Document Type
Article
Journal Title
Scientific Reports
Publication Date
2020
Volume
10
Abstract
The Norwood surgical procedure restores functional systemic circulation in neonatal patients with single ventricle congenital heart defects, but this complex procedure carries a high mortality rate. In this study we address the need to provide an accurate patient specific risk prediction for one-year postoperative mortality or cardiac transplantation and prolonged length of hospital stay with the purpose of assisting clinicians and patients' families in the preoperative decision making process. Currently available risk prediction models either do not provide patient specific risk factors or only predict in-hospital mortality rates. We apply machine learning models to predict and calculate individual patient risk for mortality and prolonged length of stay using the Pediatric Heart Network Single Ventricle Reconstruction trial dataset. We applied a Markov Chain Monte-Carlo simulation method to impute missing data and then fed the selected variables to multiple machine learning models. The individual risk of mortality or cardiac transplantation calculation produced by our deep neural network model demonstrated 89 ± 4% accuracy and 0.95 ± 0.02 area under the receiver operating characteristic curve (AUROC). The C-statistics results for prediction of prolonged length of stay were 85 ± 3% accuracy and AUROC 0.94 ± 0.04. These predictive models and calculator may help to inform clinical and organizational decision making.
DOI Link
ISSN
2045-2322
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Jalali, Ali; Lonsdale, Hannah; Do, Nhue; Peck, Jacquelin; Gupta, Monesha; Kutty, Shelby; Ghazarian, Sharon R; Jacobs, Jeffrey P.; Rehman, Mohamed; and Ahumada, Luis M., "Deep Learning for Improved Risk Prediction in Surgical Outcomes" (2020). Journal Articles: Pediatrics. 18.
https://digitalcommons.unmc.edu/com_peds_articles/18