Roles of Extracellular Vesicles in Opioid Addiction: Potential Applications
Sydney Wheeler, Katherine Odegaard, and Sowmya V. Yelamanchili
Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198
Contact: syelamanchili@unmc.edu

Abstract
Extracellular Vesicles (EVs) are lipid-bilayer membranous vesicles that facilitate intercellular communication via their secretion. EVs contain a variety of cargoes that reflect the intracellular environment of their host cells, and these cargoes can induce functional changes in recipient cells. A wide body of previous research has demonstrated that EVs play a role in a diverse range of disease pathologies as well as regular function and have emerged as promising vehicles for therapeutics and drug-delivery systems. Unsurprisingly, some work has recently been published implicating EVs in drug addiction pathways and therapeutics. Given the pressing scope of the opioid misuse and abuse in the U.S., it is necessary to consider the role of EVs in the development of opioid dependence and tolerance, as well as their role in potential therapeutics. The current review seeks to identify work investigating the role of EVs in opioid addiction and identify gaps and future directions in the literature.

Background
- Understanding the mechanisms underlying opioid addiction and potential treatments for opioid dependency has become an increasingly urgent topic of investigating.
- Extracellular Vesicles are a heterogeneous class of lipid-bilayer vesicles that are key players in cell-to-cell communication and cargo transmission.
- EV cargoes are reflective of the intracellular conditions of the host cell and can be transmitted from host to recipient cells to induce functional changes in the recipient cell.2 Cargoes include: Lipids, Protein, Small non-coding RNAs.
- EV subcategories: Exosomes (30 nm – 150 nm), Microvesicles (100 nm – 500 nm), Apoptotic Bodies (500 nm – 5000 nm)
- EVs have been implicated in neurodegenerative diseases, cardiovascular disease, HIV, and many cancers.
- EVs also play a role in regular physiological processes, including immune response, exercise, and stem-cell communication.
- EV cargo (mRNA) has been implicated in the body’s response to addictive substances and select studies have demonstrated elevated EV release in response to addictive drugs.

Hypothesis
Extracellular Vesicle-associated cargoes play a critical role in exacerbating opioid addiction and dependency. EVs have the potential to serve as vehicles for therapeutics in opioid addiction.

Methods
Search Database: PubMed

Search Terms: extracellular vesicles, exosomes, microvesicles, opioids, addiction, opioid dependence

Drugs Considered: All Opioid Analgesics, including prescription opioids & illicit Heroin

Excluded studies that did not investigate the role of EVs in opioid dependence and addiction or therapeutics

Results

<table>
<thead>
<tr>
<th>Opioid(s) investigated</th>
<th>Context</th>
<th>Findings</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heroin & Morphine & Methadone</td>
<td>Cargo Delivery Vehicles</td>
<td>Exosomal delivery of MOR-siRNA reduced the expression of MORs in target recipient cells</td>
<td>Liu et al. (2015).</td>
</tr>
<tr>
<td>Morphone & Buprenorphine</td>
<td>Cargo Delivery Vehicles</td>
<td>Uptake of morphine-exposed astrocyte-derived extracellular vesicles (ADEVs) by microglia led to impaired microglial phagocytosis. Intranasally delivered lncRNA-Coq2 siRNA-loaded ADEVs in morphine exposed mice microglia restored microglial phagocytic activity.</td>
<td>Hu et al. (2018).</td>
</tr>
</tbody>
</table>

Conclusion and Future Directions
Extracellular Vesicles and their associated cargos likely play a significant role in mediating the body’s response to opioids. Research evaluated in this review has demonstrated that EVs may play a crucial role in opioid-mediated neuroinflammation. Further: EVs have a promising future in therapeutics as cargo delivery systems. Future study is necessary to fully understand the role of EVs in mediating the response to opioids and to harness the potential of EVs as therapeutic delivery systems to fight opioid addiction and dependence. This study will be incorporated into a forthcoming, more comprehensive review of extracellular vesicles.

Acknowledgements

This work would not have been possible without the support of UNMC’s MD/PhD program, the Summer Undergraduate Research Program (SURP) at UNMC, and the guidance of Dr. Sowmya Yelamanchili and Katherine Odegaard of the Department of Anesthesiology.

References