Document Type
Article
Journal Title
Molecular Therapy Nucleic Acids
Publication Date
Winter 12-4-2012
Volume
1
Abstract
Gene editing is a process by which single base mutations can be corrected, in the context of the chromosome, using single-stranded oligodeoxynucleotides (ssODNs). The survival and proliferation of the corrected cells bearing modified genes, however, are impeded by a phenomenon known as reduced proliferation phenotype (RPP); this is a barrier to practical implementation. To overcome the RPP problem, we utilized nanofiber scaffolds as templates on which modified cells were allowed to recover, grow, and expand after gene editing. Here, we present evidence that some HCT116-19, bearing an integrated, mutated enhanced green fluorescent protein (eGFP) gene and corrected by gene editing, proliferate on polylysine or fibronectin-coated polycaprolactone (PCL) nanofiber scaffolds. In contrast, no cells from the same reaction protocol plated on both regular dish surfaces and polylysine (or fibronectin)-coated dish surfaces proliferate. Therefore, growing genetically modified (edited) cells on electrospun nanofiber scaffolds promotes the reversal of the RPP and increases the potential of gene editing as an ex vivo gene therapy application.Molecular Therapy - Nucleic Acids (2012) 1, e59; doi:10.1038/mtna.2012.51; published online 4 December 2012.
DOI Link
ISSN
2162-2531
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License.
Recommended Citation
Borjigin, Mandula; Strouse, Bryan; Niamat, Rohina A.; Bialk, Pawel; Eskridge, Chris; Xie, Jingwei; and Kmiec, Eric B., "Proliferation of genetically modified human cells on electrospun nanofiber scaffolds." (2012). Journal Articles: Pharmaceutical Sciences. 3.
https://digitalcommons.unmc.edu/cop_pharmsci_articles/3