Document Type
Article
Journal Title
Redox Biology
Publication Date
Winter 11-20-2016
Volume
11
Abstract
Angiotensin II (AngII) elicits the production of superoxide (O2(•-)) from mitochondria in numerous cell types within peripheral organs and in the brain suggesting a role for mitochondrial-produced O2(•-) in the pathogenesis of hypertension. However, it remains unclear if mitochondrial O2(•-) is causal in the development of AngII-induced hypertension, or if mitochondrial O2(•-) in the absence of elevated AngII is sufficient to increase blood pressure. Further, the tissue specific (i.e. central versus peripheral) redox regulation of AngII hypertension remains elusive. Herein, we hypothesized that increased mitochondrial O2(•-) in the absence of pro-hypertensive stimuli, such as AngII, elevates baseline systemic mean arterial pressure (MAP), and that AngII-mediated hypertension is exacerbated in animals with increased mitochondrial O2(•-) levels. To address this hypothesis, we generated novel inducible knock-down mouse models of manganese superoxide dismutase (MnSOD), the O2(•-) scavenging antioxidant enzyme specifically localized to mitochondria, targeted to either the brain subfornical organ (SFO) or peripheral tissues. Contrary to our hypothesis, knock-down of MnSOD either in the SFO or in peripheral tissues was not sufficient to alter baseline systemic MAP. Interestingly, when mice were challenged with chronic, peripheral infusion of AngII, only the MnSOD knock-down confined to the SFO, and not the periphery, demonstrated an increased sensitization and potentiated hypertension. In complementary experiments, over-expressing MnSOD in the SFO significantly decreased blood pressure in response to chronic AngII. Overall, these studies indicate that mitochondrial O2(•-) in the brain SFO works in concert with other AngII-dependent factors to drive an increase in MAP, as elevated mitochondrial O2(•-) alone, either in the SFO or peripheral tissues, failed to raise baseline blood pressure.
DOI Link
ISSN
2213-2317
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.
Recommended Citation
Case, Adam J.; Tian, Jun; and Zimmerman, Matthew C., "Increased mitochondrial superoxide in the brain, but not periphery, sensitizes mice to angiotensin II-mediated hypertension." (2016). Journal Articles: Cellular & Integrative Physiology. 23.
https://digitalcommons.unmc.edu/com_cell_articles/23
Included in
Cellular and Molecular Physiology Commons, Medical Physiology Commons, Systems and Integrative Physiology Commons