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GENE CO-EXPRESSION AND MACHINE LEARNING APPROACHES 

TO COMPARE SARS-CoV-2 INFECTED TISSUES IN HUMANS 

Sahil Sethi, PhD 
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Supervisor: Chittibabu Guda, Ph.D. 

 

The global outbreak of COVID-19, triggered by the novel coronavirus, Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has spurred an urgent need for a deeper 

comprehension of the molecular mechanisms involved in the host-virus interactions. Despite 

advancements in transcriptomic technology and computational resources, limited attention has 

been given to the holistic integration of molecular and clinical data to characterize the 

genotype/phenotype aspects of the disease.  

This study analyzes gene expression patterns in various tissues, including the lung, nasal, 

blood, and placenta, in patients with COVID-19 to identify differentially regulated genes and 

pathways. We also evaluated organ-specific gene co-expression patterns that revealed the 

functional relationships and interactions among genes, along with potential tissue-specific 

biomarkers such as APLNR and BPIFB1 in Lung and A2MP1 and AATK in the blood. This 

analysis helped to understand the tissue-level responses and provide insights into why specific 

organs are more susceptible to infection than others. Further, we evaluated different Machine 

Learning (ML) models along with the integration of gene expression data, clinical features, and 

co-morbidity data for predicting COVID-19 severity. The XGBoost, with 95% accuracy, 

outperformed other methods, including Logistic Regression, XGBoost, Naïve Bayes, and 

Support Vector Machine. SHAP analysis provided the most discriminative features, including 

COX14, absolute neutrophil count, and viremia, which paved the way to understanding the 

patient’s severity level.     
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These findings highlight integrating clinical, co-morbidity, and gene expression data to predict 

the severity of COVID-19 and offer valuable prognostic insights for clinicians to optimize 

treatment strategies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

Table of Contents 
Chapter 1 - Introduction .................................................................................................................... 13 

Research Background ....................................................................................................................... 13 

SARS-CoV-2 Infection and Significance ......................................................................................... 15 

Structure of SARS-CoV-2 and Transmission ............................................................................... 16 

Taxonomic Overview of SARS-CoV-2 ........................................................................................ 19 

Transmission of COVID-19 .......................................................................................................... 20 

Clinical Overview of SARS-CoV-2 Infection .............................................................................. 22 

 

Chapter 2 – Literature Review .......................................................................................................... 24 

Gene Expression Analysis to Understand COVID-19 ...................................................................... 24 

Tissue-Specific Gene Expression Analysis in COVID-19 Patients .............................................. 24 

Multi-Omics Characterization for Understanding COVID-19  .................................................... 27 

Genomic and Metagenomic Analysis of SARS-CoV-2  .......................................................... 28 

Metagenomic Sequencing  ....................................................................................................... 28 

Proteomics and Metabolomics  ................................................................................................ 28 

Machine Learning Applications in Tackling the COVID-19 Crisis ................................................. 29 

Early Detection and Diagnosis ..................................................................................................... 29 

Predictive Modeling for Resource Allocation  ............................................................................. 30 

Drug Discovery and Treatment Optimization  .............................................................................. 30 

Epidemiological Surveillance and Forecasting  ............................................................................ 30 

Contact Tracing and Risk Assessment  ......................................................................................... 30 

Machine Learning Models for Prediction of COVID-19 Severity  ............................................... 32 

Supervised Learning Models  .................................................................................................. 32 

Unsupervised Learning Models  .............................................................................................. 34 

Aims of the Study ............................................................................................................................. 35 

 

Chapter 3 – Methodology ................................................................................................................... 37 

Transcriptome Analysis of the Human Tissues Infected with SARS-CoV-2  .................................. 38 

Data Collection and Preprocessing  .............................................................................................. 38 

Differential Gene Expression Analysis  ........................................................................................ 39 

Visualization of Correlation Network using Ingenuity Pathway Analysis (IPA) ......................... 40 

Identification of Tissue-Specific Biomarker using Machine Learning ............................................. 40 

Data Download and Preprocessing  .............................................................................................. 41 

Data Augmentation  ...................................................................................................................... 42 

Feature Selection  .......................................................................................................................... 42 

Machine Learning Model Training  .............................................................................................. 43 



5 
 

Hyperparameter Tuning and Model Evaluation ........................................................................... 44 

Biomarker Identification and Interpretation  ................................................................................ 45 

Machine Learning Model to Predict the Severity of COVID-19 Using Gene Expression and Clinical 

Information  ...................................................................................................................................... 46 

Data Collection and Preprocessing  .............................................................................................. 47 

Data Augmentation  ...................................................................................................................... 49 

Gene Expression Data Preprocessing and Weight Assignment  ................................................... 49 

Clinical Data Preprocessing and Weight Assignment  ................................................................. 50 

Co-morbidity Data Preprocessing and Weight Assignment  ........................................................ 50 

Integration of Feature Weights  .................................................................................................... 51 

Machine Learning Model Training  .............................................................................................. 52 

Evaluation of Model Performance and Comparison  .................................................................... 52 

Feature Importance and Contribution Analysis  ........................................................................... 53 

Data Collection and Downstream Analysis of Significant Gene Features  .................................. 53 

 

Chapter 4 – Results ............................................................................................................................. 54 

Transcriptome Analysis of the Human Tissues Infected with SARS-CoV-2  .................................. 54 

Differential Gene Expression Analysis  ........................................................................................ 54 

Gene Co-Expression Analysis and Network Construction  .......................................................... 56 

Co-Expression Modules in Blood Tissue ................................................................................ 56 

Co-Expression Modules in Lung Tissue  ................................................................................. 58 

Co-Expression Modules in Nasal Tissue  ................................................................................ 60 

Co-Expression Modules in Placenta Tissue  ............................................................................ 62 

IPA Analysis using the Significant Genes from Clusters  ............................................................ 64 

Pathway Enrichment in Blood Tissue  ..................................................................................... 64 

Pathway Enrichment in Lung Tissue  ...................................................................................... 65 

Pathway Enrichment in Nasal Tissue ...................................................................................... 67 

Pathway Enrichment in Placenta Tissue  ................................................................................. 67 

Summary of Findings  ................................................................................................................... 68 

Tissue-Specific Genes as Potential Biomarkers  ............................................................................... 68 

Comparison of ML models to Distinguish COVID-19 and Healthy Individuals (Nasal data)  .... 69 

Comparison of ML models to Distinguish COVID-19 and Healthy Individuals (Blood data)  ... 71 

Tissue-Specific ML Feature Genes  .............................................................................................. 73 

ML Features and Consensus Genes  ............................................................................................. 74 

IPA Analysis of the Consensus Genes  ......................................................................................... 75 

Other Augmentation Approach  .................................................................................................... 77 

Summary of the Findings  ............................................................................................................. 78 



6 
 

ML Models for Predicting COVID-19 Severity  .............................................................................. 79 

Effect of Data Augmentation on Model Performance  ................................................................. 79 

Feature Important Analysis  .......................................................................................................... 83 

Pathway Enrichment Analysis of Top Contributing Genes  ......................................................... 85 

Summary of the Findings  ............................................................................................................. 89 

 

Chapter 5 – Discussion ....................................................................................................................... 91 

Differentially Expressed Genes Among Different Tissues in Patients with COVID-19 .................. 91 

Tissue-Specific Genes as Potential Biomarkers ................................................................................ 95 

ML Models for Predicting COVID-19 Severity  .............................................................................. 97 

Development and Optimization of ML Models .............................................................................. 100 

Limitations of the Study .................................................................................................................. 103 

Future Directions of the Study ........................................................................................................ 104 

 

Chapter 6 – References ..................................................................................................................... 105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

List of Figures and Tables 

 

Chapter 1 

Figure 1: Evolution of the COVID-19 Pandemic: A timeline from the Wuhan outbreak to global 

declaration. The chronological progression of events from the initial outbreak in Wuhan, China, to the 

official declaration of the COVID-19 pandemic.. ................................................................................. 16 

Figure 2: Schematic representation of the SARS-CoV-2 viral particle. The virion contains a positive-

sense, single-stranded RNA genome (+ssRNA) enclosed by a lipidic envelope and structural viral 

proteins. The nucleocapsid protein (N) is associated with the RNA genome inside the virus particle. 

Other proteins are inserted in the lipid envelope: the spike trimers (S), the envelope (E), and 

membrane (M) proteins.. ....................................................................................................................... 17 

Figure 3: Organization of the SARS-CoV-2 genome. The 30 kb genome of SARS-CoV-2 is flanked 

by 5’ and 3’untranslated regions. The 5’ end of the genomic RNA features two extensive open reading 

frames (ORF1a and ORF1b), which encode 16 non-structural proteins (Nsps 1-16). At the 3’ end, the 

genome encodes four structural proteins (S, N, M, and E) and nine accessory proteins, specifically 

ORF3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10.. ............................................................................................... 18 

Figure 4: Taxonomic Overview of Human Coronaviruses................................................................... 19 

 Chapter 3 

Figure 1: Schematic Workflow for Aim 1. ........................................................................................... 38 

Figure 2: Schematic Workflow for Aim 2. ........................................................................................... 41 

Figure 3: Division of the patients based upon their COVID-19 infection severity class where A1 is the 

most severe and A5 is the least severe. ................................................................................................. 47 

Figure 4: (A) Patient count over days (D0, D3, D7), (B) Patient status categorized by COVID-19 

positive or negative, (C) Patients' status on specific days with COVID.. ............................................. 49 

Figure 5: Schematic Workflow for generating weights to each omic feature and integration to derive 

the final feature matrix, which was used to train the ML models.. ....................................................... 52 

Table 1: RNA-seq datasets, GEO accessions, and sample counts in different tissues.......................... 39 



8 
 

Table 2: Distribution of COVID-19 samples according to acuity categories and our reclassification 

strategy... ............................................................................................................................................... 48 

 

 Chapter 4 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients.. .............................................................................. 55 

Figure 2: Common differentially expressed genes in all four human tissues (lungs, blood, nasal, and 

placenta) infected with COVID-19... .................................................................................................... 56 

Figure 3: Average expression levels of genes associated with each cluster identified in CoSeq-based 

co-expression analysis using blood samples of COVID-19-infected patients and healthy individuals.  ..

 .............................................................................................................................................................. 58 

Figure 4: Average expression levels of genes associated with each cluster identified in CoSeq-based 

co-expression analysis using lung samples of COVID-19-infected patients and healthy individuals....

 .............................................................................................................................................................. 59 

Figure 5: Average expression levels of genes associated with each cluster identified in CoSeq-based 

co-expression analysis using nasal swab samples of COVID-19-infected patients and healthy 

individuals.... ......................................................................................................................................... 62 

Figure 6: Average expression levels of genes associated with each cluster identified in CoSeq-based 

co-expression analysis using placenta samples of COVID-19-infected patients and healthy 

individuals.... ......................................................................................................................................... 64 

Figure 7: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters 

derived from blood samples. The enriched pathways are shown in cluster 1 (a), cluster 2 (b), cluster 4 

(c), and cluster 5 (d).... .......................................................................................................................... 65 

Figure 8: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters 

derived from lung samples. The enriched pathways are shown in cluster 2 (a), cluster 3 (b), cluster 5 

(c), cluster 6 (d), cluster 8 (e), cluster 9 (f).... ....................................................................................... 66 

Figure 9: Ingenuity Pathway Analysis (IPA) using genes associated with significant cluster 1 derived 

from nasal samples.... ............................................................................................................................ 67 



9 
 

Figure 10: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters 

derived from placenta samples. The enriched pathways are shown in Cluster 6 (a) and Cluster 8 (b)...

 .............................................................................................................................................................. 67 

Figure 11: Evaluation and Comparison of feature selection methods for predicting SARS-CoV-2 

infection using original and augmented data... ..................................................................................... 73 

Figure 12: Workflow for identifying consensus genes by combining differentially expressed (DE) 

gene and machine learning (ML)--captured features in four tissues.... ................................................. 74 

Figure 13: Ingenuity Pathway Analysis (IPA) and enriched pathways in blood tissue of COVID-19 

infected patients.... ................................................................................................................................ 75 

Figure 14: Ingenuity Pathway Analysis (IPA) and enriched pathways in nasal tissue of COVID-19-

infected patients... ................................................................................................................................. 76 

Figure 15: Ingenuity Pathway Analysis (IPA) and enriched pathways in lung tissue of COVID-19-

infected patients... ................................................................................................................................. 76 

Figure 16: Ingenuity Pathway Analysis (IPA) and enriched pathways in placenta tissue of COVID-19-

infected patients... ................................................................................................................................. 77 

Figure 17: Beeswarm plot, ranked by mean absolute SHAP value. This provides a rich overview of 

how the variables impact the model’s predictions across all data. The input variables are ranked from 

top to bottom by their mean absolute SHAP values..... ......................................................................... 84 

Figure 18: Top canonical pathways from Ingenuity Pathways Analysis of the top 25% of genes (1324) 

with the highest SHAP scores.... ........................................................................................................... 85 

Figure 19: Network of highly enriched pathways from Ingenuity Pathways Analysis (IPA).  The node 

represents activated pathways in COVID-19..... ................................................................................... 89 

 

Table 1: Significance and number of genes in each cluster identified in CoSeq-based co-expression 

analysis using blood samples of COVID-19-infected patients. Statistically significant associations (p-

value < 0.05) are highlighted in bold.... ................................................................................................ 57 



10 
 

Table 2: Significance and number of genes in each cluster identified in CoSeq-based co-expression 

analysis using lung samples of COVID-19-infected patients. Statistically significant associations (p-

value < 0.05) are highlighted in bold.... ................................................................................................ 60 

Table 3: Significance and number of genes in each cluster identified in CoSeq-based co-expression 

analysis using nasal samples of COVID-19-infected patients. Statistically significant associations (p-

value < 0.05) are highlighted in bold..... ............................................................................................... 61 

Table 4: Significance and number of genes in each cluster identified in CoSeq-based co-expression 

analysis using placenta samples of COVID-19-infected patients. Statistically significant associations 

(p-value < 0.05) are highlighted in bold..... .......................................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 



11 
 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

 

Chapter 5 

Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, 

and Placenta) of the COVID-19-infected patients. ............................................................................... 55 

 

 

 

 

 

 

 

 

 

 

 

 

 

List of Abbreviations 

 



12 
 

SARS-CoV-2 - Severe Acute Respiratory Syndrome Coronavirus-2 

ACE2 - Angiotensin-Converting Enzyme 2 

WHO - World Health Organization 

ML – Machine Learning 

RF – Random Forest 

SVM – Support Vector Machine 

LASSO- Least Absolute Shrinkage and Selection Operator 

KNN – K- Nearest Neighbor  

LR – Logistic Regression 

NB – Naïve Bayes 

ROC - Receiver Operator Characteristic 

SHAP - SHapley Additive exPlanations 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
 



13 
 

1.1. Research Background 

COVID-19, caused by the highly contagious severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), has had a devastating impact on the global stage, leading to over 6 million 

deaths worldwide. The initial cases of this primarily respiratory viral illness were identified in 

Wuhan, Hubei Province, China, in late December 2019. Subsequently, SARS-CoV-2 quickly 

spread across the globe, prompting the World Health Organization (WHO) to declare it a global 

pandemic on March 11, 2020 (Zhou et al., 2020). SARS-CoV-2 invades the upper respiratory 

airways, causing respiratory syndromes ranging from mild upper airway resistance to fatal 

pneumonia. The virus enters type II epithelial alveolar cells by attaching its S protein to 

angiotensin-converting enzyme 2 (ACE2) receptors. Following infection, individuals 

experience various biological reactions, including an inflammatory immune response and a 

thrombotic response (Nguyen et al., 2022). 

SARS-CoV-2 can disrupt normal immune responses. In severe patients with COVID-19 

infection, the immune system is impaired by lymphopenia and monocyte/granulocyte 

abnormalities. Simultaneously, severe cases have an excessive inflammatory response marked 

by sharp cytokine and antibody production spikes. The high increase in cytokines can cause 

the cytokine storm, which leads to further inflammation, tissue damage, and ultimately multi-

organ failure. Thus, the excessive inflammatory response is a leading factor in COVID-19 

mortality (Merad & Martin, 2020; Ragab et al., 2020). Despite the remarkable pace at which 

vaccines have been developed to combat COVID-19 and the extensive worldwide mass 

vaccination campaigns, the emergence of new SARS-CoV-2 variants poses a risk to the efforts 

to limit the spread of the disease. In addition, our limited insights into the progression of 

infection coupled with the molecular mechanisms underlying the disease, interactions between 

SARS-CoV-2 and the host, and their impact on disease outcomes hinder our ability to find 

effective treatments. Consequently, it is imperative to comprehend the molecular and 
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immunological mechanisms that underlie the diverse clinical symptoms of COVID-19, as this 

knowledge is considered crucial for the development of potential therapeutic strategies 

(Arunachalam et al., 2020; Schrepping et al., 2020) 

In COVID-19 patients, identification of alterations in gene expression within relevant different 

tissues during SARS-CoV-2 infection using various functional genomic techniques, such as 

microarrays and RNA-sequencing-based transcriptomics, holds the potential to enhance our 

understanding of the molecular mechanisms of host-pathogen interactions and disease 

progression. Transcriptomic studies in COVID-19 patients have employed diverse samples, 

including lung epithelial cells, nasopharyngeal swabs, bronchoalveolar lavage fluid, or 

peripheral blood mononuclear cells (PBMCs) (Blanco et al., 2020; Jain et al., 2021; Oommen 

et al., 2021). Nevertheless, the focus on differential gene expression analysis tends to 

emphasize the individual effects of genes, disregarding the intricate interactions among genes 

within complex biological networks in different tissues (Bakhtiarizadeh et al., 2020; Liu et al., 

2020). Hence, exploring gene or protein interactions at the organ level is crucial for unraveling 

the dynamics of SARS-CoV-2 infection and understanding the molecular mechanisms 

responsible for COVID-19. In tandem with gene co-expression analysis, Machine Learning 

(ML) approaches are pivotal in finding and distilling meaningful organ-specific insights from 

the vast and heterogeneous datasets generated during the pandemic (Ulrich et al., 2023). More 

specifically, analyzing and comparing gene expression data across different organs holds 

immense promise in unraveling the underlying tissue-specific complexities of human viral 

pathogenesis (Ulrich et al., 2023).  

This study aims to compare the gene expression patterns of human tissues infected by SARS-

CoV-2 and determine the tissue-level molecular signatures linked to the severity of the 

infection and the host response. We also focused on gene co-expression analysis, a method that 

reveals the functional relationships and interactions among genes, along with ML, enabling 
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extracting informative features and predicting outcomes from large-scale data. In the following 

sections, we will provide the background and significance of SARS-CoV-2 infection and the 

methodologies of gene co-expression evaluation. In the subsequent sections, we will explore 

the comparative gene expression analysis and gene-gene correlation evaluation in COVID-19 

progression. Additionally, we will explore the evolving landscape of ML applications in 

COVID-19 research, highlighting the pivotal role these techniques play in advancing our 

knowledge, predicting the severity of the disease, and responding to the unprecedented global 

health challenge. 

1.2. SARS-CoV-2 Infection and Significance 

The emergence of SARS-CoV-2 in late 2019 marked the onset of a global health crisis, with 

the virus causing COVID-19 and eventually being declared a global pandemic by the World 

Health Organization (WHO) (Figure 1). SARS-CoV-2 fits in the family of Coronaviridae 

viruses and is closely related to other highly pathogenic coronaviruses like SARS-CoV and 

MERS-CoV (Marco et al., 2023). The virus primarily spreads through respiratory droplets, 

leading to a broad spectrum of medical presentations - mild respiratory symptoms to severe 

pneumonia and, in some cases, acute respiratory distress syndrome (ARDS) and multi-organ 

failure (Tanu et al., 2020). 

SARS-CoV-2 primarily infects cells expressing ACE2, the receptor via which the virus enters 

host cells. The virus's ability to infect cells of the respiratory system and other organs 

expressing ACE2 contributes to the diverse clinical presentations observed in COVID-19. 

Beyond the respiratory system, SARS-CoV-2 has been associated with cardiovascular, 

gastrointestinal, neurological, and immune system manifestations, emphasizing its systemic 

impact (Prasun et al., 2020; Ali et al., 2023; Hannah et al., 2023; Masataka et al., 2020). 
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The significance of SARS-CoV-2 infection lies in its unprecedented impact on global health, 

economies, and societal structures. The virus swiftly spread across borders, leading to 

widespread illness, significant morbidity mortality, and overwhelming healthcare systems 

globally. The unique combination of its high transmissibility, varied clinical manifestations, 

and the potential for severe outcomes has posed substantial challenges for public health and 

necessitated a rapid, coordinated global response (Neleman et al., 2019). As researchers 

continue to unravel the complexities of SARS-CoV-2, the knowledge gained not only 

contributes to the ongoing management of the COVID-19 pandemic but also has broader 

implications for understanding viral pathogenesis, host-virus interactions, and strategies to 

combat emerging infectious diseases (Nelemans & Kikkari, 2019).  

 

Figure 1: Evolution of the COVID-19 Pandemic: A timeline from the Wuhan outbreak to global 

declaration. The chronological progression of events from the initial outbreak in Wuhan, China, to the 

official declaration of the COVID-19 pandemic. 

1.2.1. Structure of SARS-CoV-2 and Transmission 

 

The structural composition of SARS-CoV-2 encompasses a spherical or multi-shaped virion 

featuring a petal-shaped protrusion composed of spike (S) proteins. These structural proteins, 

including spike (S), membrane (M), envelope (E), and nucleocapsid (N), play pivotal roles in 
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the lifecycle of the virus. Additionally, the virus contains sixteen non-structural proteins (nsp1-

16) that contribute to various functions within the viral mechanism. 

 

Figure 2: Schematic representation of the SARS-CoV-2 viral particle. The virion contains a positive-

sense, single-stranded RNA genome (+ssRNA) enclosed by a lipidic envelope and structural viral 

proteins. The nucleocapsid protein (N) is associated with the RNA genome inside the virus particle. 

Other proteins are inserted in the lipid envelope: the spike trimers (S), the envelope (E), and 

membrane (M) proteins (Rahman et al., 2021). 

It belongs to the beta coronavirus genus, sharing lineage with MERS-CoV and SARS-CoV. 

Also, the virus particle consists of essential structural viral proteins, namely spike (S), envelope 

(E), and membrane (M), along with nucleocapsid (N) protein (Figure 2). The 419 amino acid-

long N protein, the sole structural protein within the virion, forms associations with the viral 

genomic RNA through electrostatic interactions directed by positively charged amino acid 

residues. This interaction is crucial in RNA unwinding post-entry into the host cell (Zhihua et 

al., 2021). Also, other structural proteins are integrated into the lipidic viral envelope. The E 

protein serves as an ion channel and contributes to viral assembly; meanwhile, the M protein 

is vital for integrating essential viral components into newly formed virions throughout 

morphogenesis (Ella et al., 2020). Finally, the S protein binds to the host cell receptor and 



18 
 

facilitates the fusion of viral and cellular membranes. The SARS-CoV-2 genome, 

approximately 30 kb, encodes 14 open reading frames (ORFs), as shown in Figure 3. Flanked 

by 5′ and 3′ UTRs, these regions contain cis-acting secondary RNA structures crucial for RNA 

synthesis. Also, at the 5′ end, the overall genomic RNA features two extensive open reading 

frames (ORF1a along with ORF1b), constituting two-thirds of the capped along with 

polyadenylated genome. These ORFs encode 16 non-structural proteins (Nsps 1–16), forming 

the replicate complex (Li et al., 2021).  Additionally, nine accessory proteins, identified as 

ORF3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10, are encoded by homonymous ORFs. While considered 

non-essential for in vitro virus replication), these accessory proteins are believed to play 

significant roles in modulating host cell metabolism and antiviral immunity. 

 

Figure 3: Organization of the SARS-CoV-2 genome. The 30 kb genome of SARS-CoV-2 is flanked 

by 5’ and 3’untranslated regions. The 5’ end of the genomic RNA features two extensive open reading 

frames (ORF1a and ORF1b), which encode 16 non-structural proteins (Nsps 1-16). At the 3’ end, the 

genome encodes four structural proteins (S, N, M, and E) and nine accessory proteins, specifically 

ORF3a, 3b, 6, 7a, 7b, 8, 9a, 9b, and 10. 
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1.2.2. Taxonomic Overview of SARS-CoV-2 

 

 

 

Figure 4: Taxonomic Overview of Human Coronaviruses 

Coronaviruses (CoVs), members of the Coronaviridae family, derive their name from the 

distinctive crown-like appearance visible under an electron microscope (Figure 4). This 

characteristic feature results from spiked glycoproteins adorning their envelope. In the 

Coronaviridae family, the subfamily Orthocoronavirinae is categorized into four genera: 

Alpha, Beta, Gamma, and Delta. Each genus is composed of varying viral lineages with the 

betacoronavirus genus containing four such lineages: A, B, C, D. In older literature (Abassi et 

al., 2020), common human CoVs: HCoV-OC43, HCoV-HKU1 (A lineage betaCoVs), along 

with HCoV-229E, along with HCoV-NL63 (alphaCoVs) fall into this category (refs). Typically 

causing common colds and self-limiting upper respiratory tract infections in immunocompetent 

individuals, these viruses can lead to lower respiratory tract infections in immunocompromised 

and older patients. 

https://en.wikipedia.org/wiki/Alphacoronavirus
https://en.wikipedia.org/wiki/Gammacoronavirus
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Correspondingly, SARS-CoV and MERS-CoV, which belong to the betaCoVs of the B and C 

lineage, are known to be very virulent (Figure 4). They can cause epidemics with varying 

levels of clinical acuity, resulting in respiratory diseases and extra-respiratory symptoms. 

SARS-CoV-2, a novel betaCoV, shares its subgenus with SARS-CoV along with MERS-CoV, 

which were known for previous epidemics with mortality rates reaching 10% - 35%, 

respectively (Zeinab et al., 2020).  

Although the precise origin of SARS-CoV-2 remains unknown, a widely accepted hypothesis 

suggests zoonotic transmission. Also, genomic analyses imply that SARS-CoV-2 likely 

progressed from a bat strain, with a high homology (96%) observed across the human SARS-

CoV-2 sequence along with the betaCoV RaTG13 found in bats (Rhinolophus affinis) (Marco 

et al., 2023).  

The emergence of SARS-CoV-2 variants has significantly impacted the trajectory of the 

COVID-19 pandemic. Since then, many SARS-CoV-2 variants have been acknowledged, with 

some categorized as variants of concern (VOCs) triggered by their potential for enhanced 

transmissibility or virulence. The Centers for Disease Control and Prevention (CDC) and the 

World Health Organization (WHO) recognized a classification system differentiating SARS-

CoV-2 variants into VOCs and variants of interest (VOIs) (Blanco et al., 2020).  

1.2.3. Transmission of COVID-19 

SARS-CoV-2 primarily transmits through respiratory droplets, with the S protein mediating 

entry via the ACE) receptor. Differences in ACE2 expression in various tissues explain 

extrapulmonary manifestations observed in COVID-19, like cardiac and renal injuries 

(Stephany et al., 2021; Fabio et al., 2020; Haibo et al., 2020; Hamid et al., 2023). Understanding 

the multifaceted transmission modes and the structural components of SARS-CoV-2 is crucial 
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for developing effective strategies to mitigate the spread of the virus and manage its impact on 

human health. The different modes of SARS-CoV-2 transmission are briefly described below: 

a) Respiratory Droplets: 

• The primary transmission mode is through respiratory droplets that carry the 

virus. These droplets can land near people’s mouths or noses whenever an 

infected individual talks, coughs, or sneezes. 

• Droplets can also be inhaled into the lungs, leading to infection. The risk of 

transmission is higher in close-contact settings, especially indoors (Mahesh et 

al., 2020). 

b) Airborne Transmission: 

• In certain conditions, SARS-CoV-2 can spread in the air and be inhaled into 

people’s lungs more than six feet away from the infected person (Melika et al., 

2020). This is known as airborne transmission. 

• Airborne transmission is more likely to occur in enclosed spaces with poor 

ventilation, especially when individuals spend an extended time together. 

c) Surface Transmission: 

• Individuals can acquire the virus by contacting surfaces or things infected with 

it and touching their face, mouth, nose, or even eyes. 

• While surface transmission is considered less common than respiratory 

transmission, it remains a potential source of infection. 

d) Asymptomatic and Pre-symptomatic Transmission: 

• Individuals suffering from SARS-CoV-2 can spread the virus to others even if 

they do not display symptoms (asymptomatic) or before symptoms appear (pre-

symptomatic). 
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• Asymptomatic and pre-symptomatic individuals may unknowingly contribute 

to the spread of the virus (Yutong et al., 2022). 

Understanding and addressing these modes of transmission is essential for implementing 

targeted public health interventions and strategies to control SARS-CoV-2 spread within 

communities.  

1.2.4. Clinical Overview of SARS-CoV-2 Infection 

COVID-19's clinical manifestations vary widely, ranging from asymptomatic cases to flu-like 

symptoms like fever, cough, dry cough, and fatigue. Infected subjects could gradually progress 

to pneumonia, ARDS, and multi-organ failures with high morbidity and mortality rates 

(Kamleshun et al., 2021). Also, the diversity of symptoms is highly correlated with factors like 

age, underlying comorbidities, and the individual's immunity status (Kamleshun et al., 2021). 

Severe cases requiring intensive care were more likely in patients with multiple underlying 

comorbidities, like hypertension, cardiovascular disease, and diabetes. Neurological 

manifestations, established by the viral genome sequence spotted in cerebrospinal fluid, were 

observed in over 30% of the patients (Kamleshun et al., 2021). These symptoms ranged from 

central nervous system issues (headache, dizziness) to peripheral nervous system 

complications (loss of taste and smell) and skeletal muscle injury. The virus’s ability to cross 

the blood-brain barrier and its expression in vascular endothelial cells of the nervous system 

contribute to neurological infections (Ivan et al., 2021). Although rare, reported cases of viral 

encephalitis emphasize the potentially life-threatening impact on the central nervous system, 

necessitating careful monitoring of neurological indicators. In addition to that, unexpectedly, 

Tang et al. have found blood clots that are responsible for strokes and heart attacks in the small 

vessels of the heart, lung, kidney, and liver in autopsies of COVID-19 patients(Tang et al., 

2020). Moreover, reports indicate that over 33% of severe COVID-19 cases exhibit notably 

high levels of blood clotting or elevated D-dimer levels(Levi et al., 2020). While substantial 
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strides in clinical algorithms have enhanced our comprehension of SARS-CoV-2, many nations 

battle with recurring occurrences of this virus, primarily due to the emergence of mutant 

variants. SARS-CoV-2, akin to other RNA viruses, undergoes genetic evolution, fostering 

mutations and giving rise to mutant variants with potentially distinct characteristics from their 

ancestral strains (Abdul et al., 2023). Various SARS-CoV-2 variants have been identified 

throughout the pandemic, with only a few classified as VOCs. 
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2. Literature Review 

2.1 Gene Expression Analysis to Understand COVID-19 

Gene expression evaluation can help reveal the molecular mechanisms and pathways involved 

in numerous biological processes, like viral infection, immune response, drug treatment, and 

tissue damage. SARS-CoV-2 affects vital organs and tissues like the heart, kidneys, liver, and 

brain (Muhammad et al., 2021; Komal et al., 2020; Chiranjib et al., 2021; Conor et al., 2023). 

Gene expression evaluation of SARS-CoV-2-infected organs and tissues can help comprehend 

how the virus intermingles with the host cells, what genes are involved in the viral entry and 

replication, and how the host immune system responds to the infection (Torre et al.,2021). 

2.1.1 Tissue-Specific Gene Expression Analysis in COVID-19 Patients: 

Comprehensive gene expression profiling helps decipher the molecular alterations induced by 

the virus across multiple organ systems. This analysis provides crucial insights into the virus-

host interactions, diverse clinical manifestations, and potential avenues for targeted therapeutic 

interventions, as discussed below- 

a) Respiratory System: 

In the lungs, gene expression analysis reveals a complex interplay of immune 

response genes, inflammatory mediators, and factors associated with respiratory 

distress (Bariaa et al., 2022). Understanding the expression levels of infection-

associated genes helps elucidate the mechanisms contributing to pneumonia, 

ARDS, and varying degrees of lung involvement. 

b) Cardiovascular System: 

SARS-CoV-2 exhibits tropism for cardiovascular tissues and gene expression 

studies in the heart and vascular endothelium are critical (Priya et al., 2021). 

Identifying genes associated with myocardial injury, vascular inflammation, and 



25 
 

thrombotic events provides insights into cardiovascular complications in severe 

COVID-19 cases. 

c) Gastrointestinal Tract: 

Angiotensin-converting enzyme 2 (ACE2) in the gastrointestinal tract makes it 

more susceptible to SARS-CoV-2. Gene expression evaluation in the gut explores 

viral replication dynamics, inflammatory responses, and potential implications for 

gastrointestinal symptoms and complications (Jiabin et al., 2020). 

d) Central Nervous System: 

Reports of neurological manifestations in COVID-19 patients necessitate gene 

expression studies in the brain and neural tissues (Montalvan et al., 2020). 

Understanding the impact on neuronal cells, neuroinflammatory responses, and 

potential neurotropism of the virus contributes to unraveling the neurological 

complications of SARS-CoV-2. 

e) Immune System: 

Gene expression evaluation in immune cells provides insights into the host’s 

immune response to SARS-CoV-2. Identifying genes related to antiviral defense, 

cytokine production, and immune dysregulation aids in understanding the 

immunopathology associated with severe cases and the cytokine storm 

phenomenon (Shasha et al., 2021). 

f) Kidneys and Liver: 

ACE2 expression in renal and hepatic tissues. COVID-19’s typical symptoms comprise 

fever, fatigue, cough, muscle pain, and shortness of breath (Huang et al., 2020). 

Furthermore, specific individuals may experience gastrointestinal symptoms like sore 

throat, diarrhea, nausea, vomiting, and abdominal pain, indicating potential viral 

targeting of the digestive tract organs. Several studies have shown the higher expression 
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of ACE2 in various anatomical sites, including lung and esophagus epithelial cells, the 

ileum, the colon, the kidney, the bladder, and oral mucosa (Xu et al., 2020; Zou et al., 

2020). Recently, Jiabin et al. found that digestive tract organs had higher ACE2 

expression than Lungs (Xu et al., 2020).  

g) Endothelial Cells: 

Endothelial dysfunction is implicated in COVID-19 complications. Analyzing gene 

expression in endothelial cells provides insights into vascular inflammation, 

coagulation abnormalities, and microvascular complications associated with the 

virus (Suo et al., 2022). 

h) Hematological Effects: 

• Systemic effects, like changes in blood cells and coagulation factors, are evident in 

severe COVID-19. Gene expression evaluation in peripheral blood specimens helps 

identify biomarkers and unravel the systemic implications of the infection (Diana 

et al., 2023). 

By systematically examining gene expression patterns across these diverse tissues and organs, 

researchers can uncover the molecular landscape of SARS-CoV-2. This knowledge improves 

our understanding of COVID-19 pathophysiology and provides a foundation for developing 

targeted therapies and interventions tailored to the specific molecular signatures associated 

with varying clinical outcomes. 

In molecular biology and genomics, understanding the intricate relationships between genes 

and unraveling the regulatory networks that govern cellular processes are central to deciphering 

the complexities of living organisms. The pivotal methodology that has emerged as a 

cornerstone in this pursuit is gene co-expression analysis. As described in the next paragraph, 

these approaches offer potent insights into functional coordination and regulatory dynamics of 
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infection-related genes in various tissues, providing a holistic view of cellular behavior in 

COVID-19 (Chen et al.,2020). 

Gene co-expression evaluation explores the concurrent expression patterns of genes under 

various biological conditions. The premise is rooted in the notion that genes with similar 

expression profiles are likely to be functionally related, participating in common cellular 

pathways or processes. The advent of high-throughput technologies like microarrays and RNA 

sequencing has enabled the systematic measurement of gene expression levels across the entire 

genome, paving the way for constructing co-expression networks. These networks reveal the 

interconnectedness of genes and facilitate the identification of functional modules and key 

regulators within biological systems (Niloofar et al., 2021). 

Further, gene-gene correlation evaluation delves into the statistical associations between the 

expression levels of two or more genes. Researchers gain insights into potential regulatory 

connections by quantifying the strength and direction of these relationships. Positive 

correlations suggest co-regulation or shared regulatory mechanisms, while negative 

correlations may signify regulatory antagonism. This methodology aids in identifying 

functional relationships between genes and uncovering synergies or conflicts that shape cellular 

processes (Iwo et al., 2020). 

2.1.2 Multi-Omics Characterization for Understanding COVID-19 

In the post-genomic era, the fusion of various omics technologies and advanced data evaluation 

strategies has ushered in a new frontier in biology. This multi-omics approach offers a potent 

framework to delve into the genomic, transcriptomic, proteomic, and metabolomic signatures 

of SARS-CoV-2, aiding in large-scale surveillance, diagnosis, and clinical management (Ma et 

al., 2022). 
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2.1.2.1  Genomic and Metagenomic Analysis of SARS-CoV-2 

Genomic Sequencing: Utilizing different sequencing platforms has been pivotal in 

understanding the regulatory molecular mechanisms underlying COVID-19. Genomic 

sequencing tracks outbreak lineages deciphers transmission routes, and monitors the 

dissemination of concern variants (VOCs), providing crucial information for diagnostics, 

therapeutics, and vaccine strategies (Saravanan et al., 2022) 

2.1.2.2  Metagenomic Sequencing 

Shotgun metagenomics techniques aid in identifying novel pathogens, offering precise 

diagnosis in mixed infections. Early in the pandemic, these techniques confirmed the origin of 

SARS-CoV-2 from bat coronaviruses, highlighting the utility of metagenomic sequencing in 

uncovering the genetic diversity and epidemiology of the virus (Sarah et al., 2022). 

2.1.2.3  Proteomics and Metabolomics 

• Proteomics focuses on protein structure, location, modifications, and interactions. It 

explores the viral and host proteomes and their interactions. This characterization 

informs our understanding of viral replication, pathogenesis, and potential targets for 

therapeutic interventions. 

• Metabolomics: Metabolic profiling directly reflects clinical disturbances induced by 

SARS-CoV-2. This approach aids in identifying biomarkers, serving as both a 

diagnostic and prognostic tool. Metabolomics sheds light on metabolic disruptions 

caused by COVID-19, contributing to our understanding of the disease 

pathophysiology. 

While multi-omics approaches hold immense promise, challenges like the heterogeneity of 

COVID-19 pathogenesis, spatiotemporal dynamics of biomarkers, and technological 

standardization must be addressed. Future research should evaluate the predictive value of 

biomarkers in clinical contexts and establish standardized processes, screening criteria, and 
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large-scale clinical trials to validate the feasibility and practicality of these innovative 

approaches. 

In summary, integrating multi-omics approaches provides a comprehensive understanding of 

COVID-19 at the molecular level. It paves the way for developing evidence-based 

interventions and strategies in the ongoing battle against the pandemic. 

2.2 Machine Learning Applications in Tackling the COVID-19 Crisis 

 Amid the COVID-19 pandemic, many ML and deep learning models were employed for swift 

and accurate disease detection, substantial discriminatory feature extraction, and classification 

of health conditions in COVID-19 patients. For example, ML models can scrutinize patterns 

and features within datasets of COVID-19 cases, encompassing clinical data, medical imaging, 

and lab results and furnishing precise diagnostic tools (Sreeparna et al., 2023). Moreover, ML 

models can analyze patient demographics, comorbidities, lab results, and clinical presentations 

to predict disease severity, hospitalization, and mortality. Beyond disease detection and risk 

prognosis, ML algorithms delve into vast compound databases, predicting their interactions 

with viral proteins to identify the most promising candidates for further exploration in drug 

development. 

In this context, ML has emerged as a powerful tool, offering valuable insights and playing 

pivotal roles across various facets of the crisis response, as described below. 

2.2.1 Early Detection and Diagnosis 

ML algorithms have demonstrated remarkable capabilities in early detection and diagnosis of 

COVID-19. ML models can identify patterns indicative of infection by analyzing diverse 

datasets and counting medical images, clinical records, and epidemiological data. For example, 

chest X-rays and CT scans are scrutinized to detect characteristics associated with COVID-19 
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pneumonia, aiding in rapid and accurate diagnosis (Abassi et al., 2020; Marcos et al., 2021; 

Hafsa et al., 2021). 

2.2.2 Predictive Modeling for Resource Allocation 

ML is crucial in predictive modeling, helping HC systems anticipate the demand for resources 

like hospital beds, ventilators, and medical staff. By considering variables like infection rates, 

demographic data, and HC infrastructure, ML models can provide forecasts that inform 

proactive resource allocation, ensuring that medical facilities are adequately prepared for 

surges in COVID-19 cases (Manuel et al., 2022; Hafsa et al., 2021; Eline et al., 2022). 

2.2.3 Drug Discovery and Treatment Optimization 

The accelerated development of therapeutics and vaccines is a pressing need in the fight against 

COVID-19. ML facilitates drug discovery by analyzing vast molecular datasets, predicting 

potential drug candidates, and expediting the identification of compounds with antiviral 

properties. ML also contributes to personalized treatment strategies by analyzing patient data 

to optimize drug regimens based on individual characteristics and responses (Hao et al., 2021; 

Ashwani et al., 2022; Paula et al., 2021). 

2.2.4 Epidemiological Surveillance and Forecasting 

ML aids in epidemiological surveillance by processing real-time data streams and predicting 

the trajectory of the pandemic. Models can incorporate factors like mobility patterns, social 

interactions, and public health measures to forecast the spread of the virus, enabling authorities 

to respond with targeted interventions and control measures (Yashpal et al., 2020; Teodoro et 

al., 2021; Zengtao et al., 2022). 

2.2.5 Contact Tracing and Risk Assessment 

Contact tracing is a crucial component of controlling the spread of COVID-19. ML enhances 

contact tracing efforts by analyzing mobility data, social interactions, and other relevant 
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parameters. ML models can assess the risk of transmission based on individual behaviors and 

contact history, aiding in targeted quarantine measures (John et al., 2022; Ching et al., 2023). 

2.2.6 Prognosis and Risk Prediction using Omics Data. 

The prediction of COVID-19 severity involves understanding the molecular and genetic factors 

that influence the course of the disease. Various omics data types can contribute to this 

prediction, providing insights into the host response, viral interactions, and other relevant 

factors. Here are some key omics data types that can be valuable for COVID-19 severity 

prediction: 

• Genomics: Understanding genetic variations in the host genome can be crucial for 

predicting the susceptibility and severity of COVID-19. Identifying specific genetic 

markers associated with severe outcomes can help in risk stratification 

(Thirumalaisamy et al., 2021; Caspar et al., 2022; Gita et al., 2021). 

• Transcriptomics: Analyzing the gene expression profiles in different tissues, 

especially in immune cells and lung tissue, can provide insights into the host 

response to the virus. Transcriptomic data can help identify dysregulated pathways 

and predict disease severity (Nazmul et al., 2022; Andrea et al., 2021; Taehwan et 

al., 2023). 

• Proteomics: Studying the proteome can reveal changes in protein expression, post-

translational modifications, and interactions. Proteomic data may highlight critical 

proteins associated with inflammatory responses, coagulation disorders, or other 

factors contributing to disease severity (Emily et al., 2022; Alexey et al., 2021; 

Juliane et al., 2022). 

• Metabolomics: Examining the metabolic profile of individuals infected with 

COVID-19 can offer insights into the systemic effects of the virus. Metabolomic 
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data can help identify metabolic pathways associated with severe outcomes 

(Francisco et al., 2022; Wen et al., 2021; Blasco et al., 2020). 

• Epigenomics: Investigating epigenetic modifications, such as DNA methylation 

and histone modifications, can inform how the host’s epigenome responds to viral 

infection. Epigenomic data may offer clues about regulating immune-related genes 

(Sandra et al., 2020; Yan et al., 2023). 

• Multi-omics Integration: Integrating data from multiple omics layers (genomics, 

transcriptomics, proteomics, etc.) can provide a more comprehensive understanding 

of the molecular mechanisms underlying COVID-19 severity. Systems biology 

approaches considering the interactions between different molecular components 

are increasingly important (Letizia et al., 2023; Chuan et al., 2022; Ali et al., 2022). 

2.2.7 Machine Learning Models for Prediction of COVID-19 Severity 

Integrating features from multiple sources, known as multimodal data fusion, enhances the 

richness of the feature set. Molecular, clinical, imaging, and other relevant information are 

harmoniously combined to comprehensively represent the factors influencing COVID-19 

severity. Feature engineering, if adopted, helps create new features or transform existing ones 

to improve the model's predictive power. This step may include the derivation of composite 

features or the normalization of data to ensure consistency across different feature scales. 

Following supervised and unsupervised modeling approaches can be used to predict COVID-

19 severity- 

2.2.7.1 Supervised Learning Models 

• Regression Models: 
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o Linear Regression: Predicting numerical outcomes like the number of 

COVID-19 cases, deaths, or recovery rates based on input features that have 

a linear relationship to the outcomes (Abrar et al., 2022; Melik et al., 2020). 

o Polynomial Regression: Capturing non-linear relationships between clinical 

variables such as age, gender, and diabetes (Louise et al., 2023). 

• Classification Models: 

o Logistic Regression: Predicting binary or categorical outcomes, such as 

whether a patient will likely be positive or negative for COVID-19 (Raoof 

et al., 2022; Bernhard et al., 2020). 

o Support Vector Machines (SVM): Soham & Souvik used SVMs to classify 

COVID-19 patients into no infection, mild infection, and severe infection 

categories, and they achieved an accuracy of 87 in predicting the cases. In 

addition, Noor et al. developed a hybrid model using SVM to enhance the 

accuracy of COVID-19 case predictions. (Soham et al., 2021; Noor et al., 

2023). 

 

o Decision Trees and Random Forests: Iwendi et al. have built a fine-tuned 

random forest model to predict a case’s severity, recovery, or death using 

COVID-19 patients' geographical, health, travel, and demographic data. The 

model has an accuracy of 94%—clinical features (Torgyn et al., 2020). 

• Neural Networks: 

o Feedforward Neural Networks: Suitable for complex non-linear 

relationships in data. For example, there is a correlation between gender 

variables and COVID-19 deaths (Abolfazi et al., 2020; Ahmed et al., 2021). 
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o Convolutional Neural Networks (CNN): Useful for image-based data, such 

as X-rays or CT scans from COVID-19-infected patients (Ahmad et al., 

2024; Ahmad et al., 2021). 

o Recurrent Neural Networks (RNN): RNN can capture temporal 

dependencies in the data, making it suitable for forecasting tasks. RNNs can 

analyze time-series clinical data, such as vital signs, laboratory results, and 

patient outcomes. This helps predict disease progression and identify early 

warning signs (Yanbu et al., 2023; Amin et al., 2021). 

2.2.7.2 Unsupervised Learning Models 

• Clustering Models: 

o K-Means Clustering: Kyeonghun & Yooeun have used K-Means clustering 

to investigate patient heterogeneity and uncover novel subtypes using 

single-cell RNA-seq data (Kyeonghun et al., 2023). 

• Dimensionality Reduction: 

o Principal Component Analysis (PCA): PCA helps reduce the dimensionality 

of massive COVID-19 data. It is also helpful in visualizing and analyzing 

patterns in a group of patients (Ashadun et al., 2021; Ahmed et al., 2020). 

o t-Distributed Stochastic Neighbor Embedding (t-SNE): Visualizing 

molecular characteristics of COVID-19 patients in multiple dimensions to 

understand infection mechanism more holistically (Hongyu et al., 2018; 

Manik et al., 2022). 

• Association Rule Mining: 

o Apriori Algorithm: The Apriori algorithm can be adapted for COVID-19 by 

associating symptoms, risk factors, and outcomes. Analyzing patient data, 

the algorithm identifies frequent item sets, revealing potential patterns in 
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symptom co-occurrence or risk factor combinations. This aids in 

understanding disease manifestations, predicting complications, and 

informing targeted interventions (Meera et al., 2021; Vashisht et al., 2020).  

2.3 Aims of the Study 

• Aim 1: Transcriptome level evaluation of COVID-19-infected human tissues. The 

first aim of this thesis is to conduct a comprehensive comparative gene expression 

evaluation of SARS-CoV-2 in various vital human organs and tissues. Examining the 

transcriptomes of infected tissues is crucial to gain insights into the specific molecular 

responses. It also helps to identify critical genes and pathways involved in viral 

infection and host immune responses. Furthermore, gene co-expression and gene-gene 

correlation evaluation will better understand the regulatory networks and potential 

interactions among genes during COVID-19 infection. 

• Aim 2: Identification of tissue-specific biomarkers using ML approaches. 

Identifying tissue-specific biomarkers will contribute to the diagnosis and prognosis of 

the disease. Detecting tissue-specific biomarkers can aid in patient subtyping and 

developing multi-purpose and targeted drugs based on the symptoms. ML algorithms 

offer powerful tools for analyzing large-scale transcriptomic data and extracting 

informative features. In this aim, we will employ ML and feature selection methods to 

classify COVID-19 patients from normal individuals based on gene expression profiles. 

Additionally, we will conduct a comparative evaluation of various feature selection and 

extraction methods to identify consensus genes and tissue-specific biomarkers that are 

robust and reliable across different patient cohorts. 

• Aim 3: ML model to predict COVID-19 severity by integrating gene expression 

and clinical information. Since the severity of COVID-19 varies widely among the 

infected individuals, predicting disease severity early on would be crucial for 
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appropriate patient management and resource allocation. By conducting feature 

evaluation, integration, and model learning, we aim to identify the key features 

contributing to the prediction of disease severity. This evaluation will provide valuable 

insights into the biological processes and molecular pathways associated with severe 

COVID-19 outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



37 
 

3. Methodology 
 

This chapter thoroughly details the planning and execution of the research methodology 

followed to unravel the complexities of COVID-19 on both molecular and clinical levels and 

their implications in public health, as proposed in Aims 1, 2, and 3. The methodology is divided 

into three distinct parts, each comprehensively designed to address a specific research aim, as 

briefly summarized below-  

The first part focused on analyzing the transcriptomic data of the various human tissues, 

including the lungs, blood, nasal, and placenta, infected with SARS-CoV-2 (Aim 1). It involved 

data collection, preprocessing, differential gene expression analysis, gene co-expression and 

correlation analysis, gene ontology, and pathway enrichment analysis. These endeavors sought 

to deeply understand the gene expression alterations, complex gene networks, and the enriched 

pathways related to the host response to the disease.  

The second part aimed to identify tissue-specific biomarkers based on machine learning 

algorithms (Aim 2). It started with data acquisition and preprocessing and was followed by 

data augmentation, feature selection, machine learning model training, model evaluation, 

hyperparameter tuning, and biomarker identification. This part identified the discriminative 

features indicative of tissue specificity and highlighted the significance of artificial data 

augmentation to circumvent the issues of limited or imbalanced datasets. 

The third and final part of this chapter was the prediction of COVID-19 severity using both 

gene expression profiles and clinical data (Aim 3). Data collection and preprocessing were 

followed by feature selection, ML model training, and performance evaluation. We also 

focused on comparative analyses of contributing features obtained from ML models. Thus, the 

comparison unveiled the efficacy of different models in predicting the severity of COVID-19 

to contribute to enhanced prognostic insights. 
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3.1. Aim 1: Transcriptome Analysis of the Human Tissues Infected with SARS-CoV-2 

Transcriptome analysis is a powerful technique that can reveal the changes in gene expression 

in different tissues and organs of patients infected with SARS-CoV-2. It can help identify the 

key genes and pathways involved during infection and disease progression and the potential 

biomarkers and therapeutic targets for COVID-19. 

 

  

 

Figure 1: Schematic Workflow for Aim 1 

The following steps were followed to complete the transcriptomic analysis of the human tissues 

infected with SARS-CoV-2 (Figure 1). 

3.1.1. Data Collection and Preprocessing 

We employed high-throughput transcriptomic data, mainly RNA-seq, to capture the gene 

expression profiles of both SARS-CoV-2-infected and healthy tissues. The datasets comprised 

transcriptomic profiles derived from human tissues collected between 2019 and 2023 from 

COVID-19 patients and healthy controls. Samples obtained from GEO studies included four 

main tissue types: blood, lung, nasal, and placental. The total samples comprised 2113 infected 

and 189 healthy samples, with GEO accession numbers provided for each tissue dataset to 

facilitate easy access to the raw transcriptomic data (Table 1).  Sample metadata, including 

patient information such as demographic details, clinical history, and severity of symptoms, 

were also collected. Raw read matrix containing data from all tissues underwent initial 

sequencing reads deseq2 venn diagram 

coseq 
IPA 

IPA Pearson correlation 
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filtration, removing genes with zeros or NaN values in over 20% of the samples. Subsequently, 

FPKM values were computed using the FPKM function. (Love et al., 2014).  

Table 1: RNA-seq datasets, GEO accessions, and sample counts in different tissues. 

Tissue type 

Total 

Samples 

Infected 

Samples 

Healthy 

Controls 

GEO Accessions 

Blood 1086 1017 69 GSE171110, GSE180118, GSE212041, GSE211394 

Lung 233 211 22 
GSE150316, GSE206635, GSE168797, GSE182917, 

GSE155518, GSE159191, GSE164013 

Nasal 933 846 87 GSE152075, GSE176269, GSE163151 

Placenta 50 39 11 GSE171995, GSE181238, GSE171381 

Total 2302 2113 189  

 

3.1.2. Differential Gene Expression Analysis 

Following the initial data preprocessing steps, we deployed the DESeq2 R package (Love et 

al., 2014) to conclude the statistically differentially expressed (p-value<0.05) and (|log2fold 

change|> 1). DESeq2 is a widely used bioinformatic R package for differential RNA-seq data 

analysis (Love et al., 2014). This package is instrumental in identifying differentially expressed 

genes (DEGs) from RNA-seq experiments, providing statistical methods to account for 

variability in the data. DESeq2 employs a negative binomial distribution model for the data's 

biological and technical variability. This helps identify significantly upregulated or 

downregulated genes generated under different experimental conditions for comparison.  

 We further performed gene co-expression analysis by calculating expression-based Pearson 

correlations separately for each tissue using the core function of the WGCNA package 

(Langfelder & Horvath, 2008). Pairwise Pearson correlation coefficients were computed for 
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each gene pair to quantify their linear relationship's strength and directionality based on their 

expression patterns across samples. Positive correlations suggested co-expression, while 

negative correlations indicated an inversely proportional relationship. The computed 

correlation coefficients constructed a correlation matrix, thus providing a comprehensive 

overview of the expression-based gene-gene interactions across the entire dataset. We applied 

this on DEGs in each tissue separately and common DEGs in all tissues. A Venn diagram was 

employed to elucidate the commonalities in gene expression alterations across the four types 

of human tissues. 

3.1.3. Visualization of Correlation Network using Ingenuity Pathway Analysis (IPA) 

Network visualization tools, specifically Cytoscape (Smoot et al., 2022), are employed to 

graphically represent the gene-gene correlation network. Nodes in the network expressed 

individual genes, and edges depicted their significant correlations. Visualization aided in 

identifying patterns of co-expression and potential regulatory relationships within the network. 

The obtained correlation and co-expression results were then analyzed using the IPA 

computational software to elucidate the functional context and significance of the co-expressed 

gene groups exhibiting correlated expression patterns. IPA provides a deeper understanding of 

pathway enrichment and, subsequently, the intricate molecular connections within the dataset. 

It comprehensively highlighted the gene interactions, the regulatory networks, and the 

biological pathways associated with SARS-CoV-2 pathogenesis.  

3.2. Aim 2: Identification of Tissue-Specific Biomarkers using Machine Learning  

The analysis of the second aim included (Figure 2): 

a) Classify COVID-19 patients from healthy individuals using machine learning and 

feature selection methods. 
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b) Comparative analysis of feature selection/extraction methods for identifying consensus 

genes and tissue-specific biomarkers.  

Tissue-specific biomarkers are crucial indicators of disease presence, severity, or progression 

in specific organs. Thus, they offer valuable insights for diagnosis and treatment. Machine 

learning (ML) is a potent tool for discovering biomarkers from diverse biological data sources, 

such as gene expression, protein expression, metabolomics, and imaging. High dimensionality 

and complexity inherit challenging characteristics of the biological data and are addressed 

through ML-based feature selection and extraction methods. These methods play a pivotal role 

in enhancing the precision and increasing the informativeness of potential tissue-specific 

biomarkers. (Remeseiro & Bolon-Canedo, 2019).  

 

Figure 2: Schematic Workflow for Aim 2 

We followed the following steps to achieve Aim 2- 

3.2.1. Data Download and Preprocessing 

We used the same pre-processed dataset as it was used in Aim 1. Further, we used data 

augmentation for sample balancing, as described in the next section.  
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3.2.2. Data Augmentation  

Data augmentation artificially increases the sample size by modifying instances of the original 

data. By incorporating data augmentation into the transcriptomic analysis workflow, 

researchers can mitigate the challenges of limited sample sizes and build more reliable and 

accurate ML models for classification and feature selection tasks. (Mumuni & Mumuni, 2022).  

Our study used two methods for augmenting the data: Random oversampling and SMOTE.  

Random oversampling tackles the issue of imbalanced datasets by duplicating instances from 

the minority class, ensuring a more equitable representation of classes during training. In 

contrast, SMOTE employs a k-nearest neighbor algorithm to identify the minority class 

instances and generates synthetic samples along the connecting line segments. Thus, it 

enhances the representation of the minority class and makes the dataset more balanced. 

(Chawla et al., 2002). 

We further compared the original data with the augmented data. The performance of the ML 

algorithms was compared using original and augmented data across different tissues.  

3.2.3 Feature Selection  

Various methods, including filter, wrapper, embedded, and hybrid approaches, are deployed in 

ML to select relevant features for biomarker identification. In the present study, we selected a 

few of the most used feature selection methods, such as LASSO, Relief, and mutual 

information, to reduce feature space before model training. More description of each method 

is provided below-  

3.2.3.1 LASSO (Least Absolute Shrinkage and Selection Operator)  

LASSO is a regularization technique that encourages sparsity in the feature space by adding a 

penalty term to the linear regression cost function. It introduces a regularization term (L1 norm) 
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and the standard linear regression cost function. The regularization term penalizes the absolute 

values of the coefficients and encourages some coefficients to become precisely zero.  

3.2.3.2 Relief  

Relief is a machine learning algorithm for feature selection in classification and regression 

tasks. It evaluates the relevance of features based on their ability to distinguish instances with 

similar and dissimilar values of the target variable. It estimates the weights of features by 

considering the differences between the nearest neighbors of data points with the same and 

different target values. Relief assigns higher weights to features that contribute significantly to 

the distinction between instances, which aid in selecting informative features.  

3.2.3.2 Mutual Information  

Mutual information is a statistical metric that quantifies the degree of dependency or 

information shared between two variables. It measures the amount of information that knowing 

one feature's value provides about another. It is calculated based on the entropy of the 

individual features and their joint entropy. Features with high mutual information with the 

target variable are considered more informative and are prioritized for the selection.  

3.2.4. Machine Learning Model Training 

Machine learning models deploy diverse algorithms with unique strengths and weaknesses to 

tackle the classification problem. We mainly included random forest, K-nearest neighbors 

(KNN), Naïve Bayes, and Extreme Gradient Boosting (XGBoost).  

Random forest (RF): It is an ensemble learning algorithm that constructs numerous 

decision trees during the training and predicts the mode of classes based on the individual trees' 

votes. It is robust against overfitting, handles various data types, and provides feature 

importance rankings. However, optimal performance requires essential parameter tuning. 
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K-nearest neighbors (KNN): A simple algorithm classifies a new data point based on the 

majority class of its nearest neighbors in the feature space. On one hand, KNN is simple and 

effective for small to medium-sized datasets. On the other hand, it is sensitive to outliers and 

computationally expensive for large datasets. 

Naïve Bayes (NB): It is a probabilistic classifier that relies on Bayes' theorem and 

assumes feature independence given the class. It is simple, computationally efficient, and 

performs well with high-dimensional data. 

Extreme Gradient Boosting (XGBoost): An ensemble learning algorithm that boosts 

weak learners, typically decision trees, for a robust predictive model. 

Random Forest, K-Nearest Neighbors (KNN), Naive Bayes, and XGBoost are chosen for their 

unique strengths and versatility in different scenarios. Random Forest is robust and handles 

high-dimensional data. KNN excels in classification tasks. Naive Bayes is computationally 

efficient and particularly useful for handling high-dimensional data. XGBoost, an ensemble 

method, combines the power of decision trees with boosting techniques, providing high 

predictive accuracy and scalability. While other methods may have their merits, this selection 

is motivated by a balance between model performance, interpretability, and applicability across 

diverse datasets. The chosen algorithms collectively offer a broad spectrum of capabilities, 

making them well-suited for various machine-learning tasks. 

3.2.5. Hyperparameter Tuning and Model Evaluation 

Model evaluation:  

Performance metrics of accuracy, precision, and recall assess machine learning models (Hicks 

et al., 2022). These evaluation metrics are chosen based on the nature of the problem. Accuracy 

is the ratio of the correct predictions to the total number of instances calculated.  
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
 

Precision measures the accuracy of positive predictions. Precision values for each dataset can 

be calculated for both infected samples and healthy control classes. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall or sensitivity is the ability of the model to capture all the relevant instances. Like 

precision, recall values can be determined for infected samples and healthy control classes. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Hyperparameter tuning: Hyperparameter tuning involves identifying the external 

configuration settings known as hyperparameters. These hyperparameters influence the 

model's learning process but are not learned from the data. This is followed by a grid or random 

search exploring the hyperparameter space. Cross-validation ensures that the model's 

performance is evaluated across various data subsets. (Yang & Shami, 2020). A 10-fold cross-

validation then evaluates the model’s performance across various data subsets. 

3.2.6. Biomarker Identification and Interpretation 

As mentioned above, ML implementation helped identify potential biomarkers in COVID-19. 

We identified the common (consensus) genes by taking the intersection between DEGs and 

machine learning features. These features were the candidate biomarkers for infection in each 

tissue type based on the transcriptomic profiles of the samples collected. The candidate 

biomarkers were placed within their biological context to understand their roles in biological 

pathways, gene networks, and cellular processes. Further, pathway enrichment and gene 
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ontology analysis of these genes elucidated biological functions associated with these 

biomarkers.  

3.3. Aim 3: Machine Learning Model to Predict the Severity of COVID-19 Using Gene 

Expression and Clinical Information 

COVID-19 severity prediction is vital in medical research, especially if it is based on gene 

expression and clinical information. This multifaceted model uses transcriptomic and patients’ 

clinical data to enhance our understanding of the disease progression. The gene expression 

data, obtained through techniques such as RNA sequencing, provide valuable information 

about the molecular signatures associated with COVID-19 severity. Meanwhile, clinical 

information, such as age, body mass index (BMI), and comorbidities, offers a broader context 

for patient health profiles. 

The ultimate goal of this machine learning model is to offer a predictive tool for clinicians and 

researchers and provide insights into the potential severity of COVID-19 based on an 

individual's transcriptomic and clinical profiles. Such a predictive model can hold promise for 

personalized medicine by identifying patients at higher risk early and facilitating targeted 

interventions to improve outcomes in the fight against the ongoing global pandemic. 

The Aim 3 mainly included: 

a) Feature analysis, integration, and model learning for predicting COVID-19 severity. 

b) Analysis and identification of top features contributing to COVID-19 severity 

prediction. 

More descriptions of data preprocessing, normalization, model training, and performance 

evaluation are provided in further sections.  
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3.3.1. Data Collection and Preprocessing 

We obtained a dataset from the study GSE212041 in the GEO database (LaSalle et al., 2022). 

The dataset comprised 370 patients and 698 samples. Of the 370 patients, 306 were COVID-

19 positive, and 78 were COVID-negative (Figure 4B). However, metadata needs to be added 

for 7 COVID-19-positive patients. Hence, we considered only 299 patients for further analysis. 

Patient information: The data of 370 patients were distributed among the different acuity 

classes: A1 (40 patients), A2 (67 patients), A3 (131 patients), A4 (37 patients), A5 (22 patients), 

COVID-19 (67 patients), and healthy controls (HC, six individuals), as shown in Figure 3.  

 

Figure 3: Division of the patients based upon their COVID infection severity class where A1 is the 

most severe and A5 is the least severe 

Time points for sample collection: In this study, we focused on COVID-19-positive patients, 

with their clinical data and medical history retrieved from the previous study (LaSalle et al., 

2022). The blood samples were obtained at different time points post-hospitalization, with the 

first group (n = 374 samples) collected on D0 upon admission. Another group of 212 samples 

was admitted on D3, and the last group of 143 was admitted on D7. Our study considered 299 

patients whose samples were taken at D0 only (Figure 4A). 
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Original disease acuity and reclassification: The disease acuity was defined based on the 

severity levels, and patients were categorized into different classes based on their clinical 

outcomes. The WHO ordinal outcomes scale was employed to classify patients into five classes 

(A1-A5) based on the severity of the disease (Table 1). We reclassified 299 patients based on 

their severity level. The “Severe” classes (original group: A1-A2) included patients recognized 

as dead within 28 days or those who survived but required mechanical ventilation and 

intubation. “Moderate” class (original group: A3) represented patients needing supplemental 

oxygen, and "Mild” class (original group: A4-A5) groups (Table 2). Group A4 included those 

hospitalized but not requiring supplemental oxygen, and A5 comprised patients who improved 

within the first 24 hours and did not return to the hospital within 28 days. Patients’ summary 

and statistics regarding sample count over different days of measurements are provided in 

Figure 4 (A-C). 

Table 2: Distribution of COVID-19 samples according to acuity categories and our 

reclassification strategy. 

Original classification Our classification 

COVID-19 

severity classes 

(Original) 

Sample 

count 

Class description Severity 

Class 

Sample 

Count 

A1 40 Death Severe 76 

A2 36 Intubated/ventilated, survived 

A3 149 Hospitalized, supplementary 

O2 required, survived 

Moderate 149 

A4 45 Hospitalized, no supplementary 

O2 required, survived 

Mild   

74 

A5 29 Discharged / Not hospitalized, 

survived 

 

(A)                                                                                     (B) 
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(C) 

Figure 4: (A) Patient count over days (D0, D3, D7), (B) Patient status categorized by COVID-19 

positive or negative, (C) Patients' status on specific days with COVID. 

 

3.3.2. Data Augmentation  

In this case, we used adaptive synthetic sampling (ADASYN) to oversample the minority class 

(severity class 0 and 2) to decrease the dataset imbalance. ADASYN mitigates this issue by 

adaptively generating synthetic samples for the minority class based on the local density 

distribution of existing instances. The algorithm focuses on regions of the feature space where 

the minority class is underrepresented, ensuring that synthetic samples are generated in areas 

that need more attention (He et al., 2008).  

3.3.3. Gene Expression Data Preprocessing and Weight Assignment 

The raw read data for all patients underwent initial filtration, removing genes with zeros or Nan 

values in over 20% of the samples. Subsequently, the DEseq2 package was applied to normalize 

raw read counts, and FPKM values were computed using the FPKM function (Love et al., 
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2014). Feature selection was performed using LASSO regularization to determine the 

correlation coefficients for each gene in each severity class and identify a subset of critical 

genes associated with different severity classes (Tibshirani, 1996). 

Further, we employed the Lasso regularization approach to ascertain the correlation 

coefficients for each gene with the severity of COVID-19. All parameters were set as default 

with an alpha value of 1.0. This technique aids in identifying and emphasizing the genes that 

exhibit a significant impact on predicting disease severity. The model can prioritize their 

influence by assigning weights to these genes, contributing to a more refined and accurate 

prediction. 

3.3.4. Clinical Data Preprocessing and Weight Assignment 

The clinical data encompassed various features such as age, absolute neutrophil count, absolute 

lymphocyte count, lactate dehydrogenase, neutrophil enrichment, cardiac events, creatinine, C-

reactive protein, D-dimer, viremia categories, absolute monocyte, and body mass index. In this 

case, the Gini index was employed to estimate the importance of each feature. We calculated 

the Gini index using the Scikit-Learn Python library with the Random Forest Classifier module 

and default parameters (Breiman, 2001). This index, integrated with the Random Forest 

Classifier module, assigned weights to clinical features based on their predictive power. 

Features deemed more critical in determining disease severity were assigned higher weights, 

ensuring that the model precedes these influential factors during prediction. Default parameters 

were used. 

3.3.5. Co-Morbidity Data Preprocessing and Weight Assignment 

In addition to clinical features, co-morbidity data included information on pre-existing diseases 

such as heart disease, lung disease, kidney disease, diabetes, hypertension, 

immunocompromised conditions, respiratory symptoms, febrile symptoms, and any GI-related 
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symptoms. The Lifelines Python library was utilized to evaluate the concordance index for 

each co-morbidity and its impact on the severity of COVID-19. The obtained indices were used 

as weights in the ML model. 

3.3.6. Integration of Feature Weights  

The weighted gene expression, clinical, and co-morbidity data were concatenated into a 

comprehensive matrix. This integrated matrix was used as the input for the ML model. 

Including feature weights ensured that the model considered the varying importance of genes, 

clinical indicators, and medical history when predicting disease severity. This approach 

allowed for a more refined and accurate prediction, as the model assigned higher importance 

to features with greater predictive power.  

The entire workflow explaining the integration of feature weights can be visualized in Figure 

5. 

 

 

Figure 5: Schematic Workflow for generating weights to each omic feature and integration to derive 

the final feature matrix, which was used to train the ML models. 
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3.3.7. Machine Learning Model Training 

To identify a robust prediction model for disease severity, five distinct ML algorithms that 

include Logistic Regression (LR), XGBoost, Naïve Bayes, Support Vector Machines (SVMs), 

and Artificial Neural Network (ANN) were employed. These are the most used algorithms for 

classification problems due to their strengths and adaptability to different data types. 

The Scikit-learn libraries were employed to import these classifiers (Pedregosa et al., 2012). 

The first algorithm applied was LR with the One-vs-Rest (OvR) mode, recognized as a heuristic 

method for multi-class classification. The LR algorithm was implemented using the Scikit-

Learn library's Logistic Regression module, utilizing default parameters while specifying the 

'ovR' mode for the multiclass parameter. 

The second algorithm, XGBoost, was executed through the XGBoost Python library. The 

algorithm was configured with a learning rate of 0.5, a maximum tree depth of 3, and 800 runs 

(N-estimators) for learning. The third algorithm, Naïve Bayes, was utilized with its default 

parameters. The SVM classifier algorithm was also applied with all default settings (C=1.0, 

kernel='rbf’, degree=3). Finally, an Artificial Neural Network (ANN) was implemented with 

three layers, 100 epochs, Relu and SoftMax as activation layers, Adam as the optimizer, and 

Categorical Cross-Entropy set as the loss function. 

3.3.8. Evaluation of Model Performance and Comparison  

Different evaluation methods were utilized to test the model's performance: confusion matrix, 

F1 score, and Area under the Curve (AUC). In addition, the Receiver Operating Characteristic 

curve (ROC) was generated to show the classifier's performance. All these steps were done 

using the cross_value_score function from Scikit-Learn Python (Pedregosa et al., 2012). 
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3.3.9. Feature Importance and Contribution Analysis 

We used the SHapley Additive exPlanations (SHAP) method to explain the output of our ML 

model based on the input features. Because of the different combinations of input features, 

Shapley was utilized to find features with high classification power between COVID-19 

severity groups (Biecek & Burzykowski, 2021).  

3.3.10. Data Collection and Downstream Analysis of Significant Gene Features 

We performed pathway enrichment analysis using consensus genes by utilizing QIAGEN’s 

Ingenuity Pathway Analysis (IPA) software with default parameters as recommended in core 

analysis to understand the association of biological pathways with the severity of COVID-19. 
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4. Results 

4.1. Transcriptome Analysis of the Human Tissues Infected with SARS-CoV-2 (Aim 

1) 

4.1.1 Differential Gene Expression Analysis 

As described in the methodology, we identified differentially expressed genes (DEGs) (padj < 

0.05, and log2FC <=-1 or log2FC >=1) in each tissue, including lungs, blood, nasal, and 

placenta.  Our results showed that blood samples of COVID-19 patients had the highest number 

of DEGs (=1162, upregulated- 781, downregulated- 381) (Figure 1), suggesting a substantial 

alteration in the blood transcriptome due to the viral infection. The lung and nasal tissues had 

fewer numbers of DEGs, 76 (upregulated-35, downregulated-41) and 42 (upregulated-32, 

downregulated-10), respectively (Figure 1). On the other hand, the placenta was the least 

affected tissue, with only 23 DEGs (upregulated-20, downregulated-3), implying a lesser 

impact of COVID-19 on placental gene expression. These findings suggest that multiple DEGs 

with significant variations are linked to the SARS-CoV-2 infection in tissues, including blood, 

lung, nasal, and placenta (Figure 1). Further, we found that blood and lung tissues shared 24 

DEGs with p-values <0.05, while 21 DEGs were common in blood and nasal tissues with p-

values <0.05. No common DEGs were found across all four tissue types (Figure 2).  
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Figure 1: Volcano plot showing differentially expressed genes in four tissues (Blood, Lung, Nasal, and 

Placenta) of the COVID-19-infected patients. 
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Figure 2: Common differentially expressed genes in all four human tissues (lungs, blood, nasal, and 

placenta) infected with COVID-19. 

4.1.2 Gene Co-Expression Analysis and Network Construction 

CoSeq analysis (Baggioni et al., 2018) on DEGs provided insights into the co-expression patterns 

of genes in the considered tissues. We derived clusters representing a group of genes with similar 

expression patterns across different samples or conditions.  

4.1.2.1 Co-Expression Modules in Blood Tissue 

In the case of blood, we identified eight clusters (Table 1). The clusters 1, 2, 4, and 5 had 

statistically significant differences (p-value < 0.05) in expression levels of the genes between the 

COVID-19 and healthy control samples (Table 1). In cluster 2, comparatively more significant 

genes were identified, potentially indicating infection-related genes (Table 1).  Other clusters (3, 

6, 7, and 8) showed p-values > 0.05 and were interpreted as insignificant.  
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Table 1: Significance and number of genes in each cluster identified in CoSeq-based co-

expression analysis using blood samples of COVID-19-infected patients. Statistically significant 

associations (p-value < 0.05) are highlighted in bold. 

Clusters Total number of 

genes 

p-value Genes (Top 5) 

Cluster 1 106 0.0174 TLR4, NLRP3, 

MBL2, IL6, F2 

Cluster 2 107 0.0087 IL1RN, CX3CR1, 

CCR5, IL1B, AGT 

Cluster 3 590 0.1627  

Cluster 4 73 0.0386 NLRP3, MBL2, 

ANGII, TMPRSS2, 

NLR 

Cluster 5 6 0.0025 JUP, PML, IRF7, 

OLFM4, NELL2 

Cluster 6 11 0.1636 - 

Cluster 7 8 0.3649 - 

Cluster 8 14 0.3098 - 
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Figure 3: Average expression levels of genes associated with each cluster identified in CoSeq-based co-

expression analysis using blood samples of COVID-19-infected patients and healthy individuals.   

The expression levels between patients with COVID-19 and healthy controls across the eight 

different clusters are shown in Figure 3. In most clusters, the expression levels were similar or 

lower in the COVID-19 conditions. However, cluster 5 significantly increased the expression level 

in COVID-19 conditions, and the genes are involved in the host immune response or viral 

replication. Cluster 8 had genes slightly more expressed in healthy controls and may be interested 

in maintaining normal blood functions.  

4.1.2.2 Co-Expression Modules in Lung Tissue 

We identified ten co-expression clusters with different numbers of genes in the Lung (Table 2). 

The statistical significance of these clusters was confirmed by p-value. Clusters with p-values less 

than 0.05, such as clusters 2, 3, 5, 6, 8, and 9 in the lung, were considered significant. Out of these, 
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clusters 2, 3, and 9 were observed with larger differences in gene expression levels while COVID-

19 vs Healthy controls (Figure 4). These clusters had genes integral to the biological processes 

affected by COVID-19. 

 

Figure 4: Average expression levels of genes associated with each cluster identified in CoSeq-based co-

expression analysis using lung samples of COVID-19-infected patients and healthy individuals.  

Table 2: Significance and number of genes in each cluster identified in CoSeq-based co-

expression analysis using lung samples of COVID-19-infected patients. Statistically significant 

associations (p-value < 0.05) are highlighted in bold. 

Clusters 
Total Number of 

Genes 
P-value 

Genes (Top 5) 

Cluster 1 433 0.6659  
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Cluster 2 25 0.0161 SFTPB, TTF1, 

SFTPC, GATA6, 

CTSH 

Cluster 3 6 0.0340 NAPSA, PLAT, 

ORF8, STOM, 

GLUT1 

Cluster 4 3 0.6314 - 

Cluster 5 21 0.0241 EGLN1, KCNMA1, 

EDNRA, NSP7, 

PML 

Cluster 6 30 0.0049 ORF8, NOTCH1, 

TCF12, FLT4, 

CHI3L1 

Cluster 7 76 0.0595 - 

Cluster 8 31 0.0300 DUSP10, SAMM50, 

ECSIT, YWHAZ, 

NR4A2 

Cluster 9 28 0.0194 TTF1, CCDC59, 

SFTPD, HDAC2, 

MOV10 

Cluster 10 12 0.3823 - 

 

4.1.2.3 Co-Expression Modules in Nasal Tissue 

In nasal samples, CoSeq analysis resulted in 12 clusters with variable numbers of genes 

constituting each cluster (Table 3). While cluster 1 was statistically significant with a p-value < 

0.05, there were fewer differences in the gene expression level (Figure 5). Cluster 7 included the 

highest number of genes (2360 genes), followed by cluster 8 (1325 genes).  
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Table 3: Significance and number of genes in each cluster identified in CoSeq-based co-

expression analysis using nasal samples of COVID-19-infected patients. Statistically significant 

associations (p-value < 0.05) are highlighted in bold. 

Clusters 
Total Number of 

Genes 
P-value 

Genes (Top 5) 

Cluster 1 900 0.0401 IDO1, IRAK3, 

NOS2, TNFSF10, 

OAS1 

Cluster 2 18 0.6414 - 

Cluster 3 27 0.8417 - 

Cluster 4 600 0.1499 - 

Cluster 5 1038 0.0780 - 

Cluster 6 207 0.0562 - 

Cluster 7 2360 0.6128 - 

Cluster 8 1325 0.0591 - 

Cluster 9 92 0.2479 - 

Cluster 10 652 0.5413 - 

Cluster 11 835 0.0625 - 

Cluster 12 1023 0.4520 - 
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Figure 5: Average expression levels of genes associated with each cluster identified in CoSeq-based co-

expression analysis using nasal swab samples of COVID-19-infected patients and healthy individuals.  

4.1.2.4 Co-Expression Modules in Placenta Tissue 

Genes from the placenta were grouped into 9 clusters according to the CoSeq analysis, two of 

which were statistically significant (clusters 6 and 8) (Table 4). These clusters have only marginal 

differences in the expression levels of the associated genes (Figure 6). Cluster 8 held the highest 

number of genes (2935), while Cluster 4 held the least (28 genes), as shown in Table 4. 
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Table 4: Significance and number of genes in each cluster identified in CoSeq-based co-

expression analysis using placenta samples of COVID-19-infected patients. Statistically 

significant associations (p-value < 0.05) are highlighted in bold. 

Clusters 
Total Number of 

Genes 
P-value 

Genes (Top 5) 

Cluster 1 1000 0.6105 - 

Cluster 2 678 0.0801 - 

Cluster 3 199 0.0911 - 

Cluster 4 28 0.0594 - 

Cluster 5 505 0.4580 - 

Cluster 6 2935 0.0490 GCM1, SLC1A5, 

FZD5, dNK1, 

CD8T 

Cluster 7 1200 0.7852 - 

Cluster 8 320 0.0310 IFITM1, IRF1, 

JAK1, OASL, 

GBP2 

Cluster 9 1150 0.9570 - 
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Figure 6: Average expression levels of genes associated with each cluster identified in CoSeq-based co-

expression analysis using placenta samples of COVID-19-infected patients and healthy individuals. 

 

4.1.3 IPA Analysis Using the Significant Genes from Clusters 

4.1.3.1 Pathway Enrichment in Blood Tissue 

Ingenuity Pathway Analysis (IPA) using genes in significant clusters (p-value <0.05) helped 

understand the associated cellular functions in the diseases. IPA analysis of cluster 1 (blood 

samples) revealed regulated pathways and key processes like TREM1 signaling, immunogenic cell 
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death signaling pathway, and acute phase response signaling (Figure 7a). In cluster 2, interleukin-

10 signaling, IL-10 signaling, and acute phase response signaling pathways were enriched (Figure 

7b). Similarly, clusters 4 and 5 revealed coronavirus pathogenesis pathway and regulation of TP53 

activity through acetylation, respectively (Figure 7c and 7d). This comprehensive analysis can 

aid in understanding the pathophysiology of COVID-19 and potentially guide targeted therapeutic 

strategies (Figure 7). 

a.  

b.  

c.  

d.  

 

Figure 7: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters derived 

from blood samples. The enriched pathways are shown in cluster 1 (a), cluster 2 (b), cluster 4 (c), and 

cluster 5 (d). 

 

4.1.3.2 Pathway Enrichment in Lung Tissue 

 

a  

b 
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Figure 8: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters derived 

from lung samples. The enriched pathways are shown in cluster 2 (a), cluster 3 (b), cluster 5 (c), cluster 6 

(d), cluster 8 (e), cluster 9 (f). 

IPA analysis of cluster 2 (lung samples) revealed regulated pathways and critical processes, 

including acute myeloid leukemia signaling, interferon-gamma signaling, and neutrophil 

degranulation (Figure 8a). Figure 8b represents the top canonical pathways, including surfactant 

metabolism enriched in cluster 3. Similarly, figure 8c-f showcases the top canonical pathways from 

clusters 5, 6, 8, and 9, respectively. Some of the important pathways in cluster 5 are vitamin 

transport and lactose synthesis (Figure 8c). In cluster 6, myogenesis and notch signaling are the 
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few identified canonical pathways (Figure 8d). In clusters 8 and 9, protein Kinase A signaling and 

surfactant metabolism were identified as the top canonical pathways, respectively (Figure 8e and 

8f). 

4.1.3.3 Pathway Enrichment in Nasal Tissue 

According to the IPA analysis of cluster 1 of nasal samples (Figure 9), the enriched pathways 

involved were related to hepatic cholestasis and iNOS signaling. 

 

Figure 9: Ingenuity Pathway Analysis (IPA) using genes associated with significant cluster 1 derived 

from nasal samples.  

 

4.1.3.4 Pathway Enrichment in Placenta Tissue 

a.  

 
 

b.  

 
 

Figure 10: Ingenuity Pathway Analysis (IPA) using genes associated with the significant clusters derived 

from placenta samples. The enriched pathways are shown in Cluster 6 (a) and Cluster 8 (b) 

IPA analysis of cluster 6 in the placenta provided planer cell polarity (PCP) and basal cell 

carcinoma signaling as the top canonical pathways (Figure 10a). Cluster 8 (Figure 10b) had 
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interferon-alpha/beta and gamma signaling pathways and macrophage classical activation 

signaling pathways. 

4.1.5 Summary of Findings  

The differential gene expression analysis revealed the highest number of common genes (=24) 

shared between blood and lung tissues; unlike other tissue comparisons, no shared genes were 

identified across all four tissue types. Furthermore, the cluster identification and pathway analysis 

provided the following insights: 

1. Coronavirus pathogenesis pathway, coronavirus replication pathway, and immune 

signaling pathways, including IL-10 and TREM1 signaling, were observed in significant 

clusters in blood. 

2. Interferon gamma signaling, surfactant metabolism, and notch signaling were important 

pathways identified in the lung’s clusters. 

3. iNOS signaling, the role of pattern recognition receptors in recognizing bacteria and 

viruses, and tumor microenvironment pathways were identified as the top canonical 

pathways in nasal tissue. 

4. For the placenta, basal and interferon signaling with iNOS signaling were identified in the 

significant clusters. 

4.2. Tissue-specific Genes as Potential Biomarkers (Aim 2) 

Tissue-specific consensus genes represent a unique set of genes consistently expressed within a 

particular tissue type, distinguishing them from others. These genes hold immense potential as 

biomarkers due to their specific expression patterns in the tissue. As biomarkers, they can provide 

crucial insights into their tissues' physiological and pathological states, offering a window into the 

tissue-specific processes and responses to various stimuli or diseases. In clinical settings, these 
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consensus genes can aid in diagnosing, prognosis, monitoring disease progression, and developing 

targeted therapies. Their tissue-specific nature enhances the accuracy and effectiveness of these 

biomarkers, making them invaluable tools in personalized medicine, where treatments and 

interventions can be tailored based on the unique genetic makeup of an individual's tissues. The 

following steps were implemented to identify tissue-specific lung, blood, nasal, and pancreas 

biomarkers. 

4.2.1 Comparison of ML models to Distinguish COVID-19 and Healthy Individuals (using Nasal 

Data) 

As mentioned in the methodology (3.2.1), we employed ML methods, including Random Forest 

(RF), XGBOOST, Naïve Bayes (NB), and Support Vector Machine (SVM) to distinguish COVID-

19 patients and healthy individuals. First, we used gene expression data from the nasal to train the 

model. The models were evaluated using four metrics: accuracy, precision, recall, and F1 score. 

We observed that XGBOOST had the highest accuracy (96%) and precision (0.97) among the 

models, while Naïve Bayes had the highest F1 score (0.99) (Table 5). While using augmented data 

(by employing random oversampling and SMOTE), random forest underperformed in recall and 

F1-score metrics. Naïve Bayes also decreased precision and F1-score using augmented data (Table 

7). Random Forest achieved a perfect score on all metrics, with 100% accuracy, 1.00 precision, 

1.00 recall, and 1.00 F1 score. XGBOOST was the second-best model, with 98% accuracy, 1.00 

precision, 0.99 recall, and 0.99 F1 score. These findings highlighted the importance of data 

balancing in machine learning, especially in medical classifications where class imbalances are 

common. The varied performance of the models across different augmentation techniques 

underscored the need to carefully consider the appropriate method for each specific scenario.   
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Table 6 demonstrates ML model performance using SMOTE as a data augmentation technique 

that mitigates the effects of class imbalance by generating synthetic examples for the minority 

class. The data consisted of 1017 infected and 1017 healthy samples and were balanced after 

applying SMOTE. XGBOOST achieves the best performance, with 100% accuracy and 1.00 for 

all the other metrics. This means that XGBOOST correctly classified all the samples and has no 

false positives or negatives (Table 6). Different models have unique strengths and weaknesses that 

must be evaluated in the context of the specific classification task and data characteristics. 

Table 5: Performance metrics of ML models using the original dataset of nasal samples 

(Infected samples: 1017, Healthy samples: 69) 

Model Accuracy Precision Recall F1 Score 
AUC 

Random Forest 95% 0.96 0.99 0.98 
0.99 

XGBOOST 96% 0.97 0.98 0.98 0.98 

KNN 88% 0.91 0.95 0.95 0.95 

Naïve Bayes 92% 1.00 0.96 0.99 0.97 

 

Table 6: Performance metrics of ML models using a dataset of nasal samples augmented with 

random oversampling (Infected samples: 1017, Healthy samples: 1017) 

Model Accuracy Precision Recall F1 Score 
AUC 

Random Forest 100% 1.00 1.00 1.00 1.00 

XGBOOST 98% 1.00 0.99 0.99 0.99 

KNN 95% 1.00 0.97 0.96 0.96 

Naïve Bayes 83% 0.80 0.94 0.86 0.94 
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Table 7: Performance metrics of ML models using a dataset of nasal samples augmented with 

SMOTE-Augmented Dataset (Infected samples: 1017, Healthy samples: 1017) 

Model Accuracy Precision Recall F1 Score 
AUC 

Random Forest 98% 0.98 0.98 0.98 0.98 

XGBOOST 100% 1.00 1.00 1.00 1.00 

KNN 89% 0.95 0.96 0.86 0.94 

Naïve Bayes 93% 0.93 0.97 0.92 0.97 

 

4.2.2 Comparison of ML Models to Distinguish COVID-19 and Healthy Individuals (Blood 

Tissue) 

The impact of data augmentation techniques was also evaluated by implementing ML models for 

classifying blood tissue samples as either infected or healthy. Naïve Bayes excelled with 92% 

accuracy and high precision and recall, indicating its robustness in handling imbalanced data. The 

random forest also performed well, but XGBOOST and KNN showed limitations, especially 

regarding recall for XGBOOST and balanced precision-recall for KNN (Table 8). 

 

Table 8: Performance metrics of ML models using the original dataset of blood samples 

(Infected samples: 846, Healthy samples: 87) 

Model Accuracy Precision Recall F1 Score 
AUC 

Random Forest 92% 1.00 0.89 0.94 
0.91 

XGBOOST 72% 0.86 0.67 0.75 0.77 

KNN 85% 1.00 0.78 0.88 0.88 

Naïve Bayes 92% 0.97 0.98 0.98 0.98 
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The overall accuracy of the ML models using original data is low, which suggests that the class 

imbalance affects the performance of the classification models. In this case, we had a notable 

imbalance with the original data set (846 infected, 87 healthy). Some models may also suffer from 

overfitting or underfitting, and other factors such as feature selection, hyperparameter tuning, and 

model complexity may also affect the results. Therefore, further analysis and experimentation are 

needed to validate and compare the models. 

 

Table 9: Performance metrics of ML models using a dataset of blood samples augmented with 

Random Oversampling (Infected samples: 846, Healthy samples: 846) 

Model Accuracy Precision Recall F1 Score 
AUC 

Random Forest 100% 1.00 1.00 1.00 1.00 

XGBOOST 88% 0.87 0.87 0.87 0.87 

KNN 97% 1.00 0.93 0.97 0.97 

Naïve Bayes 94% 0.88 1.00 0.94 0.98 

Random oversampling was introduced to balance the dataset (846 samples each for infected and 

healthy), significantly improving model performance. The augmented data consisted of 846 

infected and 846 healthy samples, balanced after random oversampling. In this case, Random 

Forest achieved the best performance, with 100% accuracy and 1.00 for all the other metrics.  

Table 10: Performance metrics of ML models using a dataset of blood samples augmented with 

SMOTE Augmentation (Infected samples: 846, Healthy samples: 846) 

Model Accuracy Precision Recall F1 Score AUC 

Random Forest 100% 1.00 1.00 1.00 1.00 
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XGBOOST 94% 0.91 1.00 0.95 0.98 

KNN 94% 1.00 0.90 0.95 0.95 

Naïve Bayes 100% 1.00 1.00 1.00 1.00 

 

We also used SMOTE as a data augmentation technique that mitigated the effects of class 

imbalance by generating synthetic examples for the minority class (Table 10). We also made the 

sample size of both infected and healthy 846. ML model random forest and Naïve Bayes achieved 

the best performance, with 100% accuracy and 1.00 for all the other metrics.  

4.2.3 Tissue-Specific ML Feature Genes 

Three feature extraction techniques, LASSO, Relief, and mutual information, were deployed in 

this study. These methods were meticulously employed to sift through the data to identify critical 

tissue-specific features (genes) that could potentially serve as predictors for SARS-CoV-

2 infection.  

 

Figure 11: Evaluation and Comparison of feature selection methods for predicting SARS-CoV-2 

infection using original and augmented data 

Figure 11 shows that Relief performed the best among the three methods, as all the original 

features with p-values <0.05 were recovered by the augmented data rather than LASSO and mutual 
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information while maintaining the accuracy of the prediction model. It also suggests that 

augmentation did not result in any loss of information, as the number of features selected by each 

method was similar to or higher than the original data.  

4.2.4 ML Features and Consensus Genes 

We integrated differentially expressed genes (DEGs) and ML feature genes to find common 

consensus genes in corresponding tissue types (Figure 12). A potentially higher complexity or 

relevance is expected in Blood (179 genes) and Nasal (170 genes) compared to the lung (120 

genes) and placenta (143 genes) (Figure 8). Blood tissue harbored the highest consensus genes 

(164), markedly more than nasal (31), lung (17), and placenta (15). The p-values of all the 

consensus genes were less than 0.05, making them significant genes. This disparity suggested that 

blood might possess more regulated genes or a greater gene expression diversity in COVID-19 

patients than the other tissues studied. 
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Figure 12: Workflow for identifying consensus genes by combining differentially expressed (DE) gene 

and machine learning (ML)--captured features in four tissues. 

4.2.5 IPA Analysis of the Consensus Genes 

The IPA of our consensus genes involved identifying the biological pathways and functions 

associated with a set of genes common across the tissue samples. It identified the key canonical 

pathways enriched in a tissue consensus gene.  

 

 

Figure 13: Ingenuity Pathway Analysis (IPA) and enriched pathways in blood tissue of COVID-19 

infected patients.  

IPA core analysis of consensus genes from blood revealed exciting insights at the functional level. 

The p-value in Figure 13 indicates the statistical significance of the pathway’s enrichment. In 

contrast, the overlap indicates the percentage and number of genes shared between the consensus 

and pathway genes. The most significant and relevant pathways for the consensus genes in blood 

were related to cell signaling and immune response, such as “IL-15 Signaling”, “B Cell Receptor 

Signaling,” and “Communication between Innate and Adaptive Immune Cells.” These pathways 

regulate the development, activation, and differentiation of various immune cells, such as T, B, 

natural killer, and dendritic cells.  
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Figure 14:  Ingenuity Pathway Analysis (IPA) and enriched pathways in nasal tissue of COVID-19-

infected patients 

In Figure 14, IPA shows the top canonical pathways enriched for the consensus genes in nasal 

tissue. The figure reveals that the most significant and relevant pathways for the consensus genes 

in nasal tissue were related to the “Role of hypercytokinemia in the Pathogenesis of Influenza,” 

“EIF2 signaling”, “Interferon Signaling,” “Coronavirus Pathogenesis Pathway,” and 

“Pathogenesis of Multiple Sclerosis.”  Most of the pathways were involved in the pathogenesis of 

a disease.  

 

 

Figure 15:  Ingenuity Pathway Analysis (IPA) and enriched pathways in lung tissue of COVID-19-

infected patients 

Figure 15 shows the top canonical pathways that enriched the consensus genes in lung samples 

infected with SARS-CoV-2 compared to healthy lung tissue samples. The most significant 

pathway was “IL-15 Signaling,” which regulates immune responses and inflammation. Other 

pathways that were significantly enriched included” B Cell Receptor Signaling,” “Systemic Lupus 
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Erythematosus in B Cell Signaling Pathway,” “Communication between Innate and Adaptive 

Immune Cells,” and “Adrenomedullin signaling pathway.”  

 

Figure 16:  Ingenuity Pathway Analysis (IPA) and enriched pathways in placenta tissue of COVID-19-

infected patients 

The analysis of consensus genes in the placenta tissue (Figure 16) presented pathways with their 

respective names, p-values, and overlap statistics. From the analysis, it is evident that the most 

significant pathways for the consensus genes in placental tissue were predominantly related to 

cellular growth, development, and signaling processes. These might include pathways like 

“Growth Hormone Signaling,” “PI3K/AKT Signaling”, and “JAK/STAT Signaling,” which play 

crucial roles in placental development and function. Such pathways are integral in mediating 

various aspects of cell proliferation, survival, and differentiation, which are essential for the proper 

functioning of placental tissue. The placenta is a complex and dynamic organ that adapts to the 

changing needs of the mother and the fetus throughout pregnancy.  

4.2.6 Other Data Augmentation Approach  

We also explored the possibility of separate testing and training data set augmentation. In an 

approach to avoid oversampling happening from the different data augmentation approaches, we 

tried the following steps: 

• We used the original blood data consisting of 846 infected samples and 87 healthy samples. 

• After the 80/20 split, the training set consisted of 676 infected samples and 69 healthy 

samples, and the testing set had 169 infected samples and 17 healthy samples. 
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• Using SMOTE, we individually augmented the training and testing sets to bring the health 

samples to 676 and 169 in the training and testing datasets.  

• Using the augmented training and testing set, the accuracy, precision, recall, and F-1 scores 

were calculated after the 10-fold cross-validation and iterating this process 1000 times. 

Table 11: ML model performance metrics using a blood sample dataset augmented with 

SMOTE. 

Model Accuracy Precision Recall F1 Score AUC 

Random Forest 100% 1.00 1.00 1.00 1.00 

XGBOOST 100% 1.00 1.00 1.00 1.00 

KNN 99% 0.99 0.98 0.99 0.99 

Naïve Bayes 100% 1.00 1.00 1.00 1.00 

 

The accuracy increased to 100% compared to the previous results (Table 10), which signifies the 

overfitting of RF, KNN, and NB. This increase in accuracy was observed because of this 

augmentation approach, as the sample size significantly reduced after the 80/20 split. Maharana et 

al., 2022 clearly state that if the available data does not include sufficient data, the reliability of 

the knowledge gained from the augmented data may be incompetent. 

4.2.7 Summary of the Findings  

1. Data augmentation methods such as random oversampling and SMOTE mitigated class 

imbalance and overfitting in ML models. Consequently, it enhanced their overall accuracy. 

2. Tissue-specific consensus genes were identified, presenting themselves as potential 

biomarkers. 

3. The IPA analysis of the consensus genes revealed that: 



79 
 

• Multiple immune response pathways and communication between innate and adaptive 

immune cell pathways are upregulated across most tissues studied in COVID. 

• The coronavirus pathogen pathway shows upregulation in nasal tissue, while the IL-15 

signaling pathway is notably upregulated in lung and blood tissues. 

4.3. ML models for predicting COVID-19 Severity (Aim 3) 

The evaluation of different ML models in predicting COVID-19 severity showed varying levels 

of accuracy. These models, which include decision trees, random forests, support vector machines, 

and neural networks, were trained and tested using clinical and transcriptomic data from patients 

with COVID-19. The accuracy of these models is a crucial factor, as it determines their reliability 

in clinical settings.  

4.3.1 Effect of Data Augmentation on Model Performance 

As mentioned in the method, ADASYN was employed to oversample the “severe” and “mild” 

groups to address the class imbalance. This experiment was performed using only gene expression 

data. As a result, in class “severe,” the number of samples was increased from 76 to 120, while in 

class “mild,” an increment of 60 samples was observed after augmentation (Table 12).  

Table 12: The number of samples in each class “severe, “moderate, and “mild” before and after 

data augmentation (using ADASYN). 

             Class Number of samples 

Pre-Augmentation  Post-Augmentation  

severe  76 120 

moderate 149 149 
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We evaluated NB, SVM, LR, and XGBoost performance before and after augmentation. As shown 

in Table 13, The augmented model demonstrates a noticeable improvement in accuracy and AUC 

compared to the original models. XGBoost achieved a remarkable enhancement in accuracy from 

40% to 95% and AUC from 0.47 to 0.99 after data augmentation. In comparison, NB demonstrated 

a slight increase from 31.6% accuracy and an AUC of 0.45 to 42% accuracy and 0.70, respectively. 

Similarly, SVM showed little improvement after data augmentation (Table 13).  

Table 13: Evaluation of ML models with 10-fold cross-validation before and after data 

augmentation for predicting COVID-19 severity. The gene expression data was used to perform 

augmentation by ADASYN. 

 

 

 

 

Specific weights to each feature within each data type improved model performance 

While working with multiple data modalities (gene expression, clinical, and co-morbidity 

features), feature weights may need to be allocated more during model training, leading to 

suboptimal performance. Therefore, we calculated weights for each feature within data types and 

generated individually weighted matrices for each data type (i.e., gene expression, clinical, and 

mild  74 134 

Classifier Before Augmentation After Augmentation 

Accuracy (%) AUC Accuracy (%) AUC 

Logistic Regression (LR) 43  0.56  81   0.93 

XGBoost (XG)   40   0.47  95    0.99 

Naïve Bayes (NB)  31.6   0.45  42   0.70 

Support Vector Machine  50   0.42  55   0.47 
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comorbidity), subsequently used as input to the model. As mentioned in the methodology, the Gini 

index score, concordance index, and R-squared score from lasso regression were used to calculate 

weights to corresponding features in each data matrix, i.e., clinical, co-morbidity, and gene 

expression data matrices, respectively. The assignment of weights to feature matrices is a critical 

aspect influencing the performance of predictive models. By assigning different weights to 

individual feature matrices, the model learns to prioritize and emphasize specific types of 

information.  

As shown in Table 14, 10-fold accuracies for ML models from the weighted matrices are low for 

all algorithms when individual data matrices were used, indicating that the features were 

insufficient for the ML Model to predict the difference between the three COVID-19 groups. Then, 

different combinations of the weighted matrices were utilized as input for ML models. As a result, 

the various combinations between only two matrices needed to be increased to increase the ML 

model accuracy (Table 15). However, using the three matrices together significantly improved the 

accuracy of all algorithms. Specifically, the XGBoost algorithm attained an accuracy of 95% and 

an AUC of 0.99, making it the top-performing algorithm for distinguishing between the three 

groups (severe, moderate, and mild) of COVID-19 patients. The results indicate that the weight 

assignment was pivotal in optimizing model performance, allowing for a tailored focus on the most 

relevant biological, clinical, or co-morbidity features. The allocation of weights enables the model 

to discern and leverage the significance of each feature matrix, thereby enhancing its overall 

predictive accuracy in the context of disease severity.  

Table 14: Evaluation of ML models with 10-fold cross-validation when individual data types are 

used as input. 
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Data Matrix Logistic 

Regression 

(Accuracy/AUC) 

XGBoost 

(Accuracy/AUC) 

Naïve Bayes 

(Accuracy/AUC) 

SVC 

(Accuracy/AUC) 

Gene expression  23% / 0.39 41% / 0.54 32% / 0.47 25% / 0.41 

Clinical Feature  44% / 0.59 51% / 0.63 27% / 0.37 46% / 0.74 

Co-morbidity  29% / 0.31 43% / 0.67 35% / 0.51 30% / 0.43 

 

Table 15: Evaluation of ML models with 10-fold cross-validation when different combinations 

of data types are used as input. 

Data Matrix Logistic 

Regression 

(Accuracy/AUC) 

XGBoost 

(Accuracy/AUC) 

Naïve Bayes 

(Accuracy/AUC) 

SVC 

(Accuracy/AUC) 

Gene Expression + 

Clinical Feature 

39% / 0.55 49% / 0.63 34% / 0.59 45% / 0.54 

Gene expression + 

Co-morbidity 

47% / 0.67 58% / 0.71 34% / 0.49 46% / 0.74 

Co-morbidity + 

Clinical Feature 

31% / 0.51 44% / 0.47 41% / 0.55 29% / 0.35 

Gene expression + 

Clinical Feature + 

Co-morbidity 

81% / 0.93 95% / 0.99 42% / 0.70 55% / 0.47 

 

Evaluation of model performance using different weights given to input data matrices 

We further assigned different weights to each data matrix, followed by concatenation to generate 

an integrated matrix used as input to the model. Interestingly, the equal weight for them in the 

model produced the highest accuracy of 95% (AUC:0.99). In addition, the XGBoost exhibits the 
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highest performance among all the algorithms (Table 16). The comparison of predictive 

performance among ML models delves into the impact of different combinations of feature 

matrices on overall model effectiveness. The various combinations of feature matrices unveil the 

nuanced relationships between molecular, clinical, and co-morbidity data and elucidate their 

collective influence on the predictive accuracy of models. This investigation is vital for discerning 

optimal configurations that leverage the rich biological information encapsulated in feature 

matrices, ultimately enhancing the precision of disease severity predictions through sophisticated 

ML approaches. 

Table 16: Evaluation of ML models when different combinations of weights were given to input 

data matrices.  The numbers in brackets represent the weight given to that matrix. 

Matrix Logistic 

Regression 

(Accuracy/AUC) 

XGBoost 

(Accuracy/AUC) 

Naïve Bayes 

(Accuracy/AUC) 

SVM 

(Accuracy/AUC) 

Gene expression: Clinical: 

Co-morbidity (1:1:1) 

 81% / 0.93  95% / 0.99  42% / 0.70  55% / 0.47 

Gene expression: Clinical: 

Co-morbidity (2:1:1) 

79% / 0.88 87% / 0.91 45% / 0.69 23%/ 0.51 

Gene expression: Clinical: 

Co-morbidity (1:2:1) 

65% / 0.78 45% / 0.63 32% / 0.55 43% / 0.70 

Gene expression: Clinical: 

Co-morbidity (1:1:2) 

75% / 0.89 81% / 0.94 40% / 0.49 49% / 0.73 

 

4.3.2 Feature Importance Analysis 

After evaluating XGBoost as the best-performing model, we further scored the contributions of 

individual features in predicting disease severity. To implement that, we used the SHAP method, 

as described in the methodology, which provided the SHAP score for each model training feature. 

This score was interpreted to evaluate the significance of each feature and its effect on the model's 
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performance for predicting COVID-19 severity. The SHAP summary plot shows how the features 

positively or negatively contribute to the model prediction (Figure 16). The x-axis on SHAP 

summary plots represents the magnitude of the SHAP values, reflecting the strength of a feature's 

influence. Color legends provide additional context, with warmer colors signifying positive 

contributions and cooler colors representing negative ones. The topmost gene features significantly 

affecting the model's accuracy included COX14, LAMB2, DOLK, SDCBP2, RHBDL1, and IER3-

AS1. At the same time, only absolute neutrophil count and viremia categories were highly 

significant features in the clinical data (Figure 17). We see a dense cluster with a low correlation 

with small but positive SHAP values for DOLK. LAMB2 extends further towards the left, 

suggesting LAMB2 has a stronger negative impact on COVID-19. The top gene features from 

SHAP can be further analyzed to understand enriched pathways associated with the top 

contributing genes. As discussed in the next section, we investigated enriched pathways associated 

with top contributing genes.  

 

Figure 17: Beeswarm plot, ranked by mean absolute SHAP value. This provides a rich overview of how 

the variables impact the model’s predictions across all data. The input variables are ranked from top to 

bottom by their mean absolute SHAP values. 

 



85 
 

4.3.3 Pathway Enrichment Analysis of Top Contributing Genes 

Based on SHAP scores, we selected the top 25% (1324) contributing genes (Appendix Table 1) 

and subjected them to pathway enrichment analysis using IPA. This analysis revealed several 

significantly enriched pathways, shedding light on the severity of key molecular processes 

associated with COVID-19. The top 5 canonical pathways are shown in Figure 18.  

 

Figure 18: Top canonical pathways from Ingenuity Pathways Analysis of the top 25% of genes (1324) 

with the highest SHAP scores. 

The generic transcription pathway is the topmost pathway.  Several biochemical pathways, such 

as the generic transcription pathway, are key to understanding the host-pathogen interactions 

during SARS-CoV-2 infection in the nucleoplasm, impacting etiology, pathogenesis, or prognosis. 

The assembly involving nuclear receptor (NR) protein (s), CDK8, and MED proteins, forming the 

TRAP coactivator complex [TRAP coactivator], may modulate transcription factors and other 

proteins that are vital in the host's immune response, potentially affecting the prognosis of COVID-

19 (Bourbon et al., 2004) (Figure 19a). The second pathway is ‘immunoregulatory interactions 

between a lymphoid and a non-lymphoid cell’ that may involve interaction between SARS-CoV-2 

and immune cells during COVID-19 pathogenesis. This pathway triggers HLA interactions with 

the KLRC1 complex and KLRF interactions with the CLEC2B dimer (Fuchs et al., 2006). The 

virus then infects various immune cells, including lymphoid cells such as T lymphocytes, leading 
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to dysregulation of immune responses (Wang et al., 2022) (Figure 19b). The next one is the 

‘mitotic prometaphase pathway,’ where dysregulation of mitosis can lead to cellular stress and 

affect tissue homeostasis. In this pathway, phosphorylated p-T2055-NUMA1 homodimer binds to 

nucleated microtubules in the cytoplasm. Mitotic kinase, CCNB1 phosphorylates Condensin I 

complex, forming phosphorylated CDK1 Phosphorylated Condensin I. PLK1 catalyzes the 

phosphorylation of STAG2, RAD21-Ac-Cohesin: PDS5:CDCA5: WAPAL complex at 

centromeres, affecting sister centromeres and microtubule interactions which in turns contribute 

to the pathophysiology of COVID-19 in various organs (Kimura et al., 1998) (Figure 19c). The 

fourth pathway is FCGR-dependent phagocytosis, reflecting the role of Fc-gamma receptors 

(FCGR) in mediating phagocytosis by binding to antibodies and opsonizing viral particles. 

Phosphorylated clustered PLCG complex in the plasma membrane yields PI (3,4,5) P3 and p-

PLCG complex. Moreover, the branching complex in the cytoplasm forms the ARP2/3: actin: ADP 

complex and activates WAVE2, WASP, and N-WASP proteins (Garcia et al., 2002) (Figure 19d). 

The last one is the ‘cilium assembly pathway’ that COVID-19 may impact in the respiratory 

epithelial cells. Multiple proteins in cilia form the IFT-B complex for intraflagellar transport, and 

the BBS/CCT complex catalyzes the assembly of the BBSome complex in the cytoplasm for ciliary 

function, affecting the clearance of mucus and pathogens from the airways (Jin et al., 2010) 

(Figure 19e). Overall, COVID-19's impact on these pathways and processes reflects its complex 

interactions with host cells and the immune system, contributing to the diverse clinical 

manifestations and outcomes observed in infected individuals. Understanding these connections is 

critical for developing targeted therapies and interventions against the virus. 
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a- Generic Transcription Pathway 

 

b - Immunoregulatory interactions between a lymphoid and a non-lymphoid cell pathway 
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c - Mitotic prometaphase pathway 

 

d - Fcgamma receptor (FCGR) dependent phagocytosis pathway 
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e - Cilium assembly pathway 

Figure 19 (a-e): Network of highly enriched pathways from Ingenuity Pathways Analysis (IPA).  

The node represents activated pathways in COVID-19. 

 

4.3.4 Summary of the Findings  

• Among the ML models we explored, XGBOOST emerged as the standout performer. It 

consistently outperformed other models in terms of accuracy and AUC metrics. The 

superior performance of XGBOOST in our analysis underscored its robustness and 

effectiveness in handling complex, multi-faceted data typically encountered in healthcare 

settings. Its high accuracy ensured reliable predictions, while the impressive AUC value 

indicates the model's strong ability to differentiate between various severity levels of 

COVID-19. 

• Utilizing SHAP values played a pivotal role in our study. SHAP was instrumental in 

identifying the top features contributing to predicting COVID-19 severity. By employing 
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SHAP values, we could dissect the model decision-making process and gain valuable 

insights into which features were most influential in predicting the severity of the disease.  

This validates the model's predictions and opens avenues for further research into the key factors 

affecting COVID-19 severity and potentially guiding targeted interventions or treatment strategies. 
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5. Discussion 
 

This chapter discusses the overall landscape of gene expression-based analysis of the SARS-CoV-

2 infection in humans to understand the tissue-specific regulations, gene co-expressions, and 

machine learning (ML) applications for predicting disease severity. More specifically, the 

discussion is divided into three sections. The first part focuses on differentially expressed genes 

(DEG) across various tissues (e.g., lung, blood, placenta, and nasal) in patients with COVID-19 

infections to understand the differential impact of viral infections on different tissue types. The 

second part is centralized on identifying tissue-specific genes as potential biomarkers that could 

serve as key indicators for the presence and progression of the infection. Lastly, we scrutinized the 

accuracy of different ML models in predicting the severity of SARS-CoV-2 infection. We 

concluded how these computational approaches could enhance our understanding of the disease 

and its management. Through this multi-pronged examination, the chapter aims to highlight the 

host-pathogen interactions between SARS-CoV-2 and human tissues and offer insights that could 

pave the way for more targeted and effective diagnostic and therapeutic strategies. 

5.1 Differentially Expressed Genes among Different Tissues in Patients with COVID-19 

In our study, the highest number of DEGs (n=1162) was recorded in the blood of the patients 

infected with SARS-CoV-2 compared to their healthy counterparts (Chapter 4, Figure 2). On the 

other hand, the placenta had the least number of DEGs (23) compared to healthy individuals, which 

may indicate that the viral infection minimally impacted the gene expression in the placenta 

(Chapter 4, Figure 2). The lung and nose samples had a similar number of DEGs but were very 

low compared to that observed in blood. Only 24 DEGs were common between blood and lung 

tissues (Chapter 4, Figure 2). We observed no common DEGs across all four tissue types; 
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however, a previous study reported immune system pathways commonly regulated in peripheral 

blood, lungs, and nasopharyngeal swab samples of COVID-19 patients (Momeni et al., 2023). The 

same study also observed the highest number of DEGs (n = 624), with a p-value <0.05 and 

|log2foldchange| > 1, in blood compared to other tissues. Similarly, another study included samples 

from lung tissue, nasal tissue, and blood, where the highest DEGs (n=741) were observed in blood 

samples as compared to lungs and nasal where only 51 and 32 DEGs were recorded (Alqutami et 

al., 2021). SARS-CoV-2 virus is suspected of crossing the placenta and being transmitted to the 

fetus. Though our analysis found no common gene regulations among the placenta, lungs, blood, 

and nasal, we observed 23 DEGs in the placenta (Chapter 4, Figure 2), indicating the unique 

regulatory mechanism for handling infection in the tissue. Either via inflammation or cell death, 

SARS-CoV-2 can have negative outcomes on pregnancy that may lead to miscarriage (Tosto et al., 

2023).   

Our co-expression analysis recorded various gene clusters in each tissue (Chapter 4, Table 1 -4). 

Cluster 5, in the blood (Chapter 4, Table 1), is associated with the genes that showed a significant 

increase in their expression levels in SARS-CoV-2 infection, suggesting that genes within this 

cluster may be involved in the host immune response or viral replication. Pathway-level analysis 

of these genes showed dysregulation in Triggering receptors expressed on myeloid cells (TREM1) 

signaling pathways (Chapter 4, Figure 7a). Thus, TREM1 indirectly helps the SARS-CoV-2 virus 

to enter the cells. It also plays a role in interferon regulation and host immune response to the virus 

(Jakhmola et al., 2021). T lymphocytes adaptive immune response was a prominent pathway 

associated with cluster 5. These included calcium-induced T lymphocyte apoptosis, ICOS-ICOSL 

signaling in T helper cells, cytotoxic T lymphocyte-mediated apoptosis of target cells, CD28 

signaling in T helper cells, and pKCθ signaling in T lymphocytes. Overall activation of T cells 
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(CD4+ and CD8+ ) occurs upon both mild and severe SARS-CoV-2 infection (Schulien et al., 

2021). This may explain the upregulation of genes associated with T lymphocytes within cluster 

5. Additionally, they play a role in regulating tissue inflammation and may protect against 

subsequent tissue damage if the T lymphocytes are well-functioning (Bertoletti et al., 2022) 

IPA analysis of DEGs from the blood has revealed differential regulations of immune-related 

pathways.  Some pathways are related to the immune system and its response (Chapter 4, Figure 

7 a-d); hence, the gene expression of these pathways was downregulated. These pathways included 

the cell death signaling pathway, coronavirus replication pathway, and coronavirus pathogenesis 

pathway (Chapter 4, Figure 7 a-d). The interference of the SARS-CoV-2 virus with interferon 

signaling helps its evasion within the human host and inhibits innate and adaptive immune 

responses to the virus (Lundstrom et al., 2023). Both macrophages and dendritic cells are essential 

phagocytic cell members of innate immunity. They engulf and digest microbes and present their 

antigens to the helper T cells to activate adaptive immunity. Dendritic cells are crucial for 

activating the naïve T cells into effector cells by presenting antigens in the lymph nodes. 

Meanwhile, macrophages present antigens in the tissues (Guilliams et al., 2014). The receptor-

binding domain of the SARS-CoV-2 Spike protein can stimulate and maturate the dendritic cells 

and subsequently co-stimulate the innate immune response against the virus (Wang et al., 2023). 

The RNA sensors can identify the virus's genome and activate an inflammatory cascade involving 

the nuclear factor kappa-light-chain-enhancer of activated B cells (NFKB) and interferons (Koop 

et al., 2011). It was previously observed that dendritic cells were less abundant in the blood of 

patients infected with SARS-CoV-2 (Marongiu et al., 2022). This is especially reported with less 

interferon production and defective antigen presentation in severe cases of SARS-CoV-2 infection 

(Chang et al., 2022). Conversely, macrophages can be infected by the virus and act as carriers to 
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the rest of the lung tissue (Knoll et al., 2021). Infected macrophages become malfunctioning and 

lose their ability to activate adaptive immunity. They can contribute to acute inflammation and 

cytokine storm, eventually leading to death (Meidaninikjeh et al., 2021).   

Lung samples displayed distinct expression patterns in specific clusters, which might be associated 

with the host immune response or inflammation (Chapter 4, Table 2). Cluster 10 had the highest 

difference in expression levels between COVID-19 and healthy lung samples (Chapter 4, Figure 

4). Cluster 4 showed a non-significant yet noticeable difference in expression levels between 

COVID-19 and healthy samples in the opposite direction (Chapter 4, Figure 4). It may be 

associated with normal lung functions or homeostasis. The result suggests that some of the most 

significant functions and diseases were “Interferon Gamma Signaling,” “Neutrophil 

Deregulation,” “Notch Signalling,” and “RNA Polymerase Transcription” (Chapter 4, Figure 8), 

among others. The gene expression profile of cluster 2 revealed several activated and inhibited 

biological processes, reflecting the multifaceted nature of lung pathology in SARS-CoV-2 

infection (Chapter 4, Figure 8). Interferons are a group of cytokines that help the body to fight 

viral infections. They are classified among the host's innate immune response mechanisms. Due to 

their crucial role in initiating an immune response, the SARS-CoV-2 virus produces many proteins 

to inhibit interferon production in the first place. (Znaidia et al., 2022). The coronavirus 

pathogenesis pathway involves many proteins, including cytokines, growth factors, enzymes, 

kinases, transcription factors, translation regulators, and others regulated by the viral proteins. The 

virus inhibits interferons and interferon regulatory factors, cell cycle progression, and adaptive 

immunity. On the other hand, inflammatory cascades of tissue inflammation and apoptosis are 

activated.  
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In the context of SARS-CoV-2 infection, there was a notable enrichment of RNA splicing and 

ribosome-related genes in nasal, lung, and blood samples. Ribosome-related genes and ribosome 

signaling pathways were enriched in a study to report DEGs and pathways activated upon SARS-

CoV-2 infection using RNA-Seq technology. (Hoque et al., 2022). Variations in the immune 

defense mechanisms were evident, with anti-microbial defense pathways being activated in some 

tissues (blood and lung) while being suppressed in others (placenta) (Chapter 4, Figures 7, 9, and 

10). 

Overall, COVID-19 disease affects several biological processes, including interferon signaling, 

protein synthesis, RNA splicing, cellular motility, cellular adhesion, phagocytosis, B cell 

activation, the complement system, and the unfolded protein response (Chapter 4, Figures 7, 9 

and 10). 

5.2 Tissue-Specific Genes as Potential Biomarkers  

Different data types were used to build and test ML models, such as computed tomography (CT) 

images, clinical data, electronic health records, genomics, transcriptomics, proteomics, and 

metabolomics. In this study, we utilized the transcriptomic data of different tissues for patients 

with COVID-19 and healthy individuals to identify tissue-specific genes. The tissue-specific 

genes, expressed across multiple tissues, could be potential biomarkers for the COVID-19 

diagnosis and prognosis. The Ingenuity Pathway Analysis (IPA) analysis of these genes revealed 

that the multiple immune response pathways and communication between innate and adaptive 

immune cell pathways are upregulated across most tissues studied in COVID-19 (Chapter 4, 

Figures 12 – 15). The coronavirus pathogen pathway was upregulated in the nasal tissue (Chapter 

4, Figure 13), while the IL-15 signaling pathway was notably upregulated in both lung and blood 

tissues (Chapter 4, Figures 12 and 14). The study highlighted the heterogeneity of the COVID-
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19 pathogenesis across different tissues and the need to further investigate the tissue-specific 

molecular interactions between the virus and the host by utilizing gene co-expression and ML 

approaches. As the data were not balanced between the healthy and diseased samples, a data 

augmentation technique was deployed to improve the performance of the ML models and reduce 

the bias that may emerge due to class imbalance or overfitting, as mentioned in section 3.2.2. Data 

augmentation was applied heavily in earlier ML models to predict the severity, classification, and 

progression of COVID-19  using chest X-ray images (Barshooi & Amirkhani, 2022; Schaudt et 

al., 2023; Wu et al., 2023). On the transcriptomic level, data augmentation improved the 

classification performance between patients with SARS-CoV-2 and those with other respiratory 

viruses (Kircher et al., 2022). In this study, the authors included RNA-Seq and microarray 

expression data from blood and nasopharyngeal swabs, which improved the ML model's 

performance. In another study by Song et al., the authors used a publicly available GEO dataset to 

identify COVID-19 diagnostic biomarkers from throat samples (Song et al., 2022). To balance the 

sample size between the infected versus healthy groups of samples, they applied SMOTE to 

augment the training set and XGBOOST for ML model building. Our study shows a similar 

observation; we extracted more features recognized as potential biomarkers using data 

augmentation. 

IPA analysis was performed on these clusters to determine the pathways activated or inhibited. 

Interferon signaling pathways and genes were significantly activated in nasopharyngeal swab 

samples, in addition to cell survival and death pathways. Immune signaling pathways, primarily 

innate immune pathways, were significantly enriched in blood samples. Signaling pathways 

enriched were notably in opposite directions between nasopharyngeal samples and blood samples, 

especially the pathways related to antiviral response, innate immunity, and dendritic cell 
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maturation (Ng et al., 2021). On the contrary, in our study, we observed that the pathways of 

antiviral response and innate immunity were upregulated in nasal and blood samples. 

5.3 ML Models for Predicting COVID-19 Severity 

ML models have been widely used on COVID-19 data to improve risk prediction for 

hospitalization and critical disease outbreaks (Saadatmand et al., 2022; Shandbehzadeh et al., 

2022; Aryal et al., 2024). Despite the numerous ML models that have been built, there are very 

few studies in which the models tried to use both clinical and genomic data to predict the severity 

of COVID-19 (Ahmad et al., 2022; Hwangbo et al., 2022). Hence, the project aims to develop a 

prognostic ML model to predict the severity of COVID-19 based on gene expression and clinical 

and co-morbidity data. We used data augmentation to balance the class sample size, explored 

various ML models to identify the best-performing model, and optimized the ML model's 

performance using different weights.  In addition, we used the SHAP score to find the features that 

contribute the most to the model’s performance (Chapter 4, Figure 17).  

Four machine learning algorithms, LR, XGBoost, NB, and SVM, were used to initially build a 

classification model only based on the normalized gene expression data from COVID-19 patients 

that belong to three severity groups, ‘mild, moderate, and severe’ (Chapter 4, Table 12). To avoid 

overfitting the ‘moderate’ group with the same sample size as the other two groups combined, we 

augmented and balanced the sample size of the minority classes using ADASYN (Chapter 4, 

Table 13). Models built from balanced datasets have shown significantly improved performance 

(accuracy and AUC) for all ML methods compared to those using unbalanced datasets. Only gene 

expression features were used for the initial testing of ML models as this data modality has 

thousands of data points compared to merely twelve and nine features in the clinical and co-

morbidity modalities, respectively. 
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We have built separate models for each data modality, their pair-wise combinations, and all three 

combined. Integration of the three data modalities showed a significant improvement in the 

predictive power of the ML models compared to those using a single modality or pair-wise data 

modalities (Chapter 4, Tables 14 and 15), with the accuracy reaching 95% and AUC 99% for the 

XGBoost model that was trained with all three modalities. Our results align with the other studies 

highlighting the importance of using integrated multi-omics data in predictive models to leverage 

the synergistic effect of combining different data modalities. For example, ML models integrating 

transcriptomic and clinical data for predicting the clinical outcomes of COVID-19 patients showed 

enhanced accuracy (Jeyananthan et al., 2023). In addition, the XGBoost algorithm outperformed 

the other classifiers because it implemented a gradient-boosting framework, allowing it to build 

decision trees sequentially and optimize for bias and variance. Incorporating regularization 

techniques, such as L1 and L2 regularization, effectively prevents overfitting (Li et al., 2022). 

Furthermore, the most important features with the highest predictive power in the integrated model 

were shapely identified. The COX14 gene was identified as the top feature, significantly 

contributing to the model's predictive power. COX14 gene (cytochrome c oxidase; COX) encodes 

a core protein of the mitochondrial electron transport chain’s complex IV assembly that is a vital 

component of the COX protein's catalytic core, essential in electron transport (Timon et al., 2018). 

A recent proteomic study of COVID-19 patients suggested elevated levels of the components of 

cytochrome c electron transport complexes in the plasma of COVID-19 patients compared to the 

normal controls (Chen et al., 2023). The second most important feature from the SHAP analysis, 

an absolute number of neutrophil counts, emerged from the clinical feature set. Several studies 

reported high levels of neutrophils in severe COVID-19 patients and neutrophil-related cytokines 

like IL-8 and IL-6 (Zuo et al., 2020; McKenna et al., 2022; Li et al., 2023). Neutrophils detect 
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single-stranded RNA viruses like SARS-COV-2 because they express multiple toll-like receptors: 

TLR7, TLR8, and TLR9. Once TLR receptors are activated, other physiological processes, such 

as NF-κB and interferon regulatory factors, are activated (IRF7) (Kawasaki et al., 2014). The latter 

activation process produces chemokines and pro-inflammatory cytokines in neutrophils that 

induce pulmonary infiltration and hyperinflammation in COVID-19 patients (Khalil et al., 2021).  

Furthermore, the LAMB2 gene was also identified among the top three features in our SHAP 

analysis. This gene encodes the basement membrane protein laminin β2, part of the heterotrimeric 

laminin isoforms (Matejas et al., 2010). LAMB2 was identified as a diagnostic biomarker for 

COVID-19 based on bioinformatics analysis of the gene expression dataset of COVID-19 patients 

(Budhraja et al., 2022). Moreover, our findings underscore the significance of specific pathways 

enriched in the top 25% of genes identified through SHAP values. Pathways include generic 

transcription, immunoregulatory interactions between a lymphoid and non-lymphoid cell, mitotic 

prometaphase, FCGR-dependent phagocytosis, and cilium assembly. In SARS-CoV2 infection, 

fundamental host cellular processes such as generic transcription and immune responses are 

expected to be perturbed. Some of the genes involved in these processes could indicate disease 

progression and severity. 

The super pathway of Inositol Phosphate Compounds involves genes responsible for inositol 

production, which is essential to generate the phosphatidylinositol (PtdIns) needed to preserve the 

signaling pathways. A prior study has found that SARS-Cov-2 also affects metabolic pathways 

like inositol phosphate metabolism, glycolysis, and oxidative phosphorylation (Li et al., 2022). 

The dysregulation of those pathways blocks the surfactant secretion and alveolar epithelial 

differentiation. In addition, disruption of the inositol phosphate metabolism may induce neutrophil 

infiltration and disrupt the lung barrier (Li et al., 2022).  
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In this study, we demonstrated that integrating the genomic and clinical features has helped 

improve the performance of ML models, and implementing the data augmentation approach has 

addressed the data imbalance issues to enhance the model's performance further. Similarly, SHAP 

analysis has helped identify the topmost contributing factors (genes and clinical features) to the 

model performance that could be biomarkers for predicting disease severity. 

5.4 Development and Optimization of ML Models  

In a study by Clancy et al., the authors included the COVID-19 severity metadata with RNA-Seq 

transcriptome samples from peripheral blood mononuclear cells, whole blood, and leukocytes of 

COVID-19 patients using public datasets. They applied differential gene expression analysis on 

the samples and gene ontology to explore the terms these DEGs belong to. Samples were labeled 

into mild, moderate, and severe categories. Random forest classification was adopted, and specific 

hyperparameters were set. The model was evaluated using ROC analysis and AUC. They 

concluded that specific biomarkers intersect between the DEG list and the random forest 

classification analysis. Among the top Gene Ontology (GO) terms enriched were apoptosis, 

immune response, and NF-kappaB signaling (Clancy et al., 2023), which is aligned with the results 

of our study. 

In another study, the authors applied SMOTE data augmentation using blood transcriptomics of 

intensive care and non-intensive COVID-19 and non-COVID patients. They used different 

classification algorithms, such as random forest, decision tree, and support vector machine, to 

classify patients according to COVID-19 severity. They used overall accuracy and other matrices 

to measure the performance of each classifier. Genes and pathways involved in immune regulation 

and cell cycle progression were enriched by top features (Li et al., 2022). Similarly, utilizing data 
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augmentation helped us improve the accuracy of our models, and SMOTE performed better than 

random oversampling. 

Table 1 Summary of studies describing ML models developed to predict mortality in COVID-19 

patients. 

ML 

algorithms 

Datasets Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1-

score 

AUC 

 J48 28 predictors 

counting patient’s 

demographics, 

clinical features, 

comorbidity, 

laboratory results, 

and output variable 

(Syed et al., 2023) 

97.9 84.4 91.2 86.3 91.7 93.1 

 SVM 80.8 76.5 78.6 77.5 79.1 78.6 

 MLP 97.9 89.5 93.7 90.3 94.0 96.2 

 k-NN 100 87.0 93.5 88.5 93.9 97.5 

 J48 28 predictors 

counting patient’s 

demographics, 

clinical features, 

comorbidity, 

laboratory results, 

CT-SS, and output 

variable (Salman et 

al., 2023) 

98.4 84.9 91.7 86.7 92.2 93.9 

 SVM 83.0 79.3 81.2 80.1 81.5 81.2 

 MLP 98.4 91.1 94.8 91.7 95.0 97.0 

 k-NN 100 88.3 94.1 89.5 94.5 97.2 

 RF 39 predictors 

counting 

90.70 95.10 95.03 94.23 – 99.02 

 XGBoost 90.89 95.01 94.25 92.43 – 98.18 
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ML 

algorithms 

Datasets Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

Precision 

(%) 

F1-

score 

AUC 

 kNN demographics, risk 

factors, clinical 

manifestations, 

laboratory tests, 

therapeutic plans, 

and output variables 

(Zhang et al., 2020) 

97.38 82.15 89.56 80.11 – 96.78 

 MLP 90.81 91.07 91.25 87.19 – 96.49 

 LR 91.45 84.47 91.23 83.94 – 94.22 

 J48 87.77 94.47 92.17 89.97 – 92.19 

 NB 90.44 84.31 87.47 81.32 – 92.05 

 SVM 15 predictors 

counting 

demographics, risk 

factors, clinical 

manifestations, and 

the output variable 

(Devin et al., 2021) 

60.7 97.8 92.4 – 69.7 95.94 

 GBDT 60.7 96.6 91.5 – 69.6 94.54 

 LR 56.2 98.1 92.1 – 67.1 96.14 

 NN 51.7 98.9 92.1 – 65.3 96.15 

Comparing various ML algorithms highlighted the potential for ML-based models with multiple 

predictors to stratify COVID-19 patient risk accurately (Table 1).  Our study resulted in a lot better 

accuracy, F1 score, sensitivity, and specificity, as mentioned in sections 4.2 and 4.3. The RF 

model, enriched with an extensive set of predictors, emerged as particularly effective in identifying 

high-risk patients upon admission, spotlighting its significance in boosting survival chances. Real-

time PCR (RT-PCR), chest X-ray images, CT scan images, and serological blood tests are used to 

diagnose COVID-19. As mentioned in our study, developing models based on data from diverse 

geographic locations and populations can improve their generalizability and robustness against 

data variability. Incorporating longitudinal data can offer insights into how gene expression and 
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clinical parameters evolve throughout the disease, providing a dynamic perspective on severity 

prediction. To maximize the impact of ML models, efforts should focus on their integration into 

clinical decision-making workflows, ensuring that predictions are accessible and actionable for 

healthcare providers. Establishing frameworks for continuous learning can ensure that ML models 

remain relevant in the face of emerging data and viral mutations, facilitating their adaptability to 

new clinical scenarios. Hence, developing an ML model to predict COVID-19 severity using gene 

expression and clinical information represents a promising avenue for enhancing patient care and 

management strategies. While challenges exist, the potential benefits of personalized treatment 

and improved outcomes are substantial. Future efforts should focus on overcoming these hurdles 

through innovative analytical approaches, data collection strategies, and a commitment to 

integrating these models into clinical practice.  

5.5 Limitations of the Study 

While this study contributes valuable insights into the pathophysiology and severity of COVID-

19, several limitations should be considered: 

• For the comparative analysis and biomarker identification, more samples and studies 

should be considered. 

• Due to the lack of data availability, other tissues, such as the heart, pancreas, etc., were not 

considered in this study. 

• Due to the small sample size and class imbalance, data augmentation was introduced, 

which might have resulted in overfitting of the models and biased results. 

• While predicting the severity of COVID-19 patients, some of the other important clinical 

and comorbidity features might be missing from the data. 
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5.6 Future Directions of the Study 

Some of the few important future directions that the study holds are: 

• Application of tissue-specific biomarkers: In-vitro/In-vivo validation, identifying 

potential drug targets, and conducting additional testing of biomarkers to cluster patients 

in clinical environments. 

• Exploration of comorbidity-associated gene features: Enhancing comprehension of the 

underlying mechanism of COVID-19 in various tissues through shared genetic features. 

• Development of a tool for predicting severity: Designing a tool to predict COVID-19 

severity, assess patients, stratify risks, and aid in clinical decision-making and disease 

management. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



105 
 

References  
 

Ahmad, M., I. Ahmed, and G. Jeon, A sustainable advanced artificial intelligence-based framework for 

analysis of COVID-19 spread. Environ Dev Sustain, 2022: p. 1-16. 

Aryal, K., et al., Evaluating methods for risk prediction of Covid-19 mortality in nursing home residents 

before and after vaccine availability: a retrospective cohort study. BMC Med Res Methodol, 2024. 

24(1): p. 77. 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. P., Dolinski, K., 

Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, 

J. C., Richardson, J. E., Ringwald, M., Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for 

the unification of biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556 

Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim, I. F., Tomashevsky, M., Marshall, K. A., 

Phillippy, K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee, H., Zhang, N., Robertson, C. L., Serova, 

N., Davis, S., & Soboleva, A. (2013). NCBI GEO: Archive for functional genomics data sets - Update. 

Nucleic Acids Research, 41(D1), 991–995. https://doi.org/10.1093/nar/gks1193 

Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-

sampling Technique. Journal of Artificial Intelligence Research, 16, 321–357. 

https://doi.org/10.1613/jair.953 

Gu, F., Ma, S., Wang, X., Zhao, J., Yu, Y., & Song, X. (2022). Evaluation of feature selection for Alzheimer’s 

disease diagnosis. Frontiers in Aging Neuroscience, 14. https://doi.org/10.3389/fnagi.2022.924113 

Hicks, S. A., Strümke, I., Thambawita, V., Hammou, M., Riegler, M. A., Halvorsen, P., & Parasa, S. (2022). 

On evaluation metrics for medical applications of artificial intelligence. Scientific Reports, 12(1), 

5979. https://doi.org/10.1038/s41598-022-09954-8 

Hwangbo, S., et al., Machine learning models to predict the maximum severity of COVID-19 based on 



106 
 

initial hospitalization record. Front Public Health, 2022. 10: p. 1007205. 

Lachmann, A., Torre, D., Keenan, A. B., Jagodnik, K. M., Lee, H. J., Wang, L., Silverstein, M. C., & 

Ma’ayan, A. (2018). Massive mining of publicly available RNA-seq data from human and mouse. 

Nature Communications, 9(1), 1366. https://doi.org/10.1038/s41467-018-03751-6 

Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. 

BMC Bioinformatics, 9(1), 559. https://doi.org/10.1186/1471-2105-9-559 

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-

seq data with DESeq2. Genome Biology 2014 15:12, 15(12), 1–21. https://doi.org/10.1186/S13059-

014-0550-8 

Müller, A. C., Giambruno, R., Weißer, J., Májek, P., Hofer, A., Bigenzahn, J. W., Superti-Furga, G., Jessen, 

H. J., Bennett, K. L., Matsushima, Y., Kaguni, L. S., Yuzefovych, L. V., Musiyenko, S. I., Wilson, G. 

L., Rachek, L. I., Kooij, B. Van De, Creixell, P., Vlimmeren, A. Van, Joughin, B. A., … Newman, L. 

A. (2019). Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, 

Cytoscape and EnrichmentMap. Nature Protocols, 22(1), 924–934. 

Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. 

Array, 16, 100258. https://doi.org/10.1016/j.array.2022.100258 

Pudjihartono, N., Fadason, T., Kempa-Liehr, A. W., & O’Sullivan, J. M. (2022). A review of feature 

selection methods for machine learning-based disease risk prediction. Frontiers in Bioinformatics, 2. 

https://doi.org/10.3389/fbinf.2022.927312 

Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., & Celeux, G. (2015). Co-expression analysis of 

high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, 31(9), 

1420–1427. https://doi.org/10.1093/bioinformatics/btu845 

Remeseiro, B., & Bolon-Canedo, V. (2019). A review of feature selection methods in medical applications. 



107 
 

Computers in Biology and Medicine, 112, 103375. 

https://doi.org/10.1016/j.compbiomed.2019.103375 

Yang, L., & Shami, A. (2020). On hyperparameter optimization of machine learning algorithms: Theory 

and practice. Neurocomputing, 415, 295–316. https://doi.org/10.1016/j.neucom.2020.07.061 

Zanella, L., Facco, P., Bezzo, F., & Cimetta, E. (2022). Feature selection and molecular classification of 

cancer phenotypes: A Comparative study. International Journal of Molecular Sciences, 23(16), 9087. 

https://doi.org/10.3390/ijms23169087 

Alqutami, F., Senok, A., & Hachim, M. (2021). COVID-19 transcriptomic atlas: A comprehensive analysis 

of COVID-19 related transcriptomics datasets. Frontiers in Genetics, 12. 

https://doi.org/10.3389/fgene.2021.755222 

Barshooi, A. H., & Amirkhani, A. (2022). A novel data augmentation based on the Gabor filter and 

convolutional deep learning for improving the classification of COVID-19 chest X-ray images. 

Biomedical Signal Processing and Control, 72, 103326. https://doi.org/10.1016/j.bspc.2021.103326 

Bertoletti, A., Le Bert, N., & Tan, A. T. (2022). SARS-CoV-2-specific T cells in the changing landscape of 

the COVID-19 pandemic. Immunity, 55(10), 1764–1778. 

https://doi.org/10.1016/j.immuni.2022.08.008 

Budhraja, A., et al., Molecular signature of postmortem lung tissue from COVID-19 patients suggests 

distinct trajectories driving mortality. Dis Model Mech, 2022. 15(5). 

Bourbon, H.M., et al., A unified nomenclature for protein subunits of mediator complexes linking 

transcriptional regulators to RNA polymerase II. Mol Cell, 2004. 14(5): p. 553-7. 

Chang, T., Yang, J., Deng, H., Chen, D., Yang, X., & Tang, Z.-H. (2022). Depletion and dysfunction of 

dendritic cells: Understanding SARS-CoV-2 infection. Frontiers in Immunology, 13. 

https://doi.org/10.3389/fimmu.2022.843342 



108 
 

Chang, Y.-Y., & Wei, A.-C. (2024). Transcriptome and machine learning analysis of the impact of COVID-

19 on mitochondria and multiorgan damage. PLOS ONE, 19(1), e0297664. 

https://doi.org/10.1371/journal.pone.0297664 

Chen, Z.Z., et al., Mitochondria and cytochrome components released into the plasma of severe COVID-

19 and ICU acute respiratory distress syndrome patients. Clin Proteomics, 2023. 20(1): p. 17. 

Clancy, J., Hoffmann, C. S., & Pickett, B. E. (2023). Transcriptomics secondary analysis of severe human 

infection with SARS-CoV-2 identifies gene expression changes and predicts three transcriptional 

biomarkers in leukocytes. Computational and Structural Biotechnology Journal, 21, 1403–1413. 

https://doi.org/10.1016/j.csbj.2023.02.003 

Fuchs, A. and M. Colonna, The role of NK cell recognition of nectin and nectin-like proteins in tumor 

immunosurveillance. Semin Cancer Biol, 2006. 16(5): p. 359-66. 

García-García, E.a.R., C., Signal transduction during Fc receptor-mediated phagocytosis. Journal of 

Leukocyte Biology, 2002. 72: p. 1092-1108. 

Guilliams, M., Ginhoux, F., Jakubzick, C., Naik, S. H., Onai, N., Schraml, B. U., Segura, E., Tussiwand, 

R., & Yona, S. (2014). Dendritic cells, monocytes, and macrophages: a unified nomenclature based 

on ontogeny. Nature Reviews Immunology, 14(8), 571–578. https://doi.org/10.1038/nri3712 

Hoque, M. N., Sarkar, M. M. H., Khan, M. A., Hossain, M. A., Hasan, M. I., Rahman, M. H., Habib, M. A., 

Akter, S., Banu, T. A., Goswami, B., Jahan, I., Nafisa, T., Molla, M. M. A., Soliman, M. E., Araf, Y., 

Khan, M. S., Zheng, C., & Islam, T. (2022). Differential gene expression profiling reveals potential 

biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning 

and bioinformatics approaches. Frontiers in Immunology, 13. 

https://doi.org/10.3389/fimmu.2022.918692 

Iqbal, N., & Kumar, P. (2022). Integrated COVID-19 Predictor: Differential expression analysis to reveal 



109 
 

potential biomarkers and prediction of coronavirus using RNA-Seq profile data. Computers in 

Biology and Medicine, 147, 105684. https://doi.org/10.1016/j.compbiomed.2022.105684 

Jakhmola, S., Indari, O., Kashyap, D., Varshney, N., Das, A., Manivannan, E., & Jha, H. C. (2021). 

Mutational analysis of structural proteins of SARS-CoV-2. Heliyon, 7(3), e06572. 

https://doi.org/10.1016/j.heliyon.2021.e06572 

Jeyananthan, P., SARS-CoV-2 Diagnosis Using Transcriptome Data: A Machine Learning Approach. SN 

Comput Sci, 2023. 4(3): p. 218. 

Jin, H., et al., The conserved Bardet-Biedl syndrome proteins assemble a coat that traffics membrane 

proteins to cilia. Cell, 2010. 141(7): p. 1208-19. 

Kawasaki, T. and T. Kawai, Toll-like receptor signaling pathways. Front Immunol, 2014. 5: p. 461. 

Khalil, B.A., N.M. Elemam, and A.A. Maghazachi, Chemokines and chemokine receptors during COVID-

19 infection. Comput Struct Biotechnol J, 2021. 19: p. 976-988. 

Kircher, M., Chludzinski, E., Krepel, J., Saremi, B., Beineke, A., & Jung, K. (2022). Augmentation of 

transcriptomic data for improved classification of patients with respiratory diseases of viral origin. 

International Journal of Molecular Sciences, 23(5), 2481. https://doi.org/10.3390/ijms23052481 

Kimura, K., et al., Phosphorylation and activation of 13S condensin by Cdc2 in vitro. Science, 1998. 

282(5388): p. 487-90. 

Knoll, R., Schultze, J. L., & Schulte-Schrepping, J. (2021). Monocytes and macrophages in COVID-19. 

Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.720109 

Koop, A., Lepenies, I., Braum, O., Davarnia, P., Scherer, G., Fickenscher, H., Kabelitz, D., & Adam‐Klages, 

S. (2011). Novel splice variants of human IKKε negatively regulate IKKε‐induced IRF3 and NF‐kB 

activation. European Journal of Immunology, 41(1), 224–234. https://doi.org/10.1002/eji.201040814 



110 
 

Li, X., Zhou, X., Ding, S., Chen, L., Feng, K., Li, H., Huang, T., & Cai, Y.-D. (2022). Identification of 

transcriptome biomarkers for severe COVID-19 with machine learning methods. Biomolecules, 

12(12), 1735. https://doi.org/10.3390/biom12121735 

Li, K., et al., Efficient gradient boosting for prognostic biomarker discovery. Bioinformatics, 2022. 38(6): 

p. 1631-1638. 

Li, J., et al., Neutrophils in COVID-19: recent insights and advances. Virol J, 2023. 20(1): p. 169. 

Li, S., et al., Cellular metabolic basis of altered immunity in the lungs of patients with COVID-19. Med 

Microbiol Immunol, 2022. 211(1): p. 49-69. 

Lohaj, O., Paralič, J., Bednár, P., Paraličová, Z., & Huba, M. (2023). Unraveling COVID-19 dynamics via 

machine learning and XAI: Investigating Variant influence and prognostic classification. Machine 

Learning and Knowledge Extraction, 5(4), 1266–1281. https://doi.org/10.3390/make5040064 

Lundstrom, K., Hromić-Jahjefendić, A., Bilajac, E., Aljabali, A. A. A., Baralić, K., Sabri, N. A., Shehata, 

E. M., Raslan, M., Ferreira, A. C. B. H., Orlandi, L., Serrano-Aroca, Á., Tambuwala, M. M., Uversky, 

V. N., Azevedo, V., Alzahrani, K. J., Alsharif, K. F., Halawani, I. F., Alzahrani, F. M., Redwan, E. M., 

& Barh, D. (2023). COVID-19 signalome: Pathways for SARS-CoV-2 infection and impact on 

COVID-19 associated comorbidity. Cellular Signalling, 101, 110495. 

https://doi.org/10.1016/j.cellsig.2022.110495 

Maharana, Kiran, Surajit Mondal, and Bhushankumar Nemade. "A review: Data pre-processing and data 

augmentation techniques." Global Transitions Proceedings 3.1 (2022): 91-99. 

Marongiu, L., Protti, G., Facchini, F. A., Valache, M., Mingozzi, F., Ranzani, V., Putignano, A. R., Salviati, 

L., Bevilacqua, V., Curti, S., Crosti, M., Sarnicola, M. L., D’Angiò, M., Bettini, L. R., Biondi, A., 

Nespoli, L., Tamini, N., Clementi, N., Mancini, N., … Granucci, F. (2022). Maturation signatures of 

conventional dendritic cell subtypes in COVID‐19 suggest direct viral sensing. European Journal of 



111 
 

Immunology, 52(1), 109–122. https://doi.org/10.1002/eji.202149298 

Matejas, V., et al., Mutations in the human laminin beta2 (LAMB2) gene and the associated phenotypic 

spectrum. Hum Mutat, 2010. 31(9): p. 992-1002. 

McKenna, E., et al., Neutrophils in COVID-19: Not Innocent Bystanders. Front Immunol, 2022. 13: p. 

864387. 

Meidaninikjeh, S., Sabouni, N., Marzouni, H. Z., Bengar, S., Khalili, A., & Jafari, R. (2021). Monocytes 

and macrophages in COVID-19: Friends and foes. Life Sciences, 269, 119010. 

https://doi.org/10.1016/j.lfs.2020.119010 

Momeni, M., Rashidifar, M., Balam, F. H., Roointan, A., & Gholaminejad, A. (2023). A comprehensive 

analysis of gene expression profiling data in COVID-19 patients for discovery of specific and 

differential blood biomarker signatures. Scientific Reports, 13(1), 5599. 

https://doi.org/10.1038/s41598-023-32268-2 

Ng, D. L., Granados, A. C., Santos, Y. A., Servellita, V., Goldgof, G. M., Meydan, C., Sotomayor-Gonzalez, 

A., Levine, A. G., Balcerek, J., Han, L. M., Akagi, N., Truong, K., Neumann, N. M., Nguyen, D. N., 

Bapat, S. P., Cheng, J., Martin, C. S.-S., Federman, S., Foox, J., … Chiu, C. Y. (2021). A diagnostic 

host response biosignature for COVID-19 from RNA profiling of nasal swabs and blood. Science 

Advances, 7(6). https://doi.org/10.1126/sciadv.abe5984 

Pisano, F., Cannas, B., Fanni, A., Pasella, M., Canetto, B., Giglio, S. R., Mocci, S., Chessa, L., Perra, A., & 

Littera, R. (2023). Decision trees for early prediction of inadequate immune response to coronavirus 

infections: a pilot study on COVID-19. Frontiers in Medicine, 10. 

https://doi.org/10.3389/fmed.2023.1230733 

Podder, P., & Mondal, M. R. H. (2020). Machine learning to predict COVID-19 and ICU requirement. 2020 

11th International Conference on Electrical and Computer Engineering (ICECE), 483–486. 



112 
 

https://doi.org/10.1109/ICECE51571.2020.9393123 

Saadatmand, S., et al., Using machine learning in prediction of ICU admission, mortality, and length of stay 

in the early stage of admission of COVID-19 patients. Ann Oper Res, 2022: p. 1-29. 

Schaudt, D., von Schwerin, R., Hafner, A., Riedel, P., Reichert, M., von Schwerin, M., Beer, M., & Kloth, 

C. (2023). Augmentation strategies for an imbalanced learning problem on a novel COVID-19 

severity dataset. Scientific Reports, 13(1), 18299. https://doi.org/10.1038/s41598-023-45532-2 

Schulien, I., Kemming, J., Oberhardt, V., Wild, K., Seidel, L. M., Killmer, S., Sagar, Daul, F., Salvat Lago, 

M., Decker, A., Luxenburger, H., Binder, B., Bettinger, D., Sogukpinar, O., Rieg, S., Panning, M., 

Huzly, D., Schwemmle, M., Kochs, G., … Neumann-Haefelin, C. (2021). Characterization of pre-

existing and induced SARS-CoV-2-specific CD8+ T cells. Nature Medicine, 27(1), 78–85. 

https://doi.org/10.1038/s41591-020-01143-2 

Shanbehzadeh, M., R. Nopour, and H. Kazemi-Arpanahi, Using decision tree algorithms for estimating ICU 

admission of COVID-19 patients. Inform Med Unlocked, 2022. 30: p. 100919. 

Simons, P., Rinaldi, D. A., Bondu, V., Kell, A. M., Bradfute, S., Lidke, D. S., & Buranda, T. (2021). Integrin 

activation is an essential component of SARS-CoV-2 infection. Scientific Reports, 11(1), 20398. 

https://doi.org/10.1038/s41598-021-99893-7 

Song, X., Zhu, J., Tan, X., Yu, W., Wang, Q., Shen, D., & Chen, W. (2022). XGBoost-based feature learning 

method for mining COVID-19 novel diagnostic markers. Frontiers in Public Health, 10. 

https://doi.org/10.3389/fpubh.2022.926069 

Timon-Gomez, A., et al., Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Semin 

Cell Dev Biol, 2018. 76: p. 163-178. 

Todros, T., Masturzo, B., & De Francia, S. (2020). COVID-19 infection: ACE2, pregnancy and 

preeclampsia. European Journal of Obstetrics & Gynecology and Reproductive Biology, 253, 330. 



113 
 

https://doi.org/10.1016/j.ejogrb.2020.08.007 

Tosto, V., Meyyazhagan, A., Alqasem, M., Tsibizova, V., & Di Renzo, G. C. (2023). SARS-CoV-2 footprints 

in the placenta: What we know after three years of the pandemic. Journal of Personalized Medicine, 

13(4), 699. https://doi.org/10.3390/jpm13040699 

Wang, J., et al., COVID-19: imbalanced cell-mediated immune response drives to immunopathology. 

Emerg Microbes Infect, 2022. 11(1): p. 2393-2404. 

Wang, X., Guan, F., Miller, H., Byazrova, M. G., Candotti, F., Benlagha, K., Camara, N. O. S., Lei, J., 

Filatov, A., & Liu, C. (2023). The role of dendritic cells in COVID-19 infection. Emerging Microbes 

& Infections, 12(1). https://doi.org/10.1080/22221751.2023.2195019 

Wu, G., Zhu, Y., Qiu, X., Yuan, X., Mi, X., & Zhou, R. (2023). Application of clinical and CT imaging 

features in the evaluation of disease progression in patients with COVID-19. BMC Pulmonary 

Medicine, 23(1), 329. https://doi.org/10.1186/s12890-023-02613-2 

Wu, J., Zhang, P., Zhang, L., Meng, W., Li, J., Tong, C., Li, Y., Cai, J., Yang, Z., Zhu, J., Zhao, M., Huang, 

H., Xie, X., & Li, S. (2020). Rapid and accurate identification of COVID-19 infection through 

machine learning based on clinical available blood test results. MedRxiv, 2020.04.02.20051136. 

Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., & Hoffman, M. M. (2019). Machine 

learning for integrating data in biology and medicine: Principles, practice, and opportunities. 

Information Fusion, 50, 71–91. https://doi.org/10.1016/j.inffus.2018.09.012 

Znaidia, M., Demeret, C., van der Werf, S., & Komarova, A. V. (2022). Characterization of SARS-CoV-2 

evasion: Interferon pathway and therapeutic options. Viruses, 14(6), 1247. 

https://doi.org/10.3390/v14061247 

Zuo, Y., et al., Neutrophil extracellular traps in COVID-19. JCI Insight, 2020. 5(11). 

 


	Gene Co-Expression and Machine Learning Approaches to Compare SARS-CoV-2 Infected Tissues in Humans
	Recommended Citation

	tmp.1713821510.pdf.hEJvI

