Document Type

Article

Journal Title

International Journal of Molecular Sciences

Publication Date

2025

Volume

26

Abstract

Early-onset heart failure is a major treat to healthy aging individuals with HIV-1 infection. Women with HIV-1 infection (WLWH) are especially vulnerable and develop heart failure with preserved ejection fraction (HFpEF), of which left ventricular diastolic dysfunction, vascular deficits, myocardial infarction, and fibrosis are major components. HIV-infected rodent models that exhibit these pathophysiological features remain under-reported, and this has left a void in our understanding of their molecular causes and therapeutic strategies to blunt its development. Here, we show that female NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ humanized mice (Hu-mice) infected with HIV-1ADA and treated for 13 weeks with dolutegravir (DTG)/tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC) develop progressive diastolic dysfunction with preserved ejection fraction (E:A ratio, E:e', IVRT, left atrial volume and global longitudinal strain increased by 32.1 ± 5.1%, 28.2 ± 5.6%, 100.2 ± 12.6%, 26.6 ± 4.2% and 32.5 ± 4.3%, respectively). In vivo photoacoustic imaging revealed a 30.4 ± 6.8% reduction in saturated oxygenated hemoglobin in the anterior wall of the heart. The ex vivo analysis of hearts showed a reduction in density of perfused microvessels/ischemia (30.6 ± 6.2%) with fibrosis (20.2 ± 1.2%). The HIF-1α level was increased 2.6 ± 0.5-fold, while inflammation-induced serum semicarbazide amine oxidase and glycolysis byproduct methylglyoxal increased 2-fold and 2.1-fold, respectively. Treating H9C2 cardiac myocytes with DTG, FTC and TDF dose-dependently increased expression of HIF-1α. These data show that HIV-infected Hu-mice treated with DTG/TDF/FTC for thirteen weeks develop cardiac diastolic dysfunction, with vascular deficits, ischemia, and fibrosis like those reported in women living with HIV-1 infection (WLWH). They also show that DTG, TDF, and FTC treatment can increase total HIF-1α in H9C2 cells

MeSH Headings

Animals, Female, HIV Infections, Mice, HIV-1, Humans, Anti-Retroviral Agents, Disease Models, Animal, Mice, Inbred NOD, Ventricular Dysfunction, Left, Tenofovir, Pyridones, Heterocyclic Compounds, 3-Ring, Oxazines, Piperazines

ISSN

1422-0067

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS