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Figure 4.8.  Transcriptional analysis of putA, rocD, rocA, gudB, rocF, and hutU 
in S. aureus JE2 and JE2 ΔahrC.  Northern analysis was performed with RNA 
isolated from exponential (early) and post-exponential (late) phases of growth in 
CDM  (A) and CDMG (B) from JE2 and JE2 ΔahrC .  Equal loading of RNA was 
ensured via staining of the RNA gel with ethidium bromide and visualization of the 
16s and 23s rRNA (data not shown).   
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to control gene expression according to what nutrients are available (12).  Pathogenic 

bacteria often contend with its host restricting nutrient availability, thus they have 

evolved or acquired virulence factors that aid in nutrient acquisition through host tissue 

destruction.  Often, these bacteria utilize the same regulators of metabolism as 

regulators of virulence, coordinating nutrient availability with virulence.  Coordination of 

regulation in this way reserves expression of destructive virulence factors for nutrient 

limiting environments (12, 117).  In S. aureus, virulence and metabolic gene expression 

have been linked to both CodY and CcpA activity, allowing this pathogen to maximize 

the limited nutritional resources available within its host.  Li et al. demonstrated a link 

between carbon catabolite repression via CcpA and virulence, as a ccpA mutant 

demonstrated attenuated virulence in a liver abscess model of infection compared to 

wild type, indicating the regulation of carbon source utilization is important during 

pathogenesis (5).  Furthermore, S. aureus CodY has been shown to regulate gene 

expression through a spectrum of CodY activity.  As nutrients begin to be depleted from 

the environment, CodY sequentially activates the expression of virulence genes 

(typically via loss of repression) encoding proteins that destruct host tissues, as wells as 

nutrient scavenging/metabolism genes allowing the bacterium to acquire and utilize the 

available nutrients found within the degraded tissue (135).      

Understanding the interwoven metabolic and regulatory networks within S. 

aureus in their entirety requires large data sets and a systems biology approach; 

however, defining individual regulatory nodes provides useful information as to when 

these metabolic networks may be functional during pathogenesis.  We have previously 

described an emerging model of S. aureus abscess formation where it is hypothesized 

that viable cells within the abscess must utilize lactate, peptides, and free amino acids 

as carbon and energy sources (10, 11, 104).  In our assessment of amino acid 
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catabolism we determined that S. aureus utilizes glutamate, and those amino acids that 

can be converted into glutamate, as central carbon sources.  Carbon catabolite 

repression prevents energy expenditure by repressing the expression and activity of 

unnecessary catabolic systems when preferred carbon sources such as glucose are in 

abundance (1, 119, 120).  It has been well documented that the pathways 

interconverting proline and arginine are under repression by the catabolite repressor, 

CcpA, in the presence of glucose as well as their conversion to glutamate via rocA (5, 

37, 41, 128).  Therefore, it was of no surprise to find induction of putA, rocD, rocF, rocA, 

and gudB expression following the exhaustion of glucose in CDMG (Figure 4.1A).  The 

increased expression in JE2 ccpA::tetL compared to wild type JE2 during early-

exponential growth in CDMG confirms this repression is ccpA dependent (Figure 4.1A).  

Furthermore, as predicted, transcription of putA, rocD, rocA, gudB, and rocF was 

detected during exponential growth in CDM (Figure 4.1B), further indicating that 

glutamate, as well as proline and arginine, can be utilized as carbon sources during 

nutrient limitation.    

 Bacterial growth is dependent on the availability of nutrients.  Nutritional 

adaptation allows for the expression of genes involved in the transport and catabolism of 

the nutrients that are available in the environment.  The global regulator, CodY, has 

been well documented to regulate amino acid metabolism in response to nutrient 

starvation by responding to the intracellular concentration of both BCAAs and GTP.  

During the transition from exponential- to stationary-phase growth, decreasing BCAA 

and GTP concentrations lead to derepression of CodY regulated genes (129-131).  

Waters and colleagues have developed a model where a spectrum of CodY activity 

promotes growth in varying BCAA and GTP concentrations.  It was determined that 

under conditions of increasing nutrient depletion, CodY sequentially turns on genes 
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required for transporting nutrients, before turning on genes involved in the de novo 

synthesis of the compound.  Thus, prioritizing nutrient uptake and catabolism, ensures 

that energy and resources are not wasted on synthesizing nutrients that are available in 

the environment (135).       

In studies performed by Waters et al., transcriptional profiling via RNA-seq 

experiments indicated that transcripts of the proline transporters, proP and putP, were 

among the first to be induced following nutrient depletion (135) suggesting that proline 

catabolic genes would also be induced by CodY during nutrient limitation.  Indeed, 

northern blot experiments demonstrated induction of glutamate synthesis genes via 

proline catabolism is CodY-dependent.  In the absence of glucose, and therefore when 

CcpA repression is alleviated, a codY mutant demonstrates decreased induction of putA 

and rocA, when compared to wild type JE2, suggesting CodY activity facilitates 

glutamate synthesis via the activation of proline catabolic genes in the absence of a 

preferred carbon source (Figure 4.1).  A codY mutant also results in a significant growth 

yield defect, similar to that seen in a putA mutant when grown in CDM-E (Figure 4.2), 

further suggesting proline catabolism is regulated by CodY activity.  Collectively, our 

assessments of the induction of glutamate synthesis genes via the catabolism of 

arginine and proline suggest that the presence of glucose represses the transcription of 

these pathways in a CcpA-dependent manner.  In the absence or exhaustion of glucose, 

CodY activity leads to induction of the proline catabolic genes, putA and rocA, facilitating 

the use of proline as a carbon source.   

Regulation of both proline and arginine catabolic pathways leading to the 

synthesis of glutamate have been well characterized in B. subtilis. Several transcriptional 

regulators have been characterized that function to regulate these pathways, including 

PutR, RocR, AhrC, and the aforementioned CcpA and CodY.  While S. aureus does not 
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encode orthologous PutR or RocR proteins, its genome does encode the arginine 

transcriptional regulator, AhrC.  In fact, it has been reported that three arginine 

transcriptional regulators, ArgR1, ArgR2, and AhrC, are encoded by the S. aureus JE2 

genome (50).  As S. aureus arginine and proline synthesis pathways are interconnected 

and as these ArgR-type regulators have been shown in several gram-positive organisms 

to regulate both arginine anabolism and catabolism (5, 37, 41), we hypothesized one or 

more of the ArgR-type regulators encoded by S. aureus JE2 functioned to regulate 

proline and arginine catabolism.  Growth studies revealed that when grown in CDM-E a 

mutation in argR1 resulted in similar growth defects as seen in putA and codY mutants, 

indicating this mutant is unable to utilize proline for glutamate synthesis (Figure 4.6).    In 

conjunction with these findings, and similar to results seen in the codY mutant, northern 

blot analysis demonstrated that after the exhaustion of glucose in CDMG and during 

exponential growth in CDM, a mutation in argR1 results in loss of expression of putA 

when compared to wild type JE2 (Figure 4.5).  Furthermore, we predicted that a 

mutation in argR2 would have little effect on expression of these pathways, as it is an 

acquired regulator, not native to the chromosome.  Much to our surprise, a mutation in 

argR2, as well as a mutation in ahrC, resulted in moderate growth defects when grown 

in CDM-E (Figure 4.6) and decreased putA expression following glucose exhaustion 

when grown in CDMG, albeit less pronounced than the argR1 mutant (Figure 4.7B and 

4.8B).  These data suggest that all three arginine regulators, in the absence of glucose 

and carbon catabolite repression, have the ability to induce putA expression, thus 

facilitating activation of proline catabolism.  A mutation in argR2 also resulted in delayed 

expression of rocA and increased rocF transcription during exponential growth in CDM, 

while an ahrC mutant had increased rocA expression during exponential growth in CDM 

when compared to wild type (Figure 4.7A and 4.8A), suggesting these regulators also 

have a function in arginine utilization and catabolism.   



	 105	

While these studies indicate that in the absence of glucose, ArgR1, ArgR2, and 

AhrC function in regulating the pathways involved in glutamate synthesis via the 

catabolism of proline and arginine, the mechanisms of regulation remain unclear.  The 

similar lack of growth in CDM-E (Figure 4.2 and 4.6) and loss of expression of putA 

during growth in both CDMG and CDM in the argR1 and codY mutants (Figure 4.3 and 

4.5) suggest both of these regulators are involved in activation of proline catabolism.  As 

nutrients become limiting within the environment, CodY typically induces gene 

expression through loss of repression due to conformational changes induced by 

decreasing BCAA and GTP concentrations.  If loss of CodY repression during nutrient 

depletion functions to induce transcription of putA, we would expect to see increased 

expression of putA in a codY mutant.  However, as we ovserve complete loss of 

transcription of putA in the codY mutant we hypothesize induction of an unknown 

activator, such as ArgR1, by CodY could result in putA transcription.   

We observed similar growth in the argR2 mutant compared to wild type JE2 in 

CDM (Figure 4.9); however, moderate growth defects are seen when grown in CDM-E 

(Figure 4.6), indicating ArgR2 regulates glutamate synthesis under these conditions.  

Indeed, when grown in CDM the argR2 mutant demonstrated increased expression of 

rocF during exponential growth, indicating it represses arginase-mediated arginine 

catabolism (Figure 4.7A).  Delayed expression of rocA in JE2 argr2::ΝΣ when compared 

to wild type JE2 during growth in CDM indicates this mutant is not able to utilize proline 

or arginine during exponential growth (Figure 4.7A); however, growth defects are not 

observed when grown in CDM (Figure 4.9).  These data suggest the argR2 mutant is 

able to utilize other sources of carbon for growth during early exponential growth, while 

arginine and proline may be utilized during post-exponential growth.  Indeed, NMR 

analysis to determine the fate of carbon after amino acid uptake and catabolism in this 
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mutant would provide useful information as to what pathways are being utilized during 

growth in CDM.   

We observed few effects on transcription of glutamate synthesis via proline and 

arginine catabolism pathways during growth in CDM in the ahrC mutant (Figure 4.8A).  

However, we did observe increased hutU transcription during late-exponential growth in 

CDM in the ahrC mutant when compared to wild type JE2 (Figure 4.8A).  Amino acid 

consumption data demonstrated that histidine utilization followed proline and arginine 

exhaustion during growth in CDM (Figure 3.2).  While hutU transcription was not 

observed in wild type during early or late time points in CDM, it was observed in the 

ccpA, codY, and ahrC mutants (Figure 4.1B, 4.3A, and 4.8A).  In B. subtilis, repression 

of hut transcription by CcpA and CodY ensures histidine catabolism is only active when 

absolutely necessary, as histidine synthesis requires an input of 20 high-energy 

phosphate bonds (66).  Increased transcription during early exponential growth in the 

ccpA mutant indicates that even in the absence of a primary carbon source such as 

glucose, CcpA still mediates repression of some genes.  We observed increased 

transcription of hutU in the codY mutant and ahrC mutants during post-exponential 

growth, indicating both of these regulators function to repress histidine catabolism, 

however the mechanism of repression remains unclear.   

 In conclusion, the experiments described above indicate the regulation of 

glutamate synthesis via the catabolism of arginine, proline, and histidine involves several 

transcriptional regulators, including CcpA, CodY, ArgR1, ArgR2, and AhrC, however the 

exact mechanisms of regulation remain unclear.  It has been well documented by our 

group and others that the pathways leading to glutamate synthesis via proline, arginine, 

or histidine degradation are CcpA regulated and not induced in the presence of glucose 

(5, 37, 41), thus, indicating these amino acids are utilized as a carbon source in glucose 
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deplete environments.  These studies also demonstrated that CodY and ArgR1 activity 

facilitate the induction of proline catabolism via putA expression.  While the mechanism 

of putA induction remains unclear, it is possible that as nutrients are depleted from the 

environment, CodY activity results in expression of argR1, which in turn induces 

transcription of putA, however, further investigation is needed to confirm this hypothesis.  

While we are uncertain of the exact functions of ArgR2 and AhrC in the regulation of 

these amino acid catabolic pathways, northern blot and growth analyses suggest that 

they may function to regulate the sequential utilization of proline, arginine, and histidine.  

Indeed, further NMR analysis and transcriptional profiling of these regulator mutants 

should provide useful insight into the mechanisms of the regulation of glutamate 

synthesis via amino acid catabolism. 
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Chapter 5 

 

Concluding Remarks  
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Final observations of amino acid catabolism in S. aureus and Future Directions 

Pathogenic bacteria must readily adapt to changing carbon and nitrogen sources 

to successfully proliferate within their human hosts.  Understanding what metabolic 

pathways are required for growth within specific niches may reveal novel avenues for 

drug development.  S. aureus is capable of establishing an infection in a variety of 

metabolic niches within the human host, most commonly skin and soft tissues.  The work 

presented in this dissertation contributes to an evolving model of S. aureus survival 

within abscesses.  To persist within the human host, S. aureus must not only combat 

host innate defenses, such as NO production, but must also adapt its metabolic 

processes to overcome nutrient limitations at sites of infection (10, 11, 95).  It is 

proposed that the major carbon sources available at the center of staphylococcal 

abscesses are lactate, excreted from bacterial glucose fermentation during NO stress, 

and peptides.  S. aureus is able to utilize lactate via lactate quinone oxidoreductast (Lqo) 

generating pyruvate and subsequently acetate via the ATP-producing PTA/AckA 

pathway; where as peptides are predicted to provide a carbon source for the bacteria to 

fuel gluconeogenesis and biomass production (10).  The goal of this work was to assess 

amino acid catabolism in S. aureus and to determine the importance of particular amino 

acid catabolic pathways during growth without glucose or other preferred carbon 

sources.   

S. aureus encodes pathways to catabolize multiple amino acids, including those 

that generate pyruvate, 2-oxoglutarate, and oxaloacetate.  The data presented here has 

demonstrated that the enzyme GudB, which generates 2-oxoglutarate from glutamate, 

and subsequently those amino acids that lead to glutamate synthesis, is essential for 

growth in media lacking glucose.  We observed that glutamate was primarily synthesized 

through catabolism of proline via PutA and RocA during growth in the presence of amino 
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acids.  These findings contribute to a previously proposed model that predicts that S. 

aureus utilizes both host- and self-derived proteases to liberate free proline or proline-

containing peptides from the fibrin wall when encapsulated within an abscess.  A major 

constituent of the fibrotic wall encapsulating the bacterial cells is collagen and the 

second most abundant amino acid found in collagen is proline (41, 144); thus, 

suggesting a reservoir of proline is present at the site of staphylococcal infection (Figure 

5.6).  Moreover, mutants in the high affinity proline permease, PutP, are less virulent in 

animal models of infection (145, 146).  Collectively, these data and observations suggest 

S. aureus has adapted to the microenvironment of the abscess, utilizing substrates 

provided by the fibrotic wall that encapsulates it for growth and persistence.  Indeed, 

analysis of the proline catabolic putA and rocA mutants and the gudB mutant’s ability to 

survive within a murine abscess model is required to determine the functions and 

importance of these pathways in vivo.  Furthermore, characterization of proteases and 

transporters involved in the liberation and consumption of proline proposed to contribute 

to this model of abscess formation and persistence would provide evidence that S. 

aureus has the ability to utilize proline in nutrient limiting conditions.      

The results of the characterization of amino acid catabolism in S. aureus 

suggests that growth on amino acids is dependent upon ATP generation from 

PTA/AckA, as an ackA mutant was unable to grow in CDM.  In addition, a functional 

respiratory chain was required for growth.  It is not surprising that growth in the presence 

of amino acids would require ATP generation from both substrate level phosphorylation 

and the electron transport chain as amino acid transport requires ATP and is a more 

energy intensive process than carbohydrate transport.  However, it is unclear whether 

this growth phenotype is due to loss of ATP generation or disruption of intracellular 

acetyl-phosphate pools, as acetyl-phosphate is a key coeffector molecule in the cell.  
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Growth analysis of a serine dehydratase and alanine dehydrogenase double mutant, 

abolishing the cells ability to utilize glucogenic amino acids for pyruvate and subsequent 

acetate generation, would provide further information on the contribution of ATP 

generation via PTA/AckA to growth on amino acids.   

Arginine is proposed to be limiting within abscesses due to utilization by host 

innate immune responses and bacterial scavenging, however, its function in S. aureus 

pathogenesis remains unclear.  It is hypothesized that ADI activity could be important for 

pathogenesis, as arginine catabolism via the ADI pathway provides pH homeostasis and 

energy generation via ammonia and ATP production to a variety of bacteria, including 

staphylococcal species, contributing to the overall fitness of these organisms during 

growth in specific niches (16, 55, 57).  It is unclear how arginine is utilized in CDM, as 

the arcA1/arcA2/rocF triple mutant showed only slight growth yield defects.  It is possible 

that arginine catabolism via ADI could be contributing to ATP production or pH 

homeostasis during growth in the absence of preferred carbon sources as citrulline 

formation was detected in NMR analysis of arginine utilization (Figure 3.7).  Citrulline is 

an intermediate of all three arginine catabolic pathways (argininase, ADI, and NOS 

pathways), which can synthesize ATP and ammonia via ArcC.  While it is assumed that 

transposon mutations in arcA1 and arcA2 facilitate polar mutations, disrupting 

transcription of all genes involved in the arc operon, it is possible that the ArcC enzyme 

is functional in these mutants, allowing for ATP generation.  Growth analysis and murine 

abscess models of infection utilizing an arcC1/arcC2 mutant could provide more 

knowledge of the contribution of ADI during growth on alternative carbon sources.  

Furthermore, growth analysis of a nos mutant could also provide information as to what 

pathways are utilizing arginine during growth in these conditions. 
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Final observations on regulation of amino acid catabolism  

As previously discussed, S. aureus has shown to be a proline and arginine 

auxotroph (39), with growth in CDMG lacking either proline or arginine (CDMG-P, 

CDMG-R)  being dependent upon alleviation of CcpA repression (5, 37, 41).  Our 

studies, and others, have demonstrated that the multiple pathways fueling glutamate 

synthesis (via proline, arginine, and histidine), and subsequent conversion to 2-

oxoglutarate via GudB, are all under the repression of CcpA and only active during 

growth on non-preferred carbon sources (5, 37, 41). It was predicated that growth 

defects in CDM lacking arginine or proline would be observed in JE2 as CcpA repression 

is alleviated.  Although moderate defects were observed, JE2 could grow in the absence 

of proline in a RocF-dependent manner, suggesting utilization of arginine for both proline 

and glutamate synthesis (Figure 5.1A).  However, we only observed growth in CDM-R 

when ccpA was inactivated (Figure 5.1B).  Complementing these findings, NMR analysis 

demonstrated that proline utilization does not facilitate arginine synthesis during growth 

in CDM.  It is unclear how CcpA is functioning to repress arginine biosynthesis in the 

absence of arginine.  However, the detection of argG transcript, which encodes the urea 

cycle enzyme argininosuccinate lyase and is required for arginine biosynthesis, during 

post-exponential growth in CDM in both JE2 and the ccpA mutant, demonstrates 

arginine biosynthesis is induced after the exhaustion of arginine from CDM during post-

exponential growth (Figure 5.2A), thus, suggesting another regulator functions to induce 

arginine biosynthesis in the absence of arginine. The arginine transcriptional regulator, 

AhrC, has been well characterized in B. subtilis, functioning to repress arginine 

biosynthesis in the presence of arginine, while simultaneously activating arginine 

catabolism via the arginase pathway (143).  While we were surprised to determine AhrC 

had little effect on the activation of arginine catabolism  
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Figure 5.1.  Growth of S. aureus JE2 and JE2 ccpA::tetL in CDM and CDM 
lacking arginine (CDM-R). Aerobic growth of JE2 ccpA::tetL in CDM (A) and 
CDM-R (B) in comparison to wild type JE2.  Data represents means ± SEM of 
three biological replicates.  
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via the arginase pathway during growth in CDM, our data does suggest AhrC is 

functioning to repress transcription of arginine biosynthesis under these conditions.  

Northern blot analysis of the ahrC mutant during early-exponential growth in CDM 

demonstrated increased argG transcription when compared to wild type JE2 (Figure 

5.2B).  Arginine is still available in the media during early-exponential growth in CDM 

(Figure 3.2), suggesting AhrC is repressing arginine biosynthesis in an arginine-

dependent manner.  After further analysis of argG transcription, we were surprised to 

determine that while ArgR1 had no effect on transcription, ArgR2 is also functioning to 

repress argG during growth in CDM (Figure 5.2C and 5.2D).  As ArgR2 was acquired 

with the addition of the ACME island to the S. aureus USA300 JE2 genome (50), it 

would be interesting to compare regulation of argG to strains without the ACME element 

or in a JE2 ΔACME mutant. 

In most bacteria, arginine is typically synthesized via glutamate catabolism and 

the argJBCDFGH pathway.  However Nuxoll et al. demonstrated that this pathway in S. 

aureus is inactive and that proline serves as a substrate for arginine biosynthesis via 

PutA, RocD and the urea cycle, including ArgG, in the absence of CcpA repression (41).  

We hypothesized that AhrC could be functioning to repress the argJBCD operon in the 

presence of arginine; however, we observed no expression of argJ in the ahrC mutant 

(Figure 5.3).  Furthermore, we were unable to detect argJ transcript in ArgR1 or ArgR2 

during growth in CDM (Figure 5.3).  Interestingly, further characterization of the arginine 

transcriptional regulators revealed ArgR1, and to a lesser extent ArgR2, function to 

activate putA expression after exhaustion of glucose in CDMG (Figure 4.5B and 4.7B).  

AhrC, however, repressed putA transcription in an arginine-dependent manner (Figure 

4.8), further implicating its function in repression of arginine biosynthesis in the presence 

of arginine.   Collectively, these results indicate these arginine transcriptional regulators  
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Figure 5.2.  Transcriptional analysis of argG in S. aureus.  Northern 
analysis was performed with RNA isolated from exponential (early) and 
post-exponential (late) phases of growth in CDM in wild type JE2, JE2 
ccpA::tetL (A), JE2 ΔahrC (B), JE2 argR1::ΝΣ (C), and JE2 argR2::ΝΣ (D).  
Equal loading of RNA was ensured via staining of the RNA gel with ethidium 
bromide and visualization of the 16s and 23s rRNA (data not shown).   
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Figure 5.3.  Transcriptional analysis of argJ in S. aureus JE2 and the 
various regulator mutants.  Northern analysis was performed with RNA 
isolated from exponential (early) and post-exponential (late) phases of 
growth in CDM  from JE2, JE2 argR1::ΝΣ, JE2 argR2::ΝΣ, JE2 ΔahrC, JE2 
ccpA::tetL, and JE2 codY::ΝΣ.  Genomic DNA from JE2 was used as a 
positive control to ensure the argJ probe was functional.  Equal loading of 
RNA was ensured via staining of the RNA gel with ethidium bromide and 
visualization of the 16s and 23s rRNA (data not shown).   
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have evolved in the regulation of arginine biosynthesis from glutamate catabolic genes 

to proline catabolic genes.  Perhaps, S. aureus has adapted both its metabolic pathway 

preferences and its regulatory mechanisms to utilize proline instead of glutamate, as 

proline is potentially in abundance during infection.    

The global regulator, CodY, directly or indirectly controls the expression of over 

200 genes in S. aureus, including those involved in metabolism and virulence, allowing 

the organism to efficiently utilize available nutrient sources and avoiding wasteful energy 

expenditure by synthesizing unnecessary macromolecules.  CodY regulation of proline 

metabolism was recently implicated in studies performed by Waters et al. as proP and 

putP genes encoding proline transporters were among the first to be expressed following 

nutrient depletion and derepression of CodY (135).  Furthermore, the ability to transport 

proline has been linked to virulence, as mutants in putP are less virulent in animal 

models of infection (145, 146).  These data suggest that proline catabolic pathways are 

also regulated via CodY derepression and nutrient limitation.  Indeed, our studies 

implicated CodY involvement in putA transcription as a codY mutant had decreased 

induction of expression after alleviation of repression via CcpA (Figure 4.3).  CodY 

activation of genes typically induces gene transcription via loss of repression; therefore, 

it is hypothesized that CodY activation of putA expression in the absence of CcpA 

repression occurs through derepression of an auxiliary transcriptional regulator, perhaps 

one that senses the availability of proline.  

Amino acid consumption data indicated that histidine was consumed when 

glucose is limiting.  Indeed, genetic and NMR analyses demonstrated that histidine can 

be utilized as a substrate for glutamate synthesis via the hut genes; thus, it can also 

serve as a carbon source in the absence of glucose.   As both CcpA and CodY repress 

histidine catabolism in B. subtilis, we predicted they would also be involved in hut 
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repression in S. aureus.  Much to our surprise, hut induction was not detected in 

northern blot analyses of early- and late-exponential time points during growth of JE2 in 

CDM (Figure 4.1), even though NMR studies determined that the presence of histidine 

facilitated glutamate synthesis during late-exponential growth (Figure 3.7).  However, we 

did detect hut transcription in CcpA and CodY mutants, indicating that histidine 

catabolism is only induced during carbon and nutritional limitation (Figure 4.1B and 

4.3A).  Histidine is one of the most expensive amino acids for the cell to synthesize, 

requiring an input of 20 high-energy phosphate bonds (66), suggesting it would only be 

catabolized during extreme carbon and nutrient limitations.  To further suggest histidine 

utilization is only induced during times of starvation, AhrC also repressed hut 

transcription in an arginine-dependent manner (Figure 4.8).  Figures 5.4 and 5.5 

summarize our proposed model of the regulation of the proline, glutamate, and arginine 

metabolic pathways in the presence and absence of preferred carbon.  Figure 5.6 

depicts the proposed model of S. aureus survival within an abscess. 

Future Directions 

The work presented in this dissertation provides evidence that proline can be 

utilized as a carbon source for bacterial growth in carbon limiting environments via its 

conversion to glutamate, which is further utilized to drive TCA cycle activity and 

gluconeogenesis, thus, providing the cell with carbon to fuel biomass production.  CcpA 

repression in the presence of glucose further suggests the importance of the utilization 

of glutamate and those amino acids that synthesize glutamate as carbon sources, as 

these pathways are only induced during carbon limitation.  Further characterization of 

the mechanisms of regulation involved in the interconnected pathways of glutamate, 

proline, arginine, and histidine metabolism indicated that CodY and the arginine 

transcriptional regulators AhrC, ArgR1, and ArgR2 are involved in controlling the 
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expression of these pathways.  It seems likely that AhrC and ArgR2 function to repress 

arginine biosynthesis in the presence of arginine and that CodY activity regulates proline 

catabolism during nutrient limitation. Additionally, ArgR1 appears to activate proline 

catabolism in a CcpA-dependent manner, however, further experimentation is required 

to confirm this hypothesis.  Indeed, NMR analysis of the fates of proline, arginine, 

histidine, and histidine in all five regulator mutants (CcpA, CodY, AhrC, ArgR1, and 

ArgR2) when grown in CDM would provide useful information as to what catabolic 

pathways these regulators function to activate or repress.  Moreover, amino acid 

consumption analyses in these mutants could indicate if these regulators are involved in 

the regulation of transport of these amino acids.  In conclusion, the findings of this 

dissertation further characterize the metabolic and regulatory nodes involved in carbon 

metabolism, which possibly contribute to in vivo survival and pathogenesis.   

 

  



	 120	

  

Figure 5.4 Regulation of glutamate synthesis in the presence of a 
preferred carbon source.  In the presence of a preferred carbon source 
such as glucose, CcpA functions to repress most genes involved in the 
interconnected pathways of glutamate, arginine, and proline metabolism.   
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Figure 5.5 Regulation of glutamate synthesis in the absence of a 
preferred carbon source.  In the absence of a preferred carbon source 
such as glucose, CcpA alleviation (not including hut repression) allows for 
expression of glutamate synthesis genes via amino acid catabolism.  Hut 
transcription is repressed in the absence of glucose by CcpA, CodY, and 
AhrC activity, in CDM this repression is hypothesized to be functioning due 
to the presence of proline and arginine.  Transcription of putA is positively 
regulated by ArgR1 and CodY.  Northern blot data suggests CodY activation 
is through derepression of an unknown activator, perhaps sensing proline 
availability.  Transcription of ArgG is repressed by CcpA, ArgR2, and AhrC 
in the absence of glucose.  In CDM, this repression is hypothesized to be 
due to the presence of arginine during early exponential growth.   
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Figure 5.6 Proposed model of S. aureus abscess survival.  It is 
proposed the staphylococcal abscess is carbon limited due to both 
immune and bacterial cells utilizing glucose at the onset of infection.  
Host factors such as iNOS and arginase (1A) utilize arginine for nitric 
oxide production (iNOS) and collagen production (arginase).  Bacterial 
cells utilize arginine via ADI for ATP and ammonia production.  Due to 
the depletion of glucose, it is hypothesized that CcpA repression is 
alleviated, allowing for utilization of amino acids such as proline as 
carbon sources.  The fibrin wall is cleaved by bacterial secreted 
proteases such as ScpA, SspB, and aureolysin (2), as well as host 
proteases such as MMP-9 (2), to liberate free proline or proline 
containing peptides (3).  The bacterial cells are then able to utilize these 
free peptides and amino acids through specific transporters as carbon 
sources for survival and persistence within the abscess (4).  
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