Document Type


Journal Title

Brain, Behavior, & Immunity - Health

Publication Date





Maternal opioid use poses a significant health concern not just to the expectant mother but also to the fetus. Notably, increasing numbers of children born suffering from neonatal opioid withdrawal syndrome (NOWS) further compounds the crisis. While epidemiological research has shown the heightened risk factors associated with NOWS, little research has investigated what molecular mechanisms underly the vulnerabilities these children carry throughout development and into later life. To understand the implications of in utero and post-natal opioid exposure on the developing brain, we sought to assess the response to one of the most common pediatric injuries: minor traumatic brain injury (mTBI). Using a rat model of in utero and post-natal oxycodone (IUO) exposure and a low force weight drop model of mTBI, we show that not only neonatal opioid exposure significantly affects neuroinflammation, brain metabolites, synaptic proteome, mitochondrial function, and altered behavior in juvenile rats, but also, in conjunction with mTBI these aberrations are further exacerbated. Specifically, we observed long term metabolic dysregulation, neuroinflammation, alterations in synaptic mitochondria, and impaired behavior were impacted severely by mTBI. Our research highlights the specific vulnerability caused by IUO exposure to a secondary stressor such as later life brain injury. In summary, we present a comprehensive study to highlight the damaging effects of prenatal opioid abuse in conjunction with mild brain injury on the developing brain.