

University of Nebraska Medical Center DigitalCommons@UNMC

## **MD** Theses

**Special Collections** 

1952

# Respiratory measurements in children using the Bennett respiratory ventilation meter

Patricia Jean Neely University of Nebraska Medical Center

This manuscript is historical in nature and may not reflect current medical research and practice. Search PubMed for current research.

Follow this and additional works at: https://digitalcommons.unmc.edu/mdtheses

### **Recommended Citation**

Neely, Patricia Jean, "Respiratory measurements in children using the Bennett respiratory ventilation meter" (1952). *MD Theses*. 1845. https://digitalcommons.unmc.edu/mdtheses/1845

This Thesis is brought to you for free and open access by the Special Collections at DigitalCommons@UNMC. It has been accepted for inclusion in MD Theses by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.

#### RESPIRATORY MEASUREMENTS IN CHILDREN

USING THE BENNETT RESPIRATORY VENTILATION METER

Patricia Jean Neely

Submitted in Partial Fulfillment for the Degree of Doctor of Medicine College of Medicine, University of Nebraska

December 15, 1951

Omaha, Nebraska

Much work has been done with the measurement of vital capacity with the spirometer, but this instrument has been on the whole, too clumsy to have wide clinical application. Furthermore its use with children is limited because full cooperation is required. The Bennett Respiratory Ventilation Meter has the advantages of being easy to handle and of not requiring the cooperation of the child. In this survey we hope to establish the average vital capacity and tidal air of children of all sizes and to compare these results with those that might be expected by spirometry. These measurements were taken on two hundred and ninety children entering the Children's Memorial Hospital during August and part of September of 1951. It is anticipated that this instrument may be of value in bulbar policity, and since respiratory infections and fever are often seen in this disease, an estimate of the effect of these on vital capacity and tidal air is included. Finally, we have reviewed respiratory measurements in ten cases of bulbar poliomyelitis in an effort to evaluate the use of the instrument in this disease.

Most measurements of respiration have been taken with various spirometers and have been estimates of vital capacity. Christie(1) and Hutchinson (2) describe vital capacity as the greatest expiration after maximum inspiration, the complemental air as that inspired from mid-position, the residual air as the amount remaining after fullest expiration, the functional residual as the amount remaining after a normal expiration, and the tidal air as the amount exchanged in quiet breathing. Mills (3) studied expiration and inspiration and concluded

evidence that more air is expired than taken in.

In the study of vital capacity various types of instruments have been used. Smith (4) prepared an apparatus for infants which consists of a rigid container with a water manometer connected to a face mask. The mask is placed over the face at the end of a full inspiration. Deming and Washburn (5) prepared an airtight chamber with a float type spirometer. The child was placed in the chamber with the head out and the neck closed with an airtight collar. The excursion of the child's chest caused displacement of air in the chamber. Deming and Hanner (6) used this on eighteen infants from one to eleven days of age and got a wital capacity of 121-181 cc. Donald and Christie(7) used a Benedict spirometer in which there is a rubber bag containing gas to be inspired. They state that inertia causes a measurable, but constant error. Edwards and Wilson (8) measured children from six to sixteen years using various spirometers. The calibration was checked by checking water displacement with a Bohr meter. Of the various spirometers the 'Standard' made by Narragansett Machine Co. gave lower readings than the Gad-Krogh or Sanborn types by about 10%. A dry spirometer made by Upjohn gives readings lower by 11.6%. Metheny (9) found that temperature, resistence of the tube, and atmospheric pressure have little effect on vital capacity, but that difference in pressure inside and outside may affect it. Reduction in volume due to the force necessary to overcome this inertia will become larger as the

vital capacity decreases. In working with small children she used a bell with a smaller diameter 30 it would rise higher and the results would be more apparent to the children. Another method, that of measuring volume by the ratio of gases was used by VanSlyke and Binger(10).

Mills (3) studied the reliability of vital capacity and found that there is a significant increase in two series several weeks apart. Emerson and Green (11) felt that the determination of vital capacity in children below the age of seven was unreliable. Both Metheny (9) and Jersild (12) found the most improvement with practise occured within the first six trials. Metheny (9) found that the variation with time of day was no greater than on different days.

Various attempts have been made to correlate body measurements with vital capacity. The earliest attempts were those made by Dreyer(13, who correlated vital capacity with weight, height, stem length, chest circumference, and surface area and found the latter to be most .72 .72accurate. Since  $\frac{Wt}{S.A.} = K$  and  $\frac{Wt}{F_{A.}} = K$ , this latter is the formula he used with K = .69. Surface area may be found with the formula A =  $Wt.^{.425}$  xHt. $.^{.725}x$  71.84, according to Dubois and Dubois. Stewart (14) applied this formula to children and found that the value of K varied from .955 at 40 $\frac{\mu}{T}$  to .701 at 140 $\frac{\mu}{T}$  for boys and from 1.089 at 40 $\frac{\mu}{T}$  to .850 at 90 $\frac{\mu}{T}$  for girls. He established regressive equations based on the formula y = ax  $\frac{f}{T}$  b where y = vital capacity and a = ht. in cm; x is a given factor. He found that vital capacity increases with the growth curve. For boys it increases steadily from four to ten years, accelerates from twelve to fourteen, and increases less rapidly from

fifteen to nineteen. For girls it increases rapidly from four to six, more slowly from seven to ten, is accelerated from eleven to thirteen and then slows down. Edwards and Wilson (8) point out the possibility that conditions altering vital capacity for long periods may also alter surface area. They suggest that different methods of calculating surface area may give different results; results are lower with the Benedict Talbot method. West (15) found that using Dreyer's formula, the number having a vital capacity within 10% of normal were only 2% less than when the formula of Dubois and Dubois was used. Edwards and Wilson (8) found most variation in correlation of surface area with body weight, especially in children weighing over 40 kg. There is a close correlation between height and surface area with more divergence in larger subjects. Various authors have correlated wital capacity with different measurements. Estimates based on weight have been made by Dreyer and Hanson (16), Stewart(14) who presented the regressive equations, Myers (17), Turner for adults (18), and Kelly (19) who stated that for boys vital capacity (cu. in.) -1.8208 (wt. in #) x 1.004855, and for girls V.C.(cu. in.) = 7.1947 (wt. in #) x .6564. Estimates based on sitting height were made by Dreyer and Hanson (16), Roberts and Crabtree (20), and Stewart (14). Estimates based on chest circumference were made by Dreyer and Hanson(16) . Estimates based on surface area were made by Edwards and Wilson (21) with an average for boys of 1.90 1/sg.m. and for girls 1.84 1/sq. m. Kelly (19) stated that V.C. (cu. in.) - 108.10 S.A.<sup>1.51601</sup>.

Estimates based on height have been made by Hastings (22), Myers (17), Kelly (19), Turner (18), Stewart(23), Hutchinson (2), who stated that for every inch from five to six feet, eight cubic inches of air were breathed, Roberts and Crabtree (20), who stated that from six to eighteen years each five cm - 139cc increase up to 140cm height for girls; above 140 cm, each 5 cm equal an increase of 194cc, and for boys up to 150 cm, each 5 cm is an increase of 167 cc; above 150 cm it is 386 cc, and Lemon and Moerch (24) who stated that vital capacity for males was height x 25 and for females, height x 20. Estimates on more than one variable have been made by Stewart and Sheets (25) using age and height, Stewart (14) using sex, age, sitting height, and height. Baldwin (26) using age and height. and Kelly (19) using age, height, and weight. Meth eny (9) extended the age of children down to three years and found the highest correlation of vital capacity to be with height. She took the results of various studies and compared the actual means with the theoretical value calculated by various formulae. There was great variation, but the most accurate were Kelly's (19) height formula and Stewart's (14) height formula. The others have higher values than those observed. Since none were accurate for preschool children, she prepared tables from the formulae: for boys V.C.(cu. in.) - 1.4331 x ht. in cm. 🖌 3.8133 x age - 111.3903; For girls V.C. - 1.1023 x ht. in cm. - 4.7294 x age - 84.9755; age was counted to the nearest half year. She devised the Breathing Capacity Quotient which equals actual B.C. x 100 expected B.C.

The range was 70-141 with a standard deviation of 13.4. Metheny (27) comments that in her observation there is a greater difference in vital capacity between the sexes than can be accounted for by a difference in height.

Various factors have been said to alter vital capacity. Kaltreider et. al (28) report that in adults the vital capacity is decreased by 4.4% in the recumbent position. Gross (29) lists possible factors as pulmonary, cardiac, insufficient muscle strength, and psychological. Wilson and Edwards (30) found no difference between public and private schools reflecting economic groups; they found a lower vital capacity in children who are overweight, and a lower wital capacity in Negro children. They list various diseases affecting it: tracheobronchial adenopathy, acute bronchiais, bronchial asthma, emphysema, pleurisy with effusion, lobar pneumonia, pulmonary T.B., and organic heart disease. Plum and Whedon (31) report the use of spirometry in adult convalescent policities. Using the Sanborn closed circuit recording spirometer they found that when the vital capacity reached 800-1000 cc, a respirator was needed. In convalescence when it was 600 cc at rest, they could stay out o f a respirator all day, and when it reached 800 cc, no more help was needed.

The meter used in this study is about six inches in diameter, and is marked off in 50 cc units, one revolution of the hand being one liter. It has a one-way walve for exhaled air so that only

inhaled air comes through the meter and is measured. The meter is connected by rubber tubing to a mask. It was found that the mask supplied by the manufacturer was too large for many of the smaller children, so the pneophore mask was substituted with all of them. The height of each child was measured. This is not only the simplest to get, but, according to Metheny (9), also gives the most accurate correlation with vital capacity. The children were tested while lying down since the mask is easiest to apply in that position. An attempt was made to get the cooperation of each child. They were instructed to first breathe quietly, then take a deep breath, several trials being given. The highest value was taken as the wital capacity, while the lowest figure for tidal air was used because there was a tendency to breathe more deeply with the mask covering the face. A few children were unable to get the idea of breathing deeply; in these cases they were allowed to breathe quietly for some time, and almost invariably they would eventually breathe deeply because the mask tended to give a smothery feeling. The children under three usually fought and cried, in the process of which they took a deep breath which was considered to be their vital capacity. Measurements were taken of infants under three months, but the mask was too large and the volume of air was usually under 50 cc, the smallest unit on the dial, so that an accurate determination is impossible with this instrument. However, the rough estimate that was obtained revealed lower values than those of Deming and Hanner (6). Because of the report of Wilson and Edwards (30) that Negro children tend to have a lower vital capacity, this study includes only white children.

To compare the results of this study with those expected by spirometry, the Breathing Gapacity Quotient suggested by Metheny (9) is utilized. The expected vital capacity is calculated for each child according to Stewart's regressive equations (see above) for children above fiwe, and according to Metheny's special formula for preschool children (see above) from three to five years. Since there has been no spirometry done on children under three, it is impossible to make the comparison. A child was considered to have a fewer if it was 100 degrees by rectum. Since there was found to be no significant difference in respiration with fewer, this group is combined with the non-fewer group in those groups in which there were not enough cases of each. No attempt was made to distinguish between upper and lower respiratory diseases.

The symbols and formulae used in the following tables are given below.

'No.' refers to the number the child was given in this study.
V.C. is wital capacity.
T. A. is tidal air.
B. C. Q. is breathing capacity quotient.
S. D. is standard deviation. S. D. - / Ex<sup>2</sup>/N where x is the deviations from arithmetic mean; N is number of cases.

S'E. is standard error for small samples.

S.E. - S. D. x a factor representing 3 S.D.  
Significant Difference between two means:  

$$\frac{5.D.1}{N} \neq \frac{5.D.2}{N}$$
 x 3 - a; Mean<sub>1</sub> - Mean<sub>2</sub> - b. If 'b' is

larger than 'a', the difference is significant.

2**5-34** in. 57-85 cm.

|                 | Males       |      |             | Females |            |
|-----------------|-------------|------|-------------|---------|------------|
| No.             | V.C.        | T.A. | No.         | V.C.    | T.A.       |
| 2               | 300         | 100  | 52          | 120     | <b>4</b> 0 |
| 8               | 125         | 75   | 67          | 100     | 25         |
| 20              | 350         | 25   | 101         | 250     |            |
| :28             | 175         | 40   | 115         | 175     | 25         |
| 32              | 200         | 40   | 139         | 200     | 50         |
| 36              | 100         | 30   | 153         | 250     | 100        |
| 39              | 250         | 100  | 170         | 200     |            |
| 41              | <b>3</b> 50 | 100  | 184         | 200     | 100        |
| 6 <b>3</b>      | 200         | 75   | 215         | 200     | 10         |
| 72              | 300         | 75   | 233         | 100     | 30         |
| 82              | 450         | 100  | 236         | 200     | 30         |
| 93              | <b>4</b> 00 | 150  | 249         | 200     | 25         |
| 103             | 150         | 50   | 282         | 200     | 100        |
| 110             | 350         | 150  | <b>28</b> 9 | 75      | 33         |
| 112             | 500         | 150  |             |         |            |
| 119             | 300         | 75   |             |         |            |
| 15 <del>4</del> | 300         | 50   |             |         |            |
| 169             | 250         |      |             |         |            |
| 173             | 200         | 50   |             |         |            |
| 187             | 300         | 50   |             |         |            |
| <b>23</b> 0     | 200         | 100  |             |         |            |

24-34 in. 57-85 cm.

|      | Males        |                                                                                                                                              |            | Females         |             |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------|
| No.  | ¥.C.         | T.A.                                                                                                                                         | No.        | V.C.            | T.A.        |
| 234  | 150          | 25                                                                                                                                           |            |                 |             |
| 254  | 250          | 100                                                                                                                                          |            |                 |             |
| 256  | 250          | 50                                                                                                                                           |            |                 |             |
| Mean | 266          | 77                                                                                                                                           | Mean       | 176             | 47          |
| S.D. | <b>£</b> 99  | <b><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></b> | S.D.       | <b>∠</b> 53     | <b>£</b> 31 |
| S.E. | <b>±</b> 59  | <u> 1</u> 22                                                                                                                                 | S.E.       | ±45             | <b>≠</b> 28 |
|      | R            | espiratory                                                                                                                                   | Infections |                 |             |
| 23   | 200          | 50                                                                                                                                           | 44         | 200             | 50          |
| 48   | 250          | 50                                                                                                                                           | 97         | <del>4</del> 00 | 100         |
| 65   | 150          | 75                                                                                                                                           | 98         | 350             | 100         |
| 81   | 250          | 50                                                                                                                                           | 225        | 200             | 50          |
| 83   | 500          | 150                                                                                                                                          | 274        | 350             | 100         |
| 1 28 | <b>4</b> 00  | 50                                                                                                                                           |            |                 |             |
| 1 50 | 150          | 50                                                                                                                                           |            |                 |             |
| 1 54 | 300          | 50                                                                                                                                           |            |                 |             |
| 192  | 150          | 50                                                                                                                                           |            |                 |             |
| Mean | 261          | 6 <b>4</b>                                                                                                                                   | Too few.   |                 |             |
| S.D. | £115         | <del>/</del> 31                                                                                                                              |            |                 |             |
| S.E. | <u>/</u> 142 | ±36                                                                                                                                          |            |                 |             |

35-46 in. 86-115 cm.

|             | Males                 |                 | Females     |            |              |                 |                  |
|-------------|-----------------------|-----------------|-------------|------------|--------------|-----------------|------------------|
| No.         | V.C.                  | T.A.            | BCQ.        | No.        | V.C.         | T.A.            | B.C.Q.           |
| 251         | 442                   | 100             | 56          |            |              |                 |                  |
| 255         | 300                   | <b>7</b> 5      | 36          |            |              |                 |                  |
| 257         | 650                   | 200             | 73          |            |              |                 |                  |
| 260         | 500                   | 100             | 82          |            |              |                 |                  |
| 265         | 300                   | 100             | 54          |            |              |                 |                  |
| 270         | 300                   | 150             | 34          |            |              |                 |                  |
| 276         | <b>4</b> 00           | 100             | 69          |            |              |                 |                  |
| 280         | <b>3</b> 00           | 100             | <b>4</b> 5  |            |              |                 |                  |
| <b>2</b> 92 | <u>350</u>            | 100             | <u>43</u>   |            |              |                 |                  |
| Mean        | 415                   | 112             | 58          | Mean       | 426          | 98              | 64               |
| S.D.        | £112                  | <del>∠</del> 53 | <b>£</b> 21 | S.D.       | <b>z</b> 153 | <del>/</del> 49 | <del>2</del> /31 |
| S.E.        | <u><del>/</del>88</u> | <u> 1</u> 27    | <b>ź</b> 11 | S.E.       | <b>₹</b> 96  | <u>7</u> 31     | <b>±</b> 19      |
|             |                       |                 | Feve        | r          |              |                 |                  |
| 9           | 600                   | 150             | 136         | 10         | 300          | 50              | 41               |
| 12          | <b>4</b> 50           | 250             | 42          | 38         | 500          | 150             | 117              |
| 37          | 500                   | 100             | 76          | 46         | 400          | 100             | 94               |
| 60          | 350                   | 75              | 34          | <b>4</b> 9 | <b>4</b> 00  | 75              | 36               |
| 109         | 400                   | 150             | <b>4</b> 6  | 51         | 650          | 150             | 68               |
| 182         | 300                   |                 |             | 70         | 600          | 150             | 74               |
| 183         | <b>4</b> 00           | 150             | <b>4</b> 9  | 90         | 500          | 200             | 95               |
| 198         | 600                   | 100             | 56          | 147        | 600          | 200             | 50               |

35-46 in. 86-115 cm.

|            | Males           | 3            |                        |            | Fem          | ales         |             |
|------------|-----------------|--------------|------------------------|------------|--------------|--------------|-------------|
| No.        | V.C.            | T.A.         | B.C.Q.                 | No.        | V.C.         | T.A.         | B.C.Q.      |
| 199        | 300             | 100          | 25                     | 190        | 500          | 150          | 47          |
| <u>287</u> | <u>600</u>      | <u>100.</u>  | <u>51</u>              | 193        | 250          | 100          | 41          |
|            |                 |              |                        | 269        | 500          | 200          | 48          |
|            |                 |              |                        | <u>286</u> | <u>450</u>   | 100          | <u>39</u>   |
| Mean       | <b>4</b> 50     | 1 <b>3</b> 0 | 5 <b>7</b>             | Mean       | 470          | 135          | 62          |
| S.D.       | ź114            | <b>±</b> 50  | <b>∠</b> 31            | S.D.       | <b>±</b> 114 | <u>/</u> 48  | £26         |
| S.E.       | <u>/</u> 123    | <u> </u> 460 | <b>Z</b> <sup>36</sup> | S.E.       | ±105         | <u>/_</u> 46 | £25.        |
|            |                 | Respirat     | tory Inf               | ectior     | 18           |              |             |
| 19         | 200             | 50           | 30                     | 77         | 300          | 100          | 5 <b>7</b>  |
| 22         | <b>3</b> 50     | 40           |                        | 158        | 300          | 50           | 6 <b>3</b>  |
| 43         | 350             | <b>7</b> 5   | 52                     | 165        | 250          | 100          | 63          |
| 140        | 300             | 150          | 59                     | 210        | 300          | 100          | 68          |
| 156        | 300             | 100          |                        | 232        | <b>3</b> 50  | 100          | 46          |
| 208        | <b>4</b> 00     | 100          | 90                     | 237        | 500          | 100          | 81          |
| 224        | 250             | 100          | 30                     | 266        | 400          | 50           | 37          |
| 228        | <b>3</b> 50     | 150          | 51                     | <u>271</u> | 300          | 50           | <u>73</u>   |
| 244        | 200             | 50           | <u>37</u>              |            |              |              |             |
| Mean       | 311             | 90           | 49                     | Mean       | 337          | 81           | 59          |
| S.D.       | £ 67            | <b>2</b> 39  | <b>ź</b> 19            | S.D.       | <u>/</u> 74  | <u> /</u> 24 | <b>ź</b> 11 |
| S.E.       | <del>1</del> 80 | <u> 1</u> 47 | £26                    | S.E.       | <b>_/9</b> 8 | 3∎           | źlą         |

Fever

46-56 in. 116-140 cm.

|     | Male        | S           | Females    |     |      |      |            |
|-----|-------------|-------------|------------|-----|------|------|------------|
| No. | V.C.        | T.A.        | B.C.Q.     | No. | V.C. | T.A. | B.C.Q.     |
| 15  | 1150        | <b>4</b> 00 | 68         | 5   | 700  | 300  | 50         |
| 16  | 525         | 110         | <b>4</b> 1 | 42  | .400 | 200  | 55         |
| 24  | 6.50        | 150         | 50         | 85  | 1200 | 300  | 73         |
| 50  | 750         | 130         | 37         | 94  | 950  | 150  | 67         |
| 87  | 800         | 250         | 55         | 106 | 550  | 150  | 30         |
| 126 | 650         | 150         | 31         | 107 | 800  | 250  | 65         |
| 127 | 900         | 200         | 43         | 111 | 600  | 300  | <b>3</b> 2 |
| 144 | 1100        | 400         | 59         | 124 | 1000 | 200  | 71         |
| 146 | 650         | 250         | 34         | 131 | 1200 | 200  | 73         |
| 149 | 650         | 150         | <b>4</b> 6 | 132 |      | 100  |            |
| 151 | 800         | 150         | 43         | 138 | 500  | 100  | 37         |
| 152 | 1050        | 250         | 68         | 143 | 500  | 150  | 40         |
| 155 | 600         | 150         | 33         | 148 | 700  | 150  | <b>4</b> 8 |
| 162 | 100         | 100         | 36         | 181 | 1000 | 150  | 70         |
| 163 | 450         | 150         | 37         | 185 | 1300 | 350  | 68         |
| 166 | 1300        | <b>4</b> 00 | 85         | 194 | 850  | 200  | 61         |
| 177 | 600         | 150         | 47         | 222 | 800  | 150  | 45         |
| 189 | 700         | 150         | 42         | 239 | 500  | 100  | 36         |
| 191 | 1300        | 300         | 74         | 245 | 900  | 250  | 47         |
| 197 | <b>7</b> 50 | 200         | 41         | 258 | 600  | 200  | 53         |
| 247 | 800         | 150         | 59         | 262 | 700  | 150  | 50         |

46=56 in.

| ΤŦ | 6 | 140 | СП | ٠ |
|----|---|-----|----|---|
|    |   |     |    |   |

|             | Ma.]                      | le <b>s</b>   |                |             | Fene          | les             |            |
|-------------|---------------------------|---------------|----------------|-------------|---------------|-----------------|------------|
| No.         | V.C.                      | T.A.          | B.C.Q.         | No.         | V.C.          | T.A.            | B.C.Q.     |
| <b>24</b> 8 | 800                       | 250           | 39             | 267         | 700           | 100             | 59         |
| 272         | 700                       | 300           | 41             | 268         | <b>7</b> 00   | 200             | 62         |
| 290         | 600                       | <u>150</u>    | 35             | 275         | 550           | 200             | 41         |
|             |                           |               |                | 277         | 700           | 250             | <b>4</b> 0 |
|             |                           |               |                | <b>2</b> 88 | ۲́00          | 150             | 57         |
|             |                           |               |                | <u>291</u>  | 700           | 150             | <u>50</u>  |
| Mean        | -790                      | 210           | 48             | Mean        | 773           | 191             | 53         |
| S.D.        | <u> </u> <del>/</del> 226 | <b>∠</b> 90   | ź14            | S.D.        | <u> 7</u> 218 | <u> </u> 67     | ź13        |
| S.E.        | £131                      | <b>±</b> 53   | <del>1</del> 8 | S.E.        | <b>1</b> 121  | <del>73</del> 6 | <u> </u> 7 |
|             |                           |               | Fever          |             |               |                 |            |
| 1           | 1500                      | 350           | 77             | 3           | 700           | 100             | 50         |
| 59          | 1000                      | 350           | 72             | 34          | 600           | 60              | 35         |
| 62          | <b>4</b> 50               | 100           | 21             | 122         | 450           | 100             | 35         |
| 100         | 700                       | 150           | 44             | 279         | 600           | 150             | 45         |
| 104         | 800                       | 250           | 55             |             |               |                 |            |
| 123         | 1750                      | 400           | 94             |             |               |                 |            |
| 167         | 1150                      | 150           | 75             |             |               |                 |            |
| <u>195</u>  | <u>950</u>                | 250           | <u>65</u>      |             |               |                 |            |
| Mean        | 1037                      | 250           | 63             | Too f       | GW            |                 |            |
| S.D.        | <b><u>7</u>3</b> 98       | £103          | ź21            |             |               |                 |            |
| S.E.        | £523                      | <b>±136</b> . | <u>7</u> 28    |             |               |                 |            |

## 567 -67 in. 141-165 cm.

|      | Males         |              |            |            | Fe           | emales      |              |
|------|---------------|--------------|------------|------------|--------------|-------------|--------------|
| No.  | V.C.          | T.A.         | B.C.(      | . No.      | ¥.C.         | T.A.        | B.C.Q.       |
| 21   | 1500          | 500          | 49         | 57         | 600          | 250         | 28           |
| 53   | 1200          | 300          | 34         | 105        | 1700         | 250         | 84           |
| 61   | 800           | 150          | 29         | 108        | 750          | 300         | 32           |
| 66   | 1500          | 500          | 65         | 125        | 1050         | 400         | 45           |
| ·71  | 1050          | 200          | 47         | 136        | 1650         | 150         | 74           |
| 86   | 1400          | 300          | 59         | 176        | 1200         | 250         | 48           |
| 92   | 800           | 200          | 33         | 186        | 1400         | 500         | 55           |
| 113  | 1150          | 350          | 50         | 217        | 1250         | 300         | <b>4</b> 8   |
| 133  | 1400          | 250          | <b>4</b> 8 | <u>243</u> | 1500         | <u>250</u>  |              |
| 134  | 1950          | 400          | <b>7</b> 5 |            |              |             |              |
| 141  | 1000          | <b>4</b> 50  | 28         |            |              |             |              |
| 142  | 400           | 100          | 17         |            |              |             |              |
| 145  | 850           | 300          | 28         |            |              |             |              |
| 157  | 1400          | 200          | 61         |            |              |             |              |
| 159  | 1350          | <b>4</b> 00  | 62         |            |              |             |              |
| 160  | 2000          | 150          | 86         |            |              |             |              |
| 188  | 1300          | 150          | 51         |            |              |             |              |
| 196  | 1650          | 200          | 69         |            |              |             |              |
| 206  | 1500          | 200          | 54         |            |              |             |              |
| 209  | 750           | 200          | 33         |            |              |             |              |
| Nean | 1150<br>1242  | 300<br>276   | 49         | Mean       | 1233         | 294         | 52           |
| S.D. | <b>±</b> 387  | <b>£1</b> 16 | 217        | S.D.       | <b>£</b> 153 | <b>£</b> 95 | £17          |
| S.E. | <u> 1</u> 244 | <u> 1</u> 74 | <u> </u>   | S.E.       | ± 184        | :fll4       | <u> 1</u> 20 |

| Significan   | t Difference   | Between Fever and  | Non-fever Groups           |  |  |  |
|--------------|----------------|--------------------|----------------------------|--|--|--|
|              | Vital Capacity |                    |                            |  |  |  |
|              | 'a'(see        | abo <b>ve) 'b'</b> | Significance               |  |  |  |
| 35-46 Males  | 143.4          | 35                 | Not <b>signific</b> ant    |  |  |  |
| 35-46 Female | s 140.7        | 44                 | Not significant            |  |  |  |
| 46-56 Males  | 444            | 247                | Not significant            |  |  |  |
|              |                | Tidal Air          |                            |  |  |  |
| 35-46 Males  | 57.9           | 18                 | Not significant            |  |  |  |
| 35-46 Female | s 53.1         | 37                 | Not significant            |  |  |  |
| 46-56 Males  | 122.4          | 40                 | Not significant            |  |  |  |
|              | Bre            | athing Capacity G  | uotient                    |  |  |  |
| 35-46 Males  | 33             | 1                  | Not significant            |  |  |  |
| 35-46 Female | s 30.3         | 2                  | Not significant            |  |  |  |
| 46-56 Males  | 23.7           | 15                 | Not significant            |  |  |  |
| Si           | gnificant Dif  | ference With Resp  | irator <b>y</b> Infections |  |  |  |
|              |                | Vital Capacity     |                            |  |  |  |
| 24-34 Males  | 129.9          | 5                  | Not significant            |  |  |  |
| 35-46 Males  | 115.5          | 104                | Not significant            |  |  |  |
| 35-46 Female | s 97.2         | 89                 | Not significant            |  |  |  |
|              |                | Tidal Air          |                            |  |  |  |
| 24-34 Males  | 39             | 13                 | Not significant            |  |  |  |
| 35-46 Males  | 48.9           | 22                 | Not significant            |  |  |  |
| 35-46 Female | s 41.4         | 17                 | Not significant            |  |  |  |
|              | Brea           | thing Capacity Qu  | otient                     |  |  |  |
| 35-46 Males  | 24.6           | 9                  | Not significant            |  |  |  |
| 35-46 Female | s 23.4         | 5                  | Not significant            |  |  |  |

## Vital Capacity

|                                |        | '&'            | *D*                | Significance    |
|--------------------------------|--------|----------------|--------------------|-----------------|
| 19-23                          | Male   | 63.6           | 203                | Significant     |
| æ<br>2 <b>4-</b> 34            | Female | 58.2           | 96                 | Significant     |
| 24-34                          | Male   | 111.9          | 149                | Significant     |
| 35 <b>-4</b> 6                 | Female | 108.9          | 250                | Significant     |
| 35-46                          | Male   | 167.4          | 375                | Significant     |
| <b>46-</b> 56                  | Female | 162.6          | 436                | Significant     |
| 46 <del>-</del> 56             | Male   | 288.6          | 452                | Significant     |
| 56 <del>-</del> 6'/            | Female | 19 <b>9.</b> 5 | 460                | Significant     |
|                                |        | Т              | idal Air           |                 |
| 19-23                          | Male   | 25.5           | 58                 | Significant     |
| 24 <b>-34</b>                  | Female | 27.6           | 30                 | Significant     |
| 24-34                          | Male   | 37.8           | 35                 | Not significant |
| 35 <b>-4</b> 6                 | Female | 42.3           | 51                 | Significant     |
| 35 <del>-</del> 46             | Male   |                | 98                 | Significant     |
| 46 <b>-</b> 56                 | Female | 50.7           | 110                | Significant     |
| <b>46-56</b>                   | Male   | 93.9           | 66                 | Not significant |
| <sup>م</sup><br>56 <b>-</b> 67 | Female | 102.6          | 103                | Significant     |
|                                |        | Breathin       | g Capacity Quotien | t               |
| 35-46                          | Male   | 14.7           | 10                 | Not significant |
| α<br>46 <del>-</del> 56        | Female |                | 11                 | Not significant |
| 46 <del>~</del> 56             | Male   | 13.8           | 1                  | Not significant |
| ∞<br>56 <b>−</b> 67            | Female |                | 1                  | Not significant |

## Significant Difference Between Male and Female

|                 |       | Vital Capacity    |                 |
|-----------------|-------|-------------------|-----------------|
|                 | *a*   | יטי               | Significance    |
| 19-23           | 44.4  | 17                | Not significant |
| 24-34           | 74.1  | 90                | Significant     |
| 35-46           | 137.4 | 11                | Not significant |
| 46-56           | 188.7 | lī                | Not significant |
| 56 <b>-</b> 6'î | 295.8 | 9                 | Not significant |
|                 |       | Tidal Air         |                 |
| 19 <b>-23</b>   | 11.1  | 2                 | Not significant |
| 24-34           | 35.4  | 30                | Not significant |
| 35-46           | 44.1  | 8                 | Not significant |
| 46-56           | 63.9  | 19                | Not significant |
| 56-67           | 121.5 | 18                | Not significant |
|                 |       | Breathing Capacit | y Quotient      |
| 35-46           | 23.4  | 6                 | Not significant |
| 46-56           | 11.4  | 5                 | Not significest |
| 56-67           | 20    | 3                 | Not significant |

| S.D.                   | Mean T.A. | S.D.          | Mean V.C.     | T.A. | V.C. | No •        |
|------------------------|-----------|---------------|---------------|------|------|-------------|
| <b>2</b> 116           | 276       | <b>±</b> 387  | 1242          | 100  | 750  | 3 <b>3</b>  |
| <b>4</b> 90            | 210       | <b>±</b> 226  | <b>7</b> 90   | 250  | 700  | 78          |
| <b>±</b> 116           | 276       | <b>±</b> 387  | 1 <b>2</b> 42 | 100  | 400  | 114         |
| <b>±</b> 53            | 112       | £172          | 415           | 50   | 100  | 118         |
| <b>z<sup>/90</sup></b> | 210       | <u> 1</u> 226 | 790           | 150  | 900  | 179.        |
| <b>≁</b> 95            | 294       | <b>£</b> 153  | 1233          | 250  | 1100 | <b>2</b> 00 |
| <b>ź</b> 116           | 276       |               |               | 15   |      | 201         |
| <b>±11</b> 6           | 216       | <u>7</u> 387  | 1242          | 60   | 1200 | 202         |
| <b>±</b> 49            | 98        | <b>±</b> 153  | 426           | 100  | 200  | 203         |
| <b>£</b> 53            | 112       |               |               | 75   |      | 204         |

Cases of Bulbar Poliomyelitis Requiring Respirator

#### Interpretation of Results

In using the Breathing Capacity Quotient, an actual vital capacity equal to the theoretical estimate would give a value of one hundred. Thus it can be seen that the values obtained with this instrument are considerably lower than would probably be found by spirometry. Metheny (9) states that in similar calculations using actual measurements by spirometry, the theoretical values tend to be high, but that Stewart's (14) regressive equations which are used in this study, are one of the most accurate estimates. It seems quite likely, since the equations were derived from a different group of children than used in this study, that this is a major source of error. Errors of spirometry, such as friction and difference in pressure inside and outside the bell, which is mentioned by Metheny (9), would tend to decrease the value rather than increase it. To have a fair comparison, the same group of children should be tested on both instruments. It is also possible that the Bennett Respiratory Ventilation Meter is inaccurate. The use of inspiration instead of expiration must also be considered as a source of the different values. Another possibility is leakage of air about the mask. However the same reading may be obtained holding the mask loosely as holding it tightly. Furthermore one would expect a lower Breathing Capacity Quotient in the lower age groups where less cooperation is available. This is not the case; there is no significant difference between the means

of the Breathing Capacity Quotients of any of the size groups. This fact is also evidence against an emotional factor being of prime importance; one would expect higher Breathing Capacity Quotients in older, more cooperative age groups, whereas the actual tendency seems to be toward lower values. The children in this study were measured lying down, whereas they stand for spirometry. In adults there is only a 4.4% difference in vital capacity in the two positions. However, this must remain a possible source of error.

The differences in vital capacity of the size groups were significant. Two of the differences in tidal air were not, which suggests that vital capacity is a more valid measurement.

There was no significant difference in any age groups between those with fever and those without fever. Thus it is not necessary to consider this in testing patients with bulbar policimyelitis.

There was likewise no significant difference between those with respiratory infections and those without. This is contrary to what might be expected since there are reports that the vital capacity is lowered under such conditions. This may be explained, in part at least, by the fact that all types and severity of respiratory infections are included. If it were restricted to severe bronchial asthma, for instance, the results might be different, but apparently an upper respiratory infection is not significant.

The differences between male and female were not significant with the exception of one group, that which includes children approximately three months to over one year. This is an age of very rapid growth, which may exaggerate the difference between the sexes, the males being larger and having higher vital capacities. It is also possible that the statistics give an inaccurate picture, although this is one of the larger groups, and would thus tend to be representative. The overall picture of no difference is not in agreement with Metheny's(27) work. She states that there is a greater difference in vital capacity than can be accounted for by difference in height. She does not say what statistical methods were used. In our study the males did not consistently have a larger vital capacity and the differences were not significant.

There were ten cases of bulbar poliomyelitis, the vital capacity and tidal air having been taken on entrance to the hospital or just before going into the respirator. In three cases both vital capacity and tidal air were decreased below 1 S.D. In one, the wital capacity only, was decreased and in one it was decreased, but still within 1 S.D. In two cases the tidal air, only, was available; both were decreased and one below 1 S.D. In one case the tidal air was below 1 S.D. while the vital capacity was normal. In two cases both values were normal. Thus in eight of the ten, the respiration was measurably diminished before the respirator was used. There is no indication from these ten cases as to whether vital capacity or tidal air tends to be most valuable. More work should be done on this subject. This instrument would probably be

+

of most walue in following individual cases. A consistent decrease would be more significant than any one value in itself. It could be invaluable in determining when a patient is ready to be out of a respirator.

#### Summery

This paper contains a brief survey of the literature on spirometry and a description of the methods used in obtaining the vital capacity and tidal air of two hundred and ninety children. The measurements are grouped according to the height of the child. Male and female are separated, as well as those with fever, respiratory conditions, and bulbar poliomyelitis. The measurements are compared with those expected by spirometry for each child. For each group the standard deviation and standard error are calculated, as well as the significant difference between groups, fever and nonfever, male and female, and respiratory and non-respiratory conditions. It was found that:

 Measurements with the Bennett Respiratory Ventilation Meter are lower than it is estimated that spirometric measurements would be.
 Vital capacity is probably a more valid measurement than tidal air.
 There is no significant difference between fever and non-fever in vital capacity and tidal air.

4. Respiratory infections do not cause a significant difference in wital capacity and tidal air. 5. There is no dignificant difference between the vital capacity of males and females except in the 24-34 in. size group, in which case the males have a higher vital capacity.

6. The Bennett Respiratory Ventilation Meter may be of great value in following cases of bulbar poliomyelitis, both in judging when the patient needs a respirator and when he may be out of one. It is felt that the norms established in this study may be useful in determining the amount of respiratory depression.

#### BIBLIOGRAPHY

- I. Christie, R. V. Lung Volume and Its Subdivisions, J. Clin. Invest. 1932, vol. 11, p. 1099.
- 2. Hutchinson, John The Capacity of the Lunge, Lancet, 1846, vol. I, p. 630.
- 3. Mills, J. N. Variability of Vital Capacity of the Normal Human Subject, J. Phys. 1949, vol. 110, p. 76.
- 4. Smith, Hugh H., McLanahan, Samuel, and Davison, Wilburt C. Apparatus for Determination of Vital Capacity in Infants, Am. J. Dis. Child. 1942, vol. 63, p. 92.
- 5. Deming, Jean, and Washburn, Alfred H. Respiration in Infancy. Am. J. Dis. Child. 1935, vol. 49, p. 108.
- 6. Deming, Jean, and Hanner, James P. Respiration in Infancy. Am. J. Dis. Child. 1936, vol. 51, p. 823.
- 7. Donald, K. W. and Christie, R. V. New Method of Clinical Spirometry. Clin. Sc. 1949, vol. 8, p. 21.
- 8. Edwards, D. J. and Wilson, May G. Analysis of Factors of Variability in the Vital Capacity Measurements of Children. Arch. Int. Med. 1922, vol. 30, p. 638.
- 9. Metheny, Eleanor Vital Capacity in Preschool Children Uni. of Iowa Studies in Child Welfare, 1941, vol. 18, p. 207.
- 10. Van Slyke, D.D. and Binger, C.A.L. The Determination of Lung Volume Without Forced Breathing, J. Exp. Med. 1923, vol. 37, p. 57.
- 11. Emerson, Paul W. and Grean, Hyman, Vital Capacity of the Lungs of Children, Am. J. Dis. Child. 1921, vol. 22, p. 202.
- 12. Jersild, Arthus T. et. al. Vital Capacity in Children, Child Development Monograph, Columbia Univ. 1932, No. 10, pp.ix, 73.
- 13. Dreyer, Georges Normal Vital Capacity and Relation to Body Size, Lancet, 1919, Vol. 2, p. 227.
- 14. Stewart, Chester A. Vital Capacity of the Lungs of Children in Health and Disease, Am. J. Dis. Child. 1922, vol.24, p. 451.

- 15. West, Howard F. Clinical Studies on the Respiration, Arch. Int. Med. 1920, vol. 25, p. 307.
- 16. Dreyer, Georges, and Hanson, G. F. Assessment of Physical Fitness by Correlation of Vital Capacity and Certain Measurements of the Body. New York City, P. B. Hoeber, 1921, p.1.
- 17. Myers, J. A. Vital Capacity of the Lungs, Williams and Wilkins, 1925, p. 140.
- 18. Turner, R. A. Vital Capacity in College Women, Arch. Int. Med. 1930, vol. 46, p. 930.
- 19. Kelly, Helen Garside, Studies in Child Welfare, Univ. Iowa Stud. 1933, vol. 7, p. 59.
- 20. Roberts, Frank L., and Crabtree, James A. Vital Capacity of the Negro Child, J.A.M.A. 1927, vol. 88, p. 1950.
- 21. Edwards, D. J., and Wilson, May G. Standard for Comparing the Vital Capacity of Subjects of Different Size, J. Lab. and Clin. Med. 1939, vol. 24, p. 543.
- 22. Hastings, William W. A Manuel for Physical Measurements. Springfield, Mass. The International Young Men's Christian Association Training School, 1902, pp.xviii, 112.
- 23. Stewart, Chester A. A Consideration of the Extent of the Normal Variability of the Vital Capacity of the Lungs of Children. Am. Rev. T. B. 1926, vol. 13, p. 272.
- 24. Lemon, Willis S. and Moersch, Herman J. Comparison of Constants for Determination of Vital Capacity. Arch. Int. Med. 1924, vol. 33, p. 118.
- 25. Stewart, Chester A., and Sheets, O. B. Vital Capacity of the Lungs of Children. Am. J. Dis. Child. 1922, vol. 24, p. 83.
- 26. Baldwin, Bird T. Vital Capacity and Physical Measurements, Am. J. Phys. Anthropol. 1928, vol. 12, p. 257.
- 27. Metheny, Eleanor Vital Capacity in the First Decade, J. Ped. 1941, vol. 19, p. 841.
- 28. Kaltreider, Nolan L. Fray, W.W. and Hyde, H.V. Z. Effect of Age on Pulmonary Capacity, Am. Rev. T<sup>\*</sup>B. 1936, vol. 37, p.662.
- 29. Gross, Desiderio, Investigation Concerning Vital Capacity, Am. Heart J. 1943, vol. 25, p. 335.

30. Wilson, May G. and Edwards, D. J. Diagnostic Value of Determining the Vital Capacity of the Lungs of Children. J.A.M.A. 1922, vol. 78, p. 1107.

٠

31. Plum, Fred, and Whedon, Donald. The Rapid Rocking Bed, 1951, N.E. J. of Med. vol, 245, p. 235.