The use of simulation in the clinical education of radiation science students

Lisa A. Bartenhagen
University of Nebraska Medical Center, labarten@unmc.edu

Tanya M. Custer
University of Nebraska Medical Center, tcuster@unmc.edu

Follow this and additional works at: https://digitalcommons.unmc.edu/sahp_rste_pres

Recommended Citation

https://digitalcommons.unmc.edu/sahp_rste_pres/4
The Use of Simulation in the Clinical Education of Radiation Science Students

School of Allied Health Professions, Division of Radiation Science Technology Education
Lisa Bartenhagen, MS, R.T.(R)(T), Tanya Custer, MS, R.T.(R)(T)

INTRODUCTION
Radiation science education students are considered to be adult learners. According to Fanning & Gaba, adults learn best through experiential learning. Experiential learning actively engages the student by providing them with the ability to participate and play a role in the acquisition of knowledge. Simulation in medical education is a practical approach which allows adults to learn experientially. The goal of simulation is not to substitute for actual clinical experience, but to replicate these clinical scenarios for the purpose of assessment of skill and feedback of the activity.

Reform in education and medicine, along with the pressures associated with patient safety, have promoted the utilization of simulation in medical education. Team-based learning and inter-professional collaboration can also be fostered in a simulated setting. There are many approaches to simulated clinical education; three current methods will be addressed in this exhibit. These three methods include:

1) Utilization of a clinical skills lab manikin
2) Virtual simulation
3) Use of Standardized Patients

Cognitive, psychomotor and affective learning domains can all be evaluated by using any of these three types of simulation methods.

VIRTUAL SIMULATION
Virtual simulation or computer based simulation is another option for use in clinical education. The United States Medical Licensing Examination (USMLE) and the American Board of Family Practice use simulation for examinees. Psychomotor skills can be enhanced in a virtual setting where time and patient constraints are not an issue. Repetition of movements and manipulation of equipment will quicken clinical procedures.

Critical thinking is addressed by using virtual anatomy to understand how radiation affects surrounding tissues while practicing techniques to minimize radiation to normal tissue.

STANDARDIZED PATIENTS
Standardized Patients (SPs) are individuals trained to portray specific clinical cases in a manner that is consistent and measurable. SPs provide real-time feedback on the quality of care provided. The use of SPs is an excellent tool for evaluating communication skills.

Figures 3 & 4 illustrate how critical thinking skills can be evaluated along with the use of SPs. Figure 3 demonstrates a mock treatment plan with the spinal cord blocked out of the treatment field. Figure 4 is a mock localization image with the collimator rotated 180° resulting in the cord being completely unprotected. When using an SP, students can identify this type of misadministration in a safe learning environment without risk of dangerously irradiating a patient.

Figure 5 demonstrates the student performing psychomotor skills by positioning the SP. Effective communication is crucial in this type of exercise with the SP having the opportunity to give feedback at the conclusion of the exercise.

STANDARDIZED PATIENTS
Standardized Patients (SPs) are individuals trained to portray specific clinical cases in a manner that is consistent and measurable. SPs provide real-time feedback on the quality of care provided. The use of SPs is an excellent tool for evaluating communication skills.

Figures 3 & 4 illustrate how critical thinking skills can be evaluated along with the use of SPs. Figure 3 demonstrates a mock treatment plan with the spinal cord blocked out of the treatment field. Figure 4 is a mock localization image with the collimator rotated 180° resulting in the cord being completely unprotected. When using an SP, students can identify this type of misadministration in a safe learning environment without risk of dangerously irradiating a patient.

Figure 5 demonstrates the student performing psychomotor skills by positioning the SP. Effective communication is crucial in this type of exercise with the SP having the opportunity to give feedback at the conclusion of the exercise.

REFERENCES