Graduation Date
Fall 12-16-2022
Document Type
Thesis
Degree Name
Master of Science (MS)
Programs
Medical Sciences Interdepartmental Area
First Advisor
Minnie Vishwanath
Second Advisor
Chandran Achutan
Third Advisor
Greg Oakley
Fourth Advisor
Tom Petro
Abstract
Introduction: Aerosol production is a key contributor to occupational risk and disease transmission in the dental clinic. These aerosols can host harmful pathogens, such as SARS-CoV-2. Considering the 2020 pandemic, researchers endeavored to bolster the existing body of literature related to disease transmission via aerosols and droplets to provide better recommendations for infection control. This investigation aims to support that mission by characterizing the risk to orthodontic professionals and patients based on aerosolized particle size and travel distance. Methods: The experimental protocol used in this study was validated through a smaller scale pilot study in 2021. High- and Low-risk orthodontic procedures were performed in a simulated clinical setting and the particle production was measured using optical particle counters positioned 30 in. and 6 ft. from the procedure site. A total of 5 different procedural variations were performed 15 times each. Results: High-speed debonding procedures without exhaust routinely produce the highest number of airborne particles, while slow-speed debonding with HVE and LEV result in the lowest particle accumulation at both near and far distances. A negative correlation (r= -0.78) was observed between particle size and concentration (p<.0001). Conclusion: Orthodontic procedures which utilize the high-speed handpiece without exhaust are high-risk for generating aerosolized particles. While the overall particle production is decreased for low-risk procedures like slow-speed debond with exhausts, concentrations of the smallest particle size are comparable to that of a high-risk procedure. Aerosols generated during orthodontic procedures show a size-dependent concentration gradient with more particle production associated with decreasing particle diameter.
Recommended Citation
Jochum-Nesbitt, Donte, "Aerosols in Orthodontics: Characterization of Particle Size and Travel Distance" (2022). Theses & Dissertations. 696.
https://digitalcommons.unmc.edu/etd/696
Included in
Occupational Health and Industrial Hygiene Commons, Orthodontics and Orthodontology Commons, Patient Safety Commons
Comments
2022 Copyright, the authors