Title
Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect.
Document Type
Article
Journal Title
Frontiers in molecular neuroscience
Publication Date
7-28-2017
Volume
10
Abstract
Traumatic brain injury (TBI) produces profound and lasting neuroinflammation that has both beneficial and detrimental effects. Recent evidence has implicated microRNAs (miRNAs) in the regulation of inflammation both in the periphery and the CNS. We examined the expression of inflammation associated miRNAs in the context of TBI using a mouse controlled cortical impact (CCI) model and found increased levels of miR-21, miR-223 and miR-155 in the hippocampus after CCI. The expression of miR-155 was elevated 9-fold after CCI, an increase confirmed by in situ hybridization (ISH). Interestingly, expression of miR-155 was largely found in neuronal nuclei as evidenced by co-localization with DAPI in MAP2 positive neurons. In miR-155 knock out (KO) mice expression of type I interferons IFNα and IFNβ, as well as IFN regulatory factor 1 and IFN-induced chemokine CXCL10 was decreased after TBI relative to wild type (WT) mice. Unexpectedly, miR-155 KO mice had increased levels of microglial marker Iba1 and increased neuronal degeneration as measured by fluoro-jade C (FJC) staining, suggesting a neuroprotective role for miR-155 in the context of TBI. This work demonstrates a role for miR-155 in regulation of the IFN response and neurodegeneration in the aftermath of TBI. While the presence of neuronal nuclear miRNAs has been described previously, their importance in disease states is relatively unknown. Here, we show evidence of dynamic regulation and pathological function of a nuclear miRNA in TBI.
DOI Link
ISSN
1662-5099
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recommended Citation
Harrison, Emily; Emanuel, Kathleen M.; Lamberty, Benjamin G.; Morsey, Brenda M.; Li, Min; Kelso, Matthew L.; Yelamanchili, Sowmya V.; and Fox, Howard S., "Induction of miR-155 after Brain Injury Promotes Type 1 Interferon and has a Neuroprotective Effect." (2017). Journal Articles: Pharmacology & Experimental Neuroscience. 51.
https://digitalcommons.unmc.edu/com_pen_articles/51
Supplementary Material