Using mlearning in the education of radiation science students

Tanya M. Custer
University of Nebraska Medical Center, tcuster@unmc.edu

Lisa A. Bartenhagen
University of Nebraska Medical Center, labarten@unmc.edu

Tammy L. Jones
University of Nebraska Medical Center, tljones@unmc.edu

James B. Temme
University of Nebraska Medical Center, jtemme@unmc.edu

Connie Mitchell
University of Nebraska Medical Center

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unmc.edu/sahp_rste_pres

Recommended Citation
https://digitalcommons.unmc.edu/sahp_rste_pres/3

This Conference Proceeding is brought to you for free and open access by the Radiation Science Technology Education at DigitalCommons@UNMC. It has been accepted for inclusion in Posters and Presentations: Radiation Science Technology Education by an authorized administrator of DigitalCommons@UNMC. For more information, please contact digitalcommons@unmc.edu.
Authors
Tanya M. Custer, Lisa A. Bartenhagen, Tammy L. Jones, James B. Temme, Connie Mitchell, and Jammie Wilbanks

This conference proceeding is available at DigitalCommons@UNMC: https://digitalcommons.unmc.edu/sahp_rste_pres/3
Using mLearning in the Education of Radiation Science Students

School of Allied Health Professions, Division of Radiation Science Technology Education

Table 1: Focus Group Findings

<table>
<thead>
<tr>
<th>Application</th>
<th>Use</th>
<th>Student Feedback Pros</th>
<th>Student Feedback Cons</th>
<th>Overall impression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poll</td>
<td>Nearby</td>
<td>• Utilized in the classroom setting to review case studies & course material using real-time polling</td>
<td>• Interactive learning environment</td>
<td>Overall students felt that this was a beneficial learning tool when used in the classroom.</td>
</tr>
<tr>
<td>Skeletal 3D (Figure 1)</td>
<td>• Utilized independently by students as a study tool for anatomy course</td>
<td>• Interactive learning environment</td>
<td>• Difficult for distance students to connect</td>
<td>Overall students felt that this was a beneficial learning tool when used in the classroom.</td>
</tr>
<tr>
<td>Trajecsys</td>
<td>• Utilized in the clinical setting as a reporting system</td>
<td>• Very useful to keep electronic record of clinical activity</td>
<td>• Screen is too small to use</td>
<td>Overall students felt that the app was nice for accessing student information & grades.</td>
</tr>
<tr>
<td>RadTech (Figure 2)</td>
<td>• Utilized in the clinical setting as a resource for students</td>
<td>• Useful to use as a review during clinical & before tests.</td>
<td>• Use of touch in the clinical setting can be viewed as "unprofessional."</td>
<td>Overall students felt that the app was useful; although they were unsure if they would be willing to purchase it on their own.</td>
</tr>
<tr>
<td>Blackboard (Bb)</td>
<td>• Utilized both in & out of class as a resource for students to access course information</td>
<td>• Useful to access course information & grades</td>
<td>• Wireless connection is needed to access on-line information</td>
<td>The Bb application was one of the top rated applications by the students. They noted the ability to access course information at any given time as a value to them.</td>
</tr>
</tbody>
</table>

Introduction

Radiation science is a highly visual field that is constantly evolving due to technological advances. Technology has significantly improved almost all aspects of the field over the past 10-15 years. These advances in technology have also played a significant role in the education of radiation science students didactically and clinically.

The enormous increase in the capabilities of information technology provides the opportunity for educators to dramatically change their way of teaching. mLearning or mobile learning involves the use of mobile devices (i.e. personal digital assistants, smart phones, iPhones, iPads, laptops and tablets) to enhance teaching and learning. The most significant advantage of mLearning is the mobility of the technology which allows for unlimited, immediate and continuous access to course materials.

The goal of this initial research is to discuss the implementation of mobile learning, specifically through the use of the Apple iTouch, into the education of radiation science students.

Methods

Twenty six students who matriculated into the radiation science programs in the Fall of 2011 were provided with an Apple iTouch to utilize in both the clinical and didactic setting. The primary educational programs and applications investigated along with their use and student feedback can be found in Table 1.

Conclusion

Research on the use of mobile devices has been done in fields such as medicine and nursing; however, there is little research in the field of radiation science. More research is needed to determine how these devices can be used as an instructional aid and competency assessment tool for radiation science students. This preliminary study provides a platform for further research in this area. Research is currently underway to further explore the specific roles of mobile devices in the education of radiation science students along with the perceptions of student, faculty, and clinical staff on their use.

References