Goals of the Current Study: 

 The current studies aim to fill knowledge gaps regarding frequency-specific 

changes in neural oscillatory activity across the adult lifespan using advanced 

neuroimaging techniques. Specifically, we aim to characterize age-related changes in 

the oscillatory mechanisms underlying basic visual processing using a visual 

entrainment paradigm (Chapter 1) as well as a more complex grating stimulus (Chapter 

2). Additionally, we aim to investigate the effects of healthy aging on the oscillations 

during each phase of working memory processing (i.e., encoding, maintenance, and 

retrieval). From these results, we expect to develop a better understanding of how 

healthy aging affects neurophysiological processes ranging in complexity from lower-

order (Chapters 1 and 2) to higher-order (Chapter 3) operations. Furthermore, these 

studies will provide much needed background to guide future research into the 
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oscillatory aberrations associated with neurodegenerative processes, which become 

more prevalent with increasing age (e.g., Alzheimer’s disease, Parkinson’s disease). 
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CHAPTER 1: VISUAL ENTRAINMENT DEFICITS IN HEALTHY AGING ADULTS 

The material presented in this chapter was previously published in Springer, Erker, 
Schantell, Johnson, Willett, Okelberry, Rempe, and Wilson, 2023, Disturbances in 
Primary Visual Processing as a Function of Healthy Aging, Neuroimage, 271:120020 

Introduction: 

Aging, even in the absence of pathological changes, has been shown to affect a 

variety of visual processes, including visual acuity (46), motion perception (47), and 

contrast sensitivity (48, 49). These changes in visual processing during healthy aging 

are the result of complex and multifaceted alterations along the entire visual pathway; 

from the cornea to the visual cortices (50). Understanding the nature of visual 

processing deficits in aging is critical considering that decrements in basic visual 

processing have been shown to significantly decrease the quality of life of older adults 

(51) and can lead to increased risk of injury (e.g., via falling or accidents while driving; 

52, 53, 54).  

A common neurological change associated with healthy aging is the gradual 

decrease of cortical thickness across the whole brain (55, 56). Though general age-

related decreases in cortical thickness have been commonly reported, analyses tend to 

show less occipital cortical thinning relative to other cortical areas (11, 57-60). 

Importantly, variation in cortical thickness, as a function of aging, pathological processes, 

or individual differences, have been shown to correlate with altered neural activity in the 

same regions (61-65). Though previous research has demonstrated the interrelated 

nature of healthy aging, decreased cortical thickness, and alterations in neural activity, 

the relationship between these variables has yet to be thoroughly investigated, and this 

is especially true for the visual cortex. 

To date, the majority of aging studies investigating visual cortical responses have 

demonstrated significant changes in the characteristics of these responses. Most 

notably, studies using electroencephalography (EEG) and magnetoencephalography 
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(MEG) have shown that electrode/sensor level responses to visual stimulation in 

older adults tend to have lower amplitudes (66-69) and greater latencies 

compared to those observed in younger individuals (66, 68, 70-74). While these 

findings of decreased visual response amplitudes and increased latencies are 

robust in the electrophysiological literature (e.g., EEG and MEG), studies using 

functional MRI (fMRI) have been less consistent with some studies supporting 

the EEG/MEG findings (75-78) and many others finding no changes in visual 

response characteristics as a function of healthy aging (79-81). These 

discrepancies could be partially attributable to differences in spatial scales, as 

the EEG and MEG studies that have consistently found age-related effects in 

visual responses are generally those that relied on sensor/electrode level 

analyses, which typically reflect responses over more widespread brain regions 

than is the case with fMRI and source-resolved MEG/EEG. Thus, the anatomical 

origins of these aging effects and their relationship to observations from fMRI 

remain poorly understood.   

While visual entrainment paradigms have been used in clinical 

neuroscience research for over 20 years, interest has sharply increased recently 

due to new evidence suggesting that such entrainment may attenuate beta 

amyloid plaques in mouse models of Alzheimer’s disease (AD) and thus may 

hold significant therapeutic promise via the capacity to reduce a key pathological 

feature of the disease (82-84). Visual entrainment responses are generated 

when neurons in the visual cortices synchronize their firing with the frequency of 

a flickering visual stimulus. This visual response is unique, relative to non-

flickering stimuli, as the neuronal activity is both time- and phase-locked to the 

visual stimulation and often exhibits an extended duration that matches that of 

the visual stimulation (85, 86). The use of sustained entrainment paradigms is 
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ideal for investigating visual processing because the elicited neural responses have high 

signal-to-noise ratios and the sustained nature of the response allows for time varying 

analysis of visual activity. Nonetheless, despite these advantages, most studies of visual 

processing in aging have used more simple tasks that involve transient flashes or similar 

stimuli and focused on the resulting evoke fields (MEG) or potentials (EEG). As briefly 

mentioned above, beyond aging and recent work in AD, visual (and auditory) 

entrainment paradigms have been widely used in clinical neuroscience and proven to be 

useful in the characterization of psychiatric and other neurological disorders (e.g., 

schizophrenia, autism, ADHD, and migraines; 87, 88-93). Further, some of these studies 

suggest that specific conditions like schizophrenia are associated with deficits in both 

visual (89, 90) and auditory domains (91, 94). However, beyond schizophrenia, the 

pattern is more unclear because less work has been performed. Interestingly, a recent 

study also showed that entrainment in one modality (e.g., visual) affects higher order 

processing of stimuli presented in other modalities (e.g., auditory; 95). 

In sum, electrode/sensor-level electrophysiological responses serving visual 

processing using transient, non-flickering visual stimuli have been extensively studied in 

aging populations, but far less is known about how healthy aging affects cortical-level 

visual entrainment responses. Further, though cortical thickness changes have been 

shown to be strongly related to aging, data on the occipital cortex has been less robust 

and very few studies to date have attempted to link healthy aging to both cortical 

thinning and visual processing. Thus, in the current study, we examined the neural 

dynamics of visual entrainment responses using MEG in an aging sample, with an 

emphasis on neural response amplitude, latency, and consistency (i.e., inter-trial phase-

locking and single-trial amplitude consistency). A key goal was to determine whether 

age-related differences in these response parameters are affected by other functional 

parameters (e.g., are differences in amplitude attributable to less consistent responses 
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from trial-to-trial) and/or cortical thickness. In order to produce the strongest 

neural responses, the frequency of entrainment was chosen to fall within the 

range that has been shown to elicit the most robust visual entrainment responses 

in healthy adults (i.e., 15 Hz; 96). Based on the broader visual processing 

literature, we hypothesized that, as a function of healthy aging, visual cortical 

responses would be less consistent, have decreased amplitudes, and increased 

latencies. 

Methods: 

Participants 

A total of eighty adults with a mean age of 46.35 (SD = 13.50) years and a range 

of 20.22 to 67.00 years were selected for inclusion in this study. These participants were 

chosen from a larger-scale study of accelerated aging in persons with HIV, with only the 

HIV-negative participants included in this investigation of healthy aging. Among the 

included control participants, the number of participants per decade of life was relatively 

equal (i.e., uniform) and their level of education did not vary as a function of age (F1,77 = 

1.91; p = .171). Of the 80 adults, 76 (95%) were right-handed, 63 (79%) were male, 9 

(11%) were Black, 5 (6%) were Asian, 63 (79%) were Caucasian, and the remaining 3 

(4%) were more than one race, which corresponds closely to the racial demographics of 

the surrounding region. All included participants scored in the normal range on a 

neuropsychological testing battery that probed seven cognitive domains (i.e., processing 

speed, memory, learning, language, executive function, attention, and motor function). 

Exclusionary criteria included any medical illness affecting CNS function (e.g., HIV/AIDS, 

Lupus, etc.), any neurological or psychiatric disorder, cognitive impairment, history of 

head trauma, current substance abuse, and the MEG laboratory’s standard exclusionary 

criteria (e.g., ferromagnetic implants). The Institutional Review Board reviewed and 
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approved this investigation. Each participant provided written informed consent following 

a detailed description of the study. 

Experimental Paradigm 

During the MEG recording, participants sat in a nonmagnetic chair within a 

magnetically shielded room and were instructed to fixate on an entrainment stimulus that 

flickered at a rate of 15 times per second (Hz). The stimulus was a small white circle, 3.8 

cm in diameter that was presented centrally on a black background and subtended a 

visual angle of 1.83°. The duration of each flicker-train was 2500 ms and the inter-

stimulus interval was randomly jittered between 2000 and 2500 ms. Each participant 

completed 120 trials, which resulted in a total recording time of about 9.5 minutes.  

MEG Data Acquisition 

MEG recordings were conducted in a one-layer magnetically shielded room with 

active shielding engaged to compensate for environmental noise. Neuromagnetic 

responses were continuously sampled at a rate of 1 kHz with an acquisition bandwidth of 

0.1-330 Hz using an Elekta MEG system with 306 magnetic sensors (Helsinki, Finland). 

During data acquisition, participants were continually monitored via real-time audio-video 

feeds from inside the magnetically shielded room. MEG data were individually corrected 

for head motion and subjected to noise reduction using the signal space separation 

method with a temporal extension (97). 

Structural MRI Acquisition, Processing, and MEG Coregistration 

Preceding MEG recording, four coils were attached to the subject’s head and 

localized, together with the three fiducial points and scalp surface, with a 3-D digitizer 

(FASTRAK 3SF0002, Polhemus Navigator Sciences, Colchester, VT, USA). Once the 

participants were positioned for MEG recording, an electric current with a unique 

frequency label (e.g., 321 Hz) was fed to each of the coils. This induced a measurable 
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magnetic field and allowed each coil to be localized in reference to the sensors 

throughout the recording session. Since coil locations were also known in head 

coordinates, all MEG measurements could be transformed into a common coordinate 

system. With this coordinate system, each participant’s MEG data were co-registered 

with their structural T1-weighted MRI prior to source space analysis using BESA MRI 

(Version 2.0). All MRI data were aligned parallel to the anterior and posterior 

commissures and transformed into standardized Talairach space. Following source 

analysis (i.e., beamforming), each subject’s 4.0 mm3 functional MEG images were also 

transformed into standardized space using the transform that was previously applied to 

the structural MRI volume and spatially resampled to enable group-wise statistical 

comparisons.  

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Cardiac and ocular artifacts (e.g., blinks and eye movements) were removed 

from the data using an adaptive spatial filtering approach which separates artifact and 

brain signal topographies, allowing for the removal of artifacts without distortion of the 

underlying neurological signals (98). This artifact correction was accounted for during 

source reconstruction. The continuous magnetic time series was then divided into 

epochs of 4400 ms duration, with the baseline extending from -600 to 0 ms prior to the 

onset of the flickering stimulus. Epochs containing remaining artifacts (after cardiac and 

ocular artifact removal) were rejected, per participant, using a fixed threshold method, 

supplemented with visual inspection. Across the sample, an average amplitude threshold 

of 1149.69 (SD = 367.05) fT and an average gradient threshold of 169.69 (94.75) fT/s 

was used to reject artifacts. An average of 108.15 (SD = 7.66) trials per participant were 

used for further analysis. Importantly, the amplitude and gradient thresholds used for 

artifact rejection and the total accepted trial count per participant did not differ as a 

function of age (ps > .280). 
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Artifact-free epochs (-600 to 3800 ms, with zero defined as flicker onset) were 

then transformed into the time-frequency domain using complex demodulation (99), with 

a time-frequency resolution of 0.5Hz/100ms and a bandwidth of 4-50 Hz. The resulting 

spectral power estimates per sensor were averaged over trials to generate time-

frequency plots of mean spectral density per participant. These sensor-level data were 

then normalized using each respective frequency bin’s baseline power, which was 

derived by averaging over the baseline time window (-600 to 0 ms). 

 The specific time-frequency windows used for subsequent sourcing imaging were 

determined by statistical analysis of the sensor-level spectrograms across all trials, 

gradiometers, and participants. Each data point in the spectrograms were initially 

evaluated using a mass univariate approach based on the general linear model. To 

reduce the risk of false-positive results while maintaining reasonable sensitivity, a two-

stage procedure was followed to control type 1 error. In the first stage, paired-sample t-

tests against baseline were conducted on each data point and the output spectrograms 

of t-values were thresholded at p < .05 to define time-frequency bins containing 

potentially significant oscillatory deviations across all participants. In stage two, the time-

frequency bins that survived the threshold were clustered with temporally and/or 

spectrally neighboring bins that were also below the threshold (p < .05), and a cluster 

value was derived by summing all of the t-values of all data points in the cluster. 

Nonparametric permutation testing was then used to derive a distribution of cluster 

values, and the significance level of the observed clusters (from stage one) were tested 

directly using this distribution (100, 101). For each comparison, 10,000 permutations 

were computed to build a distribution of cluster values. Based on these analyses, the 

time-frequency windows that contained significant oscillatory events across all 

participants were subjected to a beamforming analysis. Thus, a data-driven approach 

was utilized for selecting time-frequency windows to be imaged. 
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MEG Source Imaging and Statistics 

Cortical networks were imaged through an extension of the linearly constrained 

minimum variance vector beamformer known as dynamic imaging of coherent sources 

(102-104), which applies spatial filters to time-frequency sensor data in order to calculate 

voxel-wise source power for the entire brain volume. Such images are typically referred 

to as pseudo-t maps, with units (pseudo-t) that reflect noise-normalized power 

differences (i.e., active vs. baseline) per voxel. Following convention, the source power 

in these images was normalized per participant using a separately averaged pre-

stimulus noise period (i.e., baseline) of equal duration and bandwidth (105). MEG 

preprocessing and source imaging used the Brain Electrical Source Analysis (version 

7.0) software. 

 To assess the anatomical basis of the responses identified through the sensor-

level analysis, the 3D beamformer output maps were averaged across all participants. 

To investigate the neural differences in visual processing as a function of healthy aging, 

virtual sensors (i.e., voxel time series data) were extracted from each participant’s MEG 

data. Specifically, we identified the voxel with the strongest entrainment response in the 

grand-averaged image (i.e., across all participants and time windows) and computed 

virtual sensors for that location by applying the sensor weighting matrix derived from the 

forward solution to the preprocessed signal vector, which yielded a time series for the 

specific voxel in source space. For this coordinate of interest, the envelope of spectral 

power was computed for the frequency range used in the beamforming analysis (i.e., 

14.5-15.5 Hz, see below). For each participant, the mean baseline activity was derived 

by averaging the absolute amplitude time series data across the baseline period (-600 to 

0 ms). To derive the relative response time series, the absolute amplitude time series 

was normalized using the same -600 to 0 ms baseline period. Estimates of the relative 

entrainment response were derived by averaging the relative amplitude time series of 



15 
 

the peak voxel across the significant time window derived from the sensor-level data 

(i.e., 200 to 2600 ms). Further, visual entrainment response latency was determined for 

each participant by calculating the time it took for them to reach 50% of their maximum 

entrainment response. Additionally, using these same peak voxel time series, the inter-

trial phase locking (ITPL) value was computed per participant for the time-frequency 

range used in the beamforming analysis (i.e., 14.5-15.5 Hz; 200 to 2600 ms) to assess 

phase consistency. Finally, to evaluate the consistency of visual entrainment amplitudes 

across trials, the coefficient of variation was calculated across the single-trial responses 

for each participant. To reduce the impact of outliers on statistical analyses, participants 

with values 2.5 SDs above or below the group mean were excluded for each analysis. 

Cortical Thickness Processing 

To examine cortical thickness, the T1-weighted MRI data were then processed 

using additional surface-based morphometry calculations in the computational anatomy 

toolbox (CAT12 v12.6; 106) at a resolution of 1 mm3. This method uses a projection-

based thickness approach to estimate cortical thickness and reconstruct the central 

surface in one step (107). Briefly, following tissue segmentation, the white matter 

distance is estimated, and the local maxima are projected onto other gray matter voxels 

using a neighboring relationship described by the WM distance. This method accounts 

for partial volume correction, sulcal blurring, and sulcal asymmetries. Topological defects 

are corrected based on spherical harmonics (108) and the cortical surface mesh was 

reparametrized into a common coordinate system via an algorithm that reduces area 

distortion (109). Finally, the resulting maps were resampled and smoothed using a 15 

mm FWHM Gaussian kernel. These cortical thickness maps were then parcellated using 

the Desikan-Killiany (DK) atlas. Subject-wise cortical thickness values were extracted in 

several ways: 1) averaged across all atlas regions (i.e., entire cortex), 2) averaged 
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across occipital atlas regions (i.e., lingual, pericalcarine, lateral occipital, and cuneus), 

and 3) primary visual cortex only (i.e., V1; bilateral pericalcarine regions). The three 

participants without high quality structural MRI data were excluded from these analyses.  

Statistical Analyses 

All statistical analyses were performed using R (110), and data plots were 

generated using ggplot2 (111). In order to perform the mediation analysis, the 

PROCESS macro (112) for R was utilized, with indirect effects estimated using 

bootstrapping (113). Linear regression analyses were used to test for differences as a 

function of healthy aging in mean baseline amplitude, relative entrainment amplitude, 

response latency, average inter-trial phase locking, average entrainment amplitude 

variability (coefficient of variation), and cortical thickness (i.e., across the entire cortex, 

occipital cortex, and pericalcarine region). To ensure that age-related changes in 

occipital cortex and pericalcarine cortical thickness were not responsible for age-related 

changes in visual entrainment response metrics, linear regression analyses were used 

to model the relationship between cortical thickness and the visual response metrics. 

Additionally, inclusion of these cortical thickness measures as nuisance covariates in all 

reported statistical models did not change the significance or interpretations of any 

results. Finally, permutation testing of the relative entrainment time series was performed 

using custom MATLAB scripts (114). 

Results: 

Cortical thickness analysis 

 As detailed in the methods section, cortical thickness estimates were parcellated 

using the DK atlas. Subject-wise cortical thickness values were then averaged across 

the entire cortex, the bilateral occipital cortices (i.e., lingual, pericalcarine, lateral 
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occipital, and cuneus), and the bilateral pericalcarine regions. We found significant age-

related decreases in cortical thickness across the entire cortex (F1,74 = 10.53, p = .002), 

bilateral occipital cortex (F1,74 = 5.81, p = .018), and pericalcarine regions (F1,74 = 8.74, p 

= .004).  

Sensor-level analysis 

 Sensor-level time-frequency analysis across all participants revealed significant 

oscillatory responses in a large number of posterior sensors at the base entrainment 

frequency (i.e., 15 Hz) and harmonics (i.e., 30 and 45 Hz), all of which were increases in 

amplitude relative to baseline (Figure 1A). Given the goals of the study, we focused on 

the base-frequency entrainment response at 15 Hz, which began at about 200 ms after 

the presentation of the flickering stimulus and remained significantly different from 

 

Figure 1. Sensor- and source-level activity during visual entrainment. 

A. Grand-averaged time-frequency spectrogram from a sensor near the occipital cortex (i.e., MEG2123), 

with time (ms) shown on the x-axis and frequency (Hz) denoted on the y-axis. A color scale bar shown to 

the right of the spectrogram denotes the percent power change relative to the baseline period (-600 to 0 

ms). There is clear entrainment to the 15 Hz flicker stimulus and harmonics (i.e., 30 and 45 Hz). B. Mean 

beamformer images (pseudo-t; see color bar) of the 15 Hz entrainment response (i.e., 200-2600 ms and 

14.5-15.5 Hz). The images labeled “younger” and “older” represent the average source representations 

for the youngest and oldest participants, as determined with cutoffs of less than or greater than 0.5 

standard deviations from the mean age, respectively. Note that all statistical analyses treated age as a 

continuous variable and the subgroups here are just for illustration purposes. 
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baseline until tapering off around 100 ms following its removal (i.e., 200-2600 ms; p < 

.001, corrected). 

Beamformer and Virtual Sensor Analysis 

To determine the cortical origins of the base-frequency entrainment response, we 

imaged the significant sensor-level time-frequency bin (i.e., 200-2600 ms and 14.5-15.5 

Hz) in each participant using a frequency-resolved beamformer. Since our baseline was 

only 600 ms in duration, we used four non-overlapping time windows to image the full 

200-2600 ms response and then averaged these four images in each participant. In 

agreement with previous studies of visual entrainment, strong increases in narrow-band 

15 Hz activity were observed in the bilateral primary visual cortices (Figure 1B). As 

stated in the methods, we extracted time series data from the peak voxel in the grand-

averaged image and then computed the mean relative response amplitude to the flicker 

stimulus (i.e., 200 to 2600) and the mean absolute amplitude during the baseline period 

(-600 to 0 ms) to estimate the strength of spontaneous activity. Across the sample, mean 

entrainment responses became significantly weaker as a function of age (F1,77 = 4.46, p 

= .038; Figures 2 and 3A). In contrast, the strength of spontaneous activity during the 

baseline did not differ as a function of age (F1,77 = 0.04, p = .838; Figure 3B). Further, 

mean entrainment responses were not found to be related to visual cortical thickness 

(occipital cortex: F1,72 = 2.27, p = .137; pericalcarine region: F1,72 = 1.76, p = .189). Note 

that for these analyses we focused on the two occipital regions since these areas pertain 

to the origins of the neural responses. 
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Figure 2. Relative amplitude of 15 Hz primary visual responses. 

From the peak voxel exhibiting the strongest neural activity in response to the 15 Hz entrainment 

stimulus (blue dot within inset image), relative time series (i.e., baseline-corrected) were extracted to 

evaluate differences in entrainment response amplitude as a function of age during the time window 

identified through the sensor-level analysis (i.e., 200-2600 ms; shaded area). Note that all statistics 

treated age as a continuous variable, but for the sake of visualization participants have been 

dichotomized in this figure using a 0.5 SD from the mean cutoff. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, to investigate the temporal dynamics of the entrainment response, we 

regressed the latency of the response onto participant age (Figure 3C). We defined the 

response latency by finding the peak amplitude in each participant and then computing 

the time it took to reach 50% of that peak in each participant. We found that as age 

increased, participants took significantly longer on average to entrain to the flickering 

stimulus (F1,69 = 6.06, p = .016). We then tested for aging effects on the consistency of 

the entrainment response amplitude using the coefficient of variation (CV) and phase 

using the ITPL value (Figures 3D and 3E, respectively). There were no aging effects in 

the consistency of the cross-trial amplitude (F1,76 = 3.22, p = .077) nor phase (F1,78 = 

1.05, p = .309). Further, there was no significant relationship between visual cortical 

thickness and latency (occipital cortex: F66 = 2.75, p = .102; pericalcarine region: F1,66 = 

1.89, p = .174), coefficient of variation (occipital cortex: F1,73 = 0.73, p = .395; 
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pericalcarine region: F1,73 = 0.03, p = .853), nor ITPL value (occipital cortex: F1,74 = 0.65, 

p = .423; pericalcarine region: F1,74 = 0.34, p = .564).  

Next, we wanted to investigate the relationship between response latency and 

mean entrainment response amplitude, as well as whether latency modulates the 

relationship between participant age and mean entrainment response. To this end, we 

regressed the mean entrainment response amplitude onto latency and found that 

participants with later response latencies (i.e., took longer to entrain to the flickering 

stimuli) also tended to have weaker mean entrainment responses (F1,69 = 11.60, p = 

.001). To investigate whether latency mediated the relationship between age and mean 

entrainment amplitude, a mediation analysis was conducted (115), with indirect effects 

estimated using bootstrapping (113). Our results (Figure 4 and Table 1) indicated a full 

 

Figure 3. Relationships between age and several neural indices of the 
entrainment response. 

(A) Entrainment response amplitude, (B) Amplitude of spontaneous activity during the baseline period, 

(C) entrainment response latency, (D) intertrial amplitude consistency (i.e., coefficient of variation), and 

(E) intertrial phase consistency (i.e., intertrial phase locking; ITPL) are shown as a function of participant 

age. Lines of linear best-fit, 95% CI (i.e., shaded area). 
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mediation of the relationship between age and mean entrainment amplitude by latency, 

which survived bootstrapping of 5,000 samples (95% CI: -.0051 through -.0004). 

Importantly, these results suggest participant response latency drives the effects of age 

on the strength of visual entrainment. Further, as with all analyses, the indirect effect of 

age on mean entrainment amplitude through latency remained significant when 

controlling for visual cortical thickness. 

Finally, to further explore these changes in entrainment latency and amplitude as 

a function of healthy aging, permutation testing of the relative entrainment time series 

was performed using an initial p-value threshold of 0.05 and 10,000 permutations to 

build the null distribution. Interestingly, of the whole entrainment period (0 to 2500 ms), 

only the beginning (400 to 1800 ms) differed significantly as a function of age (p < .05, 

corrected). These permutation data provide further support for the idea that changes in 

the response latency with age may be driving decreases in the overall entrainment 

amplitudes of older individuals. 

 

 

Model b SE t β F R2 95% CI 

Simple regression of response latency on age 
  Intercept 215.72 117.05 1.84  5.86* .08 [-17.85, 449.28] 
  Age 5.81 2.40 2.42* .282   [1.02, 10.61] 
 
Simple regression of relative entrainment amplitude on age 
  Intercept 0.85 0.144 5.90**  5.36* .07 [0.56, 1.14] 
  Age -0.01 0.01 -2.32* -.270   [-0.01, -0.001] 
        
Multiple regression of relative entrainment amplitude on age and response latency 
  Intercept 0.94 0.14 6.68  7.08** .17 [0.66, 1.22] 
  Latency 0.00 0.00 -2.87** -.332   [-0.001, -0.0001] 
  Age -0.01 0.00 -1.53 -.177   [-0.01, 0.001] 

Table 1. Entrainment latency fully mediates the relationship between age and 
entrainment amplitude.  

Mediation analysis underlying regressions showing full mediation of the relationship between age and 

relative entrainment amplitude through latency. *p < .05, **p < .01. 
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Figure 4. Mediation path diagram. 

Mediation analysis revealed that the relationship between age and mean entrainment amplitude was 
fully mediated by the latency of the entrainment response. This analysis survived bootstrapping of 5,000 
samples with confidence intervals of 95%. Standardized regression coefficients are displayed. Displayed 
statistical parameters were not significantly altered when occipital or pericalcarine cortical thickness 
values were included as nuisance covariates.  *p < .05, **p < .01. 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion: 

In the current study, we investigated the impact of healthy aging on the visual 

processing of flickering stimuli in the primary visual cortices while controlling for occipital 

cortical thickness. Using advanced source reconstruction and voxel time series 

analyses, we observed robust cortical entrainment at the frequency of stimulation (i.e., 

15 Hz) and its harmonics. As expected, as a function of healthy aging, mean entrainment 

responses were found to decrease in amplitude, while the peak latency of entrainment 

responses were found to increase. Further, older individuals were found to have 

decreased cortical thickness across the entire brain and in the visual cortices. These 

data revealed that entrainment response latency fully mediated the relationship between 

age and entrainment amplitude, and that these age-related effects surrounded the 

calcarine fissure. Critically, these changes in visual entrainment response metrics as a 

function of age were independent of age-related visual cortical thinning. Below, the 
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implications of these novel findings on understanding the impact of healthy aging on 

visual processing are discussed. 

 Two common findings in the fMRI and electrode/sensor-level electrophysiologic 

literature investigating visual processing in healthy aging are decreased amplitude (66-

69, 75-78) and increased latency (66, 68, 70-75) with increasing age. Our findings 

support these changes with increasing age predicting weaker visual entrainment and 

extended time required to fully entrain to the flickering stimulus, and add new anatomical 

detail on the cortical origins. Broadly speaking, little is known about the underlying cause 

of such decreased visual response amplitudes in older individuals. In line with the 

cortical thickness findings in the current study, Peiffer (77) showed significantly 

decreased visual response amplitudes even when controlling for visual cortical gray 

matter loss with increasing age. This research by Peiffer and colleagues (77), along with 

our results showing that visual cortical thinning in older adults is not associated with age-

related alterations in visual responses, indicate that age-related changes in visual 

response properties stem from mechanisms other than the age-related cortical atrophy 

seen in older individuals. With regards to mechanisms for increased latency of visual 

responses with age, however, a fascinating MEG study by Price (74) demonstrated that 

prolonged latencies with increasing age could be largely explained by white matter loss 

in the optic radiations of participants, causing delays in signal transmission.  

A secondary goal of the current study was to probe for neurophysiological 

response parameters that may underlie the decreased visual response amplitudes 

observed in healthy aging. To this end, we investigated inter-trial phase consistency 

using the ITPL metric and single trial amplitude using the coefficient of variation (CV), 

both of which have not been utilized in a healthy aging population. The use of ITPL 

provides information regarding trial-to-trial phase response consistency that is 

interpretationally distinct from the coefficient of variation computed on response 
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amplitude across trials. Specifically, ITPL tells us how consistently the phases of the 

neural signal are aligning from trial to trial (at the same time point) for each participant, 

while the CV is based on signal amplitude metrics and reflects how consistent the 

strength of the neural response is from trial to trial. Considering the well documented 

age-related changes to visual processing, we hypothesized that the consistency of visual 

responses would decrease with participant age, and thus be a major contributor to the 

overall decrease in mean amplitude. Interestingly, we observed no such changes in the 

consistency of the phase (i.e., ITPL) nor amplitude (i.e., CV), which supports the null 

hypothesis that these parameters do not play a significant role. 

A key finding from our time series analyses indicated that older individuals reach 

their maximum entrainment amplitude much more slowly than their younger peers. This 

sort of change in response properties has been shown on a different time scale in fMRI 

visual processing studies, where older individuals were found to have hemodynamic 

response curves that were both flatter and more sustained than younger individuals (75, 

80). Similarly, in the current study, visual entrainment response latency was found to 

predict the mean amplitude of entrainment such that participants who took longer to 

entrain had weaker overall responses. Thus, to further probe the relationship between 

age, visual response amplitude, and latency, we conducted a mediation analysis with 

latency as the mediator. Critically, we found that response latency fully mediated the 

relationship between age and visual response amplitude, indicating that older individuals 

may have weaker overall visual responses because they are taking longer to entrain the 

flickering stimuli. This view was fully supported by our permutation analysis of the time 

series, which showed that older individuals did not statistically differ from younger 

individuals during the later entrainment period. The fact that older individuals take longer 

to reach the same visual response amplitude as their younger counterparts is both novel 

and has important implications for the interpretation of electrophysiologic visual 
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paradigms. In the most common visual stimulation paradigms used in aging research, a 

stimulus is presented and removed quickly, causing a visual evoked potential. 

Comparably, entrainment tasks involve quickly flickering the stimulus over and over, 

which causes a sustained response. The results herein suggest that older participants 

may have significantly weaker initial visual responses that start to approximate those of 

their younger peers if the stimulus change is sustained and periodic. Thus, the 

literature’s most common age-related finding in the visual domain may reflect only part of 

the story, as the decrease in response amplitude is likely paradigm specific.   

A somewhat surprising finding was the lack of differences in spontaneous cortical 

activity as a function of age. Multiple studies have shown elevated spontaneous activity 

in the primary somatosensory cortices of older adults relative to younger adults (116) 

and in populations thought to exhibit accelerated aging such as those infected with HIV 

(117-121). Likewise, studies have shown elevated spontaneous activity in the primary 

motor cortices of healthy older relative to younger participants and demonstrated that 

such activity modulates behavioral performance and oscillatory responses in the same 

brain tissue (122-124). Thus, we were somewhat surprised that spontaneous activity did 

not differ as a function of age in the primary visual cortices. One possibility is that such 

aging effects are limited to the Rolandic region (i.e., extended sensorimotor strip), as we 

know of no studies showing elevated spontaneous activity with increasing age in the 

primary auditory or visual cortices. However, a second possibility is that the effect is 

specific to the idling rhythm of the cortical area, as the motor findings noted above were 

limited to the beta rhythm. While this is certainly possible, the elevated spontaneous 

activity reported in the somatosensory cortices of older adults has been limited to the 

gamma frequency range (116) and the somatosensory strip idles in the alpha band. The 

primary idling rhythm of the visual cortices is also alpha; thus, future studies should 

examine whether spontaneous alpha activity is elevated in the primary visual regions of 
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older adults. These studies would ideally involve a task that probes alpha frequency 

oscillations, as this would enable the impact of elevated spontaneous activity on 

cognitive and perceptual processing to be determined.   

Before closing, it is important to note the limitations of this study. While 

our sample provided a wide range of ages (i.e., 20.22 to 67.00 years old), the top 

age was not as old as would have been ideal to cover the entire lifespan (i.e., ~ 

80 years old). This is because some research has suggested that the visual 

declines associated with healthy aging do not significantly worsen until around 

age 60 (125-127). Second, the current study only utilized one frequency of 

stimulation. An interesting future direction would be to expand the frequency of 

stimulation to several frequencies, particularly those in the gamma band (i.e., > 

30 Hz), in order to investigate frequency specific deficits in aging. Finally, despite 

collecting extensive neuropsychological data, our battery did not include specific 

assessments of visual processing and future studies of visual entrainment should 

expand their testing battery in this regard. Despite these limitations, we found 

that older adults exhibit weaker entrainment responses and that these deficits are 

largely attributable to older adults reaching peak entrainment much later than 

younger adults.  
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CHAPTER 2: HEALTHY AGING IS ASSOCIATED WITH ALTERED VISUAL GAMMA 
OSCILLATIONS 

The material presented in this chapter is under review as Springer, Schantell, Okelberry, 
Willett, Johnson, and Wilson, 2023, Healthy Aging is Associated with Altered Visual 
Gamma Band Onset and Offset Responses 

Introduction: 

Previous work has demonstrated that the sharp increase in neural activity following 

the appearance of a visual stimulus (i.e., onset response), the weaker sustained activity 

when the stimulus remains in the visual field (i.e., sustained response), and the activity 

elicited by the removal of that same stimulus (i.e., offset response) are distinct 

processes (128-130). The functional relevance of each of these separate neural 

processes is readily apparent, with navigation through the environment being dependent 

on the ability to perceive visual stimuli appearing, remaining in view, and disappearing 

from the visual field. Though studies of the visual onset and sustained responses are 

quite common, research focusing on the visual offset response is scarce. This 

discrepancy may be due to the fact that the strength of the offset response is tightly 

linked to stimulus characteristics such as contrast, spatial frequency, and the total 

duration for which the stimulus is presented (131-133). Thus, the visual offset response 

is not present in all visual stimulation paradigms. Though visual processing is supported 

by differential oscillatory activity across several frequencies (i.e., theta, alpha, beta, and 

gamma), the only spectral window with onset, sustained, and offset responses to visual 

stimuli is gamma (134, 135). 

Neural oscillations in the gamma band (~20-100 Hz) have been found in a variety 

of disparate brain regions (e.g., visual, auditory, motor, parietal; (91, 92, 136-139) and 

are associated with many unique cognitive functions (i.e., memory, attention, sensory 

processing; 140, 141, 142). Various early accounts proposed that gamma oscillations 

mediated the binding of separate stimulus features into a coherent visual precept (i.e., 
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“binding by synchrony”; 143, 144). However, the broad involvement of gamma band 

activity across so many regions and during a wide variety of different cognitive functions 

has led others to suggest that gamma activity serves a less specific, more foundational 

role in cortical computations (e.g., synchronizing the output of excitatory neurons; 145, 

146-148). In the occipital cortices, gamma oscillations have been shown to be crucial to 

various aspects of visual processing, including gestalt perception (149, 150), color 

processing (151), and the processing of grating stimuli (152). Further, these visual 

gamma responses have been shown to have high test-retest reliability (153, 154), with 

amplitude and peak frequency characteristics that are highly dependent on stimulus 

properties such as contrast and spatial frequency (155-157). 

Beyond its role in typical brain functions, gamma band oscillations have been 

investigated in a variety of neuropsychiatric disorders. Specifically, alterations in gamma 

band activity have been demonstrated in individuals with schizophrenia (158, 159), 

autism (92, 160), and Alzheimer’s disease (AD; 161, 162). Further, groundbreaking 

studies in mouse models of AD have shown that gamma band entrainment, either 

through direct interneuron stimulation or sensory entrainment, is effective in clearing 

disease-related pathological proteins (i.e., amyloid beta and hyperphosphorylated tau) 

while improving cognitive function (83, 84, 163). More recently, these findings have been 

extended to human participants with clinical trials demonstrating that this visual gamma 

band stimulation may slow the progression of AD-related functional degeneration (164). 

This is unfortunate, as a more thorough understanding of how healthy aging modulates 

visual gamma band responses is critical to distinguishing normal changes across the 

lifespan from those associated with pathological processes.  

In this study, we utilized the high spatiotemporal precision of 

magnetoencephalography (MEG) to investigate age-related alterations in visual cortical 

oscillations. We were particularly interested in disentangling the unique gamma 
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oscillations in response to visual stimulus appearance (i.e., onset), the stimulus 

remaining on the screen (i.e., sustained), and the removal of the stimulus (i.e., offset). To 

elicit these responses, we used a visual grating paradigm that is known to evoke robust 

gamma oscillations. Based on the few previous studies of visual gamma oscillations in 

healthy older adults, we hypothesized that there would be significant age-related 

reductions in gamma band amplitude and inter-trial phase locking across all gamma 

responses.  

Methods: 

Participants 

Eighty-seven adults with a mean age of 45.84 (SD = 13.20) years and a range of 

20.22 to 66.98 years were selected for inclusion in this study. These participants were 

chosen from a larger-scale study of accelerated aging in people with HIV, with only the 

cognitively normal HIV-negative participants being included in this investigation of 

healthy aging. Of the 87 adults, 93% were right-handed, 12.6% were Black/African 

American, 7.0% were Asian, 74.7% were Caucasian, 4.6% were more than one race, 

and the remaining 1.2% preferred not to answer. This distribution corresponds closely to 

the racial demographics of the surrounding region. Notably, there was no effect of age 

on years of education (r85 = -.09, p = .379) and all included participants scored in the 

normal range on a neuropsychological testing battery that probed seven cognitive 

domains (i.e., processing speed, memory, learning, language, executive function, 

attention, and motor function). Exclusionary criteria included any medical illness affecting 

CNS function (e.g., HIV/AIDS, Lupus, etc.), any neurological or psychiatric disorder, 

cognitive impairment, history of head trauma, current substance use disorders, and the 

MEG laboratory’s standard exclusionary criteria (e.g., ferromagnetic implants). The 
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Institutional Review Board reviewed and approved this investigation. Each participant 

provided written informed consent following a detailed description of the study. 

Experimental Paradigm 

Participants were shown a small, centrally located red fixation square on a grey 

background. A series of vertical, 

stationary, square-wave gratings 

(3 cycles per degree) appeared on 

the screen for 500 ms, before 

disappearing and leaving only the 

fixation square (Figure 5). The 

interval between the offset of the 

grating on one trial and the onset 

of the grating in the next trial 

randomly varied between 2000 

and 2500 ms. Each participant 

completed a total of 120 trials, for 

a total run time of about 5.5 

minutes. 

MEG Data Acquisition 

All recordings were conducted in a magnetically-shielded room with active 

shielding engaged. Neuromagnetic responses were sampled continuously at 1 kHz, with 

an acquisition bandwidth of 0.1-330 Hz, using a MEGIN MEG system with 306 magnetic 

sensors (MEGIN, Helsinki, Finland). During data acquisition, participants were monitored 

via real-time audio-visual feeds from inside the shielded room. Subject-wise MEG data 

 

Figure 5. Visual grating task paradigm. 

Participants were instructed to fixate on a red square 

presented centrally. Following the fixation period, a series 

of visual gratings appeared around the red square for 500 

ms. Each participant completed 120 total trials. 



31 
 

were corrected for head motion and subjected to external noise reduction using signal 

space separation with a temporal extension (97). 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four head position indicator (HPI) coils were 

attached to the participant’s head and localized, together with three fiducial points and at 

least 100 scalp surface points, with a 3D digitizer (Fastrak 3SF0002, Polhemus 

Navigator Sciences, Cohshester, VT, USA). Once in the MEG, electrical currents with 

unique frequencies (e.g., 322 Hz) were fed into each of the HPI coils. These HPI coil 

currents induced measurable magnetic fields, allowing the position of the HPI coils to be 

tracked relative to the MEG sensors throughout the recording. Since HPI coil locations 

were also known in head coordinates, all MEG measurements could be transformed into 

a common coordinate system. With this coordinate system, participant-wise MEG data 

were coregistered with high-resolution structural T1-weighted MRI data prior to source 

reconstruction using Brain Electrical Source Analysis (BESA) MRI (Version 2.0, BESA 

GmbH, Gräfelfing, Germany). Structural MRI data were transformed into standardized 

space and aligned parallel to the anterior and posterior commissures. Following source 

analysis, each participant’s MEG functional images were also transformed into 

standardized space using the same transform and spatially resampled.  

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Blink and cardiac artifacts were removed from the raw data using signal-space 

projection, and this correction was accounted for during source analysis (165). The 

continuous magnetic time series was divided into 1800 ms epochs, with the baseline 

period being defined as the -350 ms to -50 ms period prior to stimulus presentation (i.e., 

defined as 0 ms). Subsequently, epochs containing artifacts were removed based on a 

fixed threshold method, supplemented with visual inspection. Briefly, the amplitude and 

gradient distributions across all trials were determined per participant, and those trials 
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containing the highest amplitude and/or gradient values relative to this distribution were 

rejected based on participant-specific thresholds. This approach was employed to 

minimize the impact of individual differences in sensor proximity to the brain and overall 

head size, which strongly affect MEG signal amplitude. Importantly, there were no age-

related changes in either the amplitude (r85 = .01, p = .923) or gradient (r85 = .06, p = 

.579) thresholds used for artifact rejection. Artifact-free epochs were then transformed 

into the time-frequency domain using complex demodulation (99, 166, 167). Lower 

frequency responses (i.e., theta, alpha, and beta) were transformed into the time-

frequency domain using a resolution of 1 Hz 50 ms, while higher frequency responses 

(i.e., gamma) were transformed using a resolution of 2 Hz 25 ms. Following time-

frequency transformation, spectral power estimates per sensor were averaged across 

trials to generate plots of mean spectral density per sensor. These sensor-level data 

were then normalized to the baseline power within each frequency bin, which was 

calculated as the mean power for that frequency bin during the baseline time period (i.e., 

-350 to -50 ms; Figure 6A). 

The significant time-frequency windows used for source imaging were 

determined by statistical analysis of the sensor-level spectrograms across the entire 

array of gradiometers. Briefly, each pixel was initially evaluated using a mass univariate 

approach based on the general linear model, followed by cluster-based permutation 

testing to address the problem of multiple comparisons (100, 101). Specifically, a two-

stage procedure was utilized to minimize false positive results while maintaining 

sensitivity. The first stage consisted of performing paired-sample t-tests against baseline 

on each pixel per spectrogram and thresholding the output spectrograms at p < .05 to 

define time-frequency bins containing potentially significant oscillatory deviations from 

baseline. Bins surviving this threshold (at p < .05) were clustered with temporally and/or 

spectrally neighboring bins that also survived, and cluster values were derived by 
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summing all t-values within each cluster. In stage two, nonparametric permutation testing 

was used to derive a distribution of cluster-values and the significance level of the 

cluster(s) from stage one were tested directly using this permuted distribution, which was 

the result of 10,000 permutations. Based on this permutation analysis, only the time-

frequency windows that contained significant oscillatory deviations from baseline at the p 

< .001, corrected, threshold across all participants were subjected to source imaging.  

MEG Source Imaging and Statistics 

Cortical networks were imaged through a time-frequency resolved extension of 

the linearly constrained minimum variance (LCMV) vector beamformer (102-104). The 

subject-wise images were derived from the cross spectral densities of all combinations 

of MEG gradiometers averaged over the time-frequency range of interest, and the 

solution of the forward problem for each location on a grid specified by input voxel 

space. In principle, the beamformer operator generates a spatial filter for each grid point 

that passes signals without attenuation from the given neural region, while suppressing 

activity in all other brain areas. The filter properties arise from the forward solution (i.e., 

lead field matrix) for each location on a volumetric grid specified by input voxel space, 

and from the MEG data covariance matrix (i.e., cross spectral density matrix). Basically, 

for each voxel, a set of beamformer weights is determined, which amounts to each MEG 

sensor being allocated a sensitivity weighting for activity in the particular voxel. Following 

convention, the source power in these images was normalized per participant using a 

pre-stimulus period (i.e., baseline) of equal duration and bandwidth (105). Such images 

are typically referred to as pseudo-t maps, with units (pseudo-t) that reflect noise-

normalized power differences (i.e., active vs. passive) per voxel. MEG pre-processing 

and imaging used the BESA software (version 7.1).  

After imaging, average whole-brain maps were computed across all participants 

for the selected time-frequency windows. These 3D maps of brain activity were used to 
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assess the neuroanatomical basis of the significant oscillatory responses identified 

through the sensor-level analysis. Using these grand averaged (i.e. across all 

participants) whole-brain maps, we then extracted virtual sensors (i.e., voxel time series) 

for the peak voxel of each cluster. Specifically, we identified the voxel with the strongest 

response in the grand average image and computed virtual sensors for that location by 

applying the sensor weighting matrix derived from the forward solution to the 

preprocessed signal vector, which yielded a time series for the specific voxel in source 

space. These virtual sensor time series were then transformed into the time-frequency 

domain using the same complex demodulation procedure as the sensor-level time-

frequency decomposition. From these time-frequency virtual sensor data, the envelope 

of spectral power was computed for the frequency range used in each beamforming 

analysis (i.e., theta: 4-7 Hz, alpha: 8-12 Hz, beta: 14-20 Hz, gamma onset: 30-58 Hz, 

gamma sustained: 30-58 Hz, and gamma offset: 22-58 Hz). Estimates of the baseline-

relative response amplitudes were derived by averaging across the time window used 

for beamforming in each frequency (i.e. theta: 0-250 ms, alpha: 200-500 ms, beta: 200-

500 ms, gamma onset: 25-175 ms, gamma sustained: 200-500 ms, and gamma offset: 

525-675 ms). Additionally, using these same peak voxel time series data, the envelope 

of spectral inter-trial phase locking (ITPL) was computed for the time-frequency range 

used in the beamforming analysis per participant. Bilateral occipital responses were 

averaged across hemisphere. To reduce the impact of outliers on statistical analyses, 

participants with values 3.0 SDs above or below their respective group mean were 

excluded for each analysis.  

Statistical Analyses and Software 

All statistical analyses were performed using JASP (168), and data plots 

were generated using ggplot2 (111). Correlations and multiple regressions were 

used to model age-related changes in neural activity per response. Single 
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component responses (i.e., theta, alpha, beta, and sustained gamma) were separately 

correlated with age. Considering the strong relationship between the gamma onset and 

offset responses (r84 = .68, p < .001), age-related modeling of each of these responses 

controlled for the other gamma band response. Similarly, gamma onset and offset inter-

trial phase locking (ITPL) values were strongly correlated (r85 = .73, p < .001); thus, age-

related modeling of the ITPL of each of these responses controlled for the other gamma 

band ITPL estimate. To investigate the effect of age on the relationship between gamma 

onset amplitude and gamma offset amplitude, the interaction between age and gamma 

onset amplitude on gamma offset amplitude was modeled using multiple regression. 

This interaction was probed using a simple slopes analysis, with the slope values set to 

the recommended value of ± 1 SD (169). Finally, the relationship between gamma onset 

and offset amplitude and cognitive function was modeled using correlation analyses. 

Considering the relationship between age and the amplitude of the gamma responses, 

as well as the fact that the neuropsychological domains were corrected for age, the 

effect of age was removed from the gamma amplitude values in these neurobehavioral 

models. Finally, the gamma spectral windows differed for the onset (30-58 Hz) and offset 

(22-58 Hz) responses. To ensure these differences in bandwidth were not driving any of 

our results, all analyses were recomputed with the shared frequency range (i.e., 30-58 

Hz) and none of the significant results changed. 

Results: 

MEG Sensor-level Analysis 

Sensor-level time-frequency analysis across all participants revealed significant 

clusters (p < .001, corrected) of theta, alpha, beta, and gamma oscillatory activity (Figure 

6A). Theta band activity sharply increased immediately following stimulus presentation 

and dissipated about 250 ms later (i.e., 4-7 Hz, 0-250 ms; p < .001, corrected). 
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Temporally overlapping decreases in alpha (8-12 Hz, 200-500 ms) and beta (14-20 Hz, 

200-500 ms) activity began about 200 ms after stimulus onset and lasted until stimulus 

removal (i.e., 500 ms; both ps < .001, corrected). Finally, broadband increases in gamma 

band activity were observed following stimulus onset (30-58 Hz, 25-175 ms), while the 

stimulus remained on the screen (30-58 Hz, 200-500 ms), and following stimulus offset 

(22-58 Hz, 525-675 ms; all ps < .001).  

Cortical-level and Time Series Analysis 

To determine the cortical areas generating these significant sensor-level 

oscillatory responses, we imaged each window using a time- and frequency-resolved 

 

Figure 6. Sensor- and source-level activity during visual grating stimulation 

A. Grand-averaged time-frequency spectrograms from a sensor near parieto-occipital areas (MEG2312), 

with time (ms) shown on the x-axis and frequency (Hz) on the y-axis. The vertical, dashed white lines 

denote stimulus onset (0 ms) and offset (500 ms). The colored scale bar between the spectrograms 

indicates the percentage power change relative to the baseline period (-350 to -50 ms). Significant time-

frequency deviations from baseline were identified by cluster-based permutation analysis (see Methods 

section) and are highlighted using grey dot boundaries. B. Grand-averaged beamformer images across 

all participants for each time-frequency response. Colored scale bars for each beamformer image 

denote response amplitude in pseudo-t units. 
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beamformer. The resulting whole-brain maps per participant and response were then 

averaged across all individuals to determine the cortical origins of each oscillatory 

response (Figure 6B). Stronger increases in theta activity were observed in the calcarine 

fissure immediately following stimulus presentation (i.e., 0-250 ms). In contrast, strong 

decreases in alpha and beta activity were observed from about 200 to 500 ms in the 

lateral occipital cortices. Finally, bilateral primary visual gamma band activity increased 

at stimulus onset (i.e., 25-175 ms), was sustained during stimulus processing (200-500 

ms), and increased again at stimulus offset (i.e., 525-675 ms). 

To quantify the temporal dynamics of each oscillatory response and evaluate 

age-related alterations in this neural activity, baseline-relative amplitude and inter-trial 

phase locking (ITPL) values were computed from virtual sensor time series extracted 

from the voxel with the greatest amplitude per oscillatory response. Note that the peak 

voxel was virtually the same (i.e., within one voxel) for all three gamma responses (i.e., 

onset, sustained, and offset). No age-related amplitude changes were detected for the 

theta (r84 = .16, p = .131), alpha (r84 = .02, p = .824), beta (r85 = -.13, p = .232), or the 

sustained gamma response (r84 = .06, p = .560). The same was true for the ITPL 

measures in the alpha (r84 = .0.17, p = .128), beta (r84 = .06, p = .588), and sustained 

gamma (r83 = -.11, p = .336) responses, though there was an age-related increase in 

theta band ITPL (r83 = .27, p = .012). In contrast, significant age-related increases in 

gamma onset amplitude (F1,82 = 10.67, p = .002; Figure 7) and ITPL (F1,84 = 4.02, p = 

.048; Figure 8), controlling for the same parameters in the gamma offset response (see 

Methods), were detected in the primary visual cortices. Conversely, significant age-

related decreases in gamma offset amplitude (F1,82 = 7.72, p = .007; Figure 7) and ITPL 

(F1,84 = 5.43, p = .022; Figure 8), controlling for the onset parameters, were observed in 

the primary visual cortices. 
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Figure 7. Primary visual gamma amplitude responses and age-related changes 
in these responses. 

A. From the peak voxel showing the strongest gamma neural response, time series were extracted to 

evaluate changes in response amplitudes as a function of healthy aging during the time windows 

identified through sensor-level analysis (i.e., onset: 25-175 ms, offset: 525-675 ms; shaded area). The 

sustained response is not shaded as it was not related to age. Note that all statistics treated age as a 

continuous variable, but for the sake of visualization, participants have been dichotomized in this figure 

using a 0.5 SD from the mean cutoff. B. Scatterplots represent the average onset (left) and offset (right) 

response amplitude during each respective response time window (i.e., shaded area in A), as a function 

of age. Lines of linear best-fit and 95% CI (shaded areas in B) are shown. Given the high correlation 

between onset and offset gamma responses within each participant, the values plotted in (B) are 

corrected for the other response. **p < .01 
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Considering the strong relationship between gamma onset and offset amplitudes 

(r84 = .68, p < .001), we next investigated if this relationship was altered by age. To this 

end, we regressed gamma offset amplitude onto gamma onset amplitude with age as a 

 

Figure 8. Inter-trial phase locking (ITPL) of visual gamma responses and age-
related changes in ITPL. 

A. Time series were extracted from the peak voxel based on response amplitude and used to compute 
ITPL values, which were examined as a function of healthy aging during the time windows identified 
through the sensor-level analysis (i.e., onset: 25-175 ms, offset: 525-675 ms; shaded area). The 
sustained response is not shaded as the ITPL value of this response was not related to age. Note that all 
statistics treated age as a continuous variable, but for the sake of visualization, participants have been 
dichotomized in this figure using a 0.5 SD from the mean cutoff. B. Scatterplots represent the average 
ITPL values for the onset (left) and offset (right) responses during each respective time window (i.e., 
shaded area in A), as a function of age. Lines of best linear fit and 95% CI (shaded areas in B) are 
shown. Given the high correlation between onset and offset gamma responses within each participant, 
the values plotted in (B) are corrected for the other response. *p < .05 
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moderator and found a significant interaction between age and gamma offset amplitude 

(F1,81 = 9.24, p = .003; Figure 9). Specifically, we found that as age increased, the 

strength of the relationship between gamma onset and offset amplitude decreased. This 

same age moderation was not found on the relationship between gamma onset and 

offset ITPL values (F1,83 = 1.19, p = .194). 

Lastly, we investigated the relationship between cognitive performance and 

visual gamma amplitude. We found a significant positive relationship between gamma 

offset amplitude and processing speed (F1,81 = 6.08, p = .016; Figure 10). This same 

relationship did not exist between gamma onset amplitude and processing speed (F1,79 = 

 

Figure 9. Relationship between gamma onset and offset response amplitude is 
moderated by age. 

Across all participants, as the strength of gamma onset response amplitude increased, as did the 

strength of the gamma offset response amplitude. This gamma band onset-offset relationship was 

moderated by age, such that younger individuals had a stronger onset-offset relationship compared to 

older individuals. Since age was a continuous moderator, the interaction plot is modeled using simple 

slopes analysis (55), with age set to +1 SD from the mean (59.04 years old; Older) and -1 SD from the 

mean (32.64 years old; Younger), as is described in the Statistical Analysis section. Lines of linear best-

fit and 95% CI (i.e., shaded area). 
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2.05, p = .157). Further, neither gamma onset nor offset responses were significantly 

related to any of the other neuropsychological domains (ps > .05).  

Discussion: 

Herein, we examined whether healthy aging modulates the oscillatory activity 

serving visual processing using MEG-based source reconstruction and voxel time series 

analyses. We found no significant age-related changes in occipital theta, alpha, beta, or 

sustained gamma responses. Our primary results indicated differential alterations in 

gamma onset and offset responses as a function of healthy aging. Specifically, we found 

that gamma onset amplitude and ITPL increased as a function of healthy aging. 

Conversely, gamma offset amplitude and ITPL decreased with increasing age. Further, 

gamma offset amplitude was found to positively predict participant processing speed. 

Finally, these data demonstrated that age moderates the relationship between gamma 

onset and offset amplitude. Specifically, younger adults exhibited a strong positive 

 

Figure 10. Relationship between processing speed and gamma offset response 
amplitude. 

Across all participants, the strength of the gamma offset response was positively correlated with processing speed. 

Line of best linear fit and 95% CI (i.e., shaded area) are shown. *p < .05 
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relationship between gamma onset/offset amplitude, which was significantly diminished 

with increasing age. Below, we explore the implications of these novel findings for 

understanding the impact of healthy aging on visual processing. 

The observed responses in the occipital cortices were in broad agreement with 

previous research on the oscillatory activity underlying visual processing. The theta 

activity observed at stimulus onset in the calcarine fissure is commonly elicited in studies 

of visually evoked potentials and has been widely implicated in the initial encoding of 

visual stimuli (148, 170). The suppression of alpha and beta band activity in the lateral 

occipital regions has been shown to represent active visual processing in higher-order 

visual areas (35, 141, 171-173). We found no age-related alterations in occipital theta, 

alpha, or beta band oscillations, with the exception of an age-related increase in the 

ITPL value of the theta response. This suggests that the phase of the theta response is 

more consistent per unit time in older compared to younger participants. The 

significance of this finding for visual processes is not entirely clear and should be a focus 

of future work. As has been previously shown, visual gamma band activity can be 

subdivided into several different types of responses. The visual gamma onset and offset 

responses are highly phase-locked (i.e., evoked) to the appearance and disappearance 

of a visual stimulus, while the sustained gamma response, between onset and offset, is 

typically not phase-locked across trials (i.e., induced; 134, 147, 157, 174, 175, 176). An 

exception to the phase-locked aspect can be seen in visual entrainment tasks, where the 

sustained response is tightly locked to the oscillating stimulus (177-181). Previous work 

by Muthukumaraswamy and colleagues (63) demonstrated that evoked visual gamma 

activity was highly consistent across recording sessions, while induced visual gamma 

activity showed large inter-individual variability in gamma band peak frequency, 

bandwidth, and amplitude. Source imaging demonstrated that the cortical distribution of 

both the visual onset and offset responses were virtually identical, with both responses 
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having the same peak in each hemisphere. This is in agreement with previous analyses 

showing that the onset and offset responses had similar scalp distributions (128, 182), 

which we further extend here by demonstrating that the sustained gamma response also 

originates from the same occipital cortical location as the evoked gamma onset and 

offset responses.  

Our most striking findings were the age-related increases in the visual gamma 

onset response and decreases in the subsequent offset response, with no age-related 

changes in the sustained gamma oscillatory response. Interestingly, these age-related 

changes in gamma band amplitudes were mirrored by similar changes in ITPL, with 

there being stronger phase-locking to stimulus onset and weaker phase-locking to 

stimulus offset as a function of age. Further, we found that gamma onset and offset 

response amplitudes were positively correlated with one another, but that this positive 

relationship became weaker as a function of age. This onset-offset relationship 

presumably reflects the fact that stimuli which elicit stronger onset responses require 

stronger offset responses to “clear” the visual cortex once the visual stimulus has been 

removed. This hypothesis is indirectly supported by previous research which has 

demonstrated that onset and offset response amplitudes both scale with changes in the 

same visual stimulus properties (e.g., stimulus size, luminance, spatial frequency; 182, 

183). The visual gamma onset response has been associated with the initial encoding of 

visual stimuli (152, 184-186); thus, our findings of age-related increases in this response 

likely indicates more effortful early processing of visual information. Interpretation of the 

weaker offset response with increasing age is more difficult considering the lack of 

previous research on visual offset responses. However, we believe that the decrease in 

offset response amplitude may relate to the observation that older individuals have 

longer visual persistence (187-190).  
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Visual persistence is the phenomenon in which an individual briefly continues to 

perceive a visual stimulus after that stimulus has been removed from the visual field. 

Longer visual persistence leads to slower overall sensory processing, as it takes these 

individuals longer to “recover” from one stimulus and to prepare to encode the next one 

(190-192). Supporting our hypothesis that the gamma offset response is related to visual 

persistence and thus sensory processing speed, we found a strong positive association 

between the amplitude of the gamma offset response and processing speed. This brain-

behavior relationship was specific to the offset response, with there being no relationship 

between the onset response and processing speed. Similarly, it has been suggested that 

the longer visual persistence in older individuals may be related to deficits in inhibitory 

processing (187). This aligns with our findings of decreased gamma offset activity, as the 

generation of gamma oscillations has been repeatedly linked to the activity of 

GABAergic inhibitory interneurons (193, 194). Overall, our findings indicate that visual 

gamma oscillations, particularly the offset response, are useful metrics for probing age-

related changes in visual processing and how these changes affect cognitive function. 

Before closing, it is important to acknowledge several limitations of the current 

work. First, we used a spatial gratings stimulus; while this is one of the most widely used 

paradigms in basic visual research, our age-related findings may not generalize to all 

visual input. Another limitation is the cross-sectional nature of our study and future work 

in this area should consider longitudinal designs. Nonetheless, taken together, we found 

that gamma band cortical activity increased following both the appearance of a 

sinusoidal grating stimulus (i.e., onset) and when that stimulus was removed (i.e., 

offset). However, the amplitude and ITPL of these gamma band oscillations were 

differentially modulated by healthy aging, despite the fact that they originated from the 

same cortical locations. Specifically, older individuals had stronger gamma band visual 

onset responses, along with weaker visual offset responses. Critically, these age-related 
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decreases in the visual offset response predicted worse processing speed across all 

participants. Gaining a deeper understanding of these age-related changes in basic 

visual processing could hold major implications for designing specific interventions 

aimed at mitigating these visual changes, thus leading to better cognitive outcomes in 

older individuals.  



46 
 

CHAPTER 3: AGE-RELATED STRENGTHENING OF THE OSCILLATIONS SERVING 
VERBAL WORKING MEMORY PROCESSING 

The material presented in this chapter was previously published in Springer, Okelberry, 
Willet, Johnson, Meehan, Schantell, Embury, Rempe, and Wilson, 2023, Age-related 
Alterations in the Oscillatory Dynamics serving Verbal Working Memory Processing, 
Aging 

Introduction: 

Working memory (WM) is a fundamental executive process which involves the 

storage, maintenance, and manipulation of relevant information. WM processes are 

generally grouped into three phases: information encoding, maintenance, and retrieval. 

The maintenance phase, which involves the rehearsal of the encoded information and 

the active inhibition of any new sensory stimuli, is the defining component which 

differentiates WM from other types of memory. Multiple studies have shown that WM 

processes are supported by a combination of neural spiking and oscillatory activity in the 

frontal and posterior cortices (140, 195-201). Historically, the neurophysiological 

underpinnings of WM function have been primarily investigated using functional MRI 

(fMRI). Such studies have revealed a left dominant, bilateral WM network with 

converging nodes in the dorsolateral prefrontal cortex (dlPFC), inferior frontal gyri, 

parieto-temporal cortices, and occipital regions (202-204). More recently, 

electrophysiological studies have helped illuminate the specific oscillatory dynamics 

underlying WM function. Specifically, theta band activity during WM performance has 

been associated with the encoding of visual stimuli in primary visual cortices and higher-

order cognitive control in the prefrontal cortex (PFC) (201, 205-207). Similarly, alpha and 

beta band activity has been associated with higher-order visual processing in the 

posterior cortices and cognitive control in the PFC (35, 171, 207, 208).  

 Previous literature has demonstrated that WM processes are vulnerable to age-

related decline (209-211), with these changes being particularly evident at higher 

cognitive loads (212-214). Across the adult lifespan, it has been shown that individuals 
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tend to recruit the same brain regions when performing WM tasks (35, 215). However, 

differential activation patterns become apparent when the cognitive load of the WM tasks 

is varied. For example, at lower cognitive loads, older individuals maintain WM 

performance comparable to younger individuals by recruiting more neural resources 

(i.e., stronger activations and/or more sites of activity) (215-217). Nevertheless, at higher 

cognitive loads, this neural compensation in older individuals faulters, resulting in 

behavioral decrements accompanied by weakened neural activity (212, 215, 218-220). 

This pattern of age-related overactivation, plateau, and subsequent underactivation is 

known as the compensation-related utilization of neural circuits hypothesis (CRUNCH) 

(20). The CRUNCH phenomenon has been most commonly observed in PFC regions 

(212, 215, 218, 221-223), which are thought to be responsible for exerting executive 

control over WM processes (203, 204). Further, these executive prefrontal areas have 

shown age-related differentiation in the lateralization of neural activity. Specifically, 

younger individuals consistently show stronger left hemispheric neural activity during 

WM performance, compared to a more bilateral pattern of activity in older adults (15, 16, 

35, 215, 220, 221). 

 In addition to the plethora of past fMRI and positron-emission tomography (PET) 

work investigating age-related WM changes, more recent electrophysiologic work has 

been conducted to quantify the neural dynamics of these WM changes with age. One 

such study by Proskovec and colleagues (35) found that older adults had stronger 

alpha/beta oscillations (i.e., decreases in power relative to baseline), in right frontal 

regions during WM encoding and maintenance, and in the right superior temporal gyrus 

later in the maintenance phase. Conversely, it was shown that younger adults had 

stronger alpha/beta oscillations in the right parieto-temporal regions early in the 

encoding phase (35). Age-related changes in alpha activity during WM processing was 

later shown by Tran and associates (224), who demonstrated that older adults had lower 
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pre-trial alpha phase consistency, and that this lower phase consistency predicted lower 

WM task accuracy in older participants. Finally, event-related potential (ERP) analyses 

have revealed that, overall, older adults have reduced amplitudes in the fronto-central 

positivity (i.e., P200) and parietal positivity (i.e., P300) (225). However, when high- and 

low-performing older adults were separately analyzed, high-performing adults had 

stronger P200 and P300 amplitudes, more similar to younger adults (226). This 

interesting pattern of ERP results are in agreement with CRUNCH, with the high-

performing older adults seemingly showing compensatory hyperactivation and the low-

performing adults having reached a “resource ceiling” and decompensated.  

Despite previous work characterizing age-related changes in WM, no previous 

studies have examined spectrally-specific age-related changes in neural oscillatory 

activity throughout all phases of WM (i.e., encoding, maintenance, and retrieval). Thus, 

in the current study we used the spatiotemporal precision of MEG to examine the effects 

of healthy aging on the spectrally-resolved neural oscillatory dynamics underlying all 

three phases of WM processing. We hypothesized that older adults would require 

stronger engagement of key left hemispheric frontal and parieto-occipital WM hubs. 

Additionally, we expected that prefrontal activity lateralization (i.e., stronger left 

hemispheric activity) during WM performance would diminish as a function of age, with 

older individuals tending to utilize a more bilaterally distributed WM network.  

Methods: 

Participants 

Seventy-eight adults with a mean age of 45.10 (SD = 12.76) years were selected 

for inclusion in this study. The age range for males was 20.2 to 65.2 years and that for 

females was 21.4 to 62.2 years. These participants were chosen from a larger-scale 

study of accelerated aging in persons with HIV (227, 228), with only the HIV-negative 
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participants included in this investigation of healthy aging. Of the 78 adults, 95% were 

right-handed, 79% were male, 10% were African-American, 6% were Asian, 77% were 

Caucasian, 4% were more than one race, and the remaining 3% preferred not to answer. 

This distribution corresponds closely to the racial demographics of the surrounding 

region. Notably, there was no effect of age on years of education (r74 = -.073, p = .531) 

and all included participants scored in the normal range on a neuropsychological testing 

battery that probed seven cognitive domains (i.e., processing speed, memory, learning, 

language, executive function, attention, and motor function). Exclusionary criteria 

included any medical illness affecting CNS function (e.g., HIV/AIDS, Lupus, etc.), any 

neurological or psychiatric disorder, cognitive impairment, history of head trauma, 

current substance abuse, and the MEG laboratory’s standard exclusionary criteria (e.g., 

ferromagnetic implants). The Institutional Review Board reviewed and approved this 

investigation. Each participant provided written informed consent following a detailed 

description of the study. 

Experimental Paradigm 

Participants were shown a centrally-presented fixation cross embedded in a 3×2 

grid for 1.3 s (Figure 11). An array of six consonants then appeared at fixed locations 

within the grid for 2.0 s (i.e., encoding phase). Following the encoding phase, the letters 

disappeared and the empty grid remained on the screen for 3.0 s (i.e., maintenance 

phase). Finally, during the retrieval phase, a single probe consonant then appeared in 

the grid for 0.9 s, and the participant was instructed to respond via button press with 

their right index or middle finger as to whether the probe was in or out of the previous 

array of letters. A total of 128 trials were completed, equally split and pseudorandomized 
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between in- and out-of-set trials, for a total run time of about 15 min. This task 

has been utilized in several previous studies from our laboratory (35, 171, 229-

232). 

MEG Data Acquisition 

All recordings were conducted in a magnetically-shielded room with active 

shielding engaged. Neuromagnetic responses were sampled continuously at 1 

kHz, with an acquisition bandwidth of 0.1-330 Hz, using a MEGIN Vectorview 

MEG system with 306 magnetic sensors (MEGIN, Helsinki, Finland). During data 

acquisition, participants were monitored via real-time audio-visual feeds from 

inside the shielded room. Subject-wise MEG data were corrected for head motion 

and subjected to external noise reduction using signal space separation with a 

temporal extension (97). 

Structural MRI Processing and MEG Coregistration 

Preceding MEG measurement, four head position indicator (HPI) coils were 

attached to the participant’s head and localized, together with three fiducial points and at 

least 100 scalp surface points, with a 3D digitizer (Fastrak 3SF0002, Polhemus 

Navigator Sciences, Cohshester, VT, USA). Once in the MEG, electrical currents with 

 

Figure 11. Modified Sternberg working memory paradigm. 

Participants were required to encode and maintain six letter stimuli. During the retrieval stage, 

participants were then required to indicate whether the probe letter was or was not present in the initial 

six letter set. 
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unique frequencies (e.g., 322 Hz) were fed into each of the HPI coils. These HPI coil 

currents induced measurable magnetic fields, allowing the position of the HPI coils to be 

activity tracked relative to the MEG sensors throughout the recording. Since HPI coil 

locations are known in head coordinates, all MEG measurements could be transformed 

into a common coordinate system. With this coordinate system, MEG data were 

coregistered with each individual’s high-resolution structural T1-weighted MRI data prior 

to source reconstruction using Brain Electrical Source Analysis MRI (BESA MRI, Version 

2.0, BESA GmbH, Gräfelfing, Germany). Individual structural MRI data for each 

participant was acquired using a Siemens Prisma 3T scanner (Siemens Medical 

Solutions) with a 64-channel head coil. An MP-RAGE sequence was utilized with the 

following parameters: TR: 2300 ms; TE = 2.98 ms; flip angle = 9°; FOV = 256 mm; slice 

thickness = 1.00 mm; voxel size = 1 × 1 × 1 mm. Structural MRI data were transformed 

into standardized space (i.e., Talairach space) and aligned parallel to the anterior and 

posterior commissures. Following source analysis, each participant’s MEG functional 

images were also transformed into standardized space and spatially resampled.  

MEG Preprocessing, Time-Frequency Transformation, and Sensor-Level Statistics 

Blink and cardiac artifacts were removed from the raw data using an adaptive 

artifact correction method in which brain activity is selectively separated from artifactual 

activities (98). This adaptive artifact correction is accounted for during subsequent 

source analysis. The continuous magnetic time series was divided into 7200 ms epochs, 

with the baseline period being defined as the 400 ms prior to the encoding phase (i.e., -

400 to 0 ms). Subsequently, epochs containing artifacts were removed based on a fixed 

threshold method, supplemented with visual inspection. Briefly, the amplitude and 

gradient distributions across all trials were determined per participant, and those trials 

containing the highest amplitude and/or gradient values relative to this distribution were 

rejected based on participant-specific thresholds. This approach was employed to 
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minimize the impact of individual differences in sensor proximity to the brain and overall 

head size, which strongly affect MEG signal amplitude. Importantly, there were no age-

related changes in either the amplitude (r74 = -.182, p = .115) or gradient (r74 = -.135, p = 

.245) thresholds used for artifact rejection. Artifact-free epochs were then transformed 

into the time-frequency domain using complex demodulation (99, 166, 167), with a 

resolution of 1 Hz and 50 ms between 2 and 100 Hz. Following time-frequency 

transformation, spectral power estimates per sensor were averaged across trials to 

generate plots of mean spectral density per sensor. These sensor-level data were then 

normalized to the baseline power within each frequency bin, which was calculated as the 

mean power for that 1 Hz bin during the -400 to 0 ms time period. 

The significant time-frequency windows used for source imaging were 

determined by statistical analysis of the sensor-level spectrograms across the entire 

array of gradiometers. Briefly, each pixel per spectrograms was initially evaluated using 

a mass univariate approach based on the general linear model, followed by cluster-

based permutation testing to address the problem of multiple comparisons (100, 101). 

Specifically, a two-stage procedure was utilized to minimize false positive results while 

maintaining sensitivity. The first stage consisted of performing paired-sample t-tests 

against baseline on each pixel per spectrogram and thresholding the output 

spectrograms of t-values at p < .05 to define time-frequency bins containing potentially 

significant oscillatory deviations from baseline. Bins that survived thresholding (at p < 

.05) were clustered with temporally and/or spectrally neighboring bins that also survived, 

and cluster values were derived by summing all t-values within each cluster. In stage 

two, nonparametric permutation testing was used to derive a distribution of cluster-

values and the significance level of the cluster(s) from stage one were tested directly 

using this permuted distribution, which was the result of 10,000 permutations. Based on 

this cluster-based permutation analysis, only the time-frequency windows that contained 
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significant oscillatory deviations from baseline at the p < .001, corrected, threshold 

across all participants were subjected to source imaging (i.e., beamforming).  

MEG Source Imaging and Statistics 

Cortical networks were imaged through a time-frequency-resolved extension of 

the linearly constrained minimum variance (LCMV) beamformer (102-104). The images 

were derived from the cross spectral densities of all combinations of MEG gradiometers 

averaged over the time-frequency range of interest, and the solution of the forward 

problem for each location on a grid specified by input voxel space. In principle, the 

beamformer operator generates a spatial filter for each grid point that passes signals 

without attenuation from a given neural region, while suppressing activity in all other 

brain areas. The filter properties arise from the forward solution (i.e., lead field matrix) for 

each location on a volumetric grid specified by input voxel space, and from the MEG 

cross spectral density matrix. Basically, for each voxel, a set of beamformer weights is 

determined, which amounts to each MEG sensor being allocated a sensitivity weighting 

for activity in the particular voxel. Following convention, the source power in these 

images was normalized per participant using a pre-stimulus period (i.e., baseline) of 

equal duration and bandwidth (105). Such images are typically referred to as pseudo-t 

maps, with units (pseudo-t) that reflect noise-normalized power differences (i.e., active 

vs. passive) per voxel. MEG pre-processing and imaging used BESA (version 7.0) 

software.  

After imaging, average whole-brain maps were computed across all participants 

for the selected time-frequency windows. These 3D maps of brain activity were used to 

assess the neuroanatomical basis of the significant oscillatory responses identified 

through the sensor-level analysis. Finally, these source images were subjected to 

correlation analyses with age to investigate how the oscillatory processes underlying 

WM encoding, maintenance, and retrieval change as a function of age. To control for the 
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multiple comparisons inherent to whole-brain voxel-wise statistics, cluster-based 

permutation testing was again utilized (100, 101, 233). This whole-brain cluster-based 

permutation testing was virtually identical to the approach used for sensor-level statistics 

(see above), with the exception that the input data was voxel-level neural responses and 

we used a different statistical threshold following permutation testing (i.e., stage one 

threshold of p < .001; threshold of p < .05 following permutation testing for multiple 

comparisons correction).  

Statistical Analyses 

Statistical analyses were performed using custom R (110) and MATLAB (114) 

scripts. Correlation analyses were used to test for differences as a function of healthy 

aging in education, accuracy, reaction time, total correct trials, amplitude cutoffs, and 

gradient cutoffs. Permutation testing of the sensor-level spectrograms and whole-brain 

images was performed using BESA Statistics (Version 2.1, BESA GmbH, Gräfelfing, 

Germany). Correlation analyses were used to test for relationships between these age-

related neural differences and cognitive function. Considering the relationship between 

age and these neural responses, as well as the fact that the neuropsychological 

domains were corrected for age, the effect of age was removed from the pseudo-t 

values in these neurobehavioral models. Finally, to reduce the impact of outliers on 

statistical analyses, participants with values 2.5 SDs above or below the group mean 

were excluded for each analysis.  

Results: 

Behavioral Results 

Of the 78 participants that performed the verbal WM task, two were removed due 

to poor task performance (i.e., < 65% correct). While there was no effect of age on 

accuracy (r74 = .012, p = .919), there was an effect of age on reaction time (r74 = .453, p 
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< .001) such that older participants were slower than younger participants. Across all 

participants, the mean accuracy was 84.33% (SD = 7.04%) and the mean reaction time 

was 895.4 ms (SD = 193.06 ms). 

Sensor-level analysis 

Sensor-level time-frequency analysis across all participants revealed significant 

clusters (p < .001, corrected) of theta, alpha, and beta band oscillatory activity during the 

encoding, maintenance, and retrieval phases (Figure 12). During the encoding phase, 

theta band (3-6 Hz) activity sharply increased immediately following stimulus 

presentation (i.e., 0 ms), continued through the encoding phase, and slowly dissipated 

over the first 800 ms of the maintenance phase (i.e., 3-6 Hz, 0-2800 ms; p < .001, 

corrected). Additionally, decreases in alpha band (9-15 Hz) activity began around 200 

ms after the onset of the encoding grid and were sustained throughout the encoding 

phase, terminating near the beginning of the maintenance phase (i.e., 9-15 Hz, 200-

1800 ms; p < .001, corrected). During the maintenance phase, there was a significant 

cluster of increased alpha/beta activity in a slightly higher frequency band (12-17 Hz; 

2500-2900 ms; p < .001, corrected). During the retrieval phase, an increase in theta 

activity followed retrieval probe presentation (3-6 Hz; 5000-5350 ms; p < .001, 

corrected). Finally, overlapping decreases in alpha (8-12 Hz; 5350-5750 ms) and beta 

(14-19 Hz; 5250-5650 ms) band activity were observed during the retrieval phase (both 

ps < .001, corrected).  
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Beamformer Analysis 

In order to determine the neural regions involved in verbal WM, the 

aforementioned sensor-level time-frequency bins of interest for theta, alpha, and beta 

band oscillatory activity were imaged using a time-frequency-resolved beamformer. 

Considering that beamforming windows must be the same length as the baseline period 

(i.e., 400 ms), the oscillatory deviations from baseline were imaged in 400 ms 

increments or less. For the temporally extended oscillatory responses (i.e., those over 

400 ms), participant-level image averaging was performed for each neural response as 

follows: theta encoding (3-6 Hz; 0-2000 ms), theta maintenance (3-6 Hz; 2000-2800 ms), 

and alpha encoding (9-15 Hz; 200-1800 ms). These whole-brain average maps per 

participant were then averaged across all individuals to allow for visualization of the 

 

Figure 12. Sensor-level activity during verbal working memory task. 

Grand-averaged time-frequency spectrogram from a sensor near parieto-occipital areas (MEG1922) with 

time (ms) shown on the x-axis and frequency (Hz) denoted on the y-axis. A color scale bar is shown to 

the right of the spectrogram which shows the percent power change relative to the baseline period (-400 

to 0 ms). 
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neural oscillations during the different WM phases (i.e., encoding, maintenance, and 

retrieval; Figure 13). These images revealed differential patterns of neural activity in the 

 

Figure 13. Source-level activity during verbal working memory task. 

Grand-averaged beamformer images (pseudo-t) across all participants for theta (left) and alpha/beta 

(right) bands. During the encoding phase (top), there were increases in theta band amplitude relative to 

baseline in the primary visual cortex and decreases in alpha band activity (i.e., more negative relative to 

baseline) in the lateral occipital cortices, parietal cortices, and left hemisphere frontal cortex (including 

language areas). During the maintenance phase (middle), theta increases were limited to the right 

dlPFC and decreased alpha/beta activity in the left hemisphere frontal cortex (relative to baseline) was 

largely sustained. Additionally, a decrease in alpha/band activity relative to the baseline was observed in 

the lateral occipital cortices during the maintenance phase. During the retrieval phase (bottom), theta 

band activity increased in the right posterior cingulate gyrus and bilateral primary visual cortices, while 

alpha activity decreased (i.e., became more negative) in the lateral occipital cortices, left SMG, and left 

angular gyrus. Finally, decreased beta activity (i.e., more negative relative to baseline) in the bilateral 

primary motor cortices, lateral occipital cortices, and right superior parietal lobe was observed. 
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theta, alpha, and beta bands throughout all phases of WM performance. During the 

encoding phase, a strong increase in theta activity relative to the baseline was observed 

in the bilateral primary visual cortices, while decreased alpha activity (i.e., more negative 

relative to baseline) was observed in the lateral occipital cortices bilaterally, and left 

frontal cortex. During the maintenance phase, increased theta activity was observed in 

the right dorsolateral prefrontal cortex (dlPFC). Further, the decreased alpha/beta 

oscillations (i.e., more negative) observed in the frontal cortices during the encoding 

phase were sustained through the maintenance phase, along with decreased alpha 

activity in the lateral occipital cortices bilaterally. During the retrieval phase, theta band 

activity was shown to strongly increase in the right posterior cingulate gyrus and the 

bilateral primary visual cortices. Decreased alpha activity (i.e., more negative) during the 

retrieval phase were observed in the lateral occipital cortices, left supramarginal gyrus 

(SMG), and left angular gyrus. Similarly, decreased beta oscillations (i.e., more negative) 

during the retrieval phase were found in the lateral occipital cortices, bilateral primary 

motor cortices, and bilateral superior parietal cortices.  

To statistically examine the effects of healthy aging on the neural dynamics 

serving WM function, we subjected the frequency-specific whole-brain encoding, 

maintenance, and retrieval participant-level average maps to correlation analysis. These 

whole-brain correlation analyses were then followed by cluster-based permutation 

testing to correct for multiple comparisons. These analyses revealed that theta 

oscillations during encoding became significantly stronger as a function of age in the left 

primary visual cortex (p = .037, corrected) and left dlPFC (p = .045, corrected; Figure 

14), and that there were no age-related theta effects during the maintenance or retrieval 

phases. In contrast, the decreases in alpha and beta became stronger (i.e., more 

negative) with increasing age throughout all phases of WM processing (i.e., encoding, 

maintenance, and retrieval; Figure 15). During the encoding phase, decreases in alpha 
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became stronger (i.e., more negative) as a function of age in the left middle frontal gyrus 

(p = .023, corrected) and the left anterior cingulate gyrus (p = .033, corrected). This age-

related change in activity in the left middle frontal gyrus was sustained through the 

maintenance phase (p = .029, corrected), along with stronger decreases in alpha/band 

responses (i.e., more negative) in the left dlPFC (p = .031, corrected). During the 

retrieval phase, decreases in alpha oscillations also became stronger (i.e., more 

negative) as a function of age in the left insula (p = .009, corrected), left anterior 

cingulate (p = .020, corrected), and left middle temporal gyrus (p = .031, corrected). 

Finally, the decreases in beta oscillations (14-19 Hz) during the retrieval phase were 

found to get stronger (i.e., more negative) with increasing age in the left primary motor 

 

Figure 14. Effect of age on theta oscillations 
during the encoding phase. 

Whole-brain linear regression analysis revealed that theta 

activity increased in the left primary visual cortex and left dlPFC 

with older age. Linear regression plots of peak voxel pseudo-t 

values are shown as a function of age. Lines of best-fit and 

95% CI (shaded area) are overlaid. 



60 
 

cortex (p < .001, corrected), right primary somatosensory cortex (p < .001, corrected), 

bilateral superior parietal cortices (ps < .001, corrected), left dlPFC (p = .007, corrected), 

and left anterior superior temporal gyrus (p = .020, corrected). A complete summary of all 

significant effects can be found in Table 2. 

 

 

Figure 15. Effect of age on alpha and beta oscillations during the encoding, 
maintenance, and retrieval phases. 

Whole-brain linear regression analyses testing for age-related changes in alpha (encoding and retrieval), 

alpha/beta (maintenance), and beta (retrieval) are shown during the encoding (top), maintenance 

(middle), and retrieval bottom) phases. During encoding (top), decreases in alpha activity became 

significantly stronger (i.e., more negative relative to baseline), as a function of age, in prefrontal cortical 

regions and anterior cingulate. Additionally, age-related alterations in alpha and beta activity during the 

maintenance period (middle) were found in the left prefrontal cortices, while age-related effects during 

retrieval (bottom) were observed across a diverse set of brain regions that have been implicated in 

working memory processing (i.e., frontal, temporal, and parietal cortices). Beyond statistical maps, linear 

regression plots of peak voxel pseudo-t values are shown as a function of age for encoding and 

maintenance peaks. Lines of best-fit and 95% CI (shaded area) are overlaid. 
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Finally, we investigated the relationship between cognitive performance and 

neural oscillatory activity. We found a significant negative relationship between executive 

function and alpha/beta oscillatory activity during all phases of working memory, such 

that stronger decreases in alpha/beta amplitude predicted better executive function 

scores (Figure 16). Specifically, significant negative relationships were found between 

executive functioning and alpha activity in the left middle frontal gyrus (r68 = -.241, p = 

.045) during the encoding period, alpha/beta activity in the middle frontal gyrus (r67 = -

.384, p = .001) and in the dlPFC (r68 = -.285, p = .017) during the maintenance period, 

and beta activity in the dlPFC (r68 = -.261, p = .029) during the retrieval period. 

 

 

 

 

Region/Effect of Interest Frequency X Y Z df Statistic 

Encoding      r 
Left primary visual cortex θ -2 -85 10 70 .42 
Left dlPFC θ -34 24 38 70 .40 
Left middle frontal gyrus α -42 -5 54 74 -.41 
Left anterior cingulate gyrus α -10 -5 42 74 -.40 
Maintenance      r 
Left middle frontal gyrus α/β -42 -1 54 72 -.42 
Left dlPFC α/β -42 28 42 72 -.42 
Retrieval      r 
Left insula α -30 -13 10 72 -.41 
Left anterior cingulate gyrus α -6 -5 42 72 -.40 
Left middle temporal gyrus α -58 -37 -3 72 -.39 
Left primary motor cortex β -42 -13 50 71 -.45 
Right primary somatosensory cortex β 42 -21 42 71 -.46 
Left superior parietal cortex β -14 -45 54 71 -.45 
Right superior parietal cortex β 30 -53 58 71 -.45 
Left dlPFC β -50 32 22 71 -.41 
Left anterior superior temporal gyrus β -50 24 -11 71 -.41 

Table 2. Coordinates of the peak response in each significant age correlation 
cluster. 

All test statistics are significant at p < .001 level and survive cluster-based permutation testing. All 

coordinates are in Talairach space. dlPFC = dorsolateral prefrontal cortex. df = degrees of freedom. 
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Figure 16. Relationship between executive function outside the scanner and 
alpha/beta activity during encoding, maintenance, and retrieval phases. 

Across all participants, the strength of the alpha/beta decreases in activity were negatively correlated with 

executive function. Such that stronger decreases in alpha/beta activity predicted better executive functioning. Line 

of best linear fit and 95% CI (i.e., shaded area) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion: 

In the present study, we investigated the effect of healthy aging on the neural 

oscillatory dynamics serving verbal WM processing using MEG and advanced source 

reconstruction. Similar to previous studies utilizing a modified Sternberg WM task in 

healthy aging adults, we found that reaction time increased with age and that there were 

no significant aging effects on task accuracy (35, 234). Across all participants, our 

results also showed that WM processing is supported by regionally distinct neural 

oscillations in the theta, alpha, and beta bands throughout all phases (i.e., encoding, 

maintenance, and retrieval) and that such activity is broadly affected by healthy aging. 
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Briefly, theta oscillations were shown to become stronger in the primary visual cortices 

and in the frontal cortex with increasing age. Furthermore, throughout all WM phases 

and in several frontal, parietal, and temporal regions, alpha, beta, and alpha/beta activity 

became stronger (i.e., more negative) as a function of age. Importantly, across all 

participants, stronger decreases in alpha/beta activity in these prefrontal regions 

predicted better executive functioning, supporting the compensatory nature of these 

responses. Critically, these results represent the first oscillatory analysis of verbal WM 

function in a healthy aging sample in which neural activity was examined throughout all 

phases of processing, including the retrieval stage. Below, we discuss the implications of 

these novel findings on our understanding of how healthy aging affects verbal WM 

processing. 

Across all frequencies, our findings demonstrate widespread and robust cortical 

activation patterns during verbal working memory task performance, as well as age-

related changes in these neural activations. These task-related activations and age-

related changes are most prevalent in the occipital, parietal, and frontal cortices; regions 

which have been shown to be critical to verbal working memory performance (202, 203). 

According to the theories of working memory function originally proposed by Baddeley 

and colleagues, the neural subsystems serving working memory processing include the 

visuospatial sketchpad, phonological loop, episodic buffer, and the central executive 

(235, 236). The visuospatial sketchpad is responsible for processing the visual and 

spatial components of a stimulus, and is served by the occipital and parieto-temporal 

cortices (202, 203). The phonological loop deals with the processing and rehearsal of 

auditory and language information. Further, the phonological loop is a predominately left 

hemispheric network comprised of the phonological store in the parietal lobe (202, 237), 

which briefly stores fleeting memory traces, and the articulatory process in the inferior 

frontal gyrus and superior temporal gyrus (e.g., Broca's area; 238, 239, 240), 
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responsible for the rehearsal and manipulation of information in the phonological store 

(e.g., through subvocal repetition). The episodic buffer is a more distributed subsystem 

which links working memory and long-term memory, facilitating the integration of 

information from separate modalities (i.e., visual, spatial, auditory, language, etc.) and 

binding information into coherent episodes (236). Finally, the central executive 

component exerts top-down control over the other working memory subsystems, via the 

allocation of attentional resources and direction of information flow to the other 

subsystems, and is thought be housed in the prefrontal cortex (203, 204). Considering 

the letter-based stimuli utilized in our modified Sternberg working memory task, we 

expected robust activation of each of the aforementioned subsystems. 

One of our most interesting findings was the broad strengthening of alpha and 

beta oscillations (i.e., decreases from baseline) with increasing age. The local 

suppression of alpha and beta activity, relative to baseline levels, has been shown to 

represent active cortical engagement (i.e., active visual processing in higher-order visual 

areas) (35, 171-173, 241). This is further supported by multimodal studies which have 

demonstrated co-localization of decreases in alpha and beta activity with increased 

BOLD fMRI signal during cognitive tasks (242, 243). During the encoding phase, older 

individuals showed significantly stronger decreases in alpha activity (i.e., more negative 

relative to baseline) in the left middle frontal gyrus (MFG) and the left anterior cingulate. 

This significant age-related shift in left MFG activity extended into the maintenance 

period, with the addition of age-related effects in alpha/beta activity in the left dlPFC. 

These prefrontal cortical regions are thought to act as central executive nodes during 

WM task performance, allowing for the allocation of WM subsystem resources and the 

direction of attention (203, 204). These findings of age-related increases in frontal 

regions are in widespread agreement with the aging literature, which has demonstrated 

that increased prefrontal neural recruitment can offset declines in cognitive performance 
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as a function of healthy aging (i.e., CRUNCH: 20, 212, 215, 218, 221-223). Further 

supporting this compensation hypothesis, we found that, across all participants, stronger 

decreases in alpha/beta activity predicted better executive functioning. Of note, we found 

no significant age-related changes during the encoding and maintenance phases in 

alpha/beta activity in either visual processing or language areas, which have historically 

been linked to the visuospatial sketchpad and phonological loop, respectively (202, 203, 

237). In sum, the present work is in agreement with our hypotheses that older adults 

would require stronger engagement of left hemispheric frontal WM hubs and reinforces 

previous aging WM literature in demonstrating how crucial increased neural activity in 

prefrontal cortices is for older individuals during WM processing.  

Beyond the encoding and maintenance phases, we found significant alpha and 

beta oscillatory changes as a function of age during the retrieval phase. Though 

previous studies have extensively characterized neural activity during WM encoding and 

maintenance, studies analyzing the neural dynamics during the retrieval phase are 

sparse. During the retrieval phase, older participants showed stronger decreases in 

alpha activity (i.e., more negative) in the left posterior middle temporal gyrus (MTG), left 

insula, and left anterior cingulate. Additionally, beta activity during the retrieval phase 

decreased (i.e., more negative) with increasing age in the left primary motor cortex, 

bilateral superior parietal cortices, left dlPFC, left anterior superior temporal gyrus, and 

other regions. Thus, unlike the age-related alpha/beta effects observed during the 

encoding and maintenance phases, which were largely confined to prefrontal cortices, 

age-related changes in alpha/beta activity during the retrieval phase were found to 

extend to other WM subsystems. Specifically, in the retrieval phase, older individuals 

tended to more strongly engage neural regions linked to higher-order visual processing 

(i.e., visuospatial sketchpad; left posterior MTG), language processing (i.e., left STG), 

phonological storage (i.e., superior parietal lobes), central executive processes (i.e., left 
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dlPFC), and motor execution (i.e., primary motor cortex). These retrieval phase findings 

are in line with our hypothesis that older adults would more strongly recruit left 

hemispheric frontal and parieto-occipital WM nodes, relative to younger participants. As 

noted above, only a few studies have examined the retrieval stage, Guran and 

associates (244) found that older (i.e., 53-80 years) compared to younger (i.e., 18-30 

years) individuals had stronger alpha/beta decreases relative to baseline in sensors 

overlying frontal, central, and parietal regions (244), which is consistent with our findings. 

Finally, our finding of stronger decreases in beta (i.e., more negative) in the primary 

motor cortex in older participants is consistent with work from the motor control literature 

(122, 123). Thus, this effect of aging on motor beta activity is likely task independent.  

We also found robust age-related effects in the theta range. Theta oscillations in 

the primary visual cortex have been widely implicated in basic visual processing, while 

frontal theta activity has been shown to be important for the higher-order organization 

and maintenance of stimulus information (201, 205-207, 241, 245). Though theta activity 

has been shown to be critical for WM function, age-related changes in these theta band 

dynamics have only been weakly characterized. Age-related theta alterations in the 

current study were found to be confined to the encoding phase, with activity in the 

primary visual cortex and left dlPFC getting stronger as a function of increasing age. 

One comparable study found that older participants (i.e., 62-71 years) were more 

susceptible to WM disruption and that frontal midline theta was stronger in older 

individuals (i.e., 19-29 years; 246). Our findings of age-related increases in theta activity, 

particularly those in the dlPFC, are consistent with our alpha and beta band findings and 

the neural compensation hypothesis (i.e., CRUNCH). Additionally, theta band activity in 

the PFC of healthy young adults during WM performance has been shown to increase 

stepwise with increasing task load (205, 207, 241), further supporting the idea that the 

increased theta activity with increasing age may represent these older individuals 
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needing to exert more neural resources to complete this WM task (i.e., less efficient 

processing). Altogether, in conjunction with our alpha and beta findings, we have 

demonstrated that the widely cited age-related increases in neural recruitment are not 

frequency specific, with age-related effects spanning multiple frequency bands (i.e., 

theta, alpha, and beta) and working memory subsystems. 

Interestingly, our results did not show the hypothesized and commonly reported 

age-related change in the lateralization of prefrontal activation. Specifically, previous 

work has demonstrated that younger individuals more strongly utilize left hemispheric 

prefrontal regions during working memory performance, compared to older individuals 

who exhibit more bilateral prefrontal activity (15, 16, 35, 215, 220, 221). This 

discrepancy may be due to study design and analysis differences. Firstly, our sample of 

78 health adults is nearly double the size of most previous healthy aging WM studies 

and our whole-brain data were modeled using age as a continuous variable, compared 

to dichotomizing age groups as has commonly been done (16, 35, 215, 221). Secondly, 

the current study utilized cluster-based permutation testing of the source images to 

strongly control for false positives, compared to the much less stringent multiple 

comparison correction approaches that have previously been used (e.g., uncorrected or 

cluster-size corrections) (16, 35, 221). Finally, the oldest participants in the current study 

were younger (i.e., 65 years) than many aging WM studies (e.g., 75-82 years) (15, 16, 

215, 221). Thus, our relatively younger participants may not have reached a level of 

cognitive dysfunction that necessitates bilateral prefrontal recruitment, but future studies 

are needed to confirm these findings.  

Before closing, it is important to note the limitations of this study. First, as 

mentioned above, the oldest participants in our sample were slightly younger (i.e., 65 

years) than some previous WM studies of aging (e.g., 75-82 years). For future studies, 

increasing the age of the oldest participants would allow for the hypothesized transition 
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from age-related compensation (i.e., increased neural activity and normal accuracy) to 

age-related decompensation (i.e., decreased neural activity and decreased accuracy) to 

be more thoroughly studied. Finally, the modified Sternberg WM paradigm that was 

utilized for the current study required that participants remember six letter stimuli per trial 

and previous work has shown that varying the cognitive load of WM tasks leads to an 

interesting pattern of effects in older individuals (i.e., greater neural activity at low 

working memory loads with decompensation and decreased neural activity at higher 

working memory loads) (212, 215, 218-220). Thus, future aging WM research would 

benefit from having multiple memory load conditions of varying difficulty. 

Taken together, these data support the previous literature showing greater 

recruitment of the prefrontal cortex in older individuals during WM performance to 

maintain similar performance to younger individuals. Importantly, our findings extend this 

literature by demonstrating that age-related hyperactivation of prefrontal regions occurs 

in all phases of WM (i.e., encoding, maintenance, and retrieval) and is multispectral 

involving theta, alpha, and beta oscillatory activity. Further, though the age-related 

changes in alpha and beta band activity were restricted to prefrontal executive control 

regions during the encoding and maintenance phases, these age-related changes 

emerged in a more widespread network that included language (i.e., phonological loop) 

and motor regions during the retrieval phase. Developing a better understanding of 

these age-related alterations in WM function may have important implications for 

developing targeted interventions aimed at improving cognitive function and promoting 

healthy aging across the lifespan.  



69 
 

CONCLUSIONS 

These studies demonstrate that healthy aging is associated with neural 

oscillatory changes in both lower- and higher-order cognitive functions. Importantly, the 

direction of these age-related neural changes were not only domain specific, but also 

frequency-dependent with differential alterations to theta, alpha, beta, and gamma 

oscillatory activity. While broadly aligning with previous healthy aging electrophysiologic 

and non-electrophysiologic (i.e., fMRI and PET) research, our findings extended this 

literature by performing analyses in a frequency- and time-resolved manner and by 

identifying the cortical origins of each age-related change. Taken together, these studies 

provide potential targets for therapeutic intervention and provide critical normative aging 

data for comparison with pathological aging (e.g., Alzheimer’s disease).  

 With regard to visual entrainment, we found that healthy aging was associated 

with decreased overall entrainment amplitude, as well as increased latency of these 

entrainment responses. Additionally, differential changes in occipital gamma band 

oscillations to visual gratings stimuli were observed as a function of age. Specifically, we 

found an age-related increase in the gamma onset response and a decrease in the 

gamma offset response. Further, the decline in gamma offset response amplitude 

predicted reduced processing speed. Importantly, in each of these studies (Chapters 1 

and 2), no age-related alterations in visual theta, alpha, or beta oscillations were 

observed. Together, these studies demonstrate that age-related changes in visual 

cortical responses are not ubiquitous, but are instead dependent on stimulation type 

(e.g., entrainment) and response frequency (i.e., theta, alpha, beta, and gamma).  

Most previous electrophysiologic research investigating basic visual processing 

in healthy aging did so using sensor- or electrode-level event-related potential (ERP) or 

event-related field analyses (66-73). These analyses typically involve trial-wise 
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averaging and frequency filtering of the data, which results in a loss of induced signals 

(i.e., non-phase locked), loss of frequency specificity (due to collapsing across lower 

frequencies; ~1-30 Hz), and loss of higher frequency activity (i.e., >30 Hz). Our findings 

of age-related decreases in entrainment response amplitude and increased latency 

(Chapter 1) are in agreement with previous ERP studies, however, our visual gamma 

oscillatory results (Chapter 2) are not comparable to these previous analyses due to the 

aforementioned bandpass filtering utilized in these analyses. However, previous human 

and animal studies have demonstrated a strong association between gamma band 

oscillations and the fMRI blood-oxygen-level-dependent (BOLD) signal (242, 247). To 

date, fMRI-based analyses of visual processing in healthy aging have yielded mixed 

results, with some researchers finding age-related decreases in visual cortical activity 

(75-78) while others found no significant change (79-81). Considering our findings of 

differential aging effects on the gamma visual response (i.e., stronger onset and weaker 

offset), these conflicting fMRI results are not especially surprising considering the poor 

temporal resolution of the BOLD fMRI signal, which effectively smears together the 

distinct age-related changes in each phase of visual processing (i.e., onset, sustained, 

and offset). Together, these data demonstrate how critical it is that future research into 

age-related alterations in visual processing utilizes neuroimaging modalities with high 

temporal resolution (e.g., EEG and MEG) and data processing pipelines which maintain 

separation of distinct oscillatory frequencies. 

 During verbal working memory (VWM) performance, we found that older 

individuals had stronger theta, alpha, and beta band responses throughout all working 

memory phases (i.e., encoding, maintenance, and retrieval). These age-related changes 

in neural activity were largely in the prefrontal and parietal areas, which is in agreement 

with the CRUNCH model. Further, in conjunction with our entrainment results (Chapter 

1), our findings support the PASA hypothesis of healthy aging, with older individuals 
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showing weaker posterior cortical activity (i.e., decreased entrainment amplitudes) along 

with stronger anterior cortical activity (i.e., increased WM prefrontal activity). However, 

our analyses of higher frequency visual oscillations (i.e., gamma; Chapter 2) 

demonstrate that not all visual responses display a clear decrease in amplitude as a 

function of age. 

Under the CRUNCH hypothesis, individuals are expected to recruit greater 

neural resources to accommodate increased cognitive demands (e.g., increased task 

difficulty, age-related neural inefficiency, etc.). Thus, increased neural activity is expected 

to predict better cognitive performance. Conversely, once cognitive demand exceeds 

neural reserves, neural activity is expected to decrease along with cognitive 

performance. Further, the PASA model posits that the purpose of the increased 

prefrontal activity is to counteract the age-related posterior sensory deficits. Our visual 

gamma (Chapter 2) and VWM (Chapter 3) results both align with these expectations. 

Specifically, activity in several fronto-parietal areas, which displayed age-related 

strengthening of alpha/beta decreases in activity, was shown to predict better executive 

function scores across all participants. Further, decreases in primary visual cortical 

gamma offset response amplitude, which displayed age-related weakening, were shown 

to predict worse processing speed domain scores across all participants. Together, these 

brain-behavior relationships support previous neurocognitive theories of aging and 

extend this literature by demonstrating that these age-related effects are frequency-

specific (i.e., gamma in Chapter 2 and alpha/beta in Chapter 3). Of note, future studies 

would greatly benefit from experimentally manipulating task difficulty as a variable of 

interest. Not only does task difficulty heavily influence age-related neural responses, but 

neglecting to control and manipulate task difficulty makes comparing results across 

studies much more difficult. 
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 In conclusion, our studies demonstrate cognitive domain-specific patterns of 

neural oscillatory changes which occur during healthy aging. Broadly, our results were in 

agreement with previous neural aging research, however, the spectral specificity of our 

findings draw attention to the lack of previous healthy aging research which has used 

time- and frequency-resolved approaches. Such analyses will prove crucial for 

developing a more complete understanding of how healthy aging affects neural 

processes. Another important area for future research is accessing how these age-

related changes in neural oscillatory responses can be targeted for noninvasive 

neuromodulation (e.g., cognitive training, pharmacological treatment, non-invasive 

stimulation). Specifically, with the use of non-invasive brain stimulation methods such as 

transcranial magnetic stimulation (TMS), direct current stimulation (tDCS), and 

alternating current stimulation (tACS), these regionally-specific age-related neural 

changes may serve as targets for researchers to facilitate age-related neural 

compensatory processes and ameliorate pathological changes. Finally, the study of 

neural changes during healthy aging not only expands our knowledge of these “normal” 

neurologic alterations, but also provides much needed normative groundwork for 

comparison against populations with age-related neurocognitive disorders (e.g., 

Alzheimer’s disease, Parkinson’s disease, Dementia with Lewy Bodies).  
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