Title
Selective Generation of Dopaminergic Precursors from Mouse Fibroblasts by Direct Lineage Conversion.
Document Type
Article
Journal Title
Scientific Reports
Publication Date
Summer 7-30-2015
Volume
5
Abstract
Degeneration of midbrain dopaminergic (DA) neurons is a key pathological event of Parkinson's disease (PD). Limited adult dopaminergic neurogenesis has led to novel therapeutic strategies such as transplantation of dopaminergic precursors (DPs). However, this strategy is currently restrained by a lack of cell source, the tendency for the DPs to become a glial-restricted state, and the tumor formation after transplantation. Here, we demonstrate the direct conversion of mouse fibroblasts into induced DPs (iDPs) by ectopic expression of Brn2, Sox2 and Foxa2. Besides expression with neural progenitor markers and midbrain genes including Corin, Otx2 and Lmx1a, the iDPs were restricted to dopaminergic neuronal lineage upon differentiation. After transplantation into MPTP-lesioned mice, iDPs differentiated into DA neurons, functionally alleviated the motor deficits, and reduced the loss of striatal DA neuronal axonal termini. Importantly, no iDPs-derived astrocytes and neoplasia were detected in mouse brains after transplantation. We propose that the iDPs from direct reprogramming provides a safe and efficient cell source for PD treatment.
DOI Link
ISSN
2045-2322
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Tian, Changhai; Li, Yuju; Huang, Yunlong; Wang, Yongxiang; Chen, Dapeng; Liu, Jinxu; Deng, Xiaobei; Sun, Lijun; Anderson, Kristi; Qi, Xinrui; Li, Yulong; Mosley, R. Lee; Chen, Xiangmei; Huang, Jian; and Zheng, Jialin C., "Selective Generation of Dopaminergic Precursors from Mouse Fibroblasts by Direct Lineage Conversion." (2015). Journal Articles: Pharmacology & Experimental Neuroscience. 15.
https://digitalcommons.unmc.edu/com_pen_articles/15